
ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

The Journal of Systems and Software 0 0 0 (2016) 1–19

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Observational slicing based on visual semantics

Shin Yoo

a , David Binkley

b , ∗, Roger Eastman

b

a School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
b Department of Computer Science, Loyola University Maryland, Baltimore, MD, USA

a r t i c l e i n f o

Article history:

Received 2 February 2015

Revised 26 January 2016

Accepted 6 April 2016

Available online xxx

Keywords:

Observation

Non-traditional semantics

a b s t r a c t

Program slicing has seen a plethora of applications and variations since its introduction over 35 years ago.

The dominant method for computing slices involves significant complex source-code analysis to model

the dependencies in the code. A recently introduced alternative, observation-based slicing, sidesteps this

complexity by observing the behavior of candidate slices. Observation-based slicing has several other

strengths, including the ability to easily slice multi-language systems.

However, the initial implementation of observation-based slicing, ORBS, remains rooted in tradition as it

captures semantics by comparing sequences of values. This raises the question of whether it is possible

to extend slicing beyond its traditional semantic roots. A few existing projects have attempted this but

the extension requires considerable effort.

If it is possible to build on the ORBS platform to more easily generalize slicing to languages with non-

traditional semantics, then there is the potential to vastly increase the range of programming languages

to which slicing can be applied. ORBS supports this by reducing the problem to that of generalizing how

semantics are captured. Taking Picture Description Languages as a case study, the challenges and effec-

tiveness of such a generalization are considered. The results show that not only is it possible to generalize

the ORBS implementation, but the resulting slicer is quite effective, removing from 8% to 98% of the orig-

inal source code with an average of 83%. Finally a qualitative look at the slices finds the technique very

effective, at times producing minimal slices.

© 2016 Elsevier Inc. All rights reserved.

1

u

t

e

2

H

1

2

p

g

p

t

t

a

s

l

(

f

F

o

2

q

m

g

a

s

p

e

r

w

s

h

0

. Introduction

At the time of its introduction program slicing was devised for

se with simple imperative source code (Weiser, 1979). During

he ensuing 35 years the applicability of the technique has been

xpanded to an ever widening definition of source code (Harman,

010). Examples include slicing object-oriented code (Larsen and

arrold, 1996), slicing binary executables (Cifuentes and Fraboulet,

997), and slicing finite-state models (Androutsopoulos et al.,

011).

Informally, Weiser defined a slice as a subset of a program that

reserves the behavior of a specific computation from the pro-

ram. Slicing allows one to find semantically meaningful decom-

ositions of a program. For example, it allows the tax computation

o be extracted from a mortgage payment system. Weiser’s defini-

ion of a slice includes two requirements: a syntactic requirement

nd a semantic requirement. The syntactic requirement is that the

lice be obtainable from the original program by deleting elements
∗ Corresponding author.

E-mail addresses: shin.yoo@kaist.ac.kr (S. Yoo), binkley@cs.loyola.edu (D. Bink-

ey), reastman@loyola.edu (R. Eastman).

c

a

t

p

l

o
ttp://dx.doi.org/10.1016/j.jss.2016.04.009

164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
typically statements). Relaxing this requirement has been help-

ul in slicing programs with unstructured control flow (Choi and

errante, 1994; Harman et al., 2006) and led to the development

f Amorphous Slicing (Harman and Danicic, 1997; Harman et al.,

003).

The semantic requirement defines the behavior of a slice. It re-

uires that a slice capture a subset of the original program’s se-

antics. For a single threaded, single procedure imperative pro-

ram this can be done using the sequence of values produced

t each program point (Weiser, 1979). Generalization to sets of

equences-of-values can capture the semantics of more complex

rograms such as those with procedures (Binkley, 1993; Horwitz

t al., 1990) threads (Krinke, 1998), and objects (Larsen and Har-

old, 1996).

Recently observation-based slicing (Binkley et al., 2014; 2013)

as introduced to tackle two long-standing challenges in program

licing: slicing multi-language systems and slicing systems that

ontain (third party) components whose source code is often not

vailable. Observation-based slicing works by observing the seman-

ics of candidate slices. This approach supports a generalization of

rogram slicing to a broader range of source code kinds including

anguages with non-traditional semantics (i.e., where the meaning

f a program is not captured by sequences of values).
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:shin.yoo@kaist.ac.kr
mailto:binkley@cs.loyola.edu
mailto:reastman@loyola.edu
http://dx.doi.org/10.1016/j.jss.2016.04.009
http://dx.doi.org/10.1016/j.jss.2016.04.009

2 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

s

b

i

a

a

j

o

C

(

a

t

t

a

r

p

e

d

r

2

w

b

i

e

e

i

c

(

t

t

a

o

a

c

t

b

w

s

t

l

c

i

m

t

(

w

s

i

b

C

c

l

c

s
This paper explores the generalization by building on previ-

ous work presented at SCAM 2014 (Yoo et al., 2014). It considers,

as a representative example of languages with non-traditional se-

mantics, Picture Description Languages (PDLs). Source code written

in such a language specifies a graphic image in terms of objects

such as shapes, boxes, arrows, etc. These languages can be Turing-

complete, or focused on output description with limited control

structures. Examples of such languages include Postscript, pic , xfig ,

html (including code written in embedded languages such as CSS

and JavaScript) and TikZ/PGF . While informally the semantics of

such languages can be straightforward, requiring only visual in-

spection, the problem of slicing them is subtle as discussed in

Section 4 .

While slicing languages with non-traditional semantics is, in it-

self, an interesting problem, there are also practical motivations

behind the proposed technique. First, slicing PDLs can help users

understand how to generate (i.e., write the code for) complicated

diagrams. Users of PDLs often rely on online repositories (or gal-

leries) of various diagrams to learn how to program specific shapes

and layouts. In this context, slicing can serve as a program com-

prehension aid where users can select specific parts of a larger

diagram and allow the slicer to identify the PDL statements re-

sponsible for generating the selected parts. Second, slicing PDLs

can help locate software faults that manifest themselves visually,

such as HTML presentation failures (Mahajan and Halfond, 2015).

Given that dynamic web pages usually involve multiple languages

such as HTML, CSS, and JavaScript, the observation-based nature

of the proposed slicing technique is a significant benefit, as it can

easily handle multiple language descriptions.

By taking on the challenge of slicing languages whose output

is visual rather than those that can be captured using more tradi-

tional semantics, such as Weiser’s sequences of values, this work

shows that it is possible to increase the variety of languages to

which program slicing can be applied. More specifically, the two

main contributions of this paper are:

• a generalization of observation-based slicing to languages with

non-traditional semantics, and

• an empirical study that demonstrates the application and oper-

ation of this new approach, using PDLs as representative exam-

ples.

The research questions used to investigate the generalization

are introduced in Section 3 followed by the generalization itself in

Section 4 . The empirical investigation begins in Section 5 with the

study of an initial implementation built using off-the-shelf com-

ponents and experiments investigating its quantitative and qual-

itative aspects. This initial study uncovers several shortcomings,

discussed in Section 6 , which leads to an improved implementa-

tion. Section 7 empirically investigates the performance of the im-

proved implementation. Before these studies, a review of program

slicing and specifically the observation-based approach is given in

Section 2 . Finally, the paper ends with a discussion of related work,

future work, and a brief summary.

2. Program slicing

Program slicing has many applications, including testing

(Binkley, 1998; Hierons et al., 2002), debugging (Kusumoto et al.,

2002; Weiser and Lyle, 1985), maintenance (Gallagher and Lyle,

1991; Hajnal and Forgács, 2011), re-engineering (Cifuentes and

Fraboulet, 1997), re-use (Beck and Eichmann, 1993; Cimitile et al.,

1995), comprehension (De Lucia et al., 1996; Tonella, 2003) and

refactoring (Ettinger and Verbaere, 2004). A more complete intro-

duction can be found in several surveys and tutorials such as Gal-

lagher and Binkley’s Foundation of Software Maintenance article

(Binkley and Gallagher, 1996).
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
Slicing can be classified as either static or dynamic: a static

lice (Weiser, 1982) of program P is a subset of P that has the same

ehavior as P for a specified variable at a specified location (a slic-

ng criterion) for all possible inputs , while a dynamic slice (Korel

nd Laski, 1988) preserves this behavior for only a single input (or

 small set of inputs).

Weiser’s original definition of a static slice, used the state tra-

ectory projection function, PROJ C (Weiser, 1982), which projects

ut of a trajectory T those elements relevant to slicing criteria

 . A trajectory is a record of the values computed by a program

e.g., the sequence of values assigned to the left-hand-side vari-

ble in an assignment statement). For static slicing the slicing cri-

eria C = (v , l) includes a variable v and a line (location) l from

he source code. The criterion for a dynamic slice, denoted (v , l, I) ,
dds a set of inputs I (a variant replaces v with v i , the i th occur-

ences of v in the trajectory).

Most static and dynamic slicing algorithms employ complex de-

endence analysis to extract information from a program (and its

xecution in the case of dynamic slicing). These algorithms then

ecide which statements should be retained to form the slice. The

ecently introduced observation-based slicing (Binkley et al., 2014;

013) replaces the complex and expensive dependence analysis

ith observation. Its first implementation, ORBS, computes a slice

y deleting statements, executing the candidate slice, and observ-

ng its behavior. The use of execution makes the approach inher-

ntly dynamic in nature. It also means that ORBS takes a very op-

rational view of program semantics. One advantage of this view

s that observation is considerably simpler to work with than the

omplex construction of a semantic model capturing dependence

 Podgurski and Clarke, 1990; Parsons-Selke, 1989). For ORBS all

hat is required is an algorithm for comparing projected execu-

ions. Thus ORBS replaces the complexity of generating a correct

nswerer with the simpler task of testing correctness.

Being freed from complex program dependence analysis allows

bservation-based slicing to focus on subsets of a program; thus

n observation-based slice further extends the slice criteria to in-

lude components of interest, CoI . Slicing’s deletion is restricted to

he CoI . This enables, for example, slicing programs that contain

inary components and source code such as third-party libraries,

hich are excluded from CoI and thus need not be changed by the

licer. Consequently, an observation-based slice, taken with respect

o the criteria (v , l, I, CoI) , preserves the state trajectory for v at

 for the selected inputs in I, while deleting statements from the

omponents of CoI but no other components.

Furthermore, observation-based slicing is inheritantly language-

ndependent. It achieves this by replacing the deletion of state-

ents (a language specific concept) with the deletion of lines of

ext. While no assumption about the contents of a line is made

e.g., ORBS does not assume that the source files are formatted

ith one statement per line) slice quality degrades if multiple

tatements occupy the same line as they are inseparable at the lex-

cal level. More formally, an ORBS slice is defined as follows:

Observation-based slicing (Binkley et al., 2014): An observation-

ased slice S of program P taken with respect to slicing criterion

 = (v , l, I, CoI) composed of variable v , line l , set of inputs I, and

omponents of interest CoI , is any executable program with the fol-

owing properties:

1. S can be obtained from P by deleting zero or more lines from

CoI .

2. Whenever P halts on input I ∈ I with state trajectory T (P, I, v, l)

then S also halts on input I with state trajectory T (S, I, v, l) such

that PROJ C (T (P, I, v, l)) = PROJ C (T (S, I, v, l)).

The key to observation-based slicing is observing the behavior of

andidate slices . The initial ORBS implementation forms candidate

lices by deleting a continuous sequence of lines from the current
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 3

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

s

c

a

d

t

t

f

i

t

t

a

s

f

s

t

i

s

F

s

d

1

3

i

i

O

i

O

t

t

o

t

c

T

c

4

a

t

a

s

“

s

a

d

o

a

i

w

s

fi

f

t

s

A

n

o

i

i

A

O

I

O

(

(

(

(

(

(

(

(

(

(

(

(

(

A

V

I

O

(

(

(

(

(

(

(

(

(

(

(

(

(

t

p

o

q

t

v

m

a

t

I

n

f

o

(

A

g

t

2

c
lice. It is then validated using compilation and execution. If the

andidate fails to compile, it cannot produce the correct trajectory

nd is thus rejected. Similarly, if the candidate compiles but pro-

uces a different projected trajectory than the original program,

hen the candidate is rejected. Otherwise, if it passes both checks,

he candidate is accepted as the current slice. ORBS systematically

orms candidates until no more lines can be deleted.

Operationally, ORBS produces the trajectory T (P, I, v, l) by inject-

ng, just before line l , a (necessarily language specific) statement

hat writes the value of v to a file. ORBS is then able to leverage

he existing tool chain to build and execute the program. Doing so

voids the costly development of language-specific program analy-

is tools.

ORBS has successfully sliced programs known to be a challenge

or traditional dependence-based slicers (Binkley et al., 2014; 2015)

uch as the one adorning the 2001 SCAM Mug (Ward, 2003). Fur-

hermore, its slices compare favorably with those created by sim-

lar techniques such as Critical Slicing (DeMillo et al., 1996) and

everal slicing variants based on Delta Debugging (McPeak et al.).

inally, it successfully sliced the shell bash , which includes 118,167

ource lines of code (SLOC) (Wheeler, 2004) and is written in eight

ifferent languages. The resulting slices include between 10% and

7% of the original program.

. Research questions

The following research questions are used to study the general-

zation of ORBS to languages with non-standard semantics, specif-

cally PDLs.

RQ 1 : What are the impacts on the ORBS algorithm of generalizing

RBS to PDLs given their non-traditional semantics?

This first research question is aimed at gaining knowledge. It

nvestigates the modifications to both the ORBS definition and the

RBS algorithm necessary to provide an effective slicing implemen-

ation for PDLs.

RQ 2 : How much reduction is achieved by slicing?

A key goal of slicing is to remove (slice away) unwanted parts of

he source code. RQ 2 takes a quantitative look at the effectiveness

f the slicer at doing so for PDLs.

RQ 3 : What is the visual precision of the resulting slices?

RQ 3 considers the subjective correctness of the slices. Because

he languages being sliced describe pictures, it is reasonable to

onsider, qualitatively, whether the slices appear visually correct.

hus the third research question considers the subjective visual

orrectness and precision of the new slicer.

. Generalizing program slicing

Two challenges in slicing PDLs are generalizing the definition of

 slice and extending ORBS accordingly. The most significant ques-

ions here concern the feasibility of defining the slicing criterion

nd of capturing the semantics of languages with non-traditional

emantics.

The generalization involves modifying the definition of the

slicing criteria” and re-envisioning how to capture the projected

emantics. The traditional slicing criteria includes a variable v ,

 line number l , and a set of inputs I . This definition could be

irectly ported to slicing picture descriptions: however, as their

utput is visual, a visual slicing criteria seems preferable. Such

 criteria takes the form of an image cropped from an original

mage. (Reversing this observation, a similar notion is possible

ith traditional slicing where the slicing criteria would be some

ubset of the program’s output. However, this notion seems more

tting when that output is visual.) Thus the goal of slicing goes

rom preserving the behavior of v at l for inputs I to preserving

he visual appearance of template image T for inputs I . For the
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
ake of the presentation simplicity, the rest of the paper (e.g.,

lgorithms 1 and 2) assumes that the picture descriptions have

o input and that the set I is a singleton set. Without the first

f these, building an image (Lines 2 and 8 of Algorithm 2) would

nclude C. I . Without the latter assumption, an additional loop

terating over the inputs would be required.

lgorithm 1: ORBS (Binkley et al., 2014).

RBSlice (P, C)

nput: Program P , slicing criterion C

utput: A slice S of P for C

1) S ← Instrument (P, C)

2) T ← Execute (Compile (S) , C. I)

3) ...

4) repeat

5) ...

6) S ′ ← next _ cand id ate _ slice (S)

7) if Compile (S ′) = success

8) T ′ ← Execute (Compile (S ′) , C. I)

9) if P ROJ C (T) = P ROJ C (T ′)
10) S ← S ′
11) ...

12) until no changes in S

13) return S

lgorithm 2: VORBS.

ORBSlice (P, C)

nput: Picture description P , slicing criterion C

utput: A slice S of P for C

1) S ← P

2) R 0 ← Match (Compile (S) , C.T)

3) ...

4) repeat

5) ...

6) S ′ ← next _ cand id ate _ slice (S)

7) if Compile (S ′) = success

8) R ← Match (Compile (S ′) , C.T)

9) if R < = R 0
10) S ← S ′
11) ...

12) until no changes in S

13) return S

Turning to the semantics, as long as it is possible to do some-

hing equivalent to observing the behavior of the program and com-

aring the projected behavior of a candidate slice to that of the

riginal program, then it is possible to capture the semantic re-

uirement of a slice. For images, the comparison must check if

he slicing criterion (the cropped image) is present in the rendered

ersion of a candidate slice. This is a problem known as template

atching (Bhattacharjee and Kutter, 1998): given a source image I

nd a smaller template image T , the goal of template matching is

o detect the area of I that best matches T . When T is clipped from

 then in principle there is a perfect match for T in I .

To better understand the impact of these generalizations, it is

ecessary to consider their implementation. The initial algorithm

or slicing picture descriptions (Yoo et al., 2014) is a modification

f the original ORBS algorithm for slicing traditional source code

 Binkley et al., 2014). The core of the two algorithms is shown as

lgorithms 1 and 2 . As described in the previous section, ORBS be-

ins by annotating (instrumenting) the program to be sliced and

hen capturing the initial trajectory in the variable T (Lines 1 and

 of Algorithm 1). The main loop of the algorithm then repeatedly

reates candidate slices, S ′ , by deleting up to five consecutive lines
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

4 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

S

f

S

5

c

V

m

n

t

a

I

y

R

w

t

u

(

t

f

p

p

t

i

i

s

r

O

t

o

(

1

t

a

t

P

i

a

l

o

m

i

p

p

T

t

n

s

(

p

d

s

starting from each line in the current slice 1 . The value five, used in

the current implementation, was imperially derived as it provides

a good balance between the computation cost of larger values and

the increased slice size of smaller values. Given the performance of

the current algorithm, there is little motivation to consider more

expensive options. The candidate slice, S ′ , replaces S as the current

slice on Line 10 if S ′ compiles and produces the correct projected

trajectory.

4.1. RQ 1 – impacts of the generalization

Turning to RQ 1 , to help understand the impact on the original

ORBS algorithm of generalizing to PDLs, Algorithm 1 is modified

producing Algorithm 2 , VORBS (visual ORBS), an algorithm for

slicing PDLs. The modification replaces the computation and com-

parison of trajectories with the computation and comparison of

template-matching scores . There are a range of template matching

algorithms that compare a target template image T to an image

I . For example, normalized Sum of Square Differences (SSD) is a

well known and widely studied metric for image registration with

general applicability. It is effectively a least squares minimization

for its translation parameters (x, y) and as such is robust to a

linear transformation T = gI + b between image intensity values

that might be corrupted by Gaussian noise. It performs as well

as optimal matched filter correlation in straightforward image

registration. If the target and base images differ by more complex

geometric and intensity transformations, such as scaling and

skew in position and non-linear changes in intensity, other more

complex image registration algorithms have been developed (for

examples, see the surveys by Zitova and Flusser, 2003 and Moigne

et al., 2011). The approached used in this paper employs the SSD

metric as the most straightforward and appropriate.

SSD Template Matching’s best-case match occurs when tem-

plate T is cropped from I . Here in theory, the score, denoted R (x, y),

is zero at the (x, y) point of I from which T was cropped. However,

in practice, rasterizing a vector graphic and potentially the approxi-

mations made in various lossy image formats can lead to non-zero

R values. To partially compensate for this, the R value computed

from the original image and the slicing criteria is used as a thresh-

old, R 0 (Line 2 of Algorithm 2). Subsequently, if a candidate slice

produces an R value no more than R 0 (Line 9), then the candidate

becomes the current slice (Line 10).

In summary for RQ 1 , the impacts of generalizing ORBS to slicing

PDLs is a modification of the slicing criteria to use images cropped

from the original image and a re-envisioning how to capture the

projected semantics using template matching. Based on the result-

ing algorithm, a tool was built and used to investigate RQ 2 and

RQ 3 , which investigate the quantitative and qualitative aspects of

the resulting slices.

5. Initial experiments

The objective of this section is to consider the performance

of an initial implementation of Algorithm 2 , and consider issues

that could arise. To meet this objective, this section first describes

the experimental setup used in the empirical investigation. It then

describes the tools used in the implementation and the subject

PDLs considered in the experiment. Finally it takes an initial look

at RQ 2 and RQ 3 . While the quantitative look of RQ 2 finds im-

pressive results, the qualitative investigation undertaken as part

of RQ 3 identifies several shortcomings. These are investigated in
1 While other approaches are possible, the linear and consecutive deletion ap-

proach, called moving deletion window , is preferred for performance reasons. In par-

ticular, with 2 n possibilities, trying all possible subsets of an n line program is in-

tractable. See the original ORBS experiments for further detail (Binkley et al., 2014).

5

V

Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
ection 6 , which leads to an improved implementation. The per-

ormance of the improved implementation is then considered in

ection 7 where RQ 2 and RQ 3 are revisited.

.1. Experimental implementation and setup

The initial implementation was produced using off-the-shelf

omponents to implement the image processing aspect of the

ORBS algorithm. Key among these components is an efficient

atching metric. The specific metric implementation used is the

ormalized squared difference, implemented in OpenCV as the op-

ion named CV_TM_SQDIFF_NORMED . This function, which is

pplied to rasterized bitmap images, matches template T in image

 by computing the following score, R , for each possible location (x,

) in image I :

 (x, y) =

∑

x ′ y ′ (T (x ′ , y ′) − I(x + x ′ , y + y ′)) 2 √ ∑

x ′ y ′ T (x
′ , y ′) 2

∑

x ′ ,y ′ I(x + x ′ , y + y ′) 2

Unlike the high-level algorithm, the implementation must deal

ith real-world engineering issues. For example, image registra-

ion depends on the consistency of the image rendering pipeline

sed to render the original image, the template, and the slice

 Bhattacharjee and Kutter, 1998). The use of pdflatex and groff

o generate the vectorized diagrams and sips to generate bitmaps

or the registration was initially believed to provide a very stable

ipeline where the resulting images were very consistent at the

ixel level. This consistency means that any efficient image regis-

ration algorithm would likely satisfy the requirement of estimat-

ng translation to one pixel, including absolute pixel difference.

Putting the pieces together, the initial VORBS implementation,

llustrated in Fig. 1 , is written in Python (version 2.7.5) and uses

ips (Scriptable Image Processing System, version 10.4.4; SIPS) to

asterize vector graphic into the JPEG format. It also uses the

penCV library (version 2.4.9) (Bradski, 20 0 0) to perform the

emplate matching, and finally, the cropping is performed directly

n the PDF images using Preview.app (version 7.0) on a Mac OS X

version 10.9.2). For TikZ/PGF source code, pdflatex (version 2.5-

.40.14) from TeXLive 2013 is used to build the PDF version, while

o build from pic source code, GNU pic and groff (version 1.19.2)

re used to generate postscript, which is subsequently converted

o PDF using the utility ps2pdf .

To study the implementation requires picture descriptions. Two

icture Description Language families are used in the initial exper-

ments: TikZ/PGF (PGF) and pic/eqn/troff (Kernighan, 1981). PGF

nd TikZ are both invoked as TeX macros, with PGF being the

ow-level language and TikZ a collection of high-level macros built

ver PGF . The pic language is a procedural drawing language with

acros, branches, and loops. The source code of the images used

n the experiments includes equations typeset using the eqn pre-

rocessor and limited troff directives.

The initial investigation considers five slices of each of the five

icture descriptions shown in Table 1 . These include slices of four

ikZ/PGF diagrams, Cone , Hydrogen , Raindrop , and Shapes ,

aken from the public on-line repository at http://www.texample.

et/tikz/examples . The rendered versions of these four picture de-

criptions are shown in Fig. 2 . The rendered pic image, shown later

at the top of Fig. 9), is taken from a paper describing how to

erform interprocedural program slicing using the System Depen-

ence Graph (Horwitz et al., 1990). Table 1 summarizes these five

ubjects, as well as one used in a later experiment in Section 7 .

.2. Quantitative evaluation

To investigate RQ 2 , the quantitative reduction achieved by

ORBS, five sub-images were cropped out of each of five rendered
 visual semantics, The Journal of Systems and Software (2016),

http://www.texample.net/tikz/examples
http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 5

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

PDL
Source

Diagram
Slicing

Criterion

Visual ORBS

Candidate
Slice

Candidate
Diagram

Build
(pdflatex/

pic/Webkit)

Observe
(OpenCV/
python)

Line
Deletion

Final
Slice

Success

Fail

No Further
Deletion Possible

Build
(pdflatex/pic/Webkit)

Crop
(sips)

Fig. 1. The implementation of the VORBS algorithm.

Fig. 2. The four TikZ/PGF images sliced.

Table 1

Studied picture descriptions.

Name Language LoC

Cone TikZ/PGF 74

Hydrogen TikZ/PGF 61

Raindrop TikZ/PGF 44

Shapes TikZ/PGF 25

PDG-figure pic/eqn/troff 262

ThreeCols HTML/CSS/Javascript 343

i

s

F

o

w

r

c

Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
mages and used as slicing criteria, producing a collection of 25

lices in total. These sub-images, some of which are shown in

igs. 3 , 9 , and 10 cover a range from simple to complex portions

f the original images. 2 The 25 slices are summarized in Table 2

hich shows the number of lines in the CoI of the original image’s
2 The complete set of PDL source code and slicing criteria images, as well as the

esulting slices (the source code and rendered versions), can be found at http://

oinse.kaist.ac.kr/projects/visualorbs/ .

 visual semantics, The Journal of Systems and Software (2016),

http://coinse.kaist.ac.kr/projects/visualorbs/
http://dx.doi.org/10.1016/j.jss.2016.04.009

6 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Fig. 3. A picture written using the TikZ/PGF drawing language and two of its slices. Only the rendered slice is shown because the slice (the source code) does not easily fit

in the figure. The original source and that of Slice 2 are shown in Fig. 4 .

s

t

p

fi

V

t

s

i

a
source code, the number of passes the slicer used, the total num-

ber of lines deleted, and finally the percent size reduction in the

picture description source code. The number of passes refers to

the number of iterations of the slicer’s outermost loop (Line 4

of Algorithms 1 and 2). Each pass considers the deletion of each

statement in the current slice and a limited number of its sub-

sequent statements. Over all 25 slices the range of reductions is

wide, but as seen in the weighted average, the overall percent re-

duction, 85%, is substantial.

The percent reduction is given as a percentage of the CoI. In

the experiments the CoI is the file that produced the image being
 s

Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
liced. For TikZ code this excludes a 23 line harness that es-

ablishes the document class and includes necessary packages. The

ic code needs no such wrapper, but the CoI excludes the other 33

les used to build the paper from which the image was taken.

In summary, for RQ 2 the case study of 25 slices shows that

ORBS can be used to compute slices of multi-language pic-

ure descriptions and that the resulting slices are significantly

maller than the original. Pragmatically, this means the VORBS’

nitial implementation efficiently and automatically extracts, from

 picture description, the code that corresponds to a particular

ub-image.
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 7

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Table 2

Initial picture descriptions slice statistics.

Subject Lines in CoI Slicer passes Deleted lines Percent reduction

PDG-figure-1 262 5 251 96%

PDG-figure-2 262 4 258 98%

PDG-figure-3 262 3 249 95%

PDG-figure-4 262 3 242 92%

PDG-figure-5 262 3 245 94%

Cone-1 74 4 34 46%

Cone-2 74 3 37 50%

Cone-3 74 3 71 96%

Cone-4 74 3 68 92%

Cone-5 74 3 62 84%

Hydrogen-1 61 3 50 82%

Hydrogen-2 61 3 54 89%

Hydrogen-3 61 3 54 89%

Hydrogen-4 61 5 51 84%

Hydrogen-5 61 3 57 93%

Raindrop-1 45 4 28 62%

Raindrop-2 45 4 33 73%

Raindrop-3 45 3 22 49%

Raindrop-4 45 4 12 27%

Raindrop-5 45 4 39 87%

Shapes-1 25 3 9 36%

Shapes-2 25 2 11 44%

Shapes-3 25 3 17 68%

Shapes-4 25 2 7 28%

Shapes-5 25 3 14 56%

Average 3 .3 85%

5

s

s

s

R

F

a

w

o

fi

a

l

t

r

i

p

l

u

i

u

t

t

t

m

w

t

a

u

c

i

r

i

g

d

b

p

t

F

t

t

a

fi

p

t

v

p

i

p

t

i

i

e

h

p

f

6

i

f

t

m

t

c

m

(

b

e

o

A

i

b

m

t

l

l

p

w

i

s

b

(

g

e

l

w

b

s

v

–

w

t

w
.3. Qualitative evaluation

To counterbalance RQ 2 ’s quantitative look, RQ 3 considers the

lices qualitatively. This section focuses on slices that suggest

hortcomings in the initial implementation. Three examples, all

lices of the TikZ picture descriptions, are considered: the two

aindrop slices shown in Fig. 3 and the Hydrogen slice shown in

ig. 5 . The PDL source for the Raindrop image is shown in Fig. 4

long with one of its slices.

Considering each example slice in turn, Slice 1 of Fig. 3 , is taken

ith respect to the line with the arrow in the upper left of the

riginal figure. The slice successfully removes most of the original

gure. In this case a minimal slice would additionally omit the di-

gonal line segment labeled n . In the source shown in Fig. 4 , this

ine segment is the third \ draw command, labeled ➀; the line with

he arrow does not depend on it. However, its removal shifts the

endered image up. At first glance it appears that this should not

mpact the computation of R , but it does. An investigation of this

henomena, presented in Section 6 , suggests that subpixel interpo-

ation errors introduce a kind of blurring that negatively effects R ’s

sefulness.

The second slice, Slice 2 of Fig. 3 , uses a more complex slic-

ng criterion. Here again the slicer is very successful in removing

nwanted elements of the image. As with the prior slice, it re-

ains three elements that prevent the image from shifting. These

hree include the diagonal line segment retained in the first slice,

he leftmost line segment with the arrow head, and the right-

ost refraction of the diagonal line segment. By maintaining the

idth and the distance from the top of the rendered image, re-

aining these three elements preserve the other elements location

nd thus prevent subpixel interpolation errors.

The third example, Hydrogen-3 , illustrates a shortcoming of

sing a symmetric, off-the-shelf, matching algorithm. The slicing

riteria is the energy states appearing in the center of the original

mage (the image Hydrogen shown in Fig. 2). The slicing crite-

ia is shown in the lower left of Fig. 5 . The core of the issue here

s that the computation of R is symmetric in the sense that for a

iven offset (values of x and y), T and I can be interchanged in the
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
efinition. This symmetry comes from the use of squared terms in

oth the numerator and the denominator of the equation. One im-

lication of this symmetry is that a slice can in theory omit part of

he slicing criterion. In practice this occurs in a few of the slices.

ig. 5 shows an example where “The Good” example, shown at the

op of the figure, finds the rendered slice includes a superset of

he criteria. While an exact match is preferred, slices often include

dditional components. The “bad” example, shown at the bottom,

nds the rendered slice includes a subset of the criteria. The key

oint here is that from the perspective of the R computation these

wo are the same because the computation is symmetric in the

alues of I and T . Projecting Weiser’s original idea of what a slice

reserves into the generalization, one would expect that, at a min-

mum, everything in the template (and as little of the remaining

icture as possible) would be included in the rendered slice. Thus

here is a need to consider replacing CV_TM_SQDIFF_NORMED

n the computation of R with a slicing-specific computation.

In summary, for RQ 3 most of the slices produced by the initial

mplementation of VORBS, when rendered, make it visually appar-

nt that the correct portion of the picture description source code

as been extracted. However there is a need to deal with the sub-

ixel interpolation error and to devise a slicing-specific matching

unction.

. Challenges and enhanced implementation

This section investigates the causes of the challenges observed

n Section 5 , including subpixel interpolation errors and the need

or asymmetry in the matching function. As a result of these inves-

igations, several enhancement to the VORBS’ implementation are

ade. The improved implementation is studied in Section 7 .

Considering first the subpixel interpolation errors, it turns out

hat the use of JPEG compression for intermediate image storage

an lead to the subpixel jitter effects in the matching function

aking the computed value for R inconsistent. JPEG compression

pre-JPEG20 0 0) uses discrete cosine transformation (DCT) on small

locks of the image. It throws away high frequency, low energy co-

fficients. What remains are fewer, low bit count, coefficients.

This can lead to subpixel shifts. For example, consider moving a

ne pixel black vertical line from right to left by subpixel amounts.

ssuming that initially the line is fully aligned with the image and

s contained in one pixel column. Shift it slightly to the left and it

lurs out to two pixel columns. That changes the DCT coefficients

agnitude and phase. Keep shifting it and the blurring continues

o happen, until it has moved exactly one pixel to the left. Then the

ine again aligns with a vertical pixel column. As an added chal-

enge, this cyclic behavior also can occur on scales less than one

ixel. The negative impact of subpixel shifts is illustrated in Fig. 6 ,

hich shows the imprecise rendered slice produced by the initial

mplementation and the desired rendered slice in the absence of

ub-pixel interpolation artifacts.

An investigation of the impact of rasterization was performed

y shifting a sub-image to be matched in increments of 0.001pt

there are 72 points (pt) to the inch). The resulting R values are

raphed in Fig. 7 where harmonics on at least two frequencies are

vident. This clear cyclic pattern to the R values means that any

arge scale movement that otherwise leave the image unchanged

ill land somewhere in the cycle. Pragmatically, if R 0 happens to

e close to a minimum then it is very unlikely that a large scale

hift will be accepted because it is unlikely to produce a lower R

alue.

This phenomena can happen even without JPEG compression

the subpixel shifts impose a blurring operator on the image

hich can alone change the matching (Pluim et al., 20 0 0). Fur-

hermore, since the figures being sliced are high contrast diagrams

ith large blank spaces and sharp dark features of lines and text,
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

8 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Fig. 4. Raindrop and its slice Raindrop-4: lines included in slices are denoted with by “-” in the two leftmost columns. The first column marks lines in the slice produced

by the initial implementation, while the second column marks lines the slice produced by the improved implementation studied in Section 7 .

j

j

A

t

d

b

V

s

b

h

p

the edges of the features give rise to strong compression artifacts

that can change with subpixel shifts. Such artifacts from subpixel

movement and JPEG compression can be particularly addressed

by moving from JPEG to TIFF or PNG, which are lossless image

formats.

While working with the subpixel jitter, it was discovered that

the rendering may also be inconsistent because the software im-

plementing vector rasterization exhibited non-deterministic behav-

ior. The resulting inconsistency can lead to poor matching results.

In the case of the original implementation of VORBS, sips exhib-

ited such non-determinism. In one particular case, when given a

PDF that contained two separate and independent graphical ob-
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
ects, A and B , sips would rasterize object A differently when ob-

ect B was deleted from the image. If the slicing criterion is object

 , this can result in not being able to delete object B . To address

his issue, the use of sips was replaced by the convert tool, which

oes not exhibit this phenomenon.

The second shortcoming of the initial experiments was caused

y the symmetry in the off-the-shelf template matching function.

ORBS needs a slicing-specific function that, at a minimum, pre-

erves the template image in the slice. In visual terms any non-

ackground from the template must exist in the slice. On the other

and, finding background where there is background in the tem-

late and everywhere outside the template is preferred.
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 9

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Slicing Criteria Rendered Slice

Example One – The Good

Example Two – The Bad

Fig. 5. Impact of R ’s symmetry on the slice on Hydrogen-3 .

m

s

e

t

t

t

t

i

a

b

g

o

s

c

l

t

b

h

b

r

t

t

n

v

e

t

e

e

T

t

a

i

r

s

w

n

t

c

t

m

s

b

g

t

v

m

p

w

a

t

T

2

t

i

i

b

e

T

(

r

t

m

(

m

P

P

(

i

r

c

b

g

s

7

m

s

q

f

p

m

fi

l

7

p

p

c

p

c

d

d

c

q

n

r

i

A

8

a

3 http://matthewjamestaylor.com/blog/perfect-3-column.htm.
The second challenge manifests itself in the need for an asym-

etric matching function. A real-world illustration of this need is

hown in Fig. 8 based on the example considered in Fig. 5 . In this

xample the black line segment on the left is part of the slicing cri-

eria and thus should be retained in the slice. However because of

he symmetry in the matching function, it gets unwantedly omit-

ed by the initial implementation resulting in an errant slice.

To elucidate the core issue a simplified conceptual example of

he matching is presented in Table 3 . This example shows a black

mage drawn on a white background. Slicing’s goal is to “replace”

s much of the black that occurs outside the slicing criteria with

ackground. The original image includes a square and a circle. The

oal is to slice its description with respect to the square. While any

riginal image is (always a) slice of itself, it is often not a very good

lice. In the example this is because it unwontedly includes the

ircle. The slice labeled “OK slice” is an improvement as it includes

ess non-background from outside the criteria (it includes only half

he circle). Going from half to a quarter of the circle produces a

etter slice as the amount of non-background outside the criterion

as been reduced. Finally, the last line is not a slice because non-

ackground of the criterion (half of the square) is absent from the

endered image. In this final case it does not matter how much of

he circle is present as the rendered image fails to include all of

he square (i.e., all of the criterion).

A more rigorous explanation of the asymmetric matching is

ecessary to derive an appropriate matching function. Doing so in-

olves digging down to the pixel level, as shown in Table 4 . The

xplanation assumes that the background color is white and thus

he slicer is attempting to remove non-white parts of the image

xcept those that belong to the criteria (the template). The upper

xample is in black and white to simplify the initial explanation.

he ideal case is when corresponding pixels in the template and

he image are both white or both black, as is the case in the first

nd the fourth columns of the figure. In such cases the score, R

n Algorithm 2 , takes its minimal value of zero. For slicing, the

emaining two cases need to be treated asymmetrically. First, as

een in the second column, when the slicing criteria contains black

here the rendered candidate slice is white then the candidate

eeds to be rejected because it fails to include an element from

he slice criteria (the template). In contrast, the case in the third

olumn is an instance where the candidate slice includes some-

hing not found in the criteria. While this is not ideal, it does not

ean that the candidate slice needs to be rejected and thus only

erves to increase the R score.

The second example shown in Table 4 extends the first from

lack and white to gray scale using three grays: light gray (0xd3),

ray (0xbe), and dark gray (0x4f). Because the template is white

he darker the image the worse the score. Generalizing this obser-
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
ation, the greater the difference in the pixel value, the worse the

atch; thus the difference is added to the score. The current im-

lementation reduces color images to gray scale, but future work

ill consider how an image with multiple colors should be treated.

To overcome the limitations of a symmetric matching function,

 slicing-specific matching function was written based on the illus-

ration given in Table 4 . Its pseudo-code is shown in Algorithm 3 .

he algorithm treats as “background” all pixels with a value above

00 (images are converted to 8-bit grayscale while rendering). Set-

ing this cutoff value to high (e.g., 250), did not work well. In the

mplementation if any pixel violates the condition “where the slic-

ng criterion is non-background, the rendered slice must not be

ackground” the potential slice is assigned a score of infinity. Oth-

rwise the sum of differences at each pixel is used as the score.

his process is repeated over the entire rendered potential slice

all values of x and y). The minimum score and its location are

eturned.

Putting the pieces together, the improved VORBS implementa-

ion, is written in Python (version 2.7.9) and includes a template

atching algorithm implemented in pure Python , using Pillow

version 2.6.1) for image file I/O and Numpy (version 1.9) for pixel

atrix computation. All rasterized images are handled in lossless

NG format to avoid compression artifacts. The conversion from

DF to PNG is handled by the convert tool from ImageMagick

version 6.8.9-8). The slicing criteria images were also cropped us-

ng the convert tool. (The convert tool proved more robust when

asterizing PDF vector images than sips .) For TikZ/PGF source

ode, pdflatex (version 2.6-1.40.15) from TeXLive 2014 is used to

uild the PDF, while to build from pic source code, GNU pic and

roff (version 1.19.2) are used to generate postscript, which is sub-

equently converted to PDF using the utility ps2pdf .

. Empirical investigation

Using the improved implementation this section describes a

ore comprehensive empirical study of VORBS. It repeats the 25

lices used in the initial experiments, considers several of these

ualitatively, and then considers three slices of the web page “Per-

ect multi-column liquid layouts”. This web page both uses and ex-

lains the use of a three column liquid layout, has been tested on

ultiple browsers, and is iPhone compatible. 3 The analysis again

rst takes a quantitative look at the slices and then a qualitative

ook and thus provides answers to first RQ 2 and then RQ 3 .

.1. Quantitative evaluation

Table 5 shows the quantitative data obtained using the im-

roved VORBS implementation. As in the initial experiments, the

ercent reduction is given as a percentage of the CoI, which ex-

ludes the 23 line harness and the 33 files used to build the

aper from which the pic image description was taken. For ease of

omparison, the final column of the table repeats the percent re-

uction from Table 2 obtained using the initial implementation.

Many of the individual slices are the same as both versions pro-

uce the minimal slice. In several cases (e.g., Cone-5) the slice in-

ludes more of the original source code because of the stricter re-

uirements imposed by the slicing specific matching. Overall the

eed to preserve the criteria leads to a decrease in the average

eduction for the 25 slices when compared to the average in the

nitial experiment, from 85% to 83% (shown in the row labeled

verage-25). The overall average, Average-all, is a bit lower still at

1%, because the first of the ThreeCols slices necessarily includes

lmost half of the original HTML source code.
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

10 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Fig. 6. Negative impact of subpixel jitter.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.
00

4
0.

00
8

Subpixel Shift (pt)

M
at

ch
in

g
S

co
re

 (
R

)

Fig. 7. Interaction between subpixel movement and rasterization.

Slicing Criterion Imprecise Rendered Slice Desired Rendered Slice

Fig. 8. Negative impact of symmetry in the template matching function.

Table 3

Asymmetric matching example.

Original Image

Slicing Criterion

Rendered OK Slice

Rendered Better Slice

Rendered Non-Slice

Table 4

Asymmetric matching detail.

Black and White
Column 1 2 3 4

Template (slicing criterion)

Image (candidate slice)

Score 0 ∞ 1 0

8-bit Grayscale
Column 1 2 3 4

Template (slicing criterion)

Image (candidate slice)

Score 0 0xd3 0xbe 0x4f

7

fi
In summary, for RQ 2 the case study of 28 slices shows that

VORBS can be used to compute slices of multi-language picture

descriptions and that the resulting slices are significantly smaller

than the original. Thus, VORBS can automatically extract from a

picture description the source code that corresponds to a particu-

lar sub-image.
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
.2. Qualitative investigation

The qualitative look at the slices considers in detail three PDG-

gure slices, a comparative look at the TikZ slices from Section 5 ,
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 11

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Algorithm 3 Slicing specific matching function.

score (template, subimage, t)

(1) sum ← 0

(2) for i ← 0 to template.max_x

(3) for j ← 0 to template.max_y

(4) if template [i][j] < t and subimage [i][j] > t

(5) return ∞

(6) else

(7) sum ← sum + template [i][j] −subimage [i][j]

(8) return sum

match (source, template)

(1) t ← 200 - background “white” is any pixel whose value is “> t”

(2) min_score ← ∞

(3) for x ← 0 to source.max_x − template.max_x

(4) for y ← 0 to source.max_y − template.max_y

(5) s ← source [y : y + template.max_y , x : x + template.max_x]

(6) if score (template, s, t) < min_score

(7) min_score = score (template, s, t)

(8) min_x = x

(9) min_y = y

(10) return min_score, min_y, min_x

Table 5

Picture descriptions slice statistics.

Subject Lines in CoI Slicer passes Deleted lines Percent reduction

Improved Initial

PDG-figure-1 262 5 251 96% 96%

PDG-figure-2 262 4 258 98% 98%

PDG-figure-3 262 3 249 95% 95%

PDG-figure-4 262 3 242 92% 92%

PDG-figure-5 262 3 245 94% 94%

Cone-1 74 4 35 47% 46%

Cone-2 74 3 36 49% 50%

Cone-3 74 3 68 92% 96%

Cone-4 74 3 68 92% 92%

Cone-5 74 3 60 81% 84%

Hydrogen-1 61 3 47 77% 82%

Hydrogen-2 61 3 53 87% 89%

Hydrogen-3 61 3 52 85% 89%

Hydrogen-4 61 5 51 84% 84%

Hydrogen-5 61 3 56 92% 93%

Raindrop-1 45 4 28 62% 62%

Raindrop-2 45 4 35 78% 73%

Raindrop-3 45 3 25 56% 49%

Raindrop-4 45 4 17 38% 27%

Raindrop-5 45 4 39 87% 87%

Shapes-1 25 3 4 16% 36%

Shapes-2 25 2 2 8% 44%

Shapes-3 25 3 4 16% 68%

Shapes-4 25 2 4 16% 28%

Shapes-5 25 3 15 60% 56%

ThreeCols-1 343 3 198 58% na

ThreeCols-2 343 5 307 90% na

ThreeCols-3 343 3 283 83% na

Average-25 3 .3 83% 85%

Average-all 3 .3 81% na

o

t

p

g

1

d

i

l

a

fi

s

t

i

t

s

d

c

g

t

t

e

s

a

a

a

a

f

c

t

b

v

s

i

l

t

v

t

i

w

u

s

B

t

a

t

c

a

ne other TikZ slice, and finally the result from applying VORBS

o a web page. To begin with Fig. 9 shows the rendered example

ic image, which was taken from a paper on how to perform pro-

ram slicing using the System Dependence Graph (Horwitz et al.,

990). The image shows a sample sliced program and its depen-

ence graph. The source code for this image is written primarily

n pic . The image also includes labels typeset using eqn and some

imited troff markup.

Below the original image, three slices, labeled Slice 1, Slice 2,

nd Slice 3, are shown (these are slices PDG-figure-2 – PDG-
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
gure-4 from Table 5). For each slice the first column shows the

ub-image clipped from the original and used as the slicing cri-

eria. The middle column is the slice and the third column is the

mage rendered from the slice.

The first example, Slice 1, is taken with respect to the image of

he source code shown in the upper left of the original image. As

een in the third column, when rendered the resulting slice pro-

uces exactly the desired output. The actual slice, shown in the

enter column, includes the minimal subset of the original pro-

ram necessary to produce the correct rendered output.

The second slice, Slice 2, is taken with respect to the sub-image

hat contains the dependence graph’s entry vertex. The slicing cri-

eria was deliberately clipped from the original image to omit the

dges incident on this vertex. As with the first slice, the second

lice, shown in the center column, is minimal. Its four lines start

 picture (.PS), update the default height and width for an ellipse,

nd then finally draw the ellipse. Note that pic is very forgiving

nd produces the desired output even though the input is without

 picture end (.PE) directive.

The final slice is more complex in part because the source code

or the image of the while vertex is in the middle of the original

ode. In contrast, the source code for the entry vertex was near

he beginning. The slice includes equation typesetting (appearing

etween at signs) and picture drawing elements. Although it is not

isually evident nor immediately obvious from the source code, the

lice is actually minimal.

To see this, consider first the last line of the slice (labeled 4 ©
n Fig. 9), which is shown wrapped around in the figure (wrapped

ines begin with a + sign). This line draws the ellipse from which

he slicing criterion was clipped. Its code makes direct use of the

ariables ellipsewid and xgap ; thus their assignments are re-

ained in the slice. Furthermore it implicitly uses ellipseht requir-

ng the inclusion of its definition. The inclusion of “Program Main ”

as initially a surprise, as this eqn line (labeled 1 © Fig. 9) seems

nrelated to the pic code. The connection comes from the inclu-

ion of “@gsize 9@” which sets eqn ’s global font size to 9 point.

ecause this is not the default size, deletion of this line changes

he appearance of the labels in the vertices of the rendered im-

ge, specifically the label of the while vertex; thus this line setting

he font size must be retained in the slice. The first three lines

hange eqn’s hot character from the default to the at symbol, @ ,

nd thus are also required for a reason similar to that of the “gsize”
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

12 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Fig. 9. Three slices of a picture written using pic and eqn .

b

T

directive. Inclusion of these four lines is an excellent example of

the power brought by the use of observation. The VORBS slicer is

able to capture dependencies that are not explicit in the code and,

therefore, hard to capture in a formal model.
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
Finally, the code that draws the other two ellipses is needed

ecause their positions determine the position of the while vertex.

he pic description of an element has the following syntax,

< name > : < entity > “< label > ”< location >
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 13

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Fig. 10. Two rendered slices of Raindrop produced by the new implementation. The original source and that of the second slice are shown in Fig. 4 .

w

w

t

(

o

r

p

e

s

w

a

(

i

a

t

o

t

m

p

m

b

i

u

minimal.
here a location can be relative to other elements. In this case the

hile vertex has the location “at I1 + (xgap,0) ”. This is a use of

he name “I1 ” requiring the inclusion of the element defining I1

labeled 3 © in Fig. 9). Transitively, this then requires the inclusion

f ygap and the element defining the name “Entry ” (labeled 2 ©).

As an aside, capturing semantics using “pixel comparison” is a

ather machine friendly approach. In this example, a human might

refer the smaller slice obtained by removing the “@gsize@” line

ven though when rendered it uses a larger font size. Capturing

uch perception might prove an interesting direction for future

ork.

Moving on to the next two slices, Fig. 10 revisits the two im-

ges from Raindrop considered in Fig. 3 . The slices of this image
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
 Raindrop-2 and Raindrop-4 from Table 5) illustrate the language

ndependence of VORBS as the same slicer constructed these slices

nd those in Fig. 9 . Considering the two slices in turn, Slice 1 was

aken with respect to the line with the arrow in the upper left

f the original figure. Unlike the initial algorithm, which retained

he diagonal line segment labeled n , to avoid the jitter caused by

ovement of elements of the rendered image, the improved im-

lementation of VORBS correctly omits this unwanted line seg-

ent. (In the source shown in Fig. 4 , this line segment is drawn

y the third \ draw command, labeled 1 ©.) The result is the min-

mal slice. Similarly, for Slice 2 VORBS successful removes all the

nnecessary elements of the image source code. The slice is again
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

14 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Slicing Criteria Rendered Errant Slice Rendered Correct Slice

Fig. 11. For the TikZ figure Hydrogen-3 , the initial errant slice and the correct slice obtained using the asymmetric matching function.

Slicing Rendered
Original Image Criteria Slice

Fig. 12. Slice Cone-5 .

e

e

fi

r

p

c

f

t

t

s

(

t

<

u

a

s

m

d

t

r

h

S

l

S

s

7

m

e

p

w

s

i

i

a

t

m

l
In addition to revisiting the two Raindrop slices, the TikZ

slice Hydrogen-3 , shown in Fig. 11 , is also reconsidered. This

slice motivated the need for an asymmetric matching function.

The figure includes the slicing criterion, the rendered version

of the errant slice produced by the initial implementation, and

the rendered version of the correct slice produced by the new

implementation. As with several other TikZ slices, the slice is

minimal, including exactly those elements needed to produce the

criteria.

The final TikZ slice considered, Cone-5 , shown in Fig. 12 , helps

illustrate why the scoring function does not consider the area out-

side the template image. The criteria includes a pink (lightgray)

face and an arc from the front of the cone, and also the intersec-

tion of three line segments from the back of the cone. These line

segments are part of the faces at the back of the cone.

In the rendered slice these elements are all present, which is

good. However to include the intersection from the back of the

cone, VORBS must include the two surfaces that have lines inci-

dent on the intersection. One of these faces includes the corner

found at the far left of the rendered slice. This corner is obscured

in the original image; thus from a scoring point of view this might

appear as an unwanted non-background addition and thus cause

to increase the score. Such a scoring function, which penalized a

candidate slice because it included non-background elements out-

side the slicing criteria, might inhibit the slicer’s ability to create

this minimal slice. The current implementation ignores the image

outside the template area. It relies on the deletion of source lines

of image source code to minimize the amount of such rendered

material.

To increase the external validity of VORBS language indepen-

dence, the improved implementation was applied, unmodified, to

a rendered web page. Modern web pages are inherently multi-

language, often including (X)HTML(5) , JavaScript , CSS , as well

as other languages. The web page chosen “Perfect multi-column

liquid layouts” describes (using itself) the use of a three column

liquid layout that has been tested on multiple browsers. Its ren-

dered form is shown in Fig. 13 .

Fig. 14 shows three slicing criteria and the resulting rendered

slices. The rationale behind the first slicing criterion, Slice 1 in

the figure, is an attempt to preserve the menu and the three col-

umn layout but slice away unnecessary HTML and CSS elements.

When applied to this example VORBS successfully removes unnec-
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
ssary inline JavaScript as well as inline CSS . It could just as

asily have removed references to external files or lines from those

les. Slice 2 successfully extracts the minimal CSS and HTML to

ender the two labels found in the slicing criteria. Finally, the ex-

ectation of the final slice is the same as that of Slice 2, but as

an be seen in the rendered version it includes unwanted elements

rom the web page. This shortcoming is similar to that found with

he slices of Shapes and is considered in Section 9 with other fu-

ure work.

A final comment on the web-page slices is that, like the pic

lices, most tools that render HTML employ permissive parsing

e.g., accepting “errant” inputs such as missing closing tags). In

his case all the slices omit closing < /script > , < /body > , and

 /html > tags. Finally, the advantages of observation are again

nderscored by these examples as dependence analysis of HTML

nd JavaScript , given their loose semantics, is a challenge for

emantics-based tools such as slicers that need formal dependence

odels.

In summary, for RQ 3 VORBS produces slices that, when ren-

ered, make it visually apparent that the correct portion of the pic-

ure description source code has been extracted. In some cases the

endered image appears to include unnecessary elements. These

ave two primary causes: dependencies such as those seen in

lice 3 from Fig. 9 and the unwanted impact of subpixel interpo-

ation errors as seen in Slice 3 of Fig. 14 and discussed further in

ection 9 . Despite these issues, visually, the rendered slices show a

ignificant reduction.

.3. Threats to validity

This section concludes by considering threats to validity. The

ost obvious threat is the limited number of PDLs consid-

red. Considering more than the three families of languages,

ic/eqn/troff , TikZ/PGF and HTML/CSS/JavaScript , would help

ith the external validity. Several other standard threats apply,

uch as the correct functioning of the tools used. Internal valid-

ty is a concern primarily because of the non-determinism found

n the rendering pipeline. This issue, which makes the design of

 slicing specific matching function a challenge, is considered fur-

her in Section 9 . Future work will consider improvements to the

atching aimed at better support slicing of PDLs. Along similar

ines, the use of only five example slices might not be sufficient for
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 15

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Fig. 13. HTML example.

v

m

u

i

t

t

e

l

c

s

s

o

8

s

i

O

(

a

p

e

p

s

T

b

s

t

i

p

i

r

Z

c

s

p

d

t

d

a

o

w

a

s

i

b

(

i

s

s

(

p

a

t

a

O

i

t

t

Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
erbose or feature rich PDLs. Two other potential internal threats

entioned in the proceeding discussion are the permissive parsing

sed in processing pic images and web pages, and the subpixel

nterpolation errors, which are considered further in Section 9 . As

his is an initial exploratory study of the area there are no threats

o the statistical validity.

Finally, the gap between humans’ visual perception of a “good

nough slice” and the one that can be captured mechanically may

imit the approach. For example, in the pic example, the line in-

luding “@gsize 9@” has to be retained to obtain a sufficient high

core. However, omitting the line simply leads to using the default

ize of 10, which to a human might be preferable to the inclusion

f the “@gsize 9@” directive.

. Related work

There is no work directly related to the slicing of Picture De-

cription Languages. This section first considers a related approach

n dependence analysis and then briefly considers work related to

RBS. The original ORBS algorithm is related to Dynamic Slicing

 Korel and Laski, 1988; 1990), Critical Slicing (DeMillo et al., 1996),

nd delta debugging (Zeller and Hildebrandt, 2002) based ap-

roaches such as STRIPE (Cleve and Zeller, 20 0 0) or Delta (McPeak

t al.).

Traditional program slicing algorithms work by identifying de-

endencies in a program and then performing some kind of clo-

ure over the dependencies to extract a slice (Horwitz et al., 1990).

he conservative nature of this dependence analysis leads to slices

eing over approximations. While practically impossible, extracting

emantic dependencies (Podgurski and Clarke, 1990) would avoid

his over approximation. Such an approach was recently hinted at

n the work of Jiang et al. who consider using a (V)ORBS like ap-

roach to identify semantic dependencies (Jiang et al., 2014).

While ORBS computes observation-based slices, it is similar in

ntent to dynamic slicing, which has been implemented in many

esearch prototypes (Beszedes et al., 2001; Mund and Mall, 2006;

hang et al., 2007; Barpanda and Mohapatra, 2011). With one ex-

eption existing dynamic slicing algorithms all apply to a single

pecific programming language and, furthermore, involve complex

rogram analysis. Recently, Pócza et al. presented a multi-language

ynamic slicing approach for .NET (Pócza et al., 2005). The key to

heir approach is leveraging the Common Language Runtime (CLR)

ebugging framework to provide traceability between instructions

nd the source code of different languages.

In terms of the underlying technique, the work closest to

bservation-based slicing is Critical Slicing (DeMillo et al., 1996)

here a statement is considered critical if its deletion results in

 changed behavior for the slicing criterion. A critical slice con-

ists of all the critical statements. One limitation of this approach

s that it considers statements to be critical although they may not

e, and thus could be deleted after another statement was deleted

e.g., deleting a variable declaration first requires the deletion of all

ts uses). Thus, critical slices can be significantly larger than ORBS

lices. They can also fail the semantic requirement of a slice as

tatements individually deletable may not be deletable collectively

 Binkley et al., 2014).

The idea to delete parts of a program to test input is most

rominent in applications of delta debugging (Zeller, 1999; Cleve

nd Zeller, 20 0 0). Recently, Regehr et al. (2012) exploit the syn-

ax and semantics of C to produce four delta debugging based

lgorithms to minimize C programs that trigger compiler bugs.

ne could integrate such an approach to observation-based slic-

ng. However, this would sacrifice the language independence. In-

erestingly, Delta debugging has been applied to documents

hat generate build errors (Paraschenko, 2011). A modification of
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

16 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Slicing Criteria Rendered Slice

Slice 1

Slice 2

Slice 3

Fig. 14. Three rendered slices of the ThreeCols example.

t

p

f

l

d

s

p

w

C

c

s

t

i

i

l

i

t

a

o

t

a

n

M

u

o

i

s

a
this approach to use visual criteria might produce output similar

to VORBS although likely less efficiently (Binkley et al., 2014).

9. Future work

Looking forward, the most significant challenge faced by VORBS

is that for several reasons rendering tools are not required to be

pixel-wise exact. Given an infinite number of pixels (dots) per inch,

VORBS would not face this problem. In the real world the ren-

dered images often must be split across pixel boundaries and are

thus not pixel exact. Improvements to VORBS will address this in-

evitable subpixel interpolation.

Fig. 15 illustrates the problem using part of a Shape slice. The

criteria for the slice is the circle cropped from the right of the orig-

inal image, shown in the first row. In its first step, VORBS removes

the source that renders to the label “Plain node”. As can be seen

in the second row, this removal should be accepted because the

rendered candidate slice clearly includes the circle. Unfortunately,

when rendered, the circle differs between the criteria image and

the sliced image at a subpixel level. Thus, at the step where VORBS

should discover the presence of the criteria in the candidate slice,

it fails. The reason why can be seen in a minimal energy image dif-

ference between the two (shown in the final row of the figure). In

this difference image, black denotes a pixel with the same value in

the two, white indicates that the first image includes background

where the second does not, and finally gray indicates that the sec-

ond image includes background where the first does not. Consid-

ered in the light of Table 4 , it is a violation of the asymmetric

matching constraint for the candidate slice to include background

where the criteria does not, so the match fails.
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
There are several causes for this imprecision and in the ex-

reme some per pixel differences are unavoidable. For exam-

le, Postscript uses single precision floats which can provide as

ew as six digits effective precision. Rounding errors are very

ikely. Furthermore, graphics specifications themselves allow non-

eterminism to accommodate some differences in implementation,

uch as by different graphics chips. Font rendering in browsers is

articularly inconsistent.

In light of this example and the inevitability of pixel differences,

e need to consider improved matching algorithms for VORBS.

learly, doing correlations with thin lines, or images with high

ontrast elements, is sensitive to pixel shifts. Fortunately, there are

ubpixel algorithms that use techniques such as gradient descent

o find small displacements. Thus VORBS could employ a match-

ng function that is more robust and can handle small differences

n pixel placement and values. A place for initial focus is if vio-

ations are related to the length of the boundaries in the target

mage. For example, assuming the target image includes the let-

er “O ”, the length in pixels of the outer and inner edge gives an

pproximate count on the number of pixels that might be in vi-

lation. Another approach to increasing the robustness is to “blur”

he image slightly (technically a morphological image dilation with

 simple kernel), subtract the original from the new, and count the

on-zero pixels. A third approach would employ machine learning.

any existing image algorithms need to have parameters, partic-

larly thresholds, fine-tuned and machine learning approaches are

ften successful at doing so.

The current and near future work assumes that the original

mage and target do not differ significantly in intensity or color,

ince drastic color changes can cause drastic figure changes such

s a foreground disappearing into a background. Future work will
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 17

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

Original Image

Candidate Slice

Minimal Energy Pixel Differences for the Circle

Fig. 15. Registration artifacts caused by subpixel motion.

n

c

c

t

m

o

i

i

s

i

t

o

e

s

t

t

w

e

“

c

c

i

o

t

v

o

i

t

t

l

o

s

t

w

s

i

C

g

c

fi

v

i

t

t

(

b

e

e

w

i
eed to consider how to capture the impact of color and intensity

hanges. The current algorithm can address the simple deletion of

olor commands using matching algorithms that work with sys-

ematic color changes.

Another future challenge to consider comes from the use of the

atrix layout of the shapes in an image. The PDL may have a lay-

ut manager that can adjust relative positions of shapes. Once that

s allowed template matching is more likely to fail. Alternatives

nclude constraint-modified matching, which allows some inter-

hape motion in matching. Such an algorithm basically recreates,

n the matching function, the constraints allowed when the sys-

em lays out the diagram, which would make VORBS dependent

n language-specific semantics.

Other extensions include growing the set of languages consid-

red to include, for example, Postscript, idraw , xfig , and GUI codes

uch as Java applets. Another example extension would consider

he deletion of alternate lexical units. The current implementa-

ion works at the line-of-text level. One obvious alternative is the

hite-space-separated-token level. This change would allow, for

xample, the removal of the text “program Main ”, “ENTRY”, and

i : = 1 ” from Slice 3 of Fig. 9 .

A more speculative direction for future work observes that, in

omparison with traditional slicing, rather than picking a program

omponent and asking the slicer to remove code while preserv-

ng the behavior of the selected component, VORBS takes a subset

f the output and asks the slicer to slice away parts of the code

hat do not create the selected output. This change replaces the
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
ariable, v , and line, l , of the slicing criteria with a subset of the

utput of the original program. The notion of providing as a slic-

ng criteria a portion of the output is more general then requesting

he preservation of a particular computation. (It is always possible

o select those parts of the output that are produced by a particu-

ar computation. However, it is also possible to select only a subset

f this output or portions output by several separate statements,

omething that cannot be captured using v and l alone.) This no-

ion might be extended to an approach for automatic programming

here a genetic algorithm proposes code and a slice extracts the

ubset of this code with a desired behavior.

Finally, while not a requirement of VORBS, the examples shown

n the paper all use a rectangular, cropped image as the template

.T in the slicing criteria. Under such a restriction a traditional

raphic clipping algorithm with reverse picking could be used to

lip the geometrical elements of the PDL file to create a reduced

le similar to the slices produced here. This assumes the use of a

ector graphics program such as xfig and not a bitmap image ed-

tor such as xpaint . For vector graphics programs, the elements of

he PDL intersecting the clipping regions can be identified using

he reverse rendering pipeline. Knowing the semantics of the PDL

something that VORBS ignores deliberately), these elements could

e more precisely clipped than simple element deletion allows. For

xample, assuming the existence of an arc primitive, the clipped

llipse of Slice 2 from Fig. 9 , could be replaced at the source level

ith an arc (that omits the bottom of the ellipse). However, slic-

ng has at least three advantages over this clipping alternative.
 visual semantics, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.04.009

18 S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

B

B

B

B

D

D

G

H

H

H

K

K

L

M

.

P

P

P

Foremost, the slice can be rendered as it includes all necessary

supporting elements (e.g., those used for positioning). Second, slic-

ing is not limited to geometrical boundaries. Any sub-shape or sub-

diagram, of any geometrical extent or semantics, can handled using

the slicing approach. Finally, slicing can be applied to a file with hi-

erarchical shape structures or transform stacks, rather than simply

to individual geometrical elements.

10. Conclusion

This work builds on ORBS, the first language-independent pro-

gram slicer that computes slices for systems written in multiple

languages. ORBS exploits line-of-text deletion as its primary opera-

tion and observation as its validation criteria. This paper describes

the generalization of ORBS to languages with non-traditional visual

semantics. As an initial case study it considered Picture Description

Languages (PDL). The motivation for choosing PDL as our target in-

cludes providing a debugging aid for visual and representational

faults, as well as a program comprehension tool for PDL users who

seek to understand particular features of the language. The result-

ing algorithm VORBS is very effective at slicing picture descrip-

tions, achieving an average 83% reduction in code size. An initial

investigation leveraged several off-the-shelf techniques. Shortcom-

ings in this implementation led to the development of a slicing

specific matching algorithm. The resulting slices can be used where

only a subset of the original image source is required.

The creation of VORBS illustrates the viability of generalizing

slicing to languages with non-traditional semantics. VORBS ob-

serves and compares the behavior of PDLs. In this case, 2D PDLs

that describe 2D shapes and produce 2D images. The methods

could generalize to 3D PDLs and graphical languages that describe

3D shapes and produce 2D images, or that produce 3D images

which would require voxel matching. Languages for constructive

solid geometry, that describe and produce 3D shapes, could also

be addressed. Moving to languages that describe physical motion,

such as those that drive 3D printers or robot actuators, would most

likely require using simulation to produce digital traces for match-

ing, as recording and matching actual physical motion would be

difficult and time consuming. Goal-oriented robot languages, that

describe the required state of the world in high level conditions,

would require an intelligent ability to perceive achievement of the

goals and would be currently beyond our methodology. Finally,

an interesting variation is slicing of VLSI circuit diagrams. Because

such diagrams have a well defined semantics, VORBS could extract,

for example, the register file from a CPU.

References

Androutsopoulos, K. , Binkley, D. , Clark, D. , Gold, N. , Harman, M. , Lano, K. , Li, Z. ,

2011. Model projection: simplifying models in response to restricting the en-

vironment. In: Proceedings of the 33rd International Conference on Software
Engineering. ACM, pp. 291–300 .

Barpanda, S.S. , Mohapatra, D.P. , 2011. Dynamic slicing of distributed object-oriented
programs. IET Softw. 5 (5), 425–433 .

Beck, J. , Eichmann, D. , 1993. Program and interface slicing for reverse engineer-
ing. Proceedings of the 15th International Conference on Software Engineering,

pp. 509–518 .

Beszedes, A. , Gergely, T. , Szabó, Z.M. , Csirik, J. , Gyimothy, T. , 2001. Dynamic slicing
method for maintenance of large C programs. In: Proceedings of the 5th Con-

ference on Software Maintenance and Reengineering, pp. 105–113 .
Bhattacharjee, S. , Kutter, M. , 1998. Compression tolerant image authentication.. In:

Proceedings of the International Conference on Image Processing, ICIP, October
1998, vol. 1, pp. 435–439 .

Binkley, D. , 1998. The application of program slicing to regression testing. Inf. Softw.
Technol. 40 (11–12), 583–594 .

Binkley, D. , Gold, N. , Harman, M. , Islam, S. , Krinke, J. , Yoo, S. , 2015. ORBS and the

limits of static slicing. In: Proceedings of the 15th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2015. IEEE Com-

puter Society Press, pp. 1–10 .
Binkley, D. , Gold, N. , Harman, M. , Krinke, J. , Yoo, S. , 2013. Observation-based Slicing.

Research Note RN/13/13. University College London .
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
inkley, D. , Gold, N. , Harman, M. , Krinke, J. , Yoo, S. , 2014. ORBS: language-indepen-
dent program slicing. In: Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE November 2014. ACM
Press, pp. 109–120 .

inkley, D.W. , 1993. Precise executable interprocedural slices. ACM Lett. Program.
Lang. Syst. 3 (1–4), 31–45 .

inkley, D.W. , Gallagher, K.B. , 1996. Program slicing. In: Zelkowitz, M. (Ed.), In: Ad-
vances in Computing, vol. 43. Academic Press .

radski, G. , 20 0 0. The OpenCV library. Dr. Dobb’s J. Softw 25 (11), 120–126 .

Choi, J.D. , Ferrante, J. , 1994. Static slicing in the presence of goto statements. ACM
Trans. Program. Lang. Syst. 16 (4), 1097–1113 .

Cifuentes, C. , Fraboulet, A. , 1997. Intraprocedural static slicing of binary executa-
bles.. In: Proceedings of International Conference on Software Maintenance,

pp. 188–195 .
Cimitile, A. , De Lucia, A. , Munro, M. , 1995. Identifying reusable functions using spec-

ification driven program slicing: a case study. In: Proceedings of the Interna-

tional Conference on Software Maintenance, ICSM, October 1995, pp. 124–133 .
Cleve, H. , Zeller, A. , 20 0 0. Finding failure causes through automated testing.. In: Pro-

ceedings of International Workshop on Automated Debugging .
e Lucia, A. , Fasolino, A.R. , Munro, M. , 1996. Understanding function behaviours

through program slicing. In: Proceedings of the 4th International Workshop on
Program Comprehension, pp. 9–18 .

eMillo, R.A. , Pan, H. , Spafford, E.H. , 1996. Critical slicing for software fault localiza-

tion.. In: Proceedings of the 1996 International Symposium on Software Testing
and Analysis (ISSTA), pp. 121–134 .

Ettinger, R. , Verbaere, M. , 2004. Untangling: a slice extraction refactoring. In: Pro-
ceedings of the 3rd International Conference on Aspect-Oriented Software De-

velopment, AOSD, pp. 93–101 .
allagher, K.B. , Lyle, J.R. , 1991. Using program slicing in software maintenance. IEEE

Trans. Softw. Eng. 17 (8), 751–761 .

Hajnal, A. , Forgács, I. , 2011. A demand-driven approach to slicing legacy COBOL sys-
tems. J. Softw.: Evol. Process 24 (1), 67–82 .

Harman, M. , 2010. Why source code analysis and manipulation will always be im-
portant (keynote). In: Proceedings of the 10th IEEE Working Conference on

Source Code Analysis and Manipulation, SCAM 2010, pp. 7–19 .
Harman, M. , Binkley, D.W. , Danicic, S. , 2003. Amorphous program slicing. J. Syst.

Softw. 68 (1), 45–64 .

arman, M. , Danicic, S. , 1997. Amorphous program slicing. In: Proceedings of
the 5th IEEE International Workshop on Program Comprehension, IWPC’97,

May 1997. IEEE Computer Society Press, Los Alamitos, California, USA,
pp. 70–79 .

arman, M. , Lakhotia, A. , Binkley, D.W. , 2006. A framework for static slicers of un-
structured programs. Inf. Softw. Technol. 4 8 (7), 54 9–565 .

ierons, R.M. , Harman, M. , Fox, C. , Ouarbya, L. , Daoudi, M. , 2002. Conditioned slicing

supports partition testing. Softw. Test. Verif. Reliab. 12, 23–28 .
Horwitz, S. , Reps, T. , Binkley, D.W. , 1990. Interprocedural slicing using dependence

graphs. ACM Trans. Program. Lang. Syst. 12 (1), 26–61 .
Jiang, S. , Santelices, R. , Grechanik, M. , Cai, H. , 2014. On the accuracy of forward dy-

namic slicing and its effects on software maintenance. In: Proceedings of the
114th IEEE International Working Conference on Source Code Analysis and Ma-

nipulation, SCAM 2014, Victoria, BC, Canada, September 28–29 .
ernighan, B.W. , 1981. PIC – a language for typesetting graphics. SIGPLAN Not. 16

(6), 92–98 .

Korel, B. , Laski, J. , 1988. Dynamic program slicing. Inf. Process. Lett. 29 (3), 155–163 .
Korel, B. , Laski, J. , 1990. Dynamic slicing in computer programs. J. Syst. Softw. 13

(3), 187–195 .
rinke, J. , 1998. Static slicing of threaded programs. In: ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering, PASTE’98,
June 1998, pp. 35–42 .

Kusumoto, S. , Nishimatsu, A. , Nishie, K. , Inoue, K. , 2002. Experimental evaluation of

program slicing for fault localization. Empir. Softw. Eng. 7, 49–76 .
arsen, L.D. , Harrold, M.J. , 1996. Slicing object-oriented software. In: Proceedings

of the 18th International Conference on Software Engineering, Berlin, pp. 495–
505 .

Mahajan, S. , Halfond, W.G.J. , 2015. WebSee: a tool for debugging HTML presentation
failures. In: Proceedings of the IEEE 8th International Conference on Software

Testing, Verification and Validation, ICST, April 2015, pp. 1–8 .

McPeak, S., Wilkerson, D. S., Goldsmith, S. Delta: heuristically minimizes interesting
files. delta.tigris.org . (accessed 23.03.16.)

oigne, J.L. , Netanyahu, N.S. , Eastman, R.D. , 2011. Image Registration for Remote
Sensing. Cambridge University Press .

Mund, G.B. , Mall, R. , 2006. An efficient interprocedural dynamic slicing method. J.
Syst. Softw. 79 (6), 791–806 .

Paraschenko, O. A., 2011. Delta debugging for uucode.com/blog/2011/04/

27/delta- debugging- for- latex/ . (accessed 23.03.16.)
arsons-Selke, R. , 1989. A graph semantics for program dependence graphs. In: Pro-

ceedings of the Sixteenth ACM Symposium on Principles of Programming Lan-
guages (POPL), Austin, TX, 11–13 January, 1989, pp. 12–24 .

GF: A Portable Graphics Format for TeX. http://www.ctan.org/tex-archive/graphics/
pgf/ . (accessed 23.03.16.)

luim, J. , Maintz, J. , Viergever, M. , 20 0 0. Interpolation artefacts in mutual informa-
tion-based image registration. Comput. Vis. Image Underst. 77 (2), 211–232 .

Pócza, K. , Biczó, M. , Porkoláb, Z. , 2005. Cross-language program slicing in the .NET

framework. In: Proceedings of the 3rd .NET Technologies Conference, Plzen,
Czech Republic, pp. 141–150 .
 visual semantics, The Journal of Systems and Software (2016),

http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0035
http://delta.tigris.org
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0037
http://uucode.com/blog/2011/04/27/delta-debugging-for-latex/
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0038
http://www.ctan.org/tex-archive/graphics/pgf/
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0040
http://dx.doi.org/10.1016/j.jss.2016.04.009

S. Yoo et al. / The Journal of Systems and Software 0 0 0 (2016) 1–19 19

ARTICLE IN PRESS

JID: JSS [m5G; April 28, 2016;15:22]

P

R

S

T

W

W

W

W

W

Y

Z

Z

Z

Z
odgurski, A . , Clarke, L.A . , 1990. A formal model of program dependences and
its implications for software testing, debugging, and maintenance. IEEE Trans.

Softw. Eng. 16 (9), 965–979 .
egehr, J. , Chen, Y. , Cuoq, P. , Eide, E. , Ellison, C. , Yang, X. , 2012. Test-case reduction

for C compiler bugs. In: Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2012, pp. 335–346 .

IPS: Scriptable Image Processing System. https://developer.apple.com/library/
Mac/documentation/Darwin/Reference/ManPages/man1/sips.1.html . (accessed

23.03.16.)

onella, P. , 2003. Using a concept lattice of decomposition slices for program under-
standing and impact analysis. IEEE Trans. Softw. Eng. 29 (6), 495–509 .

ard, M.P. , 2003. Slicing the scam mug: a case study in semantic slicing. In: Pro-
ceedings of the 3rd IEEE International Workshop on Source Code Analysis and

Manipulation (SCAM 2003), pp. 88–97 .
eiser, M. , 1979. Program Slices: Formal, Psychological, and Practical Investigations

of an Automatic Program Abstraction Method. University of Michigan, Ann Ar-

bor, MI Ph.D. thesis .
eiser, M. , 1982. Programmers use slices when debugging. Commun. ACM 25 (7),

446–452 .
Please cite this article as: S. Yoo et al., Observational slicing based on

http://dx.doi.org/10.1016/j.jss.2016.04.009
eiser, M. , Lyle, J. , 1985. Experiments on slicing-based debugging aids. In: Proceed-
ings of the First Workshop Empirical Studies of Programmers .

heeler, D.A., 2004. SLOC Count User’s Guide . www.dwheeler.com/sloccount/
sloccount.html (accessed 23.03.16.)

oo, S. , Binkley, D. , Eastman, R.D. , 2014. Seeing is slicing: observation based slicing
of picture description languages. In: Proceedings of the 14th IEEE International

Working Conference on Source Code Analysis and Manipulation, SCAM 2014,
pp. 175–184 .

eller, A. , 1999. Yesterday, my program worked. today, it does not. Why? In: Pro-

ceedings of the 7th European Software Engineering Conference Held Jointly
With the 7th ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering, ESEC/FSE 1999, pp. 253–267 .
eller, A. , Hildebrandt, R. , 2002. Simplifying and isolating failure-inducing input.

IEEE Trans. Softw. Eng. 28 (2), 183–200 .
hang, X. , Gupta, N. , Gupta, R. , 2007. A study of effectiveness of dynamic slicing in

locating real faults. Empiric. Softw. Eng. 12 (2), 143–160 .

itova, B. , Flusser, J. , 2003. Image registration methods: a survey. Image Vis. Comput.
21 (11), 977–10 0 0 .
 visual semantics, The Journal of Systems and Software (2016),

http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0042
https://developer.apple.com/library/Mac/documentation/Darwin/Reference/ManPages/man1/sips.1.html
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0047
http://www.dwheeler.com/sloccount/sloccount.html
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30025-5/sbref0053
http://dx.doi.org/10.1016/j.jss.2016.04.009

	Observational slicing based on visual semantics
	1 Introduction
	2 Program slicing
	3 Research questions
	4 Generalizing program slicing
	4.1 RQ1 - impacts of the generalization

	5 Initial experiments
	5.1 Experimental implementation and setup
	5.2 Quantitative evaluation
	5.3 Qualitative evaluation

	6 Challenges and enhanced implementation
	7 Empirical investigation
	7.1 Quantitative evaluation
	7.2 Qualitative investigation
	7.3 Threats to validity

	8 Related work
	9 Future work
	10 Conclusion
	 References

