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Abstract
ML-based systems are software systems that incorporates machine
learning components such as Deep Neural Networks (DNNs) or
Large Language Models (LLMs). While such systems enable ad-
vanced features such as high performance computer vision, natural
language processing, and code generation, their internal behaviour
remain largely opaque to traditional dynamic analysis such as test-
ing: existing analysis typically concern only what is observable
from the outside, such as input similarity or class label changes.
We propose semantic flow, a concept designed to capture the inter-
nal behaviour of ML-based system and to provide a platform for
traditional dynamic analysis techniques to be adapted to. Semantic
flow combines the idea of control flow with internal states taken
from executions of ML-based systems, such as activation values of
a specific layer in a DNN, or embeddings of LLM responses at a
specific inference step of LLM agents. The resulting representation,
summarised as semantic flow graphs, can capture internal decisions
that are not explicitly represented in the traditional control flow of
ML-based systems. We propose the idea of semantic flow, introduce
two examples using a DNN and an LLM agent, and finally sketch
its properties and how it can be used to adapt existing dynamic
analysis techniques for use in ML-based software systems.

CCS Concepts
• Software and its engineering→ Software creation and man-
agement.
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1 Introduction
Recent rapid advances in machine learning, particularly in Deep
Neural Networks (DNNs) [16] and Large LanguageModels (LLMs) [3,
20] have led to the emergence of ML-based software system, a new
type of software systems that uses machine learning components
such as DNNs or LLMs as part of the system. ML-based systems
range from safety-critical systems that incorporate vision-related
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DNNs [19] to agentic systems driven by LLMs [10, 24]. We expect
such ML-based systems to be a prevalent form of software systems
in the future, thanks to the unsurpassed capabilities of DNNs (in
computer vision [5, 6] and speech recognition [7]) and LLMs (in var-
ious natural language processing tasks [3], text-based games [2, 23],
language education [1], as well as software engineering tasks [4]).

With the increasingly wider adoption of ML-based systems, the
need to analyse and verify their behaviour also increases, so that
we can ensure the quality of service provided by these systems.
However, it is not straightforward to apply existing program analy-
sis techniques, such as testing and debugging, to ML-based systems,
because the internal behaviour of the ML components (i.e., DNNs or
Transformer models of LLMs) are fundamentally different from tra-
ditional software and therefore remain opaque. In machine learning
literature, attempts to understand the internal behaviour of ML com-
ponents tend to focus on identifying features of inputs [8, 27, 28].
While these work help us understand ML components themselves
better, they fall short of providing a perspective for a whole ML-
based software system, which involves parts written as traditional
software as well as ML components.

We propose a new representation of ML-system behaviour called
semantic flow. Similarly to control and data flow for traditional soft-
ware, semantic flow captures how semantic information in the
latent space used by ML components changes as the system exe-
cutes. It is different from existing attempt to capture input features,
as semantic flow also captures the idea of system execution, tra-
ditionally represented in control flow. We present semantic flow
using examples of both a DNN and an LLM-based agent system,
show connections to existing work in testing of ML systems, and
finally discuss future work on how traditional dynamic analysis
techniques such as testing and fault localisation can be adapted to
ML-based systems using semantic flow as a base representation.

2 Motivation
Let us first consider a simple image classification DNN, whose
source code is listed in Figure 1. Both the model structure defined
in __init__ and the actual computation defined in forward are linear,
i.e., lack any branching. Regardless of the classification results, all
inputs follow the same execution path (i.e., the sequence of layers).
However, classification expressed in traditional programming lan-
guage would inherently based on branching, as shown in Figure 2,
because we use control flow to define program behaviour. In con-
trast, the CNN model in Figure 1 performs the classification solely
along the dataflow, i.e., by changing the distributions of activation
values in the latent space.

Another motivating example we present is of AutoFL [10], an
agentic Fault Localisation (FL) technique that is driven by an LLM.
At its core, AutoFL uses a ReAct [25] like function calling feature of
GPT-3.5 and GPT-4 to overcome the limitations of context window
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class Net(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

Figure 1: A Convolutional Neural Network for Image Classi-
fication written in PyTorch

def classify(input):
if features(input) == features["class_A"]:
return "class_A"

elif features(input) == features["class_B"]:
return "class_B"

elif features(input) == features["class_C"]:
return "class_C"

...

Figure 2: A Classifier Logic expressed in Python

lengths in LLMs. After being presented with the source code of the
failing test case, the LLM is given autonomy over which function
call to invoke. The LLM instance respond to the initial prompt with
a series of requests to invoke one of the four available functions:

• get_class_covered: returns the list of classes covered by the
failing test case

• get_method_covered: given a class signature, returns the list of
its methods covered by the failing test case

• get_code_snippet: given amethod signature, returns themethod
body source code

• get_comments: given a method signature, returns the docstring
that accompanies the method

Authors report that AutoFL can autonomously navigate the code
repository, starting from the failing test case and gradually narrow-
ing down to the location of the fault: it tends to start by looking
at the list of covered classes, then the list of methods, and finally
code snippets and comments of various methods, which is not un-
reasonable to human eyes. However, details of such behaviour can
only be discerned in the semantic contents of LLM generated re-
sponses. From the perspective of traditional control flow, AutoFL
simply repeats a loop between the source code that implements the
function call invocations, and the LLM that makes such requests,
as shown in Figure 3. The control flow alone does not reveal the
rich semantic information, which is included in the contents of the
function call requests made by the LLM.

Based on these two examples, we argue that we need a new
representation that combines the traditional control flow and the
semantic information that drives ML components such as DNNs

AutoFL LLM

Initial Prompt or Function Call Results

Next Function Call to make or FL Results

Figure 3: Outline of AutoFL, an LLM-based FL agent [10]

or LLMs. Such a representation would essentially serve as an alter-
native to the traditional concept of execution traces, and allow us
to investigate the behaviour of ML-based systems in a way that is
more similar to traditional software.

3 Semantic Flow
Semantic flow describes the sequential progression through one or
more latent spaces within an ML component or ML-based system,
analogous to how control flow describes the order of execution of
program elements in traditional software. When given an input, an
ML component (e.g., a deep neural network) or system (e.g., a large
language model acting as an agent) traverses multiple latent spaces
as part of its internal processing. These latent spaces represent the
internal states and transformations that occur during execution.

We define a semantic state, 𝑠𝑖 , as a point in a latent space, encapsu-
lating the representation of the system’s internal state at a specific
moment. A semantic flow is a sequence of such states, 𝑠1, 𝑠2, . . . , 𝑠𝑛
where each 𝑠𝑖 resides in a latent space 𝐿𝑆𝑖 corresponding to a dis-
tinct phase or step in the execution. For a DNN, 𝐿𝑆𝑖 might represent
the activations of a particular layer, while for an agentic system,
𝐿𝑆𝑖 could denote the reasoning state at a specific step.

To generalise and analyse multiple executions, we aggregate se-
mantic states into semantic clusters, forming a semantic flow graph
(SFG). In this graph, nodes represent clusters of semantically related
states within one of the latent spaces, and edges capture transitions
between these clusters observed—or theoretically possible—across
a set of executions.

To construct semantic flows, three core elements are required:
• Unit of Analysis: Define the specific execution steps to model
and identify the relevant data structures for the internal state
at each step. Let 𝑒𝑖 represent the execution data at step 𝑖 .

• Latent Mapping: Specify a function 𝑒𝑚𝑏𝑒𝑑 (𝑖, 𝑒𝑖 ) that maps
execution data 𝑒𝑖 at step 𝑖 into a semantic state 𝑠𝑖 in the latent
space 𝐿𝑆𝑖 .

• Semantic aggregation: Specify a semantic aggregation func-
tion,𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑖, 𝑠𝑖 , 𝑆𝑖 ), where 𝑆𝑖 represents all statesmapped
to 𝐿𝑆𝑖 . This function groups semantically related states into
clusters and assigns each state to a node in the semantic flow
graph. These clusters provide high-level semantic abstrac-
tions, improving interpretability and aiding analysis.

By formalizing semantic flows, we can better understand and
visualize how ML systems progress through latent spaces during
execution. This framework facilitates the comparison of system
behaviour under different inputs or configurations, revealing simi-
larities and differences in their logical and semantic decisions. We
argue such insights can be useful for testing, optimization, and
debugging, enabling targeted improvements in system behaviour.
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In the following, we present concrete examples of semantic flows
and explore their practical applications.

3.1 Semantic Flow of Image Classifiers
Consider the visualisation of semantic flow of a Convolutional
Neural Network (CNN) trained to classify the CIFAR-10 bench-
mark [15]. Figure 4 visualizes the progression of semantic states
that we extracted from the network’s executions, with dots rep-
resenting semantic states and their colour selected based on the
network’s predicted class such as birds, cats, ships, and aeroplanes.
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Figure 4: Semantic clusters observed at different layers of a
CNN CIFAR-10 Classifier, visualised in 3D with t-SNE. Note
that different classes are increasingly separated from each
other as they pass layers, gradually forming more visually
separated semantic clusters. We argue that such separations
can be likened to decision branching in programs.

The unit of analysis is the layers of the CNN and the semantic
states are derived from the activation values in a layer during classi-
fication. For each input image, the network generates activations at
successive layers, which reflect the system’s internal state at each
step. We use the t-SNE algorithm to map these layer-wise activation
values (execution data) into semantic states. Figures 4a, 4b, and 4c
show the semantic states from the three final fully connected layers
of the network, each one reduced to (3D) latent spaces using t-SNE.
As the input progresses through the layers, semantic states for each
class become increasingly distinct, forming clusters by class label
in the latent spaces. This separation can be seen to correspond to
branching in the network’s classification logic, as shown for tradi-
tional code in Figure 2. Note that here we did not visualise the flow
between the three latent spaces that would be needed to show the
flow graph. Similarly, the aggregation function was trivial since it
is only based on ground truth labels.

The clustering of semantic states we can observe aligns with
findings by Rauber et al. [17], who observed that training improves
class separation in latent space. Yosinski et al. [26] similarly demon-
strated how visualizing activations can help reveal the role of con-
volutional layers. We build on these insights, and posit that the
progression of internal activations through layers mirrors branch-
ing logic in traditional programs, where semantic flow captures
how the network separates image classes for accurate classification.
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Figure 5: LLM Inference Graph by Kim et al. [14] of FL infer-
ences of AutoFL [11] for the bug Lang-29 of Defects4J [9]

3.2 Semantic Flow of LLM Agents
LLM agents provide an intuitive context for semantic flow analysis.
Their agentic workflows naturally define the ordering of informa-
tion (akin to control flow), while their generated outputs encap-
sulate semantic information. The AutoFL system [10], previously
introduced, can serve as an illustrative case.

In AutoFL, semantic states are derived from the system’s infer-
ence steps, where each step corresponds to a function call invoked
by the LLM during fault localization. The system’s execution se-
quence forms the basis for semantic flow analysis. Each function
call is represented as a semantic state within a single latent space
(shared between all steps), consistent with the LLM Inference Graph
(LIG) framework by Kim et al. [14]. Semantic states are encoded
discretely using one-hot representations, ensuring identical func-
tion calls with the same arguments map to the same state. Figure 5
visualizes an LIG derived from 10 AutoFL executions, showing
how function calls progress through the workflow. The semantic
states corresponding to identical function calls across executions
are merged, with edge weights reflecting the frequency of transi-
tions between them. For example, AutoFL’s multiple executions
for the same bug aggregate results for self-consistency [21]. In Fig-
ure 5, some executions correctly localize the bug (reaching the blue
node), while others fail (reaching the red node). These clusters and
transitions clarify the logical pathways taken by the system.

The LIG depicted in Figure 5 highlights AutoFL’s decision-making
at each step, contrasting with traditional control flow (Figure 3). The
LIG is a specific instance of a semantic flow graph, where semantic
information is discretely encoded by function call types and the
graph has been further compacted by counting and annotating with
the number of node transitions. While in this case the semantic flow
embedding function was manually selected we could alternatively
use an external LLM encoder model to embed the natural language
inputs/outputs into a latent space [18] or directly using the hidden
states of the LLM of the agentic system. This analysis demonstrates
how Semantic Flow Graph (SFG) analysis can provide a structured,
interpretable view of LLM agent workflows.

4 Properties and Applications of Semantic Flow
Fundamentally, semantic flow aims to capture and represent the
executions of ML-based systems at multiple latent spaces. Once we
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capture semantic flow of a set of accepted executions, it can be used
to measure various properties of executions of ML-based systems.
For example, we can imagine a diversity-aware testing technique
for LLM-based agents that can select and prioritise inputs that
result in the most diverse set of executions. We discuss potential
applications of semantic flow in this section.

4.1 Semantic and Control Flow Graphs (SaCFGs)
Semantic Flow Graphs (SFGs) represent execution flows as graphs,
where nodes correspond to clusters of related states in a latent space,
and edges indicate their sequential appearance. While these graphs
can be helpful tools in themselves we also propose hybridizing SFGs
with traditional Control Flow Graphs (CFGs) to create Semantic
and Control Flow Graphs (SaCFGs) for analyzing hybrid systems
that combine conventional software and machine learning (ML)
components, such as large languagemodels (LLMs). As one example,
SaCFGs can enable defining and evaluating coverage criteria that
span diverse components in complex systems.

Unlike static CFG analysis, constructing SaCFGs requires a multi-
step process due to the stochastic nature of semantic state clustering,
which depends on system executions. Once clusters are formed,
new states can be mapped either as discrete assignments (e.g., 𝜖-
coverage: states within distance 𝜖 of a cluster) or using finer-grained
distances to measure partial coverage across multiple clusters. This
hybrid framework offers a powerful tool for exploring semantic
and control flow interactions in ML-software systems, advancing
both analysis and practical applications.

4.2 Measuring Out-of-Distribution-ness of
Executions

The statistical nature of semantic flows, particularly semantic clus-
ters, provides a foundation for quantifying the out-of-distribution-
ness of ML-based system executions. We argue that Surprise Ade-
quacy (SA) [12, 13], a widely studied test adequacy metric for deep
neural networks (DNNs), represents a specific instance of such a
measure. SA evaluates how much of an outlier a new semantic
cluster is relative to a reference cluster, with research showing that
higher levels of surprise in inputs correlate with a greater likelihood
of unexpected or buggy behavior in DNNs.

Extending this concept, semantic flow analysis enables out-of-
distributionmeasurements for longer andmore complex executions,
such as those from systems involving large language model (LLM)
agents. By considering multiple semantic states sampled at various
points during execution, we can evaluate the overall degree of
out-of-distribution-ness for an entire system run. Similar to the
hybrid SaCFG framework, there is flexibility in choosing whether
to discretize states into clusters or to leverage continuous distances
in the latent space, allowing for nuanced modeling and analysis.

4.3 Debugging ML-based Systems
Once we connect out-of-distribution-ness, unexpected behaviour,
and coverage in SFG (or SaCFG), we can consider debugging tech-
niques for traditional programs. For example, we may be able to per-
form something similar to Spectrum Based Fault Localisation [22]:
if buggy executions of an LLM-based agent tend to cover a specific
semantic cluster, while normal executions do not, we may expect

that the specific reasoning step relevant to that semantic cluster is
the root cause of the problem, and that the related prompt needs to
be improved. Alternatively, specific patterns of flow, over multiple
clusters, might indicate faulty (multi-step) “reasoning”.

4.4 Predicting Execution Results
Kim et al. [14] initially proposed LLM Inference Graph as a way
to predict whether a set of LLM-based agent executions can pro-
duce a correct answer: authors have trained a Graph Convolutional
Network (GCN) that takes an LIG as an input and predicts the cor-
rectness of the final answer, achieving precisions of over 0.8. Such
predictions are made feasible because LIG, a special case of SFG,
encapsulates the entire behaviour of the agent. Since LLMs require
very large amount of resources, we argue that such predictions can
be very valuable as long as they are reasonable accurate. Further,
if accurate predictions can be made using partial SFGs (i.e., SFGs
constructed from incomplete executions), we may be able to force
early-termination of executions that are not likely to succeed.

4.5 Interpretability and Explainability
The choice of latent spaces, 𝐿1, . . . , 𝐿𝑛 , can significantly enhance
the interpretability and explainability of ML-based system behav-
ior. Semantic embeddings map specific execution steps, such as
an LLM-based agent’s response, into latent spaces. We argue that
these embeddings can also be tailored to capture domain-specific
abstract properties of the responses. For example, in an LLM-based
agent providing customized health advice, user inputs could be em-
bedded using a generic language model or into a specially designed
latent space. Such a space might distinguish whether the input
represents self-reflection, factual information, or a rebuttal to the
agent’s response. By designing latent spaces to highlight such high-
level properties, we can potentially improve the interpretability
and explainability of the system’s behavior.

5 Conclusion
We introduce the concept of semantic flow: the flow of semantic
information, represented as vectors in (a) latent space(s), traversed
by an ML-based system during execution. This framework applies
to systems ranging from individual deep neural networks (DNNs)
to complex large language model (LLM) agents, with executions
captured and visualized through Semantic Flow Graphs (SFGs).

We discuss properties of this new concept and highlight how se-
mantic flow enables the adaptation of dynamic analysis techniques
for ML-based systems. By using semantic flow to represent execu-
tions, we aim to improve the quality, reliability, and understanding
of these systems, advancing their analysis and development.
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