
Enhancing Lexical Representation of Test Coverage
for Failure Clustering

Juyeon Yoon
School of Computing

KAIST
Daejeon, Republic of Korea

juyeon.yoon@kaist.ac.kr

Shin Yoo
School of Computing

KAIST
Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

Abstract—Failure clustering aims to group multiple test fail-
ures based on shared root causes, helping developers to compre-
hend and debug each root cause (i.e., the underlying fault) in
isolation. Clustering of failing test executions requires distances
between those executions, for which distance measures between
coverage vectors are widely used. Lexical representation of
coverage has been suggested as an alternative, representing each
structural element covered by a failing execution with the lexical
tokens in the element. This paper investigates whether the gran-
ularity of the lexical representation affects the effectiveness of
the failure clustering. We evaluate varying levels of tokenisation
granularity by using them for clustering coexisting real-world
test failures in Defects4J benchmark. Our results show that the
traditionally adopted subtokenisation can actually deconstruct
larger meaningful semantic token units, resulting in suboptimal
clustering.

Index Terms—Failure Clustering, Test Clustering, Coverage
Representation

I. INTRODUCTION

As the scale and the complexity of software increase,
multiple test failures can occur simultaneously. When faced
with multiple test failures, knowing which failure is due to
which root cause is the critical first step for the subsequent
debugging process. Failure clustering aims to group failing test
executions that may have been caused by the same bug [1],
[2], [3], [4].

Most failure clustering work assumes that test cases that
fail due to the same bug would be similar to each other. As
an example, tests sharing a considerable amount of covered
elements are more likely to fail from the same cause than
others that do not, given that the coverage of a test case
can approximate its behaviour. Test coverage is generally
represented as a binary vector, indicating whether a structural
element (e.g. line, method) has been executed by the test or
not. Jones et al. [2] have measured Jaccard distance between
coverage vectors of the failing tests and performed hierarchical
clustering. Golagha et al. [5] also utilised hierarchical cluster-
ing for grouping failing test coverage, and compares distance
metrics such as Euclidean, Cosine, and Jaccard.

While being readily available, structural coverage is limited
in its capability to capture the semantic behaviour of test
executions. For example, some faults can exist across multi-
ple locations because the developer made the same mistake

in multiple locations. Any coverage based measure of test
similarity will fail to capture this, as the different locations
of the same fault will be captured as different coverage. To
cater for such scenarios, DiGiuseppe et al. [4] introduced
lexical representation of test coverage. Exploiting the fact that
code lines with similar semantics are likely to share similar
sets of identifiers, DiGiuseppe et al. tokenised covered source
code lines into subword units (by splitting identifiers based on
their naming conventions), and represented each test execution
coverage as a bag of these subwords. Distances between test
executions can be measured as distances between these bag of
subwords. Their preliminary evaluation showed that the lexical
representation could lead to better failure clustering.

The motivation behind subword tokenisation in existing
work is based on the fact the source code identifiers are often
composite words, i.e., consist of multiple words, each of which
has its own semantic meaning: by breaking down identifiers to
semantic units, it is expected that the resulting representation
will capture their semantics more precisely.

However, we argue that breaking identifiers to their atomic
semantic units may actually harm our application goal, which
is failure clustering. By breaking down identifiers into sub-
words, we are essentially making each term in our bag of
words representation more common, as the same subwords
can appear in different identifiers that have different semantic
meanings. Consequently, these unintended overlaps in sub-
word occurrences may introduce noise into failure clustering
when we use bags of subwords to represent failing test
executions.

To avoid this problem, we hypothesise that tokenisation with
coarser granularity may in fact be more beneficial for failure
clustering, as it preserves the semantics associated with the
source code better. We test our hypothesis by evaluating vari-
ous granularities in the bag of words representation, with their
resulting failure clustering effectiveness. We evaluate tokens,
lines, and groups of similar lines as units in our bag, and apply
failure clustering to real-world faults in the widely studied
Defects4J benchmark. Our results suggest that source code
lines consistently outperform subwords as the representation
granularity, contrary to the belief that subword tokenisation
is necessary. We also show that even coarser granularity,
i.e., groups of similar lines, can sometimes outperform lines:

however, their performance is less consistent.
The technical contributions of this paper are as follows:
• We show that, for failure clustering, the ideal tokenisation

granularity for lexical representation of test coverage is
coarser than subwords.

• We suggest a refined embedding strategy for constructing
the lexical representation based on similar line groups.

• We verify the effectiveness of lexical coverage represen-
tation for failure clustering on the multi-fault Defects4J
dataset.

The remainder of this paper is organised as follows. Sec-
tion II introduces the concept of lexical representation of test
coverage, and motivates why we are after tokenisation with
coarser granularity. Section III describes the configuration of
our empirical evaluation, the results of which are reported
in Section IV. Section V presents the related work, and
Section VI concludes.

II. LEXICAL COVERAGE REPRESENTATION FOR FAILURE
CLUSTERING

In this section, we briefly introduce the concept of lexical
coverage representation that incorporates covered source code
text. Next, we provide motivating examples that show the
necessity of appropriate tokenisation granularity to better
capture the test intents in vector representations.

Binary Coverage

Source Code

1

2

3

:

n

start = 0;

return true;

end = start + idx;

…

return true;

line 1 line 2 line 3 ... line n

1 0 1 ... 1

…

Covered
Source Code

(Tokenised in Words)

2

1

4

... ...

... ...

10

(Document) (Document Vector)

Lexical Coverage

start

end start idx

return true

start

end

idx

return

Fig. 1. Building lexical coverage representation

A. Building Lexical Coverage Representation

Coverage profiling tools typically produce coverage vectors
that contain hit counts of program elements (e.g. statement).
Each element of a coverage vector indicates whether a program
element is covered by the test or not. Lexical representation of
coverage, on the other hand, is based on the lexical tokens that
form the covered program elements: by extracting tokens from
the covered elements, we can build a document of covered
source code, which we can vectorise, as described in Fig. 1.

@@ -282,16 +282,14 @@ public FastDateFormat
getDateInstance(int style, TimeZone ti..

285 - if (locale != null) {
+ if (locale == null) {

286 - key = new Pair(key, locale);
+ locale = Locale.getDefault();

287 }
+ key = new Pair(key, locale);
@@ -462,15 +460,13 @@ public FastDateFormat

getDateTimeInstance(int dateStyle, int..
465 - if (locale != null) {

+ if (locale == null) {
466 - key = new Pair(key, locale);

+ locale = Locale.getDefault();
467 }

+ key = new Pair(key, locale);

Listing 1. Root Cause of the Multi-location Fault

We use the source code in Listing 1 to illustrate how
the lexical representation of coverage can complement the
traditional coverage vector. The code snippet shows a multi-
location fault from Defects4J. Defects4J contains two separate
test cases that fail due to the same reason, which is the lack
of a null check for the variable locale. However, each test
case covers only one of the two faulty locations (Lines 285-
285, and 465-466). In this case, traditional coverage vectors
fail to capture the similarity between two failing tests, as
their coverage patterns over the faulty locations are mutually
exclusive.

However, note that Line 285 and Line 465 have identical
source code content. A coverage representation that reflects
the lexical contents of the covered program elements will
be able to capture the affinity between these two failing test
executions. We can borrow the Vector Space Model (VSM) [6]
from Information Retrieval (IR) to achieve this. One of the
most widely used VSM representations is the weighted term
frequency (TF-IDF) [7], which represents each document
using how frequently as well as uniquely each term appears
in it. What remains is to determine the granularity with which
we define a term.

1) Representing Coverage as Bag of Subwords:
DiGiuseppe et al. [4] adopt subword-level tokenisation to
vectorise coverage using TF-IDF. Here, subword tokenisation
is adopted to better capture the domain concepts. For example,
DiGiuseppe et al. argue that, by splitting isTreeFull into
is, Tree, and Full following the camel case convention,
it is possible to capture the association between the original
identifier and the concept of a tree.

However, we posit that subword tokenisation may also
be detrimental, as it may fail to preserve the surround-
ing contexts of each tokenised subword. For example, con-
sider the following code snippets: synchronizedMap(new
HashMap<String, CharSet>()) and private boolean
useIdentityHashCode = true. While both involve the

subword hash in common, it is likely that these two snippets
are not semantically close to each other. Upon closer inspec-
tion, the occurrence of hash in synchronizedMap(new
HashMap<String, CharSet>()) is simply due to the name
of the generic datastructure, whereas the second occurrence is
more application-specific. Bag of subwords representation fails
to capture the difference in the surrounding contexts, as it does
not preserve the ordering of subword tokens.

Faults in Defects4J actually contain such occurrences of
common subwords. Consider the coverages of testLANG805
and testLANG807 in Fig. 2, which are from Apache commons
-lang project. Note that testLANG807 fails due to the fault
in Line 6 and 7, whereas the root cause of testLANG805
lies elsewhere. With subword tokenisation, Line 2, covered

2

/* testLANG807 */
1 private static final Random

RANDOM = new
Random();

2 return random(count, start,
end, letters, numbers
null, RANDOM);

3 if (count == 0) {
4 } else if (count < 0) {
5 if (start == 0 && end == 0)

{
6
7
8 char[] buffer = new char[

count];
9 int gap = end - start;

10

12 ...

/* testLANG805 */
private static final Random

RANDOM = new
Random();

if (count == 0) {
} else if (count < 0) {
if (start == 0 && end == 0)

{
if (!letters && !numbers) {
end = Integer.MAX_VALUE;
char[] buffer = new char[

count];
int gap = end - start;
ch = chars[random.nextInt(

gap) + start];
...

/* testExceptions */
private static final Random

RANDOM = new
Random();

return random(count, start,
end, letters, numbers
null, RANDOM);

if (count == 0) {
} else if (count < 0) {
if (start == 0 && end == 0)

{
if (!letters && !numbers) {
end = Integer.MAX_VALUE;
char[] buffer = new char[

count];
int gap = end - start;
ch = chars[random.nextInt(

gap) + start];
...

Fig. 2. Covered lines of failing tests with 2 separate root causes: test-
LANG805 and testExceptions share the faulty lines 6, 7.

by testLANG807, is tokenised into return, random, count
, start, end, letters, numbers, and null. Line 6, 7,
and 10, covered by testLANG805, after tokenisation, produce
a large overlap with subwords in Line 2 with letters
, numbers, end, random, and start. This overlap may
undesirably reduce the distance between testLANG805 and
testLANG807.

Line 10 contains another example in which subword tokeni-
sation can introduce ambiguity. The token nextInt will be
split into next and int, both of which can result in overlaps
with other lines as they are relatively common tokens, leading
to unexpected affinity between test executions.

These examples support our claim that subword tokenisation
can obscure the test intent due to the common usage of the
fine-grained subwords in different contexts. Rows ‘Subword’
and ‘Word’ in Table I show the cosine distance computed
between the entire coverages of the three test cases shown
in Fig. 2 using subword and word tokenisation granularity,
respectively. In both granularity levels, the cosine distance
between testLANG807 and testLANG805 is shorter than that
of testExceptions and testLang805, which actually share
the same root cause.

TABLE I
COSINE DISTANCES AMONG FAILING TESTS WITH VARYING

TOKENISATION GRANULARITIES

Token
Unit

(testLang807,
testExceptions)

(testExceptions,
testLang805)

(testLang805,
testLang807)

Subword 0.04 0.06 0.02
Word 0.12 0.19 0.04
Line 0.33 0.20 0.28

2) Representing Coverage as Bag of Lines: To overcome
the issues in subword tokenisation, we propose a line level
granularity to better preserve the contextual information on
coverage. With line level granularity, we treat each individual
source code line as a term in our VSM representation. Suppose
two separate yet identical lines exist in different locations.
If a test case covers these two identical lines, the frequency
for the corresponding term would be two when computing
TF-IDF. If all lines are unique in a given program, line

level granularity would be identical to binary coverage based
clustering. However, separate yet identical lines are relatively
common: among the lines covered by an arbitrary test case
from the 218 multiple fault versions of real-world open-source
Java projects that we study, 19.65% are duplicates (Table III
shows the breakdown by studied projects).

Consider the source code in Fig. 2 and the cosine distance
in row ‘Line’ in Table I. The lexical coverage with line level
tokenisation can correctly identify the two failing tests with
the same root cause, testExceptions and testLang805, as
being more similar to each other. This is because the overlap
in term occurrences between coverages of testLANG807 and
testLANG805 is significantly reduced, as Line 2 is identical
to neither Line 6, 7, nor 10.

3) Representing Coverage as Bag of Line Groups:
While the line level granularity can sometimes capture sim-
ilarities between test coverages better than word or sub-
word granularity, there are cases that require more flexi-
bility when identifying similarities between coverage. Con-
sider the example of another multi-location fault in List-
ing 2. The faulty version from Defects4J contains two
failing test cases: BigMatrixImplTest.testMath209 and
RealMatrixImplTest.testMath209. These two test cases
have mutually exclusive coverage, but they both fail from the
same root cause, which is the misuse of v.length instead of
nRows.

@@ -988,7 +988,7 @@ public BigDecimal getTrace()
throws IllegalArgumentException {

990 final int nCols = this.getColumnDimension();
991 - final BigDecimal[] out = new BigDecimal[v.length];

+ final BigDecimal[] out = new BigDecimal[nRows];
992 for (int row = 0; row < nRows; row++) {

@@ -776,7 +776,7 @@ public double getTrace() throws
IllegalArgumentException {

778 }
779 - final double[] out = new double[v.length];

+ final double[] out = new double[nRows];
780 for (int row = 0; row < nRows; row++) {

Listing 2. Multi-location Fault with Non-identical Hunks

Line level granularity partially captures the relevance of the
two test executions that share some identical lines, such as
Line 992 and Line 780 in Listing 2. However, the actual faulty
lines (Line 991 and Line 779) are not identical, despite sharing
the same semantics. Consequently, line level granularity fails
to capture the similarity from this semantic overlap.

To overcome this, we propose grouping lexically similar
lines, and use these groups as terms in our VSM repre-
sentation. This is partially inspired by approaches in NLP
research [8], [9] to treat synonyms on TF-IDF embeddings.
Consider two natural language sentences, “a student of proven
ability” and “a graduate with proper skill”, as well as their
TF-IDF representations. We would get two distinct vectors if
we tokenise at the word level. However, if we identify and
group synonyms ({student, graduate} and {ability, skill})
and use synonym groups as our terms, these two sentences
will result in similar vectors. Similarly, we would like to
consider the two faulty lines in Listing 2 (Line 991 and 779)
as synonyms by grouping them together. The remainder of

3

this section describes how we produce these line groupings.
Listing 3 shows examples of lines clustered together when the
distance threshold is set to 0.2. All four clusters show that
it is possible to identify synonyms, i.e., the lines that exhibit
similar behaviour based either on lexical patterns or variable
types.

{’final double[] bpRow = bp[row];’, ’final BigDecimal
[] bpRow = bp[row];’}

{’final double[] bpCol = bp[col];’, ’final BigDecimal
[] bpCol = bp[col];’}

{’double normProduct = v1.getNorm() * v2.getNorm();’,
’double normProduct = u.getNorm() * v.getNorm()
;’},

{’return Double.NEGATIVE_INFINITY;’, ’ret = Double.
NEGATIVE_INFINITY;’}

Listing 3. Example of grouped lines using TF-IDF vector distance
(threshold=0.2)

Finally, the constructed line groups can be used as terms
to generate TF-IDF vectors. We modify the original TF-
IDF formula to count the term frequency (tf) and inverse
document frequency based on the line groups, where each
line group g consists of lines {l1, ...lN}, dt is a document of
covered source code by a test t, and D is a set of documents,
of which length is the number of all executed test cases.

tfidf(g, dt, D) =
(∑N

li∈g tf(li, dt)
)
·
(
log |D|
|
⋃

li∈g{d∈D:li∈d}|

)
Note that this modified TF-IDF formula is basically identi-

cal to the original TF-IDF formula: it simply counts by treating
the lines in the same group as identical.

B. Failure Clustering

To produce the final failure clustering result, we adopt
agglomerative clustering, a type of hierarchical clustering,
which is widely used by existing work on failure clustering [2],
[5], [4]. Agglomerative clustering has the benefit of not having
to know the number of clusters in advance. Instead, we simply
need to set an adequate stopping criterion on intercluster
distance: the merging of clusters stops when the intercluster
distance becomes higher than the given threshold.

Prior work [4] set the stopping criterion based on sampled
training sets. We adopt an unsupervised method that finds the
knee point in intercluster distance, which is suggested as a way
to find the ideal number of clusters without any training [10].
We performed a preliminary evaluation of stopping criteria
using the line level tokenisation. First, we set the threshold
value following Disiuseppe et al., using 20% of all data as the
training set, and clustered the remaining 80% of the studied
multiple fault versions. In addition, we clustered the same
80% of the studied multiple fault versions using the knee-
point method. Table II shows that the knee-point method can
outperform the threshold method in terms of our clustering
evaluation metrics, AMI and ARI (see Section III-B for
details).

III. EXPERIMENTAL SETUP

This section presents our experimental setup.

TABLE II
COMPARISON OF STOPPING CRITERIA (BAG OF LINES REPRESENTATION)

Stopping Criterion AMI ARI

Distance Threshold 0.613 0.701
Knee Method 0.643 0.758

A. Multi-fault Dataset on Defects4J

To evaluate different granularity levels in lexical coverage
representation in terms of the failure clustering effectiveness,
we use the recently introduced multi-fault extension of De-
fects4J [11], which has identified coexisting faults in the
original Defects4J [12] benchmark by transplanting fault re-
vealing test cases across versions. The original Defects4J [12]
benchmark is one of the most widely studied Java fault
benchmark and contains isolated single faults.

From the multi-fault database, we sampled ten multi-fault
versions per number of faults that ranges from one to five,
from each of five Java projects: jfreechart, closure-
compiler, joda-time, commons-lang, and commons-
math. In total, we study 218 multi-fault snapshots of these
Java projects, and not 250 (10 versions × 5 different number of
faults (from one to five) × 5 projects), because jfreechart
does not have enough multi-fault versions. In addition, 13
versions in joda-time and closure-compiler have over-
lapping failing tests among the contained faults, which are
omitted because we use non-overlapping clustering. Table III
shows the number of studied multiple fault versions per each
project, as well as the average percentage of covered source
code lines that are duplicates of other covered lines (see
Section II-A2).

TABLE III
MULTI-FAULT DATASET FOR CLUSTERING EVALUATION

Project Lang Chart Time Math Closure total

of versions 50 31 38 50 49 218
% of dup. lines 11.6 18.5 23.9 14.2 20.9 19.6

B. Evaluation Metrics

Using the ground truth root causes for the failing tests in
our dataset, we can compute external criteria of clustering
quality. There are several suggested criteria used in the lit-
erature. Among them, we chose 2 criteria, Adjusted Mutual
Information (AMI) and Adjusted Random Index (ARI). Both
are adjusted metrics, meaning that they are not affected by the
number of ground truth cluster labels.

1) Adjusted Mutual Information (AMI): Mutual Informa-
tion (MI) is used to measure the information shared by two
random variables. When applied to clustering, Mutual Infor-
mation between the predicted clusters U and the true classes

V is given as MI(U, V) =
R∑
i=1

C∑
j=1

PUV (i, j) log
PUV (i,j)

PU (i)PV (j) ,

where PU (i) denotes the probability that an object falls into

4

cluster Ui. This is further adjusted to account for chance. The
AMI score between the two partitions U and V is given as:

AMI =
MI(U, V)− E[MI(U, V)]

avg(H(U), H(V))− E[MI(U, V)]

The calculated AMI score is 1.0 at perfect clustering and 0 at
chance. Note that the value of AMI could be negative.

2) Adjusted Rand Index (ARI): Random Index (RI) in clus-
tering evaluation is a measure of the percentage of correctly
assigned element pairs. RI is calculated through the following
equation: RI = TP+TN

TP+FP+FN+TN . For example, if two failing
tests are assigned to the same cluster but not in the ground
truth, we regard this pair as a false positive. Based on RI, the
adjusted RI is obtained as follows:

ARI =
RI − E[RI]

max(RI)− E[RI])

Random clusters have ARI close to 0, while a perfect cluster
that is identical to the ground truth will have the value of 1.0.

C. Research Questions

We aim to answer the following research questions.
RQ1. Comparison of Tokenisation Granularities: How
do the varying tokenisation granularities on constructing the
lexical representation of coverage affect failure clustering? We
answer RQ1 by comparing the clustering evaluation metrics,
AMI and ARI, for failure clusters generated with different
tokenisation granularities. We consider subword, word, and
line level tokenisations. In addition, we also evaluate ‘phrases’,
which are results of white-space tokenisation only (instead of
tokenising also based on lexical delimiters such as the dot
operator in Java). See Table IV for examples of all tokenisation
levels.

TABLE IV
TOKENISATION GRANULARITIES FOR COMPARISON

line {‘end = Integer.MAX_VALUE;’}
phrase {‘end’, ‘Integer.MAX_VALUE’}
raw word {‘end’, ‘Integer’, ‘MAX_VALUE’}
subword {‘end’, ‘integer’, ‘max’, ‘value’}

RQ2. Impact of Line Distance on Line Group Granularity:
What is the impact of the distance threshold used for line
grouping? We answer RQ2 by computing failure clusters using
line groups obtained with varying thresholds of line distance,
and subsequently comparing the effectiveness using AMI and
ARI.
RQ3. Effectiveness of Lexical Coverage Representation: Is
the lexical coverage representation itself effective for failure
clustering compared to the traditional binary coverage repre-
sentation? We answer RQ3 by comparing the multiple failure
clustering results: one obtained using Jaccard distance based
on binary coverage representation, and others obtained using
lexical representations of coverage at subword and line group
level granularity.

subword word phrase line
granularity

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
Average AMI

subword word phrase line
granularity

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Average ARI

Fig. 3. Clustering performance (in AMI/ARI metrics) according to different
tokenisation granularities

576 873694

line subword

Fig. 4. Venn diagram drawn from the number of correctly clustered test pairs
by bag of lines/subwords representations

IV. RESULT AND ANALYSIS

This section presents the results of our empirical evaluation
and answers to the research questions.

A. Tokenisation Granularity (RQ1)

Fig. 3 shows the average AMI and ARI metrics of different
tokenisation levels across all multiple fault versions studied.
The vertical black bar shows the range of ±σ. Bag of lines
representation shows the best performance, with an AMI score
of 0.624, which is about 8% higher than that of the subword
representation, which is 0.578. This result supports our point
that the subword source code unit may lose finer details in test
coverage similarities, as discussed in Section II-A1.

Despite higher AMI and ARI, line level granularity does not
completely dominate subword level granularity. The results
suggest that similarities between certain pairs of tests are
captured better at the coarser granularity, while for others
the finer granularity performs better. In Fig. 4, we present
a Venn diagram of pairs of failing test cases that are correctly
clustered together by different granularity levels. While there is
a large intersection (meaning that many pairs can be correctly
clustered together at either granularity level), each granularity
level can exclusively cluster different subsets of pairs (576 for
line level granularity, 87 for subword granularity level). The
result suggests that, for further improvement, we may have

5

line 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
subword

distance threshold

0.50

0.55

0.60

0.65

0.70
Average AMI

line 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
subword

distance threshold

0.65

0.70

0.75

0.80

Average ARI

Fig. 5. Clustering performance (in AMI/ARI metrics) on line group based lexical coverage representations (different thresholds)

to consider multiple granularity levels simultaneously, using
more advanced clustering algorithms.

Based on these results, we answer RQ1 that finer granularity
tokenisation such as the subword tokenisation can at times
actually harm the performance of failure clustering because of
the unintended overlap in tokens. The line level granularity that
we propose achieves the best overall clustering performance
in terms of AMI and ARI metrics.

B. Line Group Granularity (RQ2)

Fig. 5 shows how average AMI and ARI change at the line
grouping granularity level, as we vary the distance threshold
for the grouping. At the left end, we show the result obtained
with the line level granularity (which would be identical to line
group granularity with a distance threshold of 0.0). We then
vary the grouping distance threshold from 0.05 to 0.50 with
the step size of 0.05, and report AMI and ARI. Finally, for
reference, we also include the result from the subword level
granularity.

Both the AMI/ARI metrics show slightly improved scores
on some thresholds: 0.05, 0.1, 0.15 for AMI, and 0.05 for ARI.
Compared to the subword unit, the line-grouping based rep-
resentation with the best-performing threshold of 0.1 showed
8.6% improvement with an AMI score of 0.63. However, we
also observe a trend that, above a certain distance threshold,
line grouping becomes too lax, and fails to improve the
clustering. Based on these results, we answer RQ2 that line
groups can be an even better unit of lexical representation
of coverage with appropriate distance threshold. However,
the magnitude of improvement is smaller when compared to
the improvement achieved by line granularity level over the
subword level granularity.

C. Lexical Coverage Representation (RQ3)

Fig. 6 compares failure clustering results from subword
and line group granularity levels to that of binary coverage
representation: we use Jaccard distance to perform the clus-
tering. It clearly shows that both lexical representations can
produce better failure clustering results. To the best of our
knowledge, this is the first empirical evidence that shows the

binary coverage
subword

line group

representation

0.4

0.5

0.6

0.7
Average AMI

binary coverage
subword

line group

representation

0.4

0.5

0.6

0.7

0.8
Average ARI

Fig. 6. Comparison of clustering performance (in AMI/ARI metrics) on binary
coverage with Jaccard distance, subword-level lexical coverage, and line group
based lexical coverage (threshold 0.1)

benefits of lexical representation of coverage for real-world
failure clustering. While DiGiuseppe et al. [4] also presented
experimental results, the preliminary evaluation included only
a single C program, sed from SIR [13], which contains
manually injected faults instead of real ones. Based on these
results, we answer RQ3 that utilising lexical source code
tokens for representing coverage helps produce better failure
clustering than conventional binary coverage representation.

V. RELATED WORK

This section presents related work, which includes existing
work on failure clustering and representations of source code.

A. Failure Clustering

Podgurski et al. [1] first proposed to use execution traces
for clustering failing executions. Much early failure clustering
work [3], [2] uses execution traces to distinguish execution
paths of each failure, but does not consider the lexical tokens
in the covered source code. Jones et al. [2] defined the
concept of parallel debugging by assigning different fault-
focused clusters of failing tests cases to the developers, using
the suspiciousness score of each line.

DiGiuseppe et al. [4] suggested using lexical source code
tokens for failure clustering by presenting the notion of
Concept-based failure clustering. We expand this work by con-
sidering alternative granularity levels for lexical representation
of coverage, and provide an empirical evaluation of failure
clustering using larger and more realistic programs and faults.

6

Chen et al. [14] use execution traces as well as the tokens in
program output to filter out undesirable test cases, but do not
use the tokens in the covered program source code.

B. Source Code Representation

Recently, several techniques to generate source code repre-
sentation at various granularities such as identifier [15], [16],
expressions [17], method [18], and code changes [19] were
suggested, but none of them attempts to embed all covered
source code to measure the distance between test coverage. For
embedding identifiers, subtokenisation was generally regarded
to be necessary [20], [21], [22], but the drawbacks of using
subtokenisation have rarely been addressed.

VI. CONCLUSION

In this paper, we study the importance of tokenisation gran-
ularity on lexical coverage representation and, in turn, on the
effectiveness of failure clustering based on the representation
of coverage. Contrary to the use of subword tokenisation in
existing work, we propose coarser-grained units of coverage
representation and show that they are capable of producing
better failure clustering. As future work, we will consider
more advanced representations (such as one that is capable
of incorporating multiple granularity levels) and clustering
algorithms (such as one that can consider multiple distance
metrics) for more precise failure clustering.

ACKNOWLEDGEMENT

This work is supported by National Research Foundation
of Korea (NRF) Grant (NRF-2020R1A2C1013629), as well
as Institute for Information & communications Technology
Promotion grant funded by the Korean government (MSIT)
(No.2021-0-01001).

REFERENCES

[1] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated support for classifying software failure reports,”
in 25th International Conference on Software Engineering, 2003. Pro-
ceedings. IEEE, 2003, pp. 465–475.

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 273–282.

[3] W. Dickinson, D. Leon, and A. Podgurski, “Pursuing failure: the
distribution of program failures in a profile space,” in Proceedings of
the 8th European Software Engineering Conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of Software
Engineering, 2001, pp. 246–255.

[4] N. DiGiuseppe and J. A. Jones, “Concept-based failure clustering,” in
Proceedings of the ACM SIGSOFT 20th international symposium on the
foundations of software engineering, 2012, pp. 1–4.

[5] M. Golagha, A. Pretschner, D. Fisch, and R. Nagy, “Reducing failure
analysis time: An industrial evaluation,” in 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP). IEEE, 2017, pp. 293–302.

[6] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, Nov.
1975.

[7] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. New
York, NY, USA: Cambridge University Press, 2011.

[8] Z. Yun-tao, G. Ling, and W. Yong-cheng, “An improved tf-idf approach
for text classification,” Journal of Zhejiang University-Science A, vol. 6,
no. 1, pp. 49–55, 2005.

[9] M. Kumari, A. Jain, and A. Bhatia, “Synonyms based term weighting
scheme: An extension to tf. idf,” Procedia Computer Science, vol. 89,
pp. 555–561, 2016.

[10] S. Salvador and P. Chan, “Determining the number of clusters/segments
in hierarchical clustering/segmentation algorithms,” 12 2004, pp. 576–
584.

[11] G. An, J. Yoon, and S. Yoo, “Searching for multi-fault programs in
defects4j,” arXiv preprint arXiv:2108.04455, 2021.

[12] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[13] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact.” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[14] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and implemen-
tation, 2013, pp. 197–208.

[15] M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based
bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1–25, 2018.

[16] Y. Wainakh, M. Rauf, and M. Pradel, “Idbench: Evaluating semantic
representations of identifier names in source code,” arXiv preprint
arXiv:1910.05177, 2019.

[17] M. Allamanis, P. Chanthirasegaran, P. Kohli, and C. Sutton, “Learning
continuous semantic representations of symbolic expressions,” in Inter-
national Conference on Machine Learning. PMLR, 2017, pp. 80–88.

[18] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.

[19] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 518–529.

[20] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code!= big vocabulary: Open-vocabulary models for source code,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE). IEEE, 2020, pp. 1073–1085.

[21] M. Hucka, “Spiral: splitters for identifiers in source code files,” Journal
of Open Source Software, vol. 3, no. 24, p. 653, 2018.

[22] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” in European Conference on Object-
Oriented Programming. Springer, 2011, pp. 130–154.

7

