
Integrating LLM-Based Text Generation with
Dynamic Context Retrieval for GUI Testing

Juyeon Yoon
KAIST

Daejeon, Korea
juyeon.yoon@kaist.ac.kr

Seah Kim
Samsung Research

Seoul, Korea
sseah.kim@samsung.com

Somin Kim
KAIST

Daejeon, Korea
somin.kim@kaist.ac.kr

Sukchul Jung
Samsung Research

Seoul, Korea
sukchul.jung@samsung.com

Shin Yoo
KAIST

Daejeon, Korea
shin.yoo@kaist.ac.kr

Abstract—Automated GUI testing plays a crucial role for
smartphone vendors who have to ensure that the widely used
mobile apps–that are not essentially developed by the vendors–are
compatible with new devices and system updates. While existing
testing techniques can automatically generate event sequences to
reach different GUI views, inputs such as strings and numbers
remain difficult to generate, as their generation often involves
semantic understanding of the app functionality. Recently, Large
Language Models (LLMs) have been successfully adopted to
generate string inputs that are semantically relevant to the test
case. This paper evaluates the LLM-based input generation in
the industrial context of vendor testing of both in-house and
3rd party mobile apps. We present DROIDFILLER, an LLM
based input generation technique that builds upon existing work
with more sophisticated prompt engineering and customisable
context retrieval. DROIDFILLER is empirically evaluated using
a total of 120 textfields collected from a total of 45 apps,
including both in-house and 3rd party ones. The results show that
DROIDFILLER can outperform both vanilla LLM based input
generation as well as the existing resource pool approach. We
integrate DROIDFILLER into the existing GUI testing framework
used at Samsung, evaluate its performance, and discuss the
challenges and considerations for practical adoption of LLM-
based input generation in the industry.

Index Terms—GUI Testing, Large Language Models, Test
Automation

I. INTRODUCTION

Android mobile platform is a massive ecosystem that
accounts for approximately 70% of worldwide smartphone
market [1]. The platform consists of multiple smartphone
vendors and a diverse array of devices that are often customised
to add value to the users. The success of the ecosystem and
its resulting size, however, also contributed to the techni-
cal challenge known as device fragmentation [2], i.e., the
combinatorial explosion in the number of vendor specific
customisations, different hardware configurations, and rapidly
evolving operating systems.

Device fragmentation poses a challenge not only to the
individual app developers (who have to test their apps against
a diverse array of configuration) but also for the smartphone
vendors who develop software customisation layers, as none

This work has been supported by Samsung Electronics, the National
Research Foundation of Korea (NRF) funded by the Korean government
MSIT (RS-2023-00208998), as well as the Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (RS-2022-II220995).

of the vendors control the app development environment
exclusively. Rather, each vendor needs to ensure that the widely
used, popular apps run well on their customised environment,
resulting in their need to test 3rd party apps on their devices
and customised configurations. Automated GUI testing can be
of significant help to smartphone vendors, as it can reduce
the cost of testing evolving 3rd party mobile apps. Samsung
depends on its own GUI testing framework, and showed that
some of the challenges from testing evolving apps developed
by 3rd party developers, namely the View Identification Failure
(VIF) issues [3], can be effectively addressed with the use of
machine learning [4].

However, the challenges in automated GUI testing of 3rd
party mobile apps do not stop at VIF issues. One of the
longstanding challenges in automated GUI testing is how to
generate meaningful inputs to emulate human users [5], [6], [7],
[8]. Unlike other GUI events such as button clicks or scrolling,
textfield inputs need to be semantically relevant to the app
functionality as well as the test case. Randomly generated
inputs may not pass the input validation, or may not achieve
the testing objective even if it passes the validation. Further,
certain functionalities require very specific input texts: for
example, coupon codes (required to test store apps) or device
model numbers (required to test specific search functionalities)
are strictly dependant on external knowledge and test intentions.
Samsung has developed a resource pool based technique for
efficient GUI testing automation: we prepare a categorised pool
of text inputs, and try to match GUI elements to existing input
categories based on the context of the widget.

Recently, QTypist, a Large Language Models (LLMs) based
input generation for GUI testing, has been proposed [9].
QTypist extracts local context from the GUI view that requires
the input, and generates prompts based on the context as well
as the type of the widget. Compared to the existing resource
pool approach, an LLM-based approach has the benefit of
not having to pre-generate all input values: they are instead
generated on the fly by the underlying LLM. However, we
also note that a purely LLM-based approach cannot generate
the specific text inputs such as coupon codes, and it lacks
customisability upon target user profile and domain knowledge.
Especially for the smartphone vendors, the target domain of
the apps to be tested often lies on the large scale of various
domains, so the LLM-based approach should be able to adapt

979-8-3315-0814-2/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST 2025, Naples, Italy
Industry Track

394

to the diverse domains of target apps.
This paper presents DROIDFILLER, an LLM-based text

input generation technique for GUI testing. DROIDFILLER
advances the state-of-the-art LLM based input generation
techniques in two ways. First, its prompt is derived not only
from the local context of the input field, but also the general
characteristics of the AUT (App Under Test): we prompt the
LLM to reason about the app functionality, and subsequently
asks it to generate a suitable text input based on its own
reasoning. Second, following the underlying idea of the ReAct
prompting technique [10], we allow DROIDFILLER to provide
specifically customised text inputs, such as coupon codes and
device serials, by calling external functions and retrieving the
context based on the return values.

We have evaluated DROIDFILLER against two baselines:
the existing resource pool approach, and a vanilla LLM-based
technique that only uses local GUI context information. We
have collected 120 text input fields from a total of 45 apps,
including those developed in-house by Samsung as well as
3rd party apps. Based on human labelling of whether the
generated input is semantically relevant or not, DROIDFILLER
outperforms both baselines. An ablation study shows that
both the more sophisticated reasoning based prompt strategy
and the function-call based context retrieval contribute to the
performance of DROIDFILLER.

Technical contributions of this paper are as follows:

• We show that advanced prompting and customisable
dynamic context retrieval based on function calling can
improve LLM based text input generation for GUI
testing. DROIDFILLER can generate text inputs based
on predetermined user profiles, or store specific coupon
codes.

• We conduct an ablation study to show that each component
of DROIDFILLER contributes to its performance.

• We report our experience of integrating an LLM-based
text input generation technique with an industry-scale
automated GUI testing framework with an empirical
evaluation.

• We publicly release the implementation of DROIDFILLER1

that can be run with DroidBot [11], an open-source GUI
exploration tool. It provides customisable configurations
for user profiles and context retrieval functions, allowing
easy adaptation to the specific usage scenario. To the
best of our knowledge, no such tool for GUI text input
generation has been made publicly available.

The rest of the paper is organised as follows. Section II
presents background information about the industrial GUI test-
ing tool, and the relevant LLM prompt engineering techniques.
Section III describes methodology, Section IV presents eval-
uation results, and Section V discusses remaining challenges
for practical adoption of DROIDFILLER. Section VI discusses
threats to validity, Section VII presents the related work, and
Section VIII concludes the paper.

1https://github.com/coinse/droidfiller-android

System: You are a QA engineer to thoroughly test
the given Android application.
Currently you are testing an Android app named
[APP_NAME] and will be asked to provide the text
content that the persona user would input to the
specific textfield.
Here is the profile of the persona user:
[PROFILE_INFO]

Current
App State

STEM

GUI State Parser

GUI Event
Generator

Event Selection
Model (Brain)

Is
SetText?

DroidFiller

GUI Tree

Target Textfield
Updated
SetText Event Generated Text

User Profile:

Name: John Doe
Phone: +1-555-5555
Email: anonymous@gmail.com
City: New York
[...]

Testing Goal:

Default: “thoroughly test the app”
Crash: “intentionally crash the app”
Mistake: “make human-like mistakes”

Dynamic
Contexts

Model: FUNCTIONALITY: [reasoning from LLM]
TEXTFIELD_ROLE: [reasoning from LLM]
REASONING: [reasoning from LLM]

get_[yyy]_product_info

get_[xxx]_coupon_code

get_friend_profile

User: Either provide the actual text content to fill in
the textfield or call a relevant function if you need
additional information for the current textfield.
(available functions: [....])

Model: FUNCTION_CALL:
get_friend_profile(“Jane Doe”)

User: FUNCTION_CALL_RESULT:
{name: “Jane Doe”, phone: “+1-[...]

Model: TEXT_CONTENT: [generated by LLM]

Chat Messages

User: Refer to the below information[...]
> Target textfield to fill in:
[TEXTFIELD_INFO]

> Widgets on the current GUI:
[SCREEN_INFO]

Fig. 1. Overview of DROIDFILLER integrated with STEM

II. BACKGROUND

This section describes the background of our work.

A. STEM: Scenario-learnt Test Execution Model

1) Learning-based GUI Exploration Strategy: STEM oper-
ates by selecting next UI event based on the current UI state
and recent transitions. The basic exploration strategy of STEM
refers to a public implementation of DroidBot [11], which
systematically explores the GUI of an app. DroidBot employs
a simple heuristic for selecting the next UI event: it prioritises
UI elements that have not yet been interacted with, either in
breadth-first or depth-first order. However, in Samsung’s testing
environment that typically involves testing a large number of
diverse apps (for ensuring compatibility with the new device),
this simple heuristic falls short in efficiently covering each
app’s “core” features within a fixed time budget.

Li et al. [12] have shown that deep-learning models trained
on the UI transition data from human users can predict next
events that a human user likely to trigger and the learning-based
strategy help reaching more “important” states of AUT. Inspired
by the technique, STEM incorporates a deep-learning model

395

https://github.com/coinse/droidfiller-android

that combines LSTM and CNN layers, totalling approximately
7 million parameters. The model is trained on usage patterns
of the testers, which are internally collected during the manual
GUI testing process in Samsung.

As the decision of prediction model is based on the current
GUI state and previous interactions, STEM captures the
screenshot of the current screen, and continuously records the
transition history namely the sequence of UI events, throughout
the exploration process. The model predicts both the location
of the UI element to interact with and the type of the event.
Currently, STEM supports the following types of UI events:
Click, Scroll, SetText, and LongClick.

At every iteration of selecting the next UI event, STEM
prioritises the event that the trained model assigns the highest
probability. However, when the current GUI state differs
significantly from the training data, the model may struggle to
predict the next event with high confidence. In these instances,
STEM falls back to the heuristic-based strategy. Initially,
STEM checks if any UI elements on the current screen trigger
a transition to a new screen. If so, STEM prioritises the element
that facilitates this transition. If there is no such UI element,
STEM randomly selects one of the UI elements that have not
been interacted with yet.

STEM applies additional optimisation for the pages that
include textfields. If the target GUI state contains one or more
textfields requiring input, and thus necessitates a SetText event,
STEM gives priority to textfields that have not yet been filled
in. This approach is adopted because textfields often need
specific text content for subsequent UI transitions, such as
search queries, sign-in forms, etc.

2) Text Input Generation Policy: STEM is equipped with a
separate module for text input generation activated each time a
SetText event is generated. Currently, STEM supports two types
of text generation policies: random and context. Random policy
generates an arbitrary string without considering any context
information, whereas context policy is based on manually
crafted textfield categories (e.g., email, name, search, etc.) and
the similarity-based category matching scheme.

Specifically, each category is defined with a set of repre-
sentative words and a corresponding value pool. For example,
a category “username” is represented by keywords [user,
ID, username], and any textfield matching this category
is filled with content from the value pool, such as an arbitrary
username like “tester123”. Category matching is basically
ranking all available categories with respect to a target textfield
based on their similarity. The textfield is represented as its
textual properties: for Android, text, content description, and
resource id attributes. Since both the category and textfield are
represented as a set of tokens, the two directions of pairwise
similarity sets can be obtained: Si

cx and Si
ty , which are basically

sets of maximum similarities between a token from the target
tokenset and the tokens from the counterpart.

In detail, each token is vectorised with FastText [13]
language model with an aim of capturing semantic relevance
(e.g., “place” and “location” is lexically far from each other
but the semantic embeddings of two words are expected to

be similar), and their cosine similarities (denoted as cos sim)
are calculated. Formally, where τc denotes a set of keyword
tokens of cx, and τt denotes a set of tokens extracted from ty ,

Si
cx = sort desc({maxtj∈τtcos sim(vec(ti), vec(tj)|ti ∈ τc})

and

Si
ty = sort desc({maxti∈τccos sim(vec(ti), vec(tj)|tj ∈ τt})

.
Then, the similarity between cx and ty is defined as an

aggregation of similarity values in both directions, as described
in Equation 1. Additionally, we prune the pairwise similarities
with K highest values.

simagg(cx, ty) =
1

2
× (

∑K
i=1 S

i
cx

min(|τc|,K)
+

∑K
i=1 S

i
ty

min(|τt|,K)
) (1)

STEM currently incorporates the category matching scheme
as an additional mode to generate meaningful rather than
random text inputs: it maintains 57 categories identified from
the subset of their AUTs.

B. Large Language Models

Large Language Models (LLMs) have shown promising
results in generating human-like reasoning and answers in wide
range of domains, including software testing automation [14],
[15], [9]. The GPT-3 and GPT-4 models, including its versions
fine-tuned for source code [16], [17], [18] has demonstrated
proficiency in generating human-like text based on given
contexts. This capability has been leveraged in GUI testing,
where the model is fine-tuned with specific input-output
examples to generate text contents from natural language screen
descriptions [9], [19]. In this line of research, fine-tuning is
often considered essential for executing domain-specific tasks.
However, this approach may limit the model’s generalisability
across various apps and usage scenarios.

Modern designs of Large Language Model-based architec-
tures increasingly emphasise in-context learning. This approach
offers greater flexibility in adapting the model to a target
domain by incorporating task descriptions and examples directly
into the prompt [16], [20]. Within this concept, even large-scale
external databases can be adopted and we can construct prompts
by retrieving relevant information for the target task; Retrieval-
Augmented Generation, as described in Lewis et al. [21]
enhances tasks that demand specific and factual knowledge. It
achieves this by dynamically retrieving relevant documents
from sources like Wikipedia based on the given context.
Chain-of-Thought [22], a prompting technique encourages the
articulation of intermediate reasoning steps, has gained wide
adoption and has been proven effective in enhancing the quality
of answers across various tasks [23]

Recent efforts have focused on integrating external tools, like
search engines and APIs, into the iterations of LLM prompting.
ReAct [10], for example, combines LLMs’ reasoning and acting
capabilities in an interleaved fashion. The aforementioned
prompting strategies can be implemented with “function calling”

396

features provided by the latest models from OpenAI [24],
or several LLM-powered application building frameworks,
such as AutoGPT [25], and LangChain [26]. For our text
input generation task, we employ a combination of prompt
engineering techniques and frameworks associated with LLMs,
integrating the concepts of Chain-of-Thought and Retrieval-
Augmented Generation alongside the function call feature.
Compared to the fine-tuning based approaches, the retrieval-
augmented generation offers more flexibility, especially in
tailoring the model to predefined user profiles and domain-
specific data, which may vary across AUTs. Properly guiding
reasoning steps enables the model to generate accurate text
contents in the desired formats, eliminating the need for fine-
tuning with pre-labelled data.

III. METHODOLOGY

In this section, we describe the structure of prompt template
used in DROIDFILLER and the overall workflow, which is
illustrated in Figure 1.

A. Initialising System Prompt with User Profile

A real-world usage of mobile apps commonly requires a user
to provide its personal information to the app, such as name,
email, phone number, typically through the sign-in process.
However, most of the existing GUI testing techniques do not
explicitly consider this aspect and usually bypass the sign-in
process with manually crafted scripts [27], [9], [28], [29], [12]
or a snapshot of the intermediate app state [30].

Instead, DROIDFILLER incorporates a target user profile,
encompassing personal information, account credentials, and
personality descriptions in its dynamically constructed prompt,
to guide the model in using this persona information when
generating text inputs. This simple strategy naturally enables the
model to correctly fill textfields requiring personal information
like usernames and passwords, thus successfully passing initial
input validation. Compared to using prepared login scripts,
DROIDFILLER mitigates the risk of inconsistent app behaviour
in the login process and eliminates the manual effort needed
to prepare login scripts for each AUT.

The user profile is contained in a system message that is
sent to the chat-based model, OpenAI gpt-3.5-turbo model [31]
in our experiment. In Table I, we provide the structure of the
system message: tester description, and profile information.
The resulting system message is the concatenation of these
two parts.

B. Generating Reasoning Steps for Screen Comprehension

The first user message sent to the model includes information
about the target textfield and the current GUI state, and the
model is asked to provide the reasoning about the text content to
be inputted to the textfield. We provide the message structure in
Table II. The model is expected to generate an output following
the given reasoning template, which calls for an inference of
the app functionality, and the role of the target textfield based
on the given GUI information.

TABLE I
STRUCTURE OF DROIDFILLER’S SYSTEM MESSAGE

Context Type Example

Tester Description You are a QA engineer to thoroughly test
the application. Currently you are testing
an android app named X

Profile Information Here is the profile of the persona user
you are going to adopt for testing: - name
: John Doe - phone: (646)555-3890 - email:
anonymous@gmail.com - username: anonymous
- password: Pwd123456@[...]

TABLE II
STRUCTURE OF DROIDFILLER’S INITIAL USER MESSAGE

Context Type Example (‘Recipe Keeper’ App)

Instruction Refer to the below information and
follow the provided steps to fill
in the given textfield.

Target TextField Description > Target textfield to fill in: a
textview that has resource_id "
txtTitle" (Widget ID: 23)

GUI State Description > Widgets on the current GUI state:
I see the following widgets from
top to bottom: a textview that has
text "Add meal" (Widget ID: 9)a
button that has content
description "Navigate up" (Widget
ID: 8)[...]

Reasoning Template === Below is the template for your
answer === FUNCTIONALITY: <
briefly describe the functionality
of the Recipe Keeper that the
current GUI state is about>
TEXTFIELD_ROLE: <briefly describe
the role of the target textfield>
REASONING: <briefly describe the
reasoning process (1-2 sentences)
to fill in the textfield. Consider
following questions: What is the
textfield for? Is there any
function that can provide relevant
information for the textfield?>

1) GUI State Description: DROIDFILLER provides the
textual description of the GUI state to the model. First, it
assigns a unique integer ID to all the visible widgets on the
current GUI state, and then it describes each widget with its
textual properties: text, content description, and resource id. In
addition, DROIDFILLER partially gets use of the widget type to
indicate each widgets; for example, EditText type widgets are
referred as “textfield” in the description, Button type widgets
are referred as “button”, CheckBox type widgets are referred
as “checkbox”, and so on. The undefined widget types are
referred as the default indicator, “widget”.

The natural language descriptions of the visible widgets
are concatenated in the order of their vertical positions on the
screen (top to bottom), and the resulting description is provided
to the model as a part of the user message.

2) Reasoning Template: A naive way to query a language
model to generate text contents would be to provide the infor-
mation about the target textfield and the current GUI state with
a simple command, such as “Generate a suitable text content to

397

fill in the target textfield”. However, one issue of this zero-shot
prompting is that the outputs of the model are not guaranteed
to be in the consistent format. For example, the model may add
some redundant comments along with the generated text content
in its output, such as, The text input should be
"John Doe" (The profile name); here, it becomes
challenging to automatically parse the pure text content.

Moreover, because of the lengthy prompt containing the
entire GUI screen description, the model may struggle focusing
on the relevant information for the target textfield and misunder-
stand the overall GUI context; this occasionally results in the
generation of irrelevant text content. Hence, we employ a step-
by-step reasoning template to guide the model to follow the
rational thinking process and generate output in a consistent
format. This template is inspired by the Chain-of-Thought
prompting strategy [23], but is specifically tailored for our
task of generating text content related to the GUI context,
ensuring that the model follows the designated reasoning steps.
In response to the the first user message, the LLM instance
in DROIDFILLER generates the reasoning following the given
template; till this point, the model has not confirmed the final
text content to be inputted to the textfield yet.
FUNCTIONALITY: The Recipe_Keeper app allows users to create

and save meal recipes with detailed information such as
title, date, meal type, serving size, and notes.

TEXTFIELD_ROLE: The target textfield with the text "
Delicious Pasta Carb..." and resource_id "txtTitle" is
used to enter the title of the recipe.

REASONING: To fill in the target textfield, I will provide a
unique title for the recipe.

Then, a followed user message, structured as Table III,
is added to the conversation thread, asking the model to
either provide the final text content or call one of the given
functions. Details about the function call-based context retrieval
is described in Section III-C.

TABLE III
STRUCTURE OF DROIDFILLER’S FOLLOWED USER MESSAGE

Context Type Example (‘Recipe Keeper’ App)

Instruction Now, either provide the actual text
content to fill in the textfield
or call a relevant function if you
need additional information for the
current textfield, and there is a
function that can provide the
information.

Enforcing Output Template If you are going to immediately
generate the text content, provide
the text content with the prefix "
TEXT_CONTENT:" in a single line,
and do not include anything else in
your answer except the text
content.

In this example with the ‘Recipe Keeper’ app, the model
instantly generates the final text content in the requested format,
which is the title of the recipe:

TEXT_CONTENT: Creamy Chicken Alfredo

C. Dynamic Context Retrieval
Large language models are known to be suitable for

generating answers that follow common knowledge [32], but
not for generating domain-specific information that requires
external knowledge [33], [10]. For example, the model may
not be able to generate a specific coupon code for a store app,
if the valid coupon codes are not included in the prompt or
the part of training data (which is not even desirable to be
included in the training data if we regard privacy concerns).

Moreover, including all the possible domain-specific infor-
mation in the prompt is not feasible with the limited length
of the prompt, and may confuse the model to focus on the
relevant information for the target textfield. DROIDFILLER
instead adopts the function call-based context retrieval, which
allows the model to selectively and dynamically refer to the
external information sources when generating text contents.

For the original text generation policy of STEM described
in Section II-A2, a category value pool has been curated
by internal engineers by Samsung based on their general
target AUTs so that there are several categories that require
certain predefined ingredients (e.g., coupon codes, device model
numbers, etc.). Based on them, we define a set of functions
as Table IV that can provide domain-specific information for
our experiment on in-house apps. Note that in our publicised
implementation, the function set can be customised by users,
as they can write their own function definitions as part of the
configuration file.

TABLE IV
LIST OF THE DEFINED FUNCTIONS THAT CAN BE INVOKED BY LLM USED

IN OUR EXPERIMENT FOR IN-HOUSE APPS.

Function Name/Arguments Description

get_friend_profile(name) Returns the profile of a
specific person with given
name

get_samsung_product_info(type) Returns an example product
information of Samsung

get_galaxy_store_coupon_code() Returns a set of valid coupon
codes of store Y (an internal
app of Samsung)

The description (i.e., required arguments, textual explanation
about the returned data) about the available functions are given
along with the followed user message described in Table III.,
which is after the generation of intermediate reasoning from
the model. Note that the model is not guaranteed to call a
function with the correct arguments although it is provided with
the full function specification. In such cases, DROIDFILLER
detects the ill-formed function call and discards the response.
Subsequently it re-tries the function call or the final text input
until a valid function call response is generated.

D. Integration to Industrial GUI Testing Tool
To integrate DROIDFILLER into the STEM, the GUI testing

tool developed by Samsung as described in Section II-A, we

398

target the text input generation policy of STEM. We implement
DROIDFILLER as a separate module that can be plugged into
the existing STEM framework, and the module is activated
when STEM generates a SetText event. Note that the SetText
events are prioritised over other types of events when STEM
encounters a GUI state that includes one or more textfields to be
filled in. The DROIDFILLER module receives the information
about the target textfield and the current GUI state from STEM,
specifically in the format of dictionary, and then it constructs a
prompt by applying the information to the predefined prompt
template. As the resulting prompt (in the form of chat messages)
queries the LLM instance, the LLM instance generates the text
content to be inputted into the textfield, and DROIDFILLER
sends the generated text content back to STEM. Finally, the
SetText event with the generated text content is executed on
the testing device.

IV. EVALUATION

This section describes our experimental setup and presents
the results of our evaluation on DROIDFILLER.

A. Research Questions

We aim to answer the following research questions.
RQ1. Text Generation Quality: How realistic are the text
contents generated by DROIDFILLER compared to existing
methods? RQ1 aims to assess the quality of generated text
inputs from DROIDFILLER and conventional approaches,
determining whether each text is likely to be entered by a
human.
RQ2. Dynamic Context Retrieval How effective is the
function call based context retrieval? With RQ2, we aim to ex-
amine the efficacy of function call-based context retrieval. This
involves verifying if domain-specific contexts are accurately
retrieved and utilised to generate meaningful text contents,
potentially leading to the discovery of new app states.
RQ3. Ablation How does each component of DROIDFILLER
impact the text generation quality? With RQ3, we aim to assess
the contribution of reasoning template prompting and function
call components to the overall text generation quality.
RQ4. Testing Enhancement How does DROIDFILLER enhance
an industrial GUI exploration tool? With RQ4, we aim to
investigate the impact of integrating human-like text inputs
from DROIDFILLER into an industrial GUI exploration tool. We
assess whether STEM, when integrated with DROIDFILLER,
covers a broader range of screens compared to its original text
input setup.

B. Experimental Setup

1) Subjects: To evaluate the quality of generated text
contents by DROIDFILLER (RQ1-RQ3), we collect a total
of 120 textfield from 45 apps including 11 internal apps from
Samsung. The 3rd party apps are collected from Google Play
Store and FDroid [34]. The full list of the apps and the dataset
is available in our public repository. The textfields are collected
by manually exploring the apps and identifying the textfields
that require specific text contents to fill in. Specifically, we

collect pairs of the textfield information and the entire GUI
screen states. For RQ4, we use a separate set of apps that
satisfy the following conditions: an app should be runnable in
our target device as STEM does not support emulators, and
should have more than three textfields. We select total of 10
Android apps; detailed information are provided in Table V.

The Dynamic Context Retrieval strategy in DROIDFILLER
allows for customisation of the function set based on the
domain-specific requirements of the target AUT. For a subset of
the subject apps, we defined additional context-providing func-
tions: get_ampache_server_info for AmpachePlayer
and get_nextcloud_server_info for NextCloudTalk,
which include feasible server addresses and credentials. Both
apps require connection to a dedicated server by specifying a
unique address. We also added this server address information
and credentials to the original STEM’s value pool to ensure a
fair comparison.

2) Metrics: We measure the quality of generated text
contents by the ratio of realistic text generations. We consider
generated text as realistic if, after manual assessment, we decide
that a human could have entered the same text. Three of the
authors have independently labelled the generated texts, and
discussed to reach a consensus.

For the function call-based context retrieval (RQ2), we assess
how accurately function call invocations are generated by LLMs.
We manually label whether a textfield requires calling one of the
provided function, and check whether DROIDFILLER actually
invoked the required function during the text generation process.
Further, we report the precision, recall, and F1-score of each
function and the aggregated scores for all the functions.

To assess the impact of DROIDFILLER integrated with
STEM on the test effectiveness (RQ4), we adopt UI-based
coverage metrics: the number of reached activities [35] and
the number of unique states [36] discovered during exploration.
When counting covered activities and states, we only consider
the activities that belong to the target app, as well as and the
states from those internal activities.

Given the latency of querying an LLM, it may not
be fair to compare results under the same time budget:
STEM+DroidFiller may only trigger a smaller number of events
due to the latency. Instead, we have matched the number of
UI events created. Both configurations ran for 90 minutes,
and we synchronised the length of the exploration sequences
by trimming them to the length of the shorter one. In the
future, such latency may be shortened by replacing API calls
with a more lightweight local LLM. To reduce potential bias,
we run each configuration three times and record the highest
performance in terms of reached activities as done in previous
studies [37].

3) Implementation: We implement DROIDFILLER as a
separate Python module that can be plugged into the existing
STEM framework. As explained, the module is activated when
STEM generates a SetText event. We use the official OpenAI
API to get access to the GPT-3.5-turbo-0613 model [31], which
is a chat-based completion model that supports to receive
definitions of the custom function definitions and pretrained to

399

TABLE V
ANDROID APPS USED IN DROIDFILLER’S TESTING EFFECTIVENESS EVALUATION.

App ID Simplified Name Category # of Activities App ID Simplified Name Category # of Activities

oss.krtirtho.spotube Spotube Multimedia 7 org.tasks Tasks Writing 46
luci.sixsixsix.powerampache2.fdroid AmpachePlayer Multimedia 1 com.ichi2.anki Anki Education 29
com.money.manager.ex MoneyManager Money 48 com.moimob.drinkable Drinkable Writing 1
com.nextcloud.talk2 NextCloudTalk Connectivity 30 moe.dic1911.urlsanitizer URLSanitizer System 4
lying.fengfeng.foodrecords FoodRecords Health 2 ru.aeroflot Aeroflot Flight Management 33
org.asafonov.monly Monly Money 1 io.github.zwieback.familyfinance FamilyFinance Money 30

Fig. 2. Comparison on the number of realistic text generations between
DROIDFILLER and baseline techniques.

● DroidFiller: [Display options, Network
settings, …]

● LLM_Base: [Friends in City X, New
restaurants in City X, …]

● CategoryMatching: [www.google.com,
How to make an apple pie, …]

● DroidFiller: [ref-gf8ff4, ref-3iwi87, …]

● LLM_Base: [ABC123, 1234CODE, …]

● CategoryMatching: [ref-gf8ff4, ref-3iwi87,
…]

App: Settings App: Galaxy Store

Fig. 3. Example text generations from different techniques.

invoke the functions when necessary. We use Galaxy Fold Z 2
as a device for running STEM.

C. Results

1) Text Generation Quality (RQ1): Among the total 120
investigated textfields, our manual assessment confirms that
DROIDFILLER generates the correct (i.e., whether the text is
likely to be entered by a human using the app) text contents
for the 118 cases (98.3%), while the basic LLM prompting
succeeds to generate correct inputs for 111 cases (92.5%) and
the category matching baseline produces correct inputs for 78
cases (65%). Figure 2 compares the performance on realistic
text generation for the two dataset types: Internal, ThirdParty.
For textfields from 3rd party apps, DROIDFILLER and basic
LLM prompting show similar performances, but DROIDFILLER
generates meaningful contents where the basic LLM prompting
does not. We provide such cases in Figure 3.

For the search field of the “Settings” app, DROIDFILLER
correctly generates a search query for finding corresponding
setting options, but the two other techniques generate general

TABLE VI
ACCURACY OF EACH FUNCTION CALL BY LLM USED IN OUR EXPERIMENT.

Function Name / Aggregation Precision Recall F1-score

get_friend_profile 0.31 0.65 0.42
get_samsung_product_info 0.14 1.00 0.25
get_galaxy_store_coupon_code 1.00 1.00 1.00
Micro-averaged 0.27 0.71 0.39
Macro-averaged 0.48 0.88 0.56

search queries, which do not yield any search results. Although
the app name, “Settings” is provided as a prompting context
both for DROIDFILLER and LLM base, the result implies that
enforcing proper reasoning steps help refer to the relevant
information in the long prompting context. The other example
textfield, the coupon code box of the “Galaxy Store” app,
receives a specific set of codes; the codes cannot be inferred via
general knowledge. Different from LLM base, DROIDFILLER
is able to call a function which loads the available coupon codes.
DROIDFILLER correctly invokes the function and outputs the
predefined coupon codes based on the returned result of the
function. In this case, CategoryMatching baseline also produces
correct answers because the “coupon code” category and its
value pool is defined and the textfield is predicted to be a
correct category.

2) Dynamic Context Retrieval (RQ2): In our experiment,
we provide three functions that provide additional context
information to infer correct text inputs. We first manually
label whether a textfield requires calling one of the provided
function, and check whether DROIDFILLER invoked any
function during the text generation process for each textfield
(total 120 textfields). We treat this as a ternary classification
problem and report the accuracy of function calling in Table VI.

The relatively low precision for the functions “get friend
profile” and “get samsung product info” indicates that there

are significant number of textfields that unnecessarily invoked
those functions. However, the low precision does not necessarily
mean that DROIDFILLER generates inappropriate texts when
an irrelevant function is falsely called; in fact, DROIDFILLER
eventually succeeds to generate at least one correct text input
for every cases that called irrelevant function calls. For example,
although DROIDFILLER attempts to call “get friend profile”
on the textfield that requires a TV show name to be inputted,
it finally generates a correct show title, “Friends”.

However, we also observe several cases that the incorrect
function calling leads to an incorrect text input as well; we
plan to reinforce the reasoning process on function calling,

400

Fig. 4. Comparison on the number of realistic text generations among
DROIDFILLER and its ablation settings

DroidFiller: [Technology,
Sports, Travel Destinations, …]

-Reasoning: [Samsung Galaxy
S21, iPhone 12 Pro Max, …]

App: AOL News/Mail/Video

✅

❌

DroidFiller:
[LC27G55TQWNXZA, …]

-FunctionCall: [Samsung
QLED Q80T, …]

App: Product Register

✅

❌

Fig. 5. Example text generations from different ablation settings.

possibly by enforcing LLMs to provide corresponding reason
about why the additional information is needed. In contrast,
the recall is relatively high, which highlights the capability of
DROIDFILLER detecting a necessity of additional information
for the target textfield and the overall screen state.

3) Ablation (RQ3): Figure 4 compares the number of
realistic text generations among DROIDFILLER and its ablation
settings. The ablation settings are as follows: -Reasoning
removes the reasoning step template from the prompt and
directly asks the model to either generate the text content or
invoke a function call. -FunctionCall removes the function call-
based context retrieval so it has a reasoning step but does not
aware of any functions that can provide additional information.
-Reasoning-FunctionCall removes both the reasoning step
template and the function call-based context retrieval.

Compared to the original DROIDFILLER setting (generates
118 realistic text contents among total 120 textfields), DROID-
FILLER without the reasoning step template generates 112
realistic text contents, DROIDFILLER without the function call-
based context retrieval generates 116 realistic text contents, and
DROIDFILLER without both the reasoning step template and
the function call-based context retrieval generates 111 realistic
text contents. The result implies that both the reasoning step
template and the function call-based context retrieval contribute
to the overall text generation quality, but the reasoning step
template seems to be a more crucial component on generating
better quality text contents.

In Figure 5, DROIDFILLER without reasoning step tends to

Fig. 6. Comparison on the number of reached activities (top) and discovered
unique states (bottom) between DROIDFILLER and STEM with its original
text generation configuration, context.

struggle to generate valid search queries, because this requires
capturing the overall app context (search for any news, mail, or
video). On the other hand, DROIDFILLER without function call-
based context retrieval fails to generate a valid serial number
for the target product, which is only given as an additional
context delivered by the result of function call (specifically,
get_samsung_product_info function).

4) Testing Enhancement (RQ4): RQ4 concerns the actual
impact on test effectiveness brought forward by DROIDFILLER
integrated with the underlying industrial GUI exploration
tool, STEM. Our initial hypothesis is that DROIDFILLER
will contribute to increasing test coverage by helping to pass
input validation process, in turn allowing STEM to discover
more screens. For brevity, we will henceforth refer to STEM
integrated with DROIDFILLER as DROIDFILLER.

Figure 6 shows the number of activities and states covered
by each scheme. For specific apps, such as FamilyFinance,
AnkiDroid, NextCloudTalk and Aeroflot, DROIDFILLER gen-
erally covers more activities, ranging from 25% to 100%
more than the original STEM. A Wilcoxon signed rank test
(one-sided) indicates that the number of activities covered by
DROIDFILLER was statistically significantly higher than those
covered by original STEM (p = 0.015). However, interestingly,
the statistical test does not confirm that DROIDFILLER can
cover more states when compared to the original (p = 0.124).
In cases where both configurations cover the equal number
of activities, DROIDFILLER discovered more states in five
apps, but fewer states in two apps. There are also cases where
DROIDFILLER covers more activities but discovers fewer states.
This occurs when STEM triggers early activity transitions by
reaching the necessary state to pass the current screen—for
example, when all required text inputs are correctly filled—
rather than exhaustively exploring state variations within the
same activity. In such cases, activity coverage more accurately

401

DroidFiller: Predefined server URL
obtained by dynamic context retrieval

Category Matching (Context):
Incorrectly predicted category

(auth_code) and inputted value

Fig. 7. Comparison on the filled textfield contents during the actual GUI
testing process between the original STEM and DROIDFILLER.

DroidFiller: Generates a valid
search query that produces search

results

Category Matching (Context): Uses
predefined queries that are irrelevant

to the search field, resulting in no
search results

Fig. 8. Comparison on the filled textfield contents between the original STEM
and DROIDFILLER in terms of search query generation.

reflects the true diversity of exploration. Additionally, we note
that the number of unique states discovered can be significantly
inflated by UI components that introduce minor variations, such
as calendar pickers.

Overall, we observe partial improvements in testing effective-
ness with DROIDFILLER according to the metrics we adopted.
The results suggest that a careful orchestration is needed
when integrating LLM-based input generator to automated GUI
testing tools. We refer readers to Section V for discussions
on how DROIDFILLER facilitates accesses to more screens, as
well as on the cases for which DROIDFILLER produces both
correct and incorrect text content.

V. DISCUSSION

Here we discuss the results of empirical evaluation in depth.

A. How DROIDFILLER Assists the Testing Process

Figure 7 demonstrates the robustness of DROIDFILLER.
Although we provide the same server URL to the value pool
of the original STEM in the existing category name “URL”,
the category predicted by the context strategy is, incorrectly,
“Auth Code”. This is because the scope of the surrounding texts
around the target textfield can vary according to the layout
design, and contain irrelevant tokens as well. It is worth noting
that, even if the category is correctly predicted, the original
STEM would not be able to handle more sophisticated apps

that receive multiple URLs. DROIDFILLER, on the other hand,
generates an appropriate URL using the provided functions.

Figure 8 shows that DROIDFILLER successfully fills in the
search boxes within a budget planner app, with a valid search
query that yields the available expense category list, whereas
the original STEM fails to do so. Search query are particularly
challenging for STEM to generate, as it is not feasible to
maintain a diverse value pool for all search functionalities.

Some textfield inputs require a specific format for better
parsing, such as phone numbers with/without the country code
prefixes, with/without dash (-) splitters, and datetime values
in various possible formats (YYYY/MM/DD or DD-MM-YY).
The original STEM is limited to using a predefined value
in the corresponding category as it is, and cannot re-format
the content to adapt to the target textfield. On the other hand,
DROIDFILLER can flexibly adapt the data to the desired format.
Figure 9 shows that DROIDFILLER can generate date inputs in
different formats according to the existing placeholder values,
whereas STEM tries to use the provided value “2021-01-01” as
it is, resulting in the textfield remaining empty after attempting
to use the incorrectly formatted value.

B. Challenges of Integrating DROIDFILLER

Analysis of 981 text inputs generated for 12 apps reveals
that 857 of them (87.4%) are valid. The remaining invalid
inputs typically due to the misunderstanding of the intended
use of the text field. For example, DROIDFILLER may use a
dollar sign ($) when only numbers are expected. Often, the app
either discards these incorrect inputs (i.e., the target textfield
remains unchanged), or displays error messages. One future
improvement would be a separate component of DROIDFILLER
that exclusively monitors app responses to input errors, and feed
them back to the LLM. This may allow for subsequent attempts
by DROIDFILLER to be more accurately based on observed
app feedback. Another common cause is that DROIDFILLER
misses the larger context, such as the previously visited screens.
We envision automated summarisation of previous navigation
path to improve DROIDFILLER against these cases.

Despite the high proportion of valid inputs (87.4%), there
are cases when DROIDFILLER still fails to result in better
GUI exploration. Analysis of such exploration reveals further
challenges. First, STEM sometimes makes repeated requests to
DROIDFILLER to generate inputs for the same textfield. This
is because sometimes minor screen changes cause STEM to
believe that there is a new screen. To address this, we need
to improve STEM’s screen identification. Second, even after
filling in all the required textfields, the app might not progress
if the subsequent event generated by STEM does not process
the entered texts. For example, while the app might require
a “submit” button to progress, STEM might inadvertently
press a “cancel” button, discarding all entered text. In order
to avoid this, we envision a dedicated module that captures
and maintains exploration contexts, to avoid meaningless event
sequences such as filling in a form only to cancel.

402

DroidFiller: Generates date strings
in the correct format required by the

text fields

Category Matching (Context):
Misclassify the topic of the search
field as “news”, leading to a query

that doesn’t match with the name of
any app

Fixed value from the
predefined value pool
(format not changeable)

Attempted to input “2021-01-01”,
but the app discarded it due to
ill-formed content.

Fig. 9. Comparison on the filled textfield contents between the original STEM
and DROIDFILLER in terms of flexible text formatting.

C. Model Capability

In our experiment, we use the GPT-3.5-turbo model from
OpenAI; however, our approach is not limited to this specific
model. Although the dynamic context retrieval of DROID-
FILLER currently relies on the function call feature of OpenAI
API [38], this function-calling capability is also available with
other LLMs [39], and external frameworks like LangChain [40]
provide a tool call feature for various chat-based LLMs where
function calls are not natively supported.

We have also preferentially considered textual descriptions of
the GUI state as input to the model. However, recently released
large language models, such as GPT-4V, can also accept visual
inputs [41]. While providing accurate positional information
for each widgets on the screen can be helpful, “hidden” textual
information, like resource IDs or content descriptions, may
still contribute to text generation. As future work, we plan to
explore the potential of visual inputs.

VI. THREATS TO VALIDITY

Threats to internal validity concern whether the experimental
results support the claims about cause and effect. While
we empirically demonstrate that the LLM based text input
generation is more realistic for GUI testing of Android apps,
the criteria for the realism remains inherently human and
subjective. We tried to mitigate this concern by labelling the
results collectively based on multiple inputs. Threats to external
validity concern whether the results warrant generalisation. The
findings are limited to the apps we studied and the specific LLM
instance used in our technique. However, since DROIDFILLER
is drawing from common knowledge found in LLMs and not
any app specific analysis, we expect its ability to generalise to
other target apps as long as they are common apps used by the
majority of users. Further evaluations using a wider selection
of apps, as well as more LLMs including open source models,
will help mitigating this concern.

VII. RELATED WORK

This section presents existing related work.

A. String Input Generation for Testing

Generating string test input has been a longstanding chal-
lenge in automated testing in general. McMinn et al. [42]
used web search results to find meaningful string values in
the context of automated unit test generation for Java. Afshan
et al. [43] later applied an entropy-based language model to
generate readable strings, as the raw generated strings tend to
be sequences of random characters and symbols. We also use
a language model, but specifically a large pretrained one that
allows us to prompt with much longer context.

TextExerciser [44] introduces an interesting twist to text
input generation: it combines UI analysis with machine learning
to identify textfield constraints, then generates inputs using
a mutation-based strategy. It applies an iterative approach
which allows for continuous input generation, adapting to new
feedback, even after failures.

B. GUI Testing with Large Language Models

LLMs have demonstrated feasibility in automating or assist-
ing GUI testing so far. QTypist [9] proposed an approach to
filling in the textfields on the current GUI state by fine-tuning
the GPT-3 model [16], [45], and InputBlaster [46] adopted
mutation strategy to generate crash-inducing inputs from LLMs.
However, the generated texts solely rely on the training data,
and the tester has no control over the generated text contents
and varying target apps; DROIDFILLER enables the tester to
provide domain-specific knowledge based on the target AUTs
or inject the user persona information.

Wen et al. [36] extended DroidBot [11] to generate a
sequence of GUI actions from a task description through
LLM prompting, and GPTDroid [37] proposed that a chat-like
interaction with an LLM can be used to generate a sequence
of plausible GUI actions. DroidAgent [47] suggested a multi-
agent architecture with diverse prompts to generate high-level
testing scenarios and the low-level GUI actions at once.

Note that, despite the advances described above, we think
integrating LLM-based text generation with an existing GUI
testing tool is still a valid approach towards GUI testing. LLM
usage in industry context brings the additional challenges of
time and monetary cost, as well as data sensitivity. A more
focused use of LLM for a task it can perform the best, i.e.,
text generation, can help alleviating these issues.

VIII. CONCLUSION

We present DROIDFILLER, an LLM based text input gener-
ation technique designed for GUI testing of Android apps. By
exploiting the emergent behaviour of LLMs, DROIDFILLER can
generate realistic text inputs based on contextual information
about the current GUI states. DROIDFILLER adopts advanced
prompting strategies, such as Chain-of-Thoughts and ReAct,
to provide accurate text inputs as well as domain specific
information that cannot be generated solely by LLMs. An
evaluation of DROIDFILLER using inhouse apps developed
by a smartphone vendor, Samsung, as well as 3rd party apps,
suggest that DROIDFILLER can effectively generate realistic
textual inputs for GUI testing.

403

REFERENCES

[1] IDC, “Smartphone market share https://www.idc.com/promo/
smartphone-market-share/os (Last checked: 23 October 2024),”
October 2024.

[2] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2016. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 226–237. [Online].
Available: https://doi.org/10.1145/2970276.2970312

[3] R. Coppola, E. Raffero, and M. Torchiano, “Automated mobile
ui test fragility: An exploratory assessment study on android,” in
Proceedings of the 2nd International Workshop on User Interface Test
Automation, ser. INTUITEST 2016. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 11–20. [Online]. Available:
https://doi.org/10.1145/2945404.2945406

[4] J. Yoon, S. Chung, K. Shin, J. Kim, S. Hong, and S. Yoo, “Repairing
fragile gui test cases using word and layout embedding,” in 2022 IEEE
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2022, pp. 291–301.

[5] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation
for android: Are we there yet?(e),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 429–440.

[6] K. S. Said, L. Nie, A. A. Ajibode, and X. Zhou, “Gui testing for mobile
applications: objectives, approaches and challenges,” in Proceedings of
the 12th Asia-Pacific Symposium on Internetware, 2020, pp. 51–60.

[7] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for
android against real-world bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 119–130.

[8] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 643–653.

[9] Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu, and Q. Wang, “Fill in
the blank: Context-aware automated text input generation for mobile gui
testing,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 1355–1367.

[10] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” arXiv
preprint arXiv:2210.03629, 2022.

[11] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE, 2017,
pp. 23–26.

[12] ——, “Humanoid: A deep learning-based approach to automated
black-box android app testing,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 1070–1073.

[13] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[14] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in International conference on software engineering (ICSE),
2023.

[15] S. Kang, J. Yoon, and S. Yoo, “Large language models are few-shot testers:
Exploring llm-based general bug reproduction,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 2312–2323.

[16] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[17] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[18] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[19] C. Cui, T. Li, J. Wang, C. Chen, D. Towey, and R. Huang, “Large
language models for mobile gui text input generation: An empirical
study,” arXiv preprint arXiv:2404.08948, 2024.

[20] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun,
J. Xu, and Z. Sui, “A survey for in-context learning,” arXiv preprint
arXiv:2301.00234, 2022.

[21] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances
in Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[22] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[23] S. Feng and C. Chen, “Prompting is all your need: Automated android
bug replay with large language models,” arXiv preprint arXiv:2306.01987,
2023.

[24] “Openai models,” https://platform.openai.com/docs/models/.
[25] “Autogpt: An autonomous GPT-4 experiment,” https://github.com/

Significant-Gravitas/Auto-GPT, 2023.
[26] “Langchain: a framework for developing applications powered by

language models,” https://www.langchain.com.
[27] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, X. Che, D. Wang, and

Q. Wang, “Chatting with gpt-3 for zero-shot human-like mobile automated
gui testing,” arXiv preprint arXiv:2305.09434, 2023.

[28] Y. Zhao, B. Harrison, and T. Yu, “Dinodroid: Testing android apps using
deep q-networks,” arXiv preprint arXiv:2210.06307, 2022.

[29] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, “Automatic
web testing using curiosity-driven reinforcement learning,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 423–435.

[30] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-
travel testing of android apps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 481–492.

[31] “Gpt-3.5,” https://platform.openai.com/docs/models/gpt-3-5.
[32] X. Zhou, Y. Zhang, L. Cui, and D. Huang, “Evaluating commonsense in

pre-trained language models,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 05, 2020, pp. 9733–9740.

[33] C. Wang, X. Liu, Y. Yue, X. Tang, T. Zhang, C. Jiayang, Y. Yao,
W. Gao, X. Hu, Z. Qi et al., “Survey on factuality in large language
models: Knowledge, retrieval and domain-specificity,” arXiv preprint
arXiv:2310.07521, 2023.

[34] “Fdroid: Free and open source android app repository,” https://f-droid.
org/en/.

[35] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications, 2013, pp. 641–660.

[36] H. Wen, H. Wang, J. Liu, and Y. Li, “Droidbot-gpt: Gpt-powered ui
automation for android,” arXiv preprint arXiv:2304.07061, 2023.

[37] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, X. Che, D. Wang, and
Q. Wang, “Make llm a testing expert: Bringing human-like interaction to
mobile gui testing via functionality-aware decisions,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[38] OpenAI, “Openai function calling https://platform.openai.com/docs/
guides/function-calling (Last checked: 23 October 2024),” October 2024.

[39] “Llama documentation: Ai function calling,” https://docs.llama-api.com/
essentials/function, 2024.

[40] LangChain, “How to use chat models to call tools https://python.
langchain.com/docs/how to/tool calling/ (Last checked: 23 October
2024),” October 2024.

[41] “Gpt-4,” https://openai.com/research/gpt-4.
[42] P. McMinn, M. Shahbaz, and M. Stevenson, “Search-based test input

generation for string data types using the results of web queries,” in 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation. IEEE, 2012, pp. 141–150.

[43] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string
test inputs using a natural language model to reduce human oracle cost,”
in Proceedings of the 6th IEEE International Conference on Software
Testing, Verification and Validation, ser. ICST 2013. IEEE, 2013, pp.
352–361.

[44] Y. He, L. Zhang, Z. Yang, Y. Cao, K. Lian, S. Li, W. Yang, Z. Zhang,
M. Yang, Y. Zhang et al., “Textexerciser: feedback-driven text input

404

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/2945404.2945406
https://platform.openai.com/docs/models/
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://www.langchain.com
https://platform.openai.com/docs/models/gpt-3-5
https://f-droid.org/en/
https://f-droid.org/en/
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://docs.llama-api.com/essentials/function
https://docs.llama-api.com/essentials/function
https://python.langchain.com/docs/how_to/tool_calling/
https://python.langchain.com/docs/how_to/tool_calling/
https://openai.com/research/gpt-4

exercising for android applications,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 1071–1087.

[45] Y. Gu, X. Han, Z. Liu, and M. Huang, “Ppt: Pre-trained prompt tuning
for few-shot learning,” arXiv preprint arXiv:2109.04332, 2021.

[46] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, Z. Tian, Y. Huang, J. Hu,
and Q. Wang, “Testing the limits: Unusual text inputs generation for

mobile app crash detection with large language model,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–12.

[47] J. Yoon, R. Feldt, and S. Yoo, “Autonomous large language model
agents enabling intent-driven mobile gui testing,” arXiv preprint
arXiv:2311.08649, 2023.

405

	Introduction
	Background
	STEM: Scenario-learnt Test Execution Model
	Learning-based GUI Exploration Strategy
	Text Input Generation Policy

	Large Language Models

	Methodology
	Initialising System Prompt with User Profile
	Generating Reasoning Steps for Screen Comprehension
	GUI State Description
	Reasoning Template

	Dynamic Context Retrieval
	Integration to Industrial GUI Testing Tool

	Evaluation
	Research Questions
	Experimental Setup
	Subjects
	Metrics
	Implementation

	Results
	Text Generation Quality (RQ1)
	Dynamic Context Retrieval (RQ2)
	Ablation (RQ3)
	Testing Enhancement (RQ4)

	Discussion
	How DroidFiller Assists the Testing Process
	Challenges of Integrating DroidFiller
	Model Capability

	Threats to Validity
	Related Work
	String Input Generation for Testing
	GUI Testing with Large Language Models

	Conclusion
	References

