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1 INTRODUCTION

This paper presents a theoretically optimal, human competitive and practical approach to Spectrum
Based Fault Localisation (SBFL) [24, 28] using Genetic Programming (GP) [31, 43]. Our work is
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situated within a growing trend in software engineering, Search Based Software Engineering
(SBSE) [4, 16, 23, 35], which uses computational search techniques (with a particular emphasis on
evolutionary computation [22]). It provides the first provably and theoretically optimal results in
the field of SBSE.

SBFL is important because it offers automated assistance to the debugging process, which is
currently labour-intensive, expensive and time-consuming. SBFL has been advocated as a technique
for helping humans find faults faster [20, 42] and also as a supporting technology for automated
program repair [32, 50], which automatically fixes certain classes of fault (also using techniques
such as GP).

The SBFL suspiciousness formula defines the ‘suspiciousness’ of each statement in terms of
observations from software testing, thereby forming the ‘key ingredient’ of SBFL. The suspiciousness
formula is also known as a risk formula, in the sense that it seeks to capture the ‘risk’ that the
statement causes the bug. A good risk formula will tend to elevate the reported suspiciousness of
truly faulty statements and depress that of innocent statements. However, it is far from obvious
how to define such a good risk formula. There has been a great deal of previous work on SBFL,
much of which focuses on designing and empirically evaluating different formulee [1, 9, 30, 51].

We report on a GP solution that searches for formulze, which we have implemented, showing that
it finds known maximal formule (previously found by humans) and also novel maximal formulee
(not previously found by humans). We report on a set of experiments on real software systems
to evaluate the formulee found by humans and by GP. Our empirical evaluation indicates that
one class of formulee (found by GP and also by humans) performs best overall. Finally, we prove
that, under the single fault scenario, there does not exist a superior formula to the current known
maximal formulee found by humans and/or by GP. Therefore, GP-evolved formule are not only
human competitive, but no further human analysis could yield superior alternatives. While human
competitiveness of SBSE has been empirically shown before [7, 8, 15, 40], we believe this is the
first claim backed by a formal mathematical proof.

SBFL is an area of software engineering that has been well studied by humans over many
years, and for which human ingenuity has produced publishable advances that have subsequently
turned out to include both sub-optimal as well as optimal results. It is an important area that has
motivated (and continues to motivate) many leading researchers to attack the problem of finding
suitable formulee with attractive theoretical and practical properties. We believe that this makes it
exciting and encouraging that GP has been able to find results that are provably human competitive,
theoretically unbeatable, and also practically valuable.

2 BACKGROUND

In this section we present the SBFL problem (Section 2.1) and summarise the previously published,
theoretical underpinning framework that we use to construct our proofs (Section 2.2).

2.1 Problem Statement

Spectrum-Based Fault Localisation (SBFL) refers to a group of techniques that use program spectrum
to find the location of the fault in the given program that causes certain tests to fail. Program
spectrum can be best described as a summary of a set of program executions [24]. For the SBFL
techniques, the most widely used type of program spectrum is the combination of code coverage
and the test results, on which this paper focuses too. Suppose the System Under Test (SUT) has
n statements, and the test suite contains m test cases: the program spectrum for SBFL can be
described as a matrix of n rows and 4 columns. Each row corresponds to individual statement
of the SUT, and contains the tuple (ef, ey, nr,n,). Members ef and e, represent the number of
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times the corresponding program statement has been executed by tests, with fail and pass as a
result respectively. Similarly, ny and n,, represent the number of times the corresponding program
statement has not been executed by tests, with fail and pass as a result respectively’.

Table 1. Motivating Example: the faulty statement sy achieves the first place when ranked according to the
Tarantula risk evaluation formula in Equation 1.

Structural | Test Test Test Spectrum Tarantula | Rank
Elements t ty ts |ef np e my

5 e o e |2 0 1 0 0.00 2
S (] . . 2 0 1 0 0.00 3
s . 0 2 1 0 0.00 7
S4 . 0o 2 1 0 0.00 8
S5 . 0 2 1 0 0.00 9
s . e |1 1 1 o0 0.33 5
s7 (faulty) . . 2 0 0 1 1.00 1
s o e 11 1 0 0.33 6
So . . . 2 0 1 0 0.50 4
Result P F F

ef
Tarantula = epeer—nfef (1)

eptnp - eftng

SBFL techniques subsequently use a risk evaluation formula, which is a formula based on the four
counters, to assign risk scores to statements: the scores are designed to correlate to the relative risk
of each statement containing the fault. Table 1 presents an illustrative example of the Tarantula’
metric [28], shown in Equation 1, being applied to a SUT with 9 structural elements. Let us assume
that the element s; is the faulty one, which causes test case t; and t3 to fail whereas test case
t; passes. The second column presents the coverage achieved by these 3 test cases respectively.
The spectrum column aggregates the coverage and test results into a set of the aforementioned

tuples, which are fed into the Tarantula metric, eventually forming the rank. For example, Tarantula
2 2

assigns the risk score % = 0.5 to sy, and the score -*** = 1.0 to sy. SBFL technique assumes

240 " 140 240 " 0+1

that the developer is to investigate the SUT following the rank order produced by the technique.
In case of the example above, the developer would find the faulty element first, instead of as the
seventh element when inspected following the line number order. Note that the tie breaker is

!The sum of ef, ep, Ny, and np should be m.
Note that this example as well as the choice of the Tarantula metric is purely illustrative.
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the line number, which is completely independent from the SBFL technique used (please refer to
Definition 2.2 in Section 2.2 for more details about tie breakers).

More formally, a SBFL risk evaluation formula is a function from program spectrum to suspi-
ciousness score, such as Tarantula in Equation 1, defined as follow:

Definition 2.1. A risk evaluation formula R is a member of set # = {R|R : I X I X I X I — Real}
(where I denotes the set of non-negative integers and Real denotes the set of real numbers), which
maps A; =< e}, ej’;, n}, n;, > of each statement s; to its risk value.

Effectiveness of an SBFL significantly depends on the design of the risk evaluation formule, of
which the literature provides a rich pool. Most of these formule have been designed manually.
Jaccard [25] and Ochiai [39] were first studied in Botany and Zoology respectively but have been
subsequently studied in the context of fault localisation [3, 37]. Tarantula [28-30, 41], AMPLE [11],
Wong formulee [51], and Naish formulee [37] have all been designed by software engineers.

In addition to designing new formulee, much effort was spent on evaluating the existing formulee.
Most of the evaluation was performed empirically, by applying these formule to localise a set of
known faults in a controlled environment [2, 3, 28]. Beyond comparing different formule, others
investigated their relationship with external factors, such as test suites and program structures.
Yu et al. studied the impact of test suite reduction on the accuracy of fault localisation [57]. Heo
et al. considered the homogeneity of test suite in terms of coverage, highlighting that test cases
with similar coverage patterns provide little additional information to localisation [21]. Xu et al.
sought to reduce the noise, i.e. structural element that are happened to be executed simultaneously
with the faulty statement [54]. Artzi et al. studied ways to augment the test suite to help the
localisation [6], while DiGiuseppe et al. considered the impact of having multiple faults on the
accuracy of formulee [12].

The aforementioned evaluation of SBFL formule has been largely dependent on the Expense
metric. Expense metric assumes that the human developer inspects the ranked statements in the
descending order of their risk scores. The metric measures the portion of the program that the test
engineer has to inspect before the fault is localised:

Ranking of the faulty statement

(2)

The metric itself assumes a specific mode of usage of the results, i.e. linear and manual inspection
of the ranked statements. Parnin and Orso questioned whether this approach is really helpful to
test engineers [42], highlighting the need to focus on absolute ranks rather than relative measure
such as the Expense metric. Gouveia et al., on the other hand, reported that automated fault
localisation technique has improved developers’ capability to efficiently debug faults [20]. It should
be noted that SBFL techniques are increasingly being used by other, automated algorithms such
as automated program repair [14, 50] and failure reproduction [26, 27]. Qi et al. evaluated the
performance of different SBFL techniques in the context of automated program repair, and reported
that relative performance based on the Expense metric did not hold when SBFL techniques are
applied to program repair [44]. Later, Moon et al. suggested a new evaluation metric, called Locality
Information Loss, based on cross entropy between the actual and the predicted location of the
fault [36]. Other work investigated how quickly localisation can be achieved. Yoo et al. considered an
information theoretic approach towards selecting the test case that will yield the maximum amount
of information regarding the locality of the fault [56], whereas Gonzalez-Sanchez et al. studied the
impact of test prioritisation on fault localisation [17-19]. Finally, Steimann et al. discussed various
threats to validity relevant to empirical SBFL research [48].

Expense =
P Number of statements in the program
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2.2 Theoretical Foundations

Recently SBFL formulee has been analysed, not only empirically, but also theoretically. Abreu et
al. [1] proposed a model-based method and proved, for the first time, that the following formula, R,
is equivalent to one optimal formula under the single fault scenario:

if ef:F

er
eftep
MIN if ef<F

Later, the Naish1l and Naish2 formulee were designed with an accompanying proof, which
shows they produce optimal ranking, as long as the fault is located in a specific program structure
(two consecutive If-Then-Else blocks, called ITE2) [37]. Subsequently, Naish et al. posited that,
ranking-wise, these formulas are optimal in a single-fault scenario [38]: while much of this analysis
aligns with this paper, we show that there are single-fault counter-examples for which Naish
formulee are not optimal.

Steimann et al. considered the lower and upper bounds of the localisation, in addition to outlining
potential threats to validity when studying SBFL formulee [48]. Intuitively, to be useful, an SBFL
technique should produce the ranking of the faulty statement with a lower bound that is higher than
”T’l —1; otherwise, a random order inspection of statements will have a better average performance.
Steimann et al. speculated that the upper bound of the ranking produced by an SBFL formula will
be specific to each combination of a program and a test suite. What this paper proves is that, even
if it is possible for a formula to reach the upper bound for a single fault, the same formula will not
always be as effective for other faults.

Xie et al. presented a comprehensive theoretical framework that can show equivalence and
hierarchy between 50 of known formulee with respect to the Expense metric (i.e. the ranking) [52].
We briefly review the existing theoretical framework of Xie et al. [52] here, in order to make
the paper and its theoretical contributions self-contained. The framework has been used to show
equivalence or dominance between different formulee, with respect to the Expense metric, against
any combinations of programs, test suites, and faulty statements. The existing theoretical framework
makes several assumptions, which are listed as follows:

1. We focus on the single fault localisation, i.e. we assume that there exists a single faulty statement
in the program.

2. A test oracle exists, that is, for any test case, the testing result of either fail or pass, can be
decided.

3. The fault is executed by the test suite. Being a type of dynamic analysis, SBFL techniques cannot
localise faults in statements that are either not covered by the test suite, or even missing from
the program (i.e. omission faults).

4. We exclude the non-deterministic faults so that the relationships we prove to exist between
SBFL formulze hold regardless of the choice of specific test executions”.

5. For each fault that needs to be localised, the test suite contains at least one passing and one
failing test case.

Note that these assumptions are shared by this paper. For readers who are interested in the
justifications, validity and impacts of the above assumptions, please refer to the previous work [52].

3However, this does not mean that SBFL cannot be applied to non-deterministic faults.
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SBFL techniques seek to rank program statements in the order of the likelihood of being faulty.
In practice, a tie-breaking scheme may be required to determine the order of the statements that
share the same risk scores. The consistent tie-breaking scheme is defined as follows:

Definition 2.2 (Consistent tie-breaking scheme). Given any two sets of statements S; and S, which
contain elements having the same risk values (see Definition 2.1) A tie-breaking scheme returns
the ordered statement lists O; and O, for S; and S, respectively. The tie-breaking scheme is said to
be consistent, if all elements common to S; and S, have the same relative order in both O; and Os.

Now let us turn to the relationships between two formulee. Let R; and R, be two risk evaluation
formule in ¥, and E; and E, denote the Expenses with respect to the same faulty statement for R;
and R, respectively. We define two types of relations between R; and R; as follows.

Definition 2.3 (Better). Ry is said to be better than, or to dominate, R, (denoted as Ry — Ry) if, for
any program, faulty statement s¢, test suite, and consistent tie-breaking scheme, E; is less than or
equal to E,.

Definition 2.4 (Equivalent). R; and R; are said to be equivalent (denoted as Ry < Ry), if, for any
program, faulty statement s, test suite and consistent tie-breaking scheme, E; is equal to Es.

It follows from the definition that R; — R, means R, is not more effective than R;. As a reminder,
if both R; = R, and R, — R; hold, then it follows that Ry <> Ry;if Ry — R holds but R, — R; does
not hold, R; — R, is said to be a strictly “better” relation. Here, the notion of the better relation aims
to be applicable to any combination of subject programs, test suites, and faults: consequently, it is a
conservative concept. In practice, it is entirely possible that a better relation based on statistical
significance exists; however, that lies beyond the scope of this work.

In order to compare two risk evaluation formule in ¥ under the above definitions of relations,
the previous work [52] have provided a theoretical framework, which divides all statements into
three mutually exclusive subsets, as follows.

Definition 2.5. Given a program with n statements PG =< sy, S3, ..., S, >, a test suite of m test

cases TS = {ty, 1y, ..., 1}, and a risk evaluation formula R, which assigns a risk Value to each
program statement. For each statement s;, a spectrum vector o(s;) =< e} ,ep, nf, nl > can be

constructed from TS, and R(e’ ) is a risk evaluation formula that assigns a risk value

f’ P’ f’
to statement s;. For any faulty statement s¢, it is possible to define the following three sets of
statements (note that 1 < i < n):

el

S§ ={s; € SIR(ei,e;;,n},ni) > R(ef,ef,njc, p)}
SR = {s; € SIR(ek e, = R(ef e}, mh m))
SAIf ={s; € SIR(ei,eP,nf,np) < R(ef ef,n{(,n},{r

That is, statements in SR have higher risk values than s¢, and thus are all ranked above any
statements in SR statements in SR have the same equal risk value as that of sy and, thus, are all
ranked in the mlddle of the rankmg list, together with s¢ (tie-breaking scheme is needed to further
distinguish them); and statements in S§ have lower risk values than sf and, thus, are all ranked
below any statements in Sﬁ.

In the current framework, two results have been developed for establishing the relationship
between two risk evaluation formulee. Intuitively, the following theorems convert the problem
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of deciding dominance between formule into a problem of set membership. If, for a given fault,
formula A always produces a smaller better subset than formula B (i.e. a fewer number of statements
whose risk values are higher than that of the faulty statement compared to formula B), then A
dominates B [52]. These theorems formalise the concept of set-based dominance and equivalence:

THEOREM 2.6. Given any two risk evaluation formulae Ry and R, from F, if, for any program,
aulty statement sy ,and test suite, it holds tha c *CS,', then Ry — Ry.
Ity statement sy ,and test suite, it holds that S CSK* A S SR, then Ry — R

THEOREM 2.7. Let Ry and Ry be two risk evaluation formulse from ¥ . If, for any program, faulty
statement s, and test suite, it holds that Sgl = ng A Sﬁl = Sﬁz A Sﬁl = Sﬁz, then Ry © R,.

Let us briefly sketch the proof for Theorem 2.6. Consider another formula Rs, such that for any
program, sy and test suite, S§3=S§1, Sﬁl QS;‘;QS and S§3QS§1; S?QS?, S§2£S§3 and S§3 =S§2. The
assumption about a consistent tie-breaking scheme implies that, within the equal subset of a fault,
S§ , the faulty statement sy will always get the same relative ranking. Consequently, we always have
E;<E5<E,. Immediately after Definition 2.3, this theorem is proved. The proof for Theorem 2.7
follows naturally: if two formulee produce before and after sets of an equal size, s is always ranked
at the same place by them. For detailed proofs, please refer to the previous work [52].

Table 2. Known and novel Maximal SBFL formula

Equivalence Group Formula Expression Found by
-1 if ef <F
Naish1 [37] Human
n, ifer=F
ER] [
. e,
Naish2 [37] er — eprpﬂ Human
1
GP13 [55] er(1+ W) GP
Wong1 [51] er Human
ERS er
Russel & Rao [46] prrpr— Human
0 if ef <F
Binary [37] Human
1 if ef=F
GP02 [55] 2(ef + /Mp) + +/Ep GP
GP03 [55] |ej% - Vel GP
GP19 [55] erflep —ep +np —mny| GP

The definition of limited maximality, i.e. maximality with respect to S, is as follows:

Definition 2.8. Limited Maximality. A risk evaluation formula R; from a subset of formulee,
S C ¥, is said to be a maximal formula of S if for any element R, € S, R, — Ry implies R, & R;.
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Table 2 shows the two groups of maximal formulee, ER; and ERs, that have been identified by
studying 30 available formulee. It also lists some formula evolved by Genetic Programming (ER]
is ER; extended by a new entry from GP), which are introduced in Section 3. The detailed and
complete proofs that formulee within each group share the same set subdivision can be found in
the previous work [52].

3 GENETIC PROGRAMMING FOR SBFL FORMULA
3.1 Current Status

After over a decade of manual effort to design SBFL formulee, Genetic Programming (GP) has been
applied to the automated design of SBFL formulee. Yoo evolved a set of 30 different formulee by
formulating the design of SBFL formule as expression searching through GP [55]. Yoo represented
SBFL formulee in GP trees using a basic set of GP nodes, with protected division and square
root, listed in Table 3. GP was configured with ramping initialisation, rank selection, single point
crossover with rate of 1.0, and subtree replacement operator with the rate of 0.8.

Fitness of a candidate GP tree was measured by applying the corresponding formula to spectrum
data sets from known faults in SIR testing benchmark suite [13]. The raw fitness of a candidate
GP tree is the average normalised ranking of the known seeded faulty statements in the training
spectrum data sets: trees were evolved to minimise this, measured from 20 randomly selected faults
of 92 studied.

Table 3. List of GP operators used by Yoo [55]

Operator Node Definition

gp_add(a, b) a+b

gp_sub(a, b) a-b

gp_mul(a, b) ab

gp_div(a, b) 1ifb =0,y otherwise

gp_sqrt(a) \/W

Yoo empirically evaluated the evolved formulee using a separate set of the remaining 72 known
seeded faults, reserved as testing sets. Across 30 independent evolutions, GP rarely repeated itself
and produced a range of different formule. Evaluated empirically against human designed formulee
including maximal formulee such as Naish1 and Wong1 in Table 2, some of the evolved formule
performed equally well, or even better than the known maximal formulse. While this suggests the
necessity of repeated applications of GP to obtain a well performing formula (due to the inherent
randomness of GP), the results of the empirical evaluation were encouraging: this was the first
time GP produced human competitive results for the design of SBFL formulee.

The human competitiveness of the evolved formule has been subsequently proved theoretically:
Xie et al. applied the existing theoretical framework to show that GP evolved a formula (GP13 in
Table 2) that is equivalent to the known maximal formule designed manually [53]. Other evolved
formulee formed their own maximal groups, such as GP02, GP03, an GP19 in Table 2.

The current status of the application of GP to SBFL can be summarised as follows:
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e GP can successfully evolve SBFL risk evaluation formule using the spectral data sets of
known faults as training data sets [55].

e GP-evolved formulee have been theoretically proven to be equivalent to some of the best
performing formulee designed by humans [53].

3.2 How This Paper Advances the State of the Art

Some of the GP-evolved formule either belonged to a known maximal group by being equivalent
to other formule in the group, or formed their own maximal groups. Intuitively, maximal formulee
do not dominate each other: if a maximal formula A performs better than another maximal formula
B from a different maximal group when localising fault fi, it is always possible to construct another
fault f, for which B outperforms A. However, it is possible that certain faults and resulting spectral
patterns are more prevalent than others in the real world software, favouring certain maximal
groups. To study the extent of these practical ramifications of the previous theoretical findings, we
first undertook an empirical study. Our study compares the performances of the known maximal
groups, including GP-evolved formulee. The results show that one GP-evolved formula, GP13 (and
equivalent formulee), performs best against the largest number of faults empirically.

Subsequently, we investigate whether it is possible that any human can outperform GP. In the
second, theoretical part of the paper, we prove that no single formula can dominate all known
maximal formulee, including the GP-evolved one. That is, the greatest formula does not exist.

Therefore, the empirical and theoretical studies in this paper collectively demonstrate that GP
has evolved an SBFL formula that not only performs the best empirically but also is provably the
best possible, providing very compelling evidence for the human competitiveness of GP.

4 EMPIRICAL STUDY

The existing theoretical analysis [52, 53] shows that maximal formulee among the known 50 formulee
form non-dominating relationship, which means it is possible that for some faults one maximal
formula will always outperform another, while for other faults it will be the opposite. However,
the theoretical analysis considers all possible faults. We conjecture that faults that are actually
embedded in common program structures and detected by test cases, may exhibit certain spectral
patterns that will favour certain maximals. For example, a common pattern observed in many risk
evaluation formule is that higher ef and n, values are associated with higher suspiciousness. While
this conforms to the common notion in software testing, it is still possible that certain faults will
exhibit a different trend under a specific combination of subject programs and test suites, resulting
in the actual faulty statement to show ey and n,, values lower than those not faulty (this particular
pattern is later analysed as a feature called Faulty Border in the visualization of risk evaluation
formulee; please refer to Definition 5.3 in Section 5.2.).

Our interest in such a phenomenon is two-fold. First, if such a favoured maximal group exists,
practitioners should use formulee from it (RQ1). Second, we want to see whether GP-evolved
maximal formule are favoured over other, human designed formulee (RQ2). To investigate this, the
empirical study evaluates the known maximal groups® in Table 2 against each other using faults
injected to a widely studied testing benchmarks. The aim of the empirical result is to complement
the theoretical analysis with a set of benchmark programs; however, it should be still noted that
other sets of subject programs may yield different results.

4.1 Experimental Set-up

4GP02, GP03, and GP19 have been slightly modified based on the insights we gained while working on the theoretical study;
see Section 2.2 Proposition 5.11. As such, they are referred to as GPM, GP3M, and GPIAJ from now on.
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Table 4. Subject programs

Program Description LOC  # of Tests
flex Lexical analyser 9,933 670
grep Text-search utility 7,309 809
gzip Compression utility 3,883 214
sed Stream text editor 5,257 449

space Array Definition Language interpreter 5,902 13,585

4.1.1 Subject Programs. In these experiments, we use five subject programs from Software
Infrastructure Repository (SIR) [13]. Table 4 describes the functionalities and sizes of these programs:
the size is measured in Source Lines of Code, excluding whitespaces, using SLOCCount [47]°. Table 4
also presents the size test suites employed. We adopted all test cases provided by SIR, including the
“universe” test plan and the additional test cases.

4.1.2  Faults and Measurements. For the empirical study, we generated 200 randomly mutated
versions of each program without any duplicates. The mutation has been applied using a C mutation
tool we implemented in Perl, which contains the following mutation operators: insertion, deletion,
and replacement of unary, binary, and short-cut arithmetic operators, replacement of relational
operators, replacement of conditional operators, insertion, deletion, and replacement of logical
operators, and replacement of short-cut assignment operators. Each mutated version contains a
single faulty statement. By executing the adopted test cases on the mutated subject programs, we
filter out the mutants that either fail to compile or crash test cases rather than terminate with
failure. The remaining numbers of mutants for the five program are: 96 for flex, 67 for grep, 71
for gzip, 113 for sed, and 118 for space.

The spectral data consist of the structural coverage achieved by individual test cases and their
outcomes (i.e. pass or fail). We use statement coverage to rank program statements using SBFL: the
coverage has been collected using the GNU profiler gcov. When multiple statements are assigned
with the same risk evaluation score, we use their original line number as the tie breaker: the
statement with the lower line number becomes higher ranked’. The test cases were executed on a
cluster of 64-bit Intel Clovertown CPUs running CentOS version 5.0.

The formulee are evaluated using the Expense metric, which is the percentage of code that needs
to be examined before the faulty statement is identified [45]. The lower the Expense metric from a
formula for a given fault is, the fewer statements the developer has to check, hence the better the
performance of the formula is.

4.2 Experimental result

4.2.1 Descriptive Statistics. Figures 1 presents the descriptive statistics, including the mean,
the lower (Q1) and the upper (Q3) quartiles, as well as 1.5 times the Inter Quartile Range (IQR -

5 All source code files in each program has been combined into a single . ¢ file, which is how these subject programs are
provided by SIR. Our mutation operators have been applied to this single source file.

SNote that any consistent tie-breaker, i.e. one that always breaks ties between two specific statements in the same way, will
do here. We choose the line number as a simple tie breaker that satisfies the requirement.
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denoted by the whiskers of the boxplots), computed over all mutants of each subject program. In
general, ER] performs the best among the five maximal formula and maximal groups. For all five
subject programs, ER; tends to produce the lowest Expense, with noticeable difference in some
cases. For example, with grep, the minimum Expense of ER;s is about 84 times larger than that
of ER]. Similarly, with space, at the point Q3, the Expense values of GPX/ and ER) are 7.94% and
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0.53%, respectively, the former being about 14 times larger than the latter. The trend is repeated in
the following case, in which the Expense of the latter is about 7 to 74 times of that of the former

(ie. ER)):

Table 5. Wilcoxon-Signed-Rank Test p-values after Bonferroni correction and A1, Statistics

A B ‘

1-tailed, L ‘ 1-tailed, U ‘ A1

‘ 2-tailed ‘ 1-tailed, L ‘ 1-tailed, U ‘ A

‘ 2-tailed ‘ 1-tailed, L ‘ 1-tailed, U ‘ Arp

2-tailed
‘ flex H grep H gzip
ER; GP) | 3.59E-07 ‘ 1.00E+00 ‘ 1.79E-07 ‘0.36 H 4.84E-05 ‘ 1.00E+00 ‘ 2.42E-05 ‘036 H 5.16E-07 ‘ 1.00E+00 ‘ 2.58E-07 ‘0.34
ER; GP) | 2.00E-02 ‘ 1.00E+00 ‘ 1.00E-02 ‘0,45 H 3.66E-02 ‘ 1.00E+00 ‘ 1.83E-02 ‘0.46 H 1.50E-06 ‘ 1.00E+00 ‘ 7.51E-07 ‘0436
ER, GPM ‘ 7.38E-05 ‘ 1.00E+00 ‘ 3.69E-05 ‘0‘41 H 1.91E-01 ‘ 1.00E+00 ‘ 9.54E-02 ‘0,44 H 7.63E-02 ‘ 1.00E+00 ‘ 3.82E-02 ‘0446
ER] ERs ‘ 3.00E-11 ‘ 1.00E+00 ‘ 1.50E-11 ‘013 H 1.99E-12 ‘ 1.00E+00 ‘ 9.96E-13 ‘043 H 3.79E-04 ‘ 1.00E+00 ‘ 1.90E-04 ‘035
GP)! GpM ‘ 1.00E+00‘ 1.00E+00 ‘ 1.00E+00 ‘0.57 H 1.00E+00‘ 1.00E+00 ‘ 1.00E+00 ‘0.59 H 1.00E+00‘ 1.00E+00 ‘ 1.00E+00 ‘0.50
GPM GpM ‘ 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.53 H 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.55 H 5.04E-02 ‘ 2.52E-02 ‘ 1.00E+00 ‘ 0.60
GP) ERs ‘ 3.56E-08 ‘ 1.00E+00 ‘ 1.78E-08 ‘ 0.20 H 4.08E-08 ‘ 1.00E+00 ‘ 2.04E-08 ‘ 0.23 H 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.51
GPM GPM ‘ 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.47 H 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.47 H 1.53E-02 ‘ 7.64E-03 ‘ 1.00E+00 ‘ 0.59
GPM ER ‘ 7.67E-05 ‘ 1.00E+00 ‘ 3.83E-05 ‘0.24 H 1.00E-07 ‘ 1.00E+00 ‘ 5.00E-08 ‘020 H 100E+00‘ 1.00E+00 ‘ 1.00E+00 ‘0.50
GPM ER ‘ 7.87E-03 ‘ 1.00E+00 ‘ 3.94E-03 ‘ 0.29 H 7.61E-04 ‘ 1.00E+00 ‘ 3.80E-04 ‘ 0.31 H 1.00E+00 ‘ 1.00E+00 ‘ 8.12E-01 ‘ 0.40
| H |
ER; GP) | 1.33E-05 ‘ 1.00E+00 ‘ 6.64E-06 ‘0‘34 H 1.99E-13 ‘ 1.00E+00 ‘ 9.94E-14 ‘0,22 H ‘ ‘ ‘
ER; GPM | 3.85E-04 ‘ 1.00E+00 ‘ 1.92E-04 ‘042 H 1A00E+00‘ 1.00E+00 ‘ 1.00E+00 ‘049 H ‘ ‘ ‘
ER; GPM | 1.96E-03 ‘ 1.00E+00 ‘ 9.82E-04 ‘0.45 H 1.09E-09 ‘ 1.00E+00 ‘ 5.46E-10 ‘0.33 H ‘ ‘ ‘
ER] ERs ‘ 3.54E-14 ‘ 1.00E+00 ‘ 1.77E-14 ‘0418 H 4.82E-16 ‘ 1.00E+00 ‘ 2.41E-16 ‘0,07 H ‘ ‘ ‘
GP)! gpM 1.00E+00‘ 1.00E+00 ‘ 1.00E+00 ‘056 H 3.70E-07 ‘ 1.85E-07 ‘ 1.00E+00 ‘0,75 H ‘ ‘ ‘
GPM GPM ‘ 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.59 H 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.57 H ‘ ‘ ‘
GP}' ERs ‘ 7.83E-08 ‘ 1.00E+00 ‘ 3.91E-08 ‘0.29 H 1.42E-11 ‘ 1.00E+00 ‘ 7.10E-12 ‘0.22 H ‘ ‘ ‘
GPM GPM ‘ 5.49E-01 ‘ 2.75E-01 ‘ 1.00E+00 ‘0454 H 2.15E-03 ‘ 1.00E+00 ‘ 1.08E-03 ‘0.39 H ‘ ‘ ‘
GPM ER ‘ 9.80E-01 ‘ 1.00E+00 ‘ 4.89E-01 ‘032 H 7.61E-12 ‘ 1.00E+00 ‘ 3.80E-12 ‘0,10 H ‘ ‘ ‘
GPJ ER ‘ 5.24E-07 ‘ 1.00E+00 ‘ 2.62E-07 ‘ 0.26 H 1.00E+00 ‘ 1.00E+00 ‘ 1.00E+00 ‘ 0.34 H ‘ ‘ ‘

e ER/ vs. ERs: at the minimum point in all subject programs, at points Q1 and median in all
programs except gzip, and at point Q3 in all programs except grep and gzip.

e ER] vs. GPé”: at points Q1 and median in grep and space.

e ER] v.s. GPM: at point Q3 in program sed, and at the maximum point in space.
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Table 6. The p—values from Shapiro-Wilk Table 7. Interpretation of the hypotheses in the context
Normality Test on Observed Expense Values of SBFL

Subject ER, GP2M Gp3M  GpioM ER} Hypothesest Hy H,
flex <led <led <led <le-d 0.0406 Acceptance| p-value > 0.05 p-value < 0.05
Condi-
grep <le-4 <1le-4 <1le-4d <1le-4 <le-4 tion:
gzip <le-4 <1le-4 <le4d <1le4d <le-4
2-tailed: | E(A) =~ E(B):|E(A) # E(B): A
sed <led <1led <led <1led <le4 A and B DO |and B DO NOT
have similar | have similar per-
space <le-4 <le-4 <1led <le-4d <le4 performance formance
1-tailed | E(A) < E(B): A|E(A) > EB): A
(lower): DOES NOT tend | DOES tend to be
to be worse than B | worse than B
1-tailed E(A) > E(B): A|E(A) < E(B): A
(upper): DOES NOT tend | DOES tend to be
to be better than B | better than B

e ER] vs. GPl: at point Q3 in space.

In remaining cases, although ER] does not show significant advantages over the other formulz, it
still produces the lowest Expenses among all the five maximal formulee and groups when comparing
the minimum, Q1, median, Q3 and the maximum. The mean Expense values of GPé”, GP;”, GP% s
and ERs are from 1.2 to 7.5 times larger than that of ER].

On the other hand, ER5 shows the worst the performance among these five maximal formulee
and groups. Its Expense values are mostly the highest in all programs, except for the maximum in
flex, sed and space, for which GP}, GPM or GP?! perform the worst.

Formule GPJ, GP?’I and GP/! tend to produce very similar Expense values that are higher than
those of ER| but lower than those of ERs in most cases. However, the results of the comparisons of
formulee other than ER] are not always consistent.

In addition to the mean values, we are also interested in the dispersal of the observed Expense
values, because it represents the stability of a formula. The smaller the dispersal is, the narrower
the range of the Expense is, which means that more reliable and consistent performance can be
expected. We have performed Shapiro-Wilk normality test to check whether the observed Expense
values are normally distributed: the results, presented in Table 6, suggest that we can reject the null
hypothesis that the sample comes from a population which has a normal distribution.. Consequently,
we use IQR as the measure of dispersal. Figure 1 shows that ER]| has the smallest dispersal, which
means ER] not only performs the best, but also performs the most consistently. On the other hand,
GPéw and GP)! have the most unstable performance among the maximal formule and groups.
While GPéu and ERs5 can deliver relatively stable performance for flex and space, they behave
more similarly to GP} and GP/! for the remaining three programs.

4.2.2  Wilcoxon Signed Rank Test and Effect Sizes. Tables 5 presents the results of the paired
Wilcoxon Signed Rank Test. We use the paired version of Wilcoxon Signed Rank test to compare
the Expense values of the five maximal formulee and groups. The paired Wilcoxon Signed Rank
test is a non-parametric statistical hypothesis test that makes use of the sign and the magnitude
of the rank of the differences between pairs of measurements, E(A) and E(B), that do not follow
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a normal distribution [10]. At the given significant level o, there are both two-tailed p-value and
one-tailed p-value which can be used to obtain a conclusion.

Table 7 contains the interpretations of the hypotheses in the context of the current experiment. In
the current context, for a given pair of formulee A and B, the list of measurements for E(A) would be
the list of the Expense values for all mutants produced by A, while the list of measurements for E(B)
would be the list of the Expense values for all mutants produced by B. For the two-tailed p-value,
if p > o, the null hypothesis Hy that E(A) and E(B) are not significantly different is accepted;
otherwise, the alternative hypothesis H; that E(A) and E(B) are significantly different is accepted.
For one-tailed p-value, there are two cases, the lower case and the upper case. In the lower case, if
p = o, Hy that E(A) does not significantly tend to be greater than the E(B) is accepted; otherwise,
Hj that E(A) significantly tends to be greater than the E(B) is accepted. And in the upper case, if
p > o, Hy that E(A) does not significantly tend to be less than the E(B) is accepted; otherwise, Hy,
that E(A) significantly tends to be less than the E(B), is accepted.

In our experiments, for each subject program, we conduct Wilcoxon Signed Rank Test for the
following pairs: ER] v.s. GPM, ER, v.s. GPM, ER| v.s. GPM, ER] v.s. ERs, GPM vs. GPM, GPM vss.
GPM, GPM vss. ERs, GPM v.s. GPN, GPM vis. ERs, and GP! v.s. ERs. In total, this results in 150 (10
pairs of formulee X 3 types of hypotheses X 5 programs) Wilcoxon Signed Rank Sum tests. Given
the large number of hypotheses testing, we have applied the standard Bonferroni adjustment [5] to
address the problem of the higher probability of Type I errors in multiple comparisons. Both the
two-tailed and the one-tailed p-values are recorded. We set the « level (after Bonferroni correction)
to 0.05.

Table 5 also contains Vargha-Delaney’s A;, statistics [49] that measures the effect sizes. If, when
calculated between formula A and B, the value of A;; is lower than 0.5, it means that A outperforms
B (i.e. A tends to produce lower Expense than B); greater than 0.5, B outperforms A (i.e. B tends
to produce lower Expense than A). The farther the value is from 0.5, the greater the effect size is.
It presents a similar conclusion to the ones observed in Section 4.2.1. In general, ER] shows the
best performance; while the effect sizes vary, it consistently outperforms all the other. Similarly,
ERs is consistently outperformed by others, with the exception of the case of gzip for which ER;
performs more equally to the GP evolved formule. For all other subjects, GP evolved formule tend
to form the middle group.

These partial orders can be summarised into the following order of maximal formulee and groups,
based on their performance, for each subject program, as follows. A > B means “A is better than or
similar to B” indicated by the statistical test, while those grouped by parentheses form weak orders
with small effect sizes:

flex: ER] > (GPM > GP) > GP)) > ERs
grep: ER| > (GP)' > GPN > GP}') > ERs
gzip: ER; > (GPM > GPM) > (ERs > GPM)
sed: ER| > (GPM > GP)' > GPM) > ERs

space: (ER] > GPM) > (GPYy > GP)') > ERs

These partial orders confirm the observations in Section 4.2.1 that: (i) in general ER; convincingly
outperforms other formulee, and (ii) ERs performs the worst in most cases. Recall that ER] was
found by GP, so this finding indicates that GP found the most attractive maximal formula according
to our empirical analysis of the practical aspects of the risk formulee studied.

Other GP-evolved formule, GP} and GPA! perform roughly the same overall, while GP)' being
the worst among the GP formulee. GP}' performs noticeably better than GP}! and GPJ{ for space,

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Human Competitiveness of Genetic Programming in Spectrum Based Fault Localisation ~ 39:15

but the trend is not repeated in other programs. However, it is not possible to generalise the
comparison between these three formule based on only five subject programs.

4.3 Discussion

4.3.1 Insights. The results of the experimental study provide guidance on which maximal
formula or group to apply when there is no a priori knowledge about the fault. While these
formulee are all maximal as described in Section 2.2, their effectiveness against actual faults can
vary significantly, showing the value of empirical study. To summarise the insights from the results
of the study:

e ER] tends to perform better than the other four maximal formuls and groups.

o ERs tends to perform worse than the other four maximal formulee and groups.

e GPM, GPM, and GP){ perform better than ERs but worse than ER]. Comparisons between
these three formulee show mixed results.

These partial orders collectively answer RQ1. From Table 2, we know that the risk values of
statements with ef=F monotonically decrease with e, for formulee in ER]. However, this is not the
case with GPé”, GPé”, or GP{‘g. The fact that ER{ produces generally stable and good performance,
while GPM, GPé”, and GPf‘g give results with larger variances, confirms the existing intuition on
designing SBFL formulze: in general, higher e and lower e, values are believed to be correlated
with higher risk evaluation values and lower Expense. Those formulee not following this intuition
may deliver very good performance, but only for the class of faults whose corresponding e, values
also happen to be high. This observation essentially recaptures the claim of single-fault optimality
posited by Naish et al. [38]; the same has also been observed in the trend among formule evolved
by genetic programming [55]. As for the better performance of GP (GPM, GPM, and GP?) over
ERs, it is most likely because ERs does not further distinguish statements whose ey values are equal
to F. Consequently, the performance of ER5 shall largely depend on the adoption of tie-breaking
scheme.

To answer RQ2, overall, Genetic Programming has successfully evolved GP;3 that is equivalent
to manual designed formule in ER;, and GP;”, GPé”, and GP% that outperform another manually
designed formule in ERs, which shows its capability to evolve competent SBFL formula.

4.3.2 Threats to Validity. There are several sources of threats to validity of the empirical study.
Since the empirical study uses program mutation to seed faults, the choice of mutation operators
may affect the behaviour of faults. In addition, real not seeded faults may affect the performance of
different maximal formulas differently. All subject programs are small to medium C programs, and
analysis on programs of different sizes, written in different language, may also produce different
results. Finally, the method used to generate the test suites provided by SIR may affect the fault
detection capability of the resulting test suites, eventually affecting the composition of spectrum
datasets. While all these factors limit the degree to which the findings can be generalised, the com-
plementary theoretical analysis as well as existing empirical analysis of individual risk evaluation
formulee may be consulted to mitigate the threats. Comparisons of maximal risk evaluation formula
groups using real world faults remain as future work.

5 MAXIMAL AND GREATEST FORMULA

Now we turn to the question of whether some future work (by human or machine) could potentially
outperform the results already obtained using GP in the context of SBFL under the single fault
scenario. The existing definition of a maximal formula in Definition 2.8 only concerned a subset
of formulee, S, out of all possible formulee, ¥ . The subset S contained 50 formulee, 30 manually
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designed ones and 20 GP-evolved ones. The five identified maximal groups are only with respect to
these 50 formulee. Now, let us generalise our analysis by replacing S with ¥ . This will, in turn, lead
to the investigation of the “greatest” formula. We first construct a 3D space that can visualize risk
evaluation formulee with Lemma 5.1, and narrow down the location that corresponds to the faulty
program element using Lemma 5.2, 5.4, and 5.5.

5.1 Preliminaries

5.1.1 Spectral Coordinate. Let us first present some definitions and lemmas. Given a test suite
TS, let T denote its size, F denote the number of failed test cases and P denote the number of passed
test cases. From the definitions and the earlier assumptions, it follows that 1 < F < T,1 <P < T,
and P + F =T, as well as the following lemmas:

LEMMA 5.1. For any o(s;) =< el, el n! n >, it holds thatel. + e >0Ael+nl. =FAel +nl =

) . P fp o f T "p
P/\e}SF/\e;,SP.

LEMMA 5.2. For any faulty statement sy with o(sy) =< e}(, eg, nj]:, n{, >, if ¢ is the only faulty
statement in the program, it follows that e]’: =FA n}’i =0.

Intuitively, Lemma 5.1 and 5.2 allow us to reason about risk evaluation formulee spatially in
three dimensions. Definition 2.1 involves 5 dimensions: four members of program spectrum, and
the risk score. Following the visualisation method used by Lee [33], we now reduce the space
of SBFL to three dimensions. For a given pair of program and test suite, the values of F and P
are constants. Thus for each statement s;, it follows that o(s;) =< e},P - n},, F - e}, n;, > after

Lemma 5.1, which can be denoted as 5(s;) =< e, e[’; >. That is, program spectrum contains two

independent parameters in a specific context (i.e. a pair of a program and a test suite), and not four.
Consequently, it is possible to formulate ¥ = {R|R : Ir X I, — Real}, where Ir denotes the
set of integers within [0, F] and I, denotes the set of integers within [0, P], such that R(e! epn ) =

(ef, ep, nf, np)). In the subsequent discussion, when two formulee from ¥ are compared, it is
assumed that they are being applied to the same program and test suite. Thus, in the context of
such comparisons, symbols R and R can and will be used interchangeably, as are symbols ¥ and F.

Given any values of P and F, the input domain of any formula R is shown as the grid in Figure 2(a),
where both ef and e, are non-negative integers and 0 < e’ < Fand 0 < e}"7 < P. Given a pair of
test suite and program, each point (e, e,) on this grid is associated with a group of statements that
have the corresponding ey and e, values. Note that the number of statements that associated with
each point (ef, e,) is independent of the formula, but solely decided by the pair of program and
test suite.

A formula R maps each point 5 = (ef, ep) to a real number that is the risk value of all statements
associated with this point, as shown in Figure 2(b). Any assignment of risk values is independent of
the number of statements associated with each point (ef, e,), but solely decided by the definition
of R.

5.1.2  Analysis of SBFL Space. Now let us focus on the part of the SBFL space that actually
contains the coordinate of the faulty statement. This, in turn, will allow us to reason about both
maximal formulee and the greatest formula more precisely. Lemma 5.2 allows us to limit the region
of the input domain A in which the faulty statement can be.

Definition 5.3 (Faulty Border). Let us call the sequential points < (F,0), (F, 1), ..., (F, ep), ..., (F, P) >
(0 < ep < P) the Faulty Border, which is denoted as E. Figure 2(b) illustrates a potential E.
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(b) Mapping from & to risk values by formula R: SBFL formulz assign
risk scores to program statements, which can be mapped to the spectral
coordinates in Figure 2(a). Consequently, we obtain a 3D space, in which
formulee map spectral coordinates to risk scores. The points whose ef
values are equal to F form the faulty border: the faulty statement is
guaranteed to be mapped on the border.

Fig. 2. Visualising the SBFL Space

Immediately from the above definition, for any given formula R, it follows that the risk values of
all points on E are solely decided by their values of e,. In addition, immediately after Lemma 5.2,
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the faulty statement sp is associated with the point (F, e; ) of E, where 0 < e; < P, as stated in the
following lemma.

LEMMA 5.4 (LOCATION OF FAULTY STATEMENT s¢). The faulty statement sy must be associated with
a point (F, ef) onE. And eIC can be any value between [0, P].

Lemma 5.4 reflects multiple confounding factors in software testing. One of the confounding
factors is the “Coincidental Correctness Test” (CCT) [34]. Ideally, the faulty statement sy will
produce e; = 0, as executing s¢ should result in a failure. CCTs are the tests that execute sf but
still pass. The number of CCT is equal to eg , 1.e. the value of e, for s¢. There can be an arbitrary

number of CCTs in a given test suite, and so is the value of ez . Another factor is that the spectrum
data abstracts the data input/output; both a passing and a failing test execution can exhibit the
same spectrum as a result.

As a reminder, points (F, eji,) other than the one associated with sy on E are associated with

correct statements, where n} =FA0Z el’; <PA eli, # eg . Depending on the adopted formula, the

risk values of such points can be either greater than, equal to, or smaller than that of point (F, ef ),
i.e. the point associated with sy.

LEMMA 5.5. For a given program and a test suite, the point of E, with which sy is associated, may

also be associated with other correct statements s; having (F, e;;) = (F, e;:) These statements share the
same risk values as that of sy, regardless of the selection of the formula.

Note that a correct statement that is executed if and only if s¢ is executed will share the same
risk evaluation value as sy. Lemma 5.5 reflects another common phenomenon in software testing.

That is, correct statements s; may still have e} = F, and their e;; co