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Abstract—The recent surge of building software systems
powered by Large Language Models (LLMs) has led to the
development of various testing frameworks, primarily focused
on treating prompt templates as the unit of testing. Despite
the significant costs associated with test input execution and
output assessment, the curation of optimized test suites is yet
overlooked in these tools, which calls for tailored test selection
or prioritization strategies. In this paper, we show that diversity-
based testing techniques, such as Adaptive Random Testing
(ART) with appropriate string distance metrics, can be effectively
applied to the testing of prompt templates. Our proposed adaptive
testing approach adjusts the conventional ART process to this
context by selecting new test inputs based on scores derived from
existing test suite and their labelling results. Our results, obtained
using various implementations that explore several string-based
distances, confirm that our approach enables the discovery of
failures with reduced testing budgets and promotes the generation
of more varied outputs.

Index Terms—LLM Testing, Test Selection, Test Prioritization,
LLM Applications, Adaptive Random Testing

I. INTRODUCTION

The rapid advancements in Large Language Models (LLMs)
have sparked widespread interest in integrating these models
into software systems. These systems span a range of domains,
including search engines [1], [2], language education plat-
forms [3], text-based games [4]–[6], and coding assistants [7].
Despite their potential and growing popularity, developing
and testing LLM-based software presents significant chal-
lenges [8]. A critical difficulty lies in the inherent unpre-
dictability of LLM-generated outputs, which are highly non-
deterministic and thus challenging to control. A recent study
of open-source LLM projects has highlighted poor quality and
incorrect answers from LLMs as key concerns [9]. Achieving
the desired level of performance in these applications requires
iterative and labor-intensive prompt engineering, as the devel-
opers need to continuously refine their prompts to guide the
LLMs towards generating the desired outputs.
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A typical prompt contains both a fixed part that describes
the given task and a variable part that needs to be adapted to
dynamic program contexts, such as user inputs or changing
environments or changing state(s). To cope with this variabil-
ity, a foundational component for handling queries to the LLM
is constructed as “prompt templates” [10]. Prompt templates
combine natural language instructions to guide LLM gener-
ation with placeholders for context-specific inputs. However,
optimising these templates becomes increasingly complex as
developers need to ensure that they perform well across a wide
variety of input contexts. Exhaustively testing all available
inputs is infeasible due to the infinite variability, as well
as high cost of executing LLM queries and manual effort
required to analyse their outputs [11], [12]. Moreover, the
iterative nature of prompt refinement necessitates efficient
testing processes.

Given that most high-performance LLMs are closed-source
and accessible only through remote APIs, a black-box testing
strategy is a natural choice. In particular, diversity-based
techniques such as Adaptive Random Testing (ART) [13],
which strategically selects diverse inputs to ensure an even
distribution across the input space, can be applied to any
input data type including text. Besides the fact that it operates
independently of internal program states, ART is well-suited
for LLM applications as it has recently been shown to incur
minimal overhead especially when the target program involves
non-trivial execution times [14].

Building on these insights, we propose a test prioritization
and selection method for prompt templates in LLM appli-
cations, inspired by ART. Similar to conventional ART, our
approach iteratively selects the next test input that is farthest
from the reference set of previously executed inputs. However,
it extends this process by incorporating the outcomes of
executed inputs to dynamically adjust the reference set used
for distance calculation.

Our empirical evaluation on 46 prompt templates shows that
diversity-based adaptive testing can efficiently select meaning-
ful test inputs and uncover more failures within constrained
testing budgets. Among the distance functions explored for
diversity-based test prioritization, the Normalized Compres-
sion Distance (NCD) [15] shows the most promising results.
It improves the average percentage of failure detection (APFD)
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by 7.24% on average, with gains reaching up to 34.3% com-
pared to the random baseline. Furthermore, it produces outputs
containing 9.5% more unique words on average. Additionally,
we observe that the effectiveness of distance metrics varies
significantly across tasks and input distributions, underscoring
the need for further investigation to optimize for specific
testing scenarios.

Our approach complements existing early-stage testing
frameworks for LLM applications by serving as a post-
processing method to prioritize or select test inputs. Existing
techniques either focus solely on automating the benchmarking
of prompt-templates [16] or synthesize additional input data
based on prompt contents and related information sources [17],
[18]. An effective test selection and prioritization technique
can reduce the cost testing, while improving the operational
efficiency.

Our contributions are as follows:
• We demonstrate the applicability of diversity-based

black-box testing techniques, particularly ART, to LLM
applications.

• We suggest an adaptive testing framework that can be
extended to general scoring functions based on existing
test suite and outcomes.

• We empirically evaluate various syntactic and semantic
distance functions for input selection and prioritization,
providing insights into their task-specific effectiveness.

II. BACKGROUND

In this section, we provide an overview of the current
state of LLM-based applications and testing practices, as well
as black-box diversity-based testing techniques that can be
applied to LLM applications.

A. LLM-based Applications and Testing in Practice

In LLM-based applications, developers typically implement
prompt templates which contain both the “template” part
that is invariant across different uses of the application, and
the “input placeholder” parts that are filled with varying
input values. Let us consider a simple RSVP email generator
instantiated with the following prompt template, where the
placeholder parts are enclosed in curly braces:

Act as a skillful email generator. Write an RSVP email
focusing in response to the following invitation email:
===
{invitation_email}
===
The sender’s intention about attendance is: {intention}.
Include the following personal message from the sender in
the email: {personalization}. Only generate the email

text without any additional explanations.

Here, the prompt template can be treated as a standard
function accepting a set of input variables: “invitation email”,
“intention”, “personalization”, and produces a string as output.
Several specialized testing frameworks are available to eval-
uate these prompt templates [19]–[24]. They typically enable
users to execute combinations of input variables and provide
(visual) tools to compare outputs across various models and

prompt configurations. An example test case for the above
prompt template is as follows:

- invitation_email: "Dear Sophia, we are thrilled to
invite you to our Wedding Ceremony on June 1, 2025, at 3
PM at the Garden Pavilion. It would mean the world to us
if you could celebrate our special day with us."
- intention: Accepting the invitation.
- personalization: "I am honored to join you on your
special day and wish you both a lifetime of happiness."

Subsequently, the test suite would be collection of such test
cases.

While the generation of such test suites is typically per-
formed manually, some tools experimentally support auto-
mated dataset generation using generative models [17], [18].
These tools synthesize input sets for testing by leveraging
prompt content or related information as context. However,
they do not guarantee the “validity” of the generated inputs
(i.e., their appropriateness for the target prompt) or their di-
versity (i.e., their coverage of the input space). This limitation
can result in irrelevant or redundant tests, increasing both
cost and complexity. We advocate for a systematic method
to construct optimized test suites that increase both efficiency
and effectiveness.

B. Diversity-based Testing

Diversity among test inputs is essential in software testing
to ensure the overall quality of the target system. Adaptive
Random Testing (ART) is a representative diversity-based
approach, proposed as an improvement over basic random
testing [25]. ART selects the input farthest from previously
executed inputs among a set of randomly sampled candidates,
enabling broader exploration of the input space. This process
typically involves calculating pairwise distances between exe-
cuted inputs and candidate samples at each step.

Although ART is conceptually simple and has demonstrated
effectiveness over random testing, it is computationally expen-
sive due to the quadratic complexity of distance calculations
relative to the number of inputs [26]. However, studies suggest
that when test execution times are sufficiently high, the cost
of these calculations becomes negligible, as they can be
performed in parallel with test execution. This is particularly
relevant for testing LLM-based applications, where query ex-
ecution times are often significant, and the stochastic behavior
of LLMs necessitates multiple executions of the same input to
evaluate output consistency. Recent studies have also proposed
other ways to speed up distance calculations in ART [14].

Another diversity-based test selection approach leverages
the concept of test set diameter (TSDm) [27]. By extending
pairwise normalized compression distance (NCD) to a multiset
setting, TSDm both quantifies the diversity of test sets and
enables the selection of diverse subsets from an initial pool.
Empirical studies on diversity-based test prioritization [28]
have shown that TSDm achieves superior fault detection rates
compared to other black-box techniques. However, TSDm’s
practical adoption is often limited by its high computational
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cost, which exceeds even that of ART, as it scales quadratically
with the size of the initial test input pool.

III. APPROACH

Our study focuses on a test selection or prioritization
scenario, where a large set of initial test inputs, consisting of
collected user data or synthesized inputs for a prompt template,
is available for refinement. In this section, we present our
approach, which adapts the original ART procedure to this
context.

A. Adaptive test selection method for prompt templates

We propose a black-box test selection and prioritization
method, detailed in Algorithm 1, which adaptively selects
new test inputs based on previously selected ones. While
inspired by Adaptive Random Testing (ART), our approach
is specifically adapted to the test selection and prioritization
of prompt templates. The original ART algorithm [13] was
designed for use with a random input generator that uniformly
samples the input space, making it not directly applicable to
our context. However, the core idea of ART, selecting the next
test to be farthest from the already selected ones, remains
relevant. Prior study [29] suggest that reducing redundancy
among tests, thus diversifying the test suite subset, can be
efficient in revealing defects in test prioritization scenario.

Our algorithm selects candidates from the existing test pool
(line 4) instead of generating new inputs. For each candidate,
it computes a score based on its distance from the already
selected tests and selects the candidate with the highest score
(line 5). The chosen candidate is then removed from the pool,
added to the test suite (selectedTests) (line 6-7), and executed
on the target prompt template using the base model under test
(PUT) (line 8). This process continues until the desired number
of tests, N , is reached.

The algorithm supports both selection and prioritization
scenarios. By setting N to the size of the initial pool, it
determines and prioritizes the execution order for all inputs.

Algorithm 1: Adaptive test selection and prioritization.
Input: An initial pool of candidate tests initialTests, a

target suite size N , a specified prompt template and a
base model under test PUT .

Output: A resulting test suite selectedTests of size N ,
adaptively selected from the initial pool.

1 pool← initialTests.copy();
2 selectedTests← ∅;
3 while |selectedTests| < N do
4 Cands← pool.sample();
5 bestCand←

argmaxc∈Cands calculate score(c, selectedTests);
6 pool.remove(bestCand);
7 selectedTests.add(bestCand);
8 PUT.execute(bestCand);
9 end

10 return selectedTests;

✅

: reference set

: candidates
✅

w/o selective 
reference set 

w/ selective 
reference set 

Fig. 1: Adaptive testing framework for prompt templates.

B. Diversity-based score calculation w/ selective reference set

The scoring function, calculate_score, determines the
best candidate to be selected at each iteration of the Al-
gorithm 1. We consider diversity as the primary criterion
for scoring; Algorithm 2 defines a diversity-based scoring
function used in our study. Similar to the standard ART [30],
this function calculates the score of the candidate input by
using the minimum distance between the candidate and each
individual test in the existing test suite. We explore various
implementations using different string-based distances, given
that prompt template inputs are typically textual. We also note
that the scoring function is pivotal to the flexibility of our
approach; our suggested method can be generalized to various
scoring functions as far as they maintain the intuitive property
of giving higher scores to the candidate inputs that add more
“meaningful” information to the existing test suite.

Additionally, our method enables selectively filtering the
previously executed tests based on specific criteria (line 3).
The select_references function constructs a set of tests
used to calculate the distance-based scores, which we refer to
as the reference set, by subsetting the entire set of executed
tests (selectedTests).

Algorithm 2: Diversity-based score calculation
1 Function calculate_score(c, selectedTests):
2 score←∞;
3 referenceSet← select references(selectedTests);
4 foreach t ∈ referenceSet do
5 d← distance(c, t);
6 if d < score then
7 score← d
8 end
9 end

10 return score

ART assumes the existence of contiguous failure and non-
failure regions in the input space [30], implying that select-
ing inputs far from existing ones increases the likelyhood
of discovering new faults. Standard ART uses all executed
inputs, both failing and passing, as the reference set. By
design, similar failures are treated as an indication of the
same fault, thus identifying multiple relevant failures is not
desired. However, in LLM applications, where “faults” within
natural language prompts lack precise definitions, we posit
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that identifying multiple similar failures can be beneficial
to developers. For example, developers can find a recurring
pattern of incorrect outputs, and adjust the prompt template
accordingly. We suggest a selective reference set strategy
upon this intuition, incorporating a subset of “passing” inputs
from the executed tests. With this modification, we expect to
increase the likelihood of failure detection while acknowl-
edging that parts of the detected failures may be similar.
Figure 1 illustrates a possible case that the selective reference
set strategy can help incorporate more failing inputs.

To filter out the failing inputs, we require a specific cri-
teria for passing and failing inputs; however, the stochastic
nature of LLMs can produce different outputs for the same
input across multiple executions, making the determination of
passing/failing inputs non-trivial. We address this ambiguity
by deciding the correctness of an output based on the ground-
truth expected output, and assign the pass/fail status of an
input based on the correctness ratio over multiple executions.
Formally, let T be the set of all executed tests, and exec(t)
denote the set of outputs produced by t after n executions.
Let Oexpected(t) be the ground-truth output for test t. We use
the the correctness function for an individual execution result
defined as:

isCorrect(o,Oexpected(t)) =

{
1 if o matches Oexpected(t),

0 otherwise.

For a test t, we compute the correctness ratio over n
executions:

correctnessRatio(t) =

∑
o∈exec(t) isCorrect(o,Oexpected(t))

n
.

Defining the threshold for majority correctness as τ (e.g.,
τ = 0.5 in our experiments), the selective reference set
select references(T ) can now be expressed as:

select references(T ) = {t ∈ T | correctnessRatio(t) ≥ τ}.

IV. EXPERIMENTAL SETUP

This section provides details about experimental setup.

A. Research Questions

Our evaluation aims to answer the following questions.
1) RQ1. Failure Discovery: How does the diversity-based

adaptive testing improve failure discovery for LLM applica-
tions? Specifically, we explore the two sub-questions:

• RQ1-1. How do different distance metrics for imple-
menting the proposed test selection/prioritization method
perform in increasing the rate of failure detection with
fewer test inputs?

• RQ1-2. How does the selective reference set strategy
affect the failure discovery rate?

2) RQ2. Output Diversity: To what extent does the
diversity-based adaptive testing approach promote the genera-
tion of more varied outputs?

3) RQ3. Cost Analysis: What is the computational overhead
of selecting new test inputs using various distance metrics, and
how does employing a selective reference set strategy affect
this cost?

B. Dataset

To evaluate our diversity-based test selection and prioritiza-
tion method, we constructed a dataset of 46 prompt templates
sourced from two LLM evaluation datasets: BIG-Bench Hard
(BBH) [31] and Public Pool of Prompts (P3) [32]. These
prompts cover a diverse range of tasks, including arithmetic,
logical reasoning, and language understanding. Crucially, these
datasets provide fixed templates for prompts along with in-
put/output examples for each task, enabling the construction
of an initial test suite and automating output correctness
assessment.

The prompt templates include a standardized instruction
that constrains outputs to a specific format, such as
Provide the final answer in the format of "

The answer is [answer].". By checking whether the
generated output contains the expected answer, the output
evaluation can be automated.

C. Models and Metrics

The effectiveness of a test suite is typically measured
by structural coverage metrics or fault detection capability.
However, since our evaluation focuses on prompt templates
tested against closed-source LLMs (GPT-4o for P3 dataset and
GPT-4o-mini for BBH dataset in our experiments), traditional
coverage metrics are not directly applicable. Instead, we focus
on failure detection capability, emphasizing the importance
of identifying incorrect outputs in LLM-based applications
(see Section III-B for detailed rationale). To this end, we
adopt the average percentage of failure detection (APFD),
a straightforward adaptation of the Average Percentage of
Faults Detected metric [33], which has been widely used
for evaluating test prioritization techniques. APFD, which
ranges from 0 to 100, indicates the rate of failure detection,
with higher values reflecting faster identification of failures.
Additionally, we assess output diversity by calculating the
average number of unique words in the outputs generated
from each input subset. Prior studies [34] suggest that output
diversity correlates with fault-finding capability, making it a
valuable proxy for evaluating the quality of a test suite.

D. Baseline and Comparison Targets

We use random selection as a baseline for comparison,
and additionally incorporate TSDm with NCD multiset exten-
sion [27] as an additional diversity-based selection strategy.

The distance metrics used for implementing various in-
stances of our test selection method are as follows:

• Normalized Compression Distance (NCD) [15]
• Cosine distance w/ 2-gram embeddings
• Cosine distance w/ Sentence-BERT [35] embeddings
As our approach, with the diversity-based scoring function,

is strongly inspired by ART, we refer to our prioritization and
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(a) BBH Dataset

(b) P3 Dataset

Fig. 2: Percentage of found failures by varying selection
percentages with different selection methods.

selection method described in Section III-B as ART to present
our results for simplicity; we refer to the different implementa-
tions of the proposed diversity-based adaptive testing method
as ART NCD, ART 2gram, and ART sBERT, respectively.

For random and the ART variants, we repeat the experiments
100 times for BBH and 10 times for P3, adjusting for the larger
test input pool in P3 (up to 1,000 vs. 100 for BBH).

V. EXPERIMENTAL RESULTS

This section provides our experimental results.

A. Failure Discovery (RQ1)

To answer RQ1, we evaluate the percentage of failures re-
vealed by selected test inputs with various selection strategies.

1) RQ1-1. Selection methods and failure discovery: First,
we report the revealed failure percentages by different selec-
tion methods and selection percentages. Figure 2 presents the
average percentage of total failures across all tasks in both
datasets. Overall, diversity-based selection methods, partic-
ularly NCD-based ones (TSDm and ART NCD) for BBH
dataset and ART sBERT for P3 dataset, exhibit relatively
higher failure percentages. Table I presents task-wise re-
sults in terms of APFD values. TSDm achieves the highest
APFD values for most tasks (14 out of 46), improving the
APFD values by 7.0% on average (up to a maximum of
30.3%); ART NCD (denoted simply as NCD in the table) also
shows competitive performance, improving the APFD values
by 7.24% (34.3%) compared to random selection. Wilcoxon
Signed-Rank tests confirms that TSDm and ART NCD show
statistically significant improvements in APFD values across
the 46 tasks (p = 0.014 for TSDm, p = 0.007 for ART NCD).

TABLE I: Comparison of APFD for all tasks.

APFD

SRC Task TSDm NCD 2gram sBERT random

BBH

bool exp 53.7 50.0 48.4 45.0 50.3
causal 51.6 51.3 52.1 52.1 49.9
date 59.9 50.2 51.1 52.5 50.4
disambig qa 55.1 50.8 51.4 53.3 50.3
dyck lang 71.6 71.3 62.7 51.6 49.8
fallacies 56.9 60.4 49.4 49.7 49.4
geometric 63.4 64.9 62.8 39.1 49.2
hyperbaton 49.9 64.6 56.3 36.5 48.8
deduction 3 37.2 35.6 45.7 45.5 49.9
deduction 5 49.8 49.4 45.7 47.5 49.3
deduction 7 61.4 55.4 46.5 49.7 49.4
movie 46.6 51.1 51.5 51.7 49.8
arithmetic 60.7 53.2 46.8 61.6 51.0
navigate 75.8 82.6 67.3 48.7 48.3
object counting 80.8 60.3 51.7 26.1 50.6
penguins 36.5 46.3 48.8 54.9 50.5
colored 50.7 40.1 33.6 34.5 48.6
ruin names 43.0 45.9 44.9 51.6 50.5
trans error 49.1 48.9 49.6 47.6 50.1
snarks 57.3 58.3 55.6 52.6 50.3
sports 56.0 51.0 46.3 49.3 50.2
temporal 58.4 60.3 50.8 55.3 51.4
tracking 3 49.2 53.0 56.9 58.5 48.8
tracking 5 44.2 49.0 48.2 49.6 50.5
tracking 7 47.3 55.9 44.9 50.8 50.4
word sorting 61.4 61.2 61.4 46.6 50.0

P3

news 50.2 53.7 56.6 54.1 50.6
arc challenge 48.4 49.9 48.2 55.2 49.0
amazon review 44.7 45.9 56.1 59.7 52.2
anli 47.5 48.1 51.1 51.7 50.0
dbpedia 50.8 51.9 54.9 66.6 50.1
dream 56.6 50.4 49.6 50.7 48.7
glue mrpc 49.8 49.9 51.3 49.8 50.2
hellaswag 47.3 49.1 49.3 49.8 49.7
paws 52.7 50.6 48.0 49.7 48.7
qasc qa 69.6 70.6 48.0 53.9 47.0
ropes 45.2 59.5 52.6 57.5 48.9
rotten tomatoes 55.4 53.9 47.2 48.1 49.9
social i qa 46.7 47.1 49.5 48.0 50.5
glue record 50.2 48.9 48.5 50.3 49.6
glue rte 42.6 43.6 45.5 48.6 53.1
glue wic 49.7 47.7 51.8 48.4 49.9
trec 61.1 59.5 57.2 51.2 48.0
wiki qa 60.1 61.8 61.0 52.8 51.7
wiqa effect 50.2 49.6 49.7 49.7 50.5
yelp review 50.2 49.9 50.7 50.0 49.8

ART 2gram and ART sBERT do not exhibit statistically
significant improvements over random selection.

Although the overall results suggest the potential of
diversity-based methods to improve failure detection, the per-
formance of each method varies significantly across tasks and
datasets. Figure 3 illustrates the failure detection rate over the
number of executed test inputs for several representative tasks.
ART sBERT shows improvements in specific tasks, such as
‘penguins’ task in BBH dataset, ‘amazon review’ and ‘dbpe-
dia’ task in P3 dataset. On the other hand, NCD based methods
dominate in certain tasks, such as ‘dyck lang’, ‘navigate’ and
‘object counting’ tasks in BBH dataset. These tasks involve
distinct challenges: ‘dyck lang’ is about generating balanced
paranthesis strings, ‘navigate’ requires inferring destination
positions after a series of instructions, and ‘object counting’
requires counting the objects from given descriptions. The
inputs for these tasks are often hard to represent as semantic
embeddings (e.g., ‘dyck lang’ inputs consist of parenthesis
symbols), which may explain the better performance of NCD-
based methods. From this observation, one promising direction
for future exploration would be predicting the most effective
distance metric for a given task, based on task characteristics
or the distribution of test inputs. We refer readers to Sec-
tion VI-B for further discussion.

2) RQ1-2. Selective reference set strategy: We also report
the failure discovery results when the selective reference set
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(a) Example tasks that NCD performs relatively well.

(b) Example tasks that sBERT-based distance performs relatively
well.

Fig. 3: Failure detection by the number of executed test inputs
in test prioritization scenario.

Fig. 4: Distribution of APFD values with and without selective
reference set selection.

strategy is applied. Figure 4 illustrates the distribution of
APFD values across all explored tasks, comparing ART with
and without the selective reference set strategy. Across all
distance metrics, the selective strategy consistently enhances
APFD values. Specifically, ART NCD with selective reference
set improves the APFDs in 32 out of 46 tasks, with an average
increase of 0.96% (up to a maximum of 9.32%). Similarly,
ART char 2gram, ART word 2gram and ART sBERT with
selective strategy improves APFDs in 30, 33, and 28 tasks
over the full reference set setting, respectively. The Wilcoxon
Signed-Rank tests confirm these improvements for all distance
metrics studied, with statistical sigificance (p = 0.007 for
ART NCD, p = 0.003 for ART char 2gram, p = 0.003 for
ART word 2gram, and p = 0.005 for ART sBERT).

Our underlying assumption of selective set strategy is that
revealing multiple similar failures early on is advantageous,
as they can guide developers toward prompt improvements.
To hint at the validity of this assumption, we present example
failing inputs from the ‘dbpedia’ task illustrated in Figure 5.
The task aims to classify a given context into a specific
category, and requires two input variables: a target context
to classify and a list of categories. The first and second

context:
Original Pantry Cafe - [...] in the original location 
and served dinner at the new location [...]

categories:
company, educational institution, [...] building, 
natural place, village [...]

context:
The Factory -  The Factory was the name of [...] 
studio which had three different locations [...]

categories:
company, educational institution, [...] building, 
natural place, village [...]

context:
Matheson (automobile) -  The Matheson was an 
American automobile [...]

categories:
company, educational institution, [...] building, 
natural place, village [...]

Expected: Company
Actual: Building

Expected: Company
Actual: Building

Expected: Company
Actual: Mean of Transportation

Fig. 5: Example failing inputs contained from the ‘dbpedia’
task in P3 dataset.

ones refer to a similar issue; the LLM confuses the contexts,
which describes companies located in various places, with a
description of a specific building due to the location details
contained in the context inputs. Although these inputs possibly
require the same modification in the prompt, both failing
inputs would be valuable in identifying a common pattern of
mistakes that LLM makes. Developers can use this insight
to refine their prompt templates to avoid such mistakes, for
example, by including few-shot examples that address the
pattern or adding clarifications about category criteria (e.g.,
“If the context mentions multiple locations but emphasizes
operations, employees, or services, classify it as [Company]”).

B. Output Diversity (RQ2)

To answer RQ2, we report the number of unique words
contained in the generated outputs from input sets selected
using studied techniques. Figure 6 presents the distribution of
unique output word counts for randomly sampled six tasks.

Across all tasks, outputs from ART NCD show a 9.5%
increase in unique words (up to a maximum of 42%) com-
pared to those from random selection. Outputs selected using
ART 2gram and ART sBERT exhibit increases of 5.2% and
4.8%, respectively.

The statistical significance of these improvements is con-
firmed by Wilcoxon Signed-Rank tests, all yielding very low
p-values (p < 10−4 for all methods). This result provides
strong evidence for the effectiveness of diversity-based adap-
tive testing methods in promoting output diversity. It is worth
noting that the considered outputs include reasoning steps (i.e.,
sequences of intermediate thought processes with the prefix
“Let’s think step by step” and before the final response), as
well as the final responses required by the prompt.

C. Cost Analysis (RQ3)

To answer RQ3, we evaluate the computational overhead
of selecting new test inputs using different methods. Figure 7
shows the time required to calculate selections as the size of
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Fig. 6: The number of unique words contained in the outputs
from N selected test inputs. (N = 50)

the selection set varies, using an initial input set of 1,000
inputs from the ‘news’ task from P3 dataset, with an average
input length of 257 characters. Note that the time required
to calculate TSDm selections increases as the selection set
size decreases. This is because TSDm calculates subsets by
excluding inputs that minimally impact the the diameter of
the previous subset.

Among ART distance variations, NCD shows the highest
time cost, followed by sBERT-based distance (44 seconds)
and ngram-based distance (9 seconds). We implemented cosine
distance calculations for ngram and sBERT embeddings as
parallelized matrix operations on the GPU, whereas NCD
calculations are currently performed sequentially in a single-
threaded manner.

We observe that ART methods are significantly more ef-
ficient than TSDm when the initial pool size becomes sub-
stantially large (N > 500), as the time cost of TSDm scales
with the size of the initial input set, whereas the time cost of
ART is bounded by the size of the resulting selection set. For
instance, selecting half of the inputs with the TSDm method
takes 1,648 seconds, whereas ART NCD method requires only
67 seconds. In a realistic test selection scenario, where a
large number of user inputs are collected through application
monitoring, TSDm can become easily impractical. However,
given limited resources for executing inputs and labelling test
outcomes, it is reasonable to assume that the target test set
size will be kept relatively small. Therefore, ART remains a
viable option as its computational cost is unaffected as long
as the target selection set size is fixed.

We also compare the time cost of ART NCD when using
the full reference set (i.e., all selected inputs so far) versus
the selective reference set. For a selection size of 500 inputs
(half the initial set), ART NCD with the selective reference
set takes 47 seconds, compared to 67 seconds with the full
reference set. This reduction is by design, as the selective
reference set strategy decreases the size of the reference set,
thereby reducing the number of required pairwise distance
computations.

VI. DISCUSSION

A. Integration with test input generators

We focus on the selection scenario because it allows for
practical evaluation, relying on labelled benchmarks with

Fig. 7: Time cost by different selection methods on different
selection set size. Note that TSDm methods work by subtract-
ing inputs, so the direction is the opposite to the ART methods.

established ground truth. However, our adaptive testing method
is not limited to this context and can be extended by incor-
porating a test input generator that dynamically produces new
inputs. In this setup, the generator would iteratively create
candidate inputs rather than sampling from an existing pool.

Emerging tools for testing prompt templates [19], [23]
already support input generation using dedicated LLM agents.
These agents can offer significant flexibility by allowing the
generation process to be nudged toward specific conditions.
Building on this capability, a custom input generator could be
developed to further refine the testing process. For instance, it
could be programmed to produce inputs dissimilar to passing
ones but similar to failing ones, enhancing the likelihood
of detecting failures. This approach represents a promising
avenue for future research, potentially enabling more effective
failure detection in LLM-based applications and broadening
the scope of our diversity-based adaptive testing method.

B. Adaptive choice of effective distance metric

Our empirical evaluation highlights that the effectiveness
of diversity-based adaptive testing depends heavily on the
choice of distance metric. For certain tasks, NCD significantly
outperforms other metrics, while others fail to uncover failures
and even perform worse than random baselines. This variation
appears linked to task-specific characteristics—some tasks de-
pend on syntactic distinctions, while others prioritize semantic
meaning—and the data distribution within the initial test suite.

If this assumption holds, future research could focus on
developing a method to predict the most effective distance
metric for a given task and test suite. Such a method might
analyze the embeddings of the initial test inputs, the distri-
bution of distances among them, and/or the prompt template
itself, aiming to identify patterns that reveal which embedding
or distance metric that can best capture meaningful differences
between test inputs. This approach could enhance the adapt-
ability and overall effectiveness of diversity-based testing for
LLM applications.

C. Multi-modal inputs

While most current LLM applications focus on processing
textual inputs, there is increasing interest in multimodal LLMs
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and their diverse use cases. Notably, our diversity-based ap-
proach is not limited to text; it can be extended to any data
type, provided suitable distance metrics are applied.

Normalized Compression Distance (NCD) is particularly
promising in this context, as compression algorithms are
inherently adaptable to various data types. For instance, in
multimodal LLM applications where inputs combine text and
images, NCD can be calculated by compressing the raw
bytes of the input data. Furthermore, combining specialized
compressors for each data type, e.g. text and images, could
offer an even more precise measure of information similarity.
This flexibility positions our approach as potentially applicable
to evolving multimodal LLM-based systems.

VII. CONCLUSION

We propose a diversity-based adaptive testing method for
LLM applications, inspired by Adaptive Random Testing
(ART) for conventional software. Our approach reduces the
time and effort needed to uncover failures by prioritizing test
inputs that are diverse from previously tested inputs.

We evaluate this method using two LLM evaluation datasets,
comparing the performance of various distance metrics and
selection strategies. The results show that our diversity-based
approach can accelerate failure detection, enhance output di-
versity, while maintaining reasonable computational efficiency
when selecting a fixed number of test inputs for manual
review. This fully black-box method provides a practical, cost-
effective solution for developers, improving test suite quality
and streamlining the testing process.
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