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Abstract. Search Based Software Engineering has high potential for
optimising non-functional properties such as execution time or power
consumption. However, many non-functional properties are dependent
not only on the software system under consideration but also the environ-
ment that surrounds the system. This necessitates a support for online,
in situ optimisation. This paper introduces the novel concept of amor-
tised optimisation which allows such online optimisation. The paper also
presents two case studies: one that seeks to optimise JIT compilation,
and another to optimise a hardware dependent algorithm. The results
show that, by using the open source libraries we provide, developers can
improve the speed of their Python script by up to 8.6 % with virtually no
extra effort, and adapt a hardware dependent algorithm automatically
for unseen CPUs.

1 Introduction

Non-functional properties have increasingly been the focus of Search Based Soft-
ware Engineering (SBSE) work [2]. The inherent dynamic nature of SBSE, i.e.
measuring the fitness from actual executions of the subject of optimisation, makes
it a powerful tool to deal with non-functional properties. Testing of temporal
behaviours have received a considerable amount of interest [4,8,16,18]; other
properties like Quality of Service [6,14] and security [5,9,10] are emerging fields
of research.

Most existing literature on non-functional properties concerns what can be
called offline optimisation: we define an optimisation problem to improve a spe-
cific non-functional property, and consequently obtain one or more solutions by
using meta-heuristic optimisation algorithms, which are then deployed. This app-
roach overlooks an important and challenging element of non-functional proper-
ties: environmental dependency. Non-functional behaviours of software systems
are hard to predict precisely because they are heavily affected by the various envi-
ronmental factors ranging from operational profiles of input data to the hardware
that runs the system. By performing the optimisation offline, we detach the sub-
jects from their environments and tailor our solution to the specific environment
in which we optimise.
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This offline approach raises two issues about the quality of the resulting
solutions. First, it is difficult to avoid sampling bias. Recreating the production
environment precisely can be difficult, because certain factors are either highly
variable (e.g. hardware components), or hard to emulate (e.g. realistic user load
for web applications). Consequently, offline optimisation can introduce bias that
favours the often limited optimisation environment. Second, even when the offline
optimisation is satisfactory, the production environment may change in such a
way that degrades the behaviour of the deployed system (e.g. upgraded hardware
with different performance profiles). This necessitates that the system is taken
offline and re-optimised, which may be difficult in industrial settings.

One way to overcome these problems is to provide built-in adaptivity in the
deployed software, so that the optimisation can take place in the production
environment after deployment. Since we will be optimising in the real environ-
ment, there cannot be any sampling bias. Because the adaptivity is built-in, there
is no need to take the system offline to optimise for the changed environment;
the system will continue to adapt to changes. Naturally, the focus is on how to
perform the optimisation without damaging the performance of the system in
the production environment.

We introduce a novel concept called amortised optimisation. Executions of
any metaheuristic optimisation can be amortised across multiple fitness evalua-
tions. Normally, optimisation algorithms perform fitness evaluations either one
by one (if it is a local search) or as a group (a population-based algorithm). With
amortised optimisation, it is the fitness evaluation that drives the optimisation
algorithm. Whenever the System Under Metaheuristic Optimisation (SUMO) is
executed, we measure one fitness value out of it, and drive the optimisation for-
ward by a single step. One iteration of the optimisation – either the evaluation of
neighbours and the move to a better neighbour (a local search), or the evaluation
of an entire population and the move to the next generation (a population-based
algorithm) – will consist of multiple executions of SUMO.

The paper investigates this novel approach to optimisation of non-functional
properties through two case studies. The first concerns adapting to different
software: we apply the amortised optimisation to improve Just-In-Time (JIT)
compilation parameters in a state-of-the-art Python runtime, pypy [3], and mea-
sure the impact on speed using benchmarks. For the pypy runtime, this can be
seen as adapting to Python scripts it has not executed before. The second study
focuses on hardware differences: we apply amortised optimisation to improve
blocked matrix multiplication [7], whose performance depends on the combi-
nation of block size parameter and the size of the L1 cache in the CPU that
executes the blocked algorithm. From the point of the algorithm, this can be
seen as adapting to a CPU that it has not been executed on before. Both studies
are supported by open source implementations of amortised optimisation tech-
niques. The results show that amortised optimisation can improve non-functional
properties of SUMO without knowing the details of the production environment
in advance.
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The contributions of this paper are as follows:

– Amortised Optimisation: we introduce the concept of amortised optimisa-
tion, which takes place over multiple executions of SUMO in order to reduce
the optimisation overhead with each execution. We make open source libraries
for Java and pypy JIT optimisation available.

– Empirical Evaluation: we present two exploratory case studies of the appli-
cation of amortised optimisation, focusing on software and hardware differences
respectively. The first study seeks to optimise JIT compilation parameters of a
Python runtime,without knowingwhich scriptswill be executed in advance.The
second study aims to optimise the block size in blocked matrix multiplication,
without knowing which CPU the algorithm will be executed on in advance.

The rest of the paper is organised as follows. Section 2 introduces the concept
of amortised optimisation. Section 3 presents the case study on JIT compilation
parameters, while Sect. 4 presents the case study on blocked matrix multiplica-
tion. Section 5 discusses the related work, and Sect. 6 concludes.

2 Amortised Optimisation

Many of non-functional properties of software depend on the exact context and
environment it is being used in. Consequently, the best way to adapt to different
contexts and environments is to optimise these properties in situ. However, meta-
heuristic optimisation often relies on a non-trivial number of fitness evaluations,
which, in the context of Search-Based Software Engineering, may contain other
software, model, or even hardware in the loop [12]. The inhibitive cost effectively
prevents software to be optimised in the production environment.

Single Iteration

Metaheuristic Algorithm Fitness Evaluation (Execution of SUMO)

Single Iteration Single Iteration
...

Existing Optimisation

...

Production Environment

...

Steps of Algorithm Budget Expires Use Best Known Result
Amortised Optimisation

Fig. 1. Amortised optimisation interleaves executions of SUMO, from which the fitness
is measured, with partial executions of metaheuristic algorithms. Each normal use of
SUMO doubles as a single fitness evaluation, driving the optimisation by small steps.
When the initial budget for optimisation expires, SUMO simply continues to run with
the best known result.
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We posit that the cost of in situ optimisation can be amortised. Figure 1
presents the conceptual overview of the amortised optimisation approach. With
existing optimisation techniques (depicted at the top), algorithms perform mul-
tiple iterations, each of which, in turn, executes the SUMO to measure the
fitness. This process is performed in the offline environment, and the result is
deployed. With amortised optimisation (depicted at the bottom), a single iter-
ation of a metaheuristic algorithm is broken down into several smaller steps to
be executed as part of each execution of SUMO. Essentially, we seek to pause
and resume the metaheuristic algorithms with persistence support. By keeping
each step smaller, we minimise the computational overhead to the normal oper-
ation of SUMO. Gradually, SUMO will find better solutions: when the budget
for optimisation runs out, SUMO can continue to use the best known result.

Any metaheuristic algorithm can be amortised in the proposed way, because
there is little dependency between the algorithm itself and the execution of
SUMO for fitness evaluation. A more limiting factor would be the nature of the
optimisation problem: since we are to explore the search space with the actual
uses of SUMO, we cannot afford to functionally sabotage any execution. For
example, a suboptimal candidate solution may be allowed to slow the software
a little bit, or use more memory than usual. However, it cannot affect the func-
tionality of SUMO so that it produces incorrect output. Consequently, amortised
optimisation is more easily applicable to tuning performance-related parameters
than to perform Genetic Improvement that may crash the SUMO [13]. For the
latter, parallel execution of two instances of SUMO may provide a solution: such
parallel execution has been previously studied to recover from regression faults
while the system is running online [11].

2.1 State-Based Steps: A Hill Climbing Example

Let us present a high-level model of amortised hill climbing algorithm, which
is shown in Fig. 2 in a state-based model format. Vertices represent the state
the algorithm can be in; edges represent potential control flows between algo-
rithm states. Edge labels are written in the format of X/Y, where X denotes a
transition trigger and Y denotes the set of actions performed during the tran-
sition. Variable eval keeps track of the number of remaining fitness evalua-
tions available to the algorithm. N is a set of neighbouring solutions: Next(N)
iterates over neighbours, while HasNext(N) checks whether the iteration is over.
IsLocalOptima() checks whether the current candidate solution is a local opti-
mum. Finally, return(x) returns x as a candidate solution for the SUMO to
use. Note that we assume a feedback loop from the SUMO back to x, which
provides the fitness value: this is not depicted in Fig. 2.

Whenever the SUMO is executed, it asks for a candidate solution x from
the amortised optimisation. The amortised hill climbing algorithm first retrieves
its current status from the persistence layer, then executes transitions until it
makes a return(x) call. For example, when the SUMO with the amortised hill
climbing algorithm is executed for the first time, it will start in the initial node
(“Random Solution”): since eval > 0 at the beginning, a transition is triggered,
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Fig. 2. State-based model of amortised hill climbing algorithm: return(x) decreases
the remaining number of fitness evaluations, eval, by 1.

and the algorithm returns the randomly generated x. Finally, it records the
current state (“Generate”) to the persistence layer and pauses. The next time
the SUMO is executed, the algorithm resumes itself from the stored status, and
the next transition (to “Evaluate Neighbours”) is immediately triggered, while
generating neighbours of the current x. This time, the algorithm only pauses
when the second transition is triggered and the call return(x) is made (which
returns the first solution in N).

3 Case Study: Optimising the JIT Parameters for Pypy

3.1 JIT Parameter Optimisation

Pypy is a Python runtime implementation with a strong focus on Just In Time
(JIT) compilation [3]. The JIT compilation mechanism used by pypy is the
meta-tracing JIT. Tracing JIT starts by profiling the code to identify frequently
executed, or hot, loops. In the next stage, the runtime records the history of
all operations executed during a single iteration of a hot loop. These are then
translated into the native machine code. What is unique with pypy is that the
tracing JIT is not applied to the user script, but rather to the interpreter that
runs the user script (hence the name, meta-tracing).

How aggressively pypy tries to JIT compile the user script depends on a set of
parameters that control the behaviour of the tracing JIT. While JIT compilation
in general can make Python, which is interpreted, significantly faster with pypy,
it is not always the case that JIT compiling more of the user script results in
shorter execution time. The more aggressive pypy tries to JIT compile, the higher
the cost of tracing becomes. If the gain in JIT compilation does not exceed the
cost, compiling more of the user script can actually slow pypy down. This trade
off is unique to each user script and the environment pypy runs in. Therefore,
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finding the desirable set of JIT parameters for pypy can be an ideal application
for the in situ, amortised optimisation.

Among the parameters that control the behaviour of the pypy JIT, the case
study in this paper focuses on the following three:

– Function threshold: This parameter determines the number of times a func-
tion has to be executed before it is traced from the beginning. Default value
in pypy is 1619.

– Loop threshold: This parameter determines the number of times a loop has
to be executed before it is identified as a hot loop. Default value in pypy is
1039.

– Trace eagerness: To ensure correctness, pypy inserts guards in the translated
code. When guards fail (an unpredicted branching direction can be a potential
cause), tracing JIT falls back to interpreting the loop. If guard failure happens
above certain threshold, tracing JIT attempts to translate the sub-path from
the point of guard failure to the end of the loop (this is called a bridge). This
parameter determines the number of times a guard has to fail before pypy
compiles the bridge. Default value in pypy is 200.

These parameters have been chosen after consulting the developers of pypy.
We have also been advised to set the loop threshold to be smaller than the
function threshold. Consequently, the implementation of amortised optimisation
of JIT for pypy replaces the loop threshold parameter with a threshold ratio
parameter, whose value is within (0, 1). The actual loop threshold parameter is
set to [function threshold] · [threshold ratio]. For function threshold, we use the
range of [10, 4900]; for trace eagerness, we use the range of [1, 1000].

3.2 Experimental Setup

Benchmarks. We chose 8 benchmark scripts from the standard benchmark
suite with which the speed of pypy is evaluated [17]. Table 1 describes the user
script studied in this paper.

Each benchmark script contains a main test function that performs the oper-
ation described in Table 1. The scripts have been slightly modified to repeat their
main test functions 50 times with each execution: this is to overcome the inher-
ent randomness in measuring execution times. The execution time is measured
using the system clock, starting from the invocation of the test function, and
ending when it returns. It does not include any time used by the amortised opti-
misation itself. The rationale is twofold: the overhead for a single execution of
the user script is very light, and when the amortised optimisation finishes (i.e.
runs out of the allocated fitness evaluations), it becomes virtually zero.

Implementation. The amortised optimisation for JIT parameters is imple-
mented into a Python package called piacin1. Since the JIT parameters only
1 Piacin is made available as open source software at https://bitbucket.org/ntrolls/

piacin.

https://bitbucket.org/ntrolls/piacin
https://bitbucket.org/ntrolls/piacin
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Table 1. Benchmark user scripts used for the JIT optimisation case study

Script Description

bm call method.py Repeated method calls in Python

bm django.py Use django to generate 100 by 100 tables

bm nbody.py Predict n-body planetary movementsa

bm nqueens.py Solve the 8 queens problem

bm regex compile.py Forced recompliations of regular expressions

bm regex v8.py Regular expression matching benchmark adopted from V8b

bm spambayes.py Apply a Bayesian spam filterc to a stored mailbox

bm spitfire.py Generate HTML tables using spitfired library
aAdopted from http://shootout.alioth.debian.org/u64q/benchmark.php?test=
nbody&lang=python&id=4.
bGoogle’s Javascript Runtime: https://code.google.com/p/v8/.
chttp://spambayes.sourceforge.net
dA template compiler library: https://code.google.com/p/spitfire/

need to be set once during the execution of a single user script, piacin similarly
only needs to be called twice: when the user script starts (to configure pypy
with the current parameters), and when it finishes (to record the fitness value
associate with the current parameters). The first hook is implemented by imple-
menting piacin as a Python package, and placing the JIT configuration code as
part of the package initialisation. The second hook is implemented by using the
atexit hook provided by Python by default. The benefits of this package-based
design is that the user only needs to include piacin package (i.e. to have import
piacin at the beginning of the user script) to benefit from it.

The amortised optimisation algorithm in piacin is steepest ascent hill climb-
ing. Neighbourhood solutions are generated by adding and subtracting prede-
fined step values to each of the parameters: 20 for function threshold, 10 for
trace eagerness, and 0.05 for threshold ratio. When the newly generated can-
didate solution has any parameter outside the predefined range, the parameter
value is wrapped around the range.

We use the default parameters of pypy as the starting point of the hill climb-
ing. Since these parameters are the result of careful benchmarking, it would be
wasteful to discard them without consideration. However, when the hill climbing
reaches local optima, we fall back to the random restart mechanism.

Control vs. Treatment Group. The control group consists of 20 un-optimised
runs of user benchmark scripts. Each control group run contains 20 un-optimised
pypy executions of the corresponding scripts. The treatment group consists of
20 optimised runs of user benchmark scripts. Each treatment group run contains
100 optimised pypy executions of the corresponding scripts: 80 executions at the
beginning are used for optimisation, the best solution from which is used by
the remaining 20 executions. Both groups have been executed with pypy version

http://shootout.alioth.debian.org/u64q/benchmark.php?test=nbody&lang=python&id=4
http://shootout.alioth.debian.org/u64q/benchmark.php?test=nbody&lang=python&id=4
https://code.google.com/p/v8/
http://spambayes.sourceforge.net
https://code.google.com/p/spitfire/
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2.4.0 on Mac OS X 10.10.2, using Intel Xeon 3.3 Hz CPU with 6 cores and 16 GB
of RAM. All the user scripts are single threaded and were executed one by one.

3.3 Results

Figures 3 and 4 show the boxplots of 20 runs of both control and treatment
groups. The x-axis shows the sequence of repeated executions of user scripts in
each run; the y-axis shows the execution time in seconds. Visual observation
reveals that, for some user scripts, the execution time after the amortised opti-
misation can be indeed shorter than before: optimisation for bm regex v8.py
shows a very clear trajectory with improving fitness (i.e. decreasing execu-
tion time), while bm nbody.py, bm nqueens.py, bm regex compile.py, and
bm spambayes.py settle down with shorter execution times after exploring the
search space during the optimisation.

With some user scripts, such as bm nbody.py and bm nqueens.py, the very
first execution of the user script during amortised optimisation already shows
shorter execution time. This appears to be counter-intuitive, as the parameters
are the same as the default ones when the amortised optimisation runs begin.
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Fig. 3. Boxplots of execution times of user scripts with and without amortised opti-
misation applied to pypy. Plots on the left shows the execution times of benchmark
scripts from 20 separate runs, each of which repeats the script 20 times. Plots on the
right shows 20 runs, each of which repeats the script 100 times. The first 80 executions
are used for the amortised optimisation; the remaining 20 executions show the results
of the optimised JIT parameters.
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Fig. 4. Boxplots of execution times of user scripts with and without amortised opti-
misation applied to pypy. Plots on the left shows the execution times of benchmark
scripts from 20 separate runs, each of which repeats the script 20 times. Plots on the
right shows 20 runs, each of which repeats the script 100 times. The first 80 executions
are used for the amortised optimisation; the remaining 20 executions show the results
of the optimised JIT parameters.

This is explained by the fact that, when piacin is applied, pypy does execute a
little bit more Python code (that belongs to piacin) before the benchmark test
function is invoked. Since the tracing JIT in pypy is applied to the interpreter of
Python rather than the user script, this extra Python code will inevitably make
certain parts of Python interpreter within pypy hotter than when the user script
is executed without piacin.

Table 2 contains both the descriptive statistics and the results of the hypoth-
esis testing. Execution times of both the default and optimised runs passed the
Shapiro-Wilk normality test; consequently, we use mean and standard deviation
as descriptive statistics and t-test to test the alternative hypothesis that the
execution times from the optimised runs are shorter than those from the default
(α = 0.05). The results of the hypothesis tests confirm the visual observation,
as five user scripts show shorter execution time that are statistically significant.
In case of bm regex v8.py, the optimised runs are faster by 8.6 %.
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Table 2. Descriptive statistics of the execution time (in seconds) and the p-values
of the hypothesis testing from the pypy case study. The user script bm regex v8.py

becomes 8.6 % faster after the amortised optimisation.

Subject Default Optimised p-value

Mean Std. Dev. Mean Std. Dev.

bm call method.py 0.6631 0.0150 0.6630 0.0130 0.4478

bm django.py 2.4018 0.0397 2.4161 0.0753 0.9996

bm nbody.py 1.1948 0.0071 1.1871 0.0136 <1e-4

bm nqueens.py 2.7367 0.0237 2.5595 0.0743 <1e-4

bm regex v8.py 7.5045 0.0347 6.8580 0.1583 <1e-4

bm regex compile.py 7.4155 0.0471 6.8786 1.5073 <1e-4

bm spambayes.py 5.0654 0.1654 4.9346 0.3851 <1e-4

bm spitfire.py 19.9485 0.0861 20.1045 0.1228 1.0000

4 Case Study: Optimising Algorithms to Hardware

The second case study concerns the optimisation of performance critical parame-
ter against different hardware components. The subject algorithm is the Blocked
Matrix Multiplication (BMM).

Algorithm 1. BMM
Input: Size of matrices, n, n-by-n
matrices
A and B
Output: matrix C, which equals to
A · B
(1) n blocks ← � n

BS
�

(2) for bi = 0 to bi < n blocks
(3) i ← bi ∗ BS
(4) for bj = 0 to bj <

n blocks
(5) j ← bj ∗ BS
(6) for bk = 0 to bk <

n blocks
(7) k ← bk ∗ BS
(8) block(n, A, B,

C, i, j, k)

Algorithm 2. BLOCK
Input: Matrix size, n, matrices A,
B, and C,
indices i, j, and k
Output: Updates matrix C
(1) M ← (i + BS > n?n − i :

BS)
(2) N ← (j + BS > n?n − j :

BS)
(3) K ← (k + BS > n?n − k :

BS)
(4) for i = 0 to i < M
(5) for j = 0 to j < N
(6) cij ← C[j + i ∗ n +j

+i ∗ n]
(7) for k = 0 to k <

K
(8) cij+ = A[i · n +

k + i · n + k]·
(9) B[j + k · n + j +

k · n]
(10) C[j+i·n+ j+ i·n] =

cij
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4.1 Blocked Matrix Multiplication (BMM)

Algorithms 1 and 2 collectively present the Blocked Matrix Multiplication for
square matrices. Algorithm 1 breaks down the matrices into smaller blocks of
size BS (Block Size), and invokes Algorithm 2 for each of them. The introduction
of additional loops may appear harmful to performance. However, having nested
loops around a smaller region of memory allows BMM to exploit better CPU
pipelining and higher cache hit rate, resulting in faster overall computation.

The key to the increased performance is the size of the block. However,
choosing the ideal size depends on details of the hardware environment, such
as the size of the L1 cache. Hard-coding a fixed block size into BMM may
produce desirable performance on one machine, but if the code is deployed to
and executed on another machine with a different CPU, there is no guarantee
that the same performance will be retained. This provides a compelling use case
for amortised optimisation.

4.2 Experimental Setup

Implementation. We use a Java implementation of the BMM algorithm
for matrices of double type. The amortised optimisation framework, called
NIA3CIN (Non-Invasive Amortised and Automated Adaptivity Code Injection),
is based on the hill climbing algorithm and is also implemented in Java2. To be
as unintrusive as possible, NIA3CIN uses a publish-subscribe style event bus to
establish communication between the SUMO and the optimisation. Parameters
to be optimised (in the case study, the block size), as well as the measure of the
fitness (in the case study, the number of floating point multiplications performed
per millisecond), need to be marked with annotation. Before the parameter is
to be used, the SUMO needs to call NIA3CIN so that the parameter variable
is updated with the current solution; after the parameter has been used, the
SUMO needs to call NIA3CIN so that the fitness is fed back to the optimisation.

The range of block size was set to [1, 512]. NIA3CIN generates neighbouring
solutions by adding and subtracting 1 to the current block size. When moving
through consecutive block sizes, certain sizes will be evaluated twice: first as
the current solution, and second as a neighbour. Since the non-functional fitness
measure is expected to be noisy, the redundant behaviour was left in NIA3CIN
deliberately, providing opportunities to evaluate the same solution more than
once (and, therefore, getting clearer measures of fitness).

Environment. Table 3 shows three different CPUs for which the BMM algo-
rithm was optimised in this study. Intel Xeon is a 6 code desktop CPU with
32 KB instruction and data cache; the Core-i7 used for this study is a mobile
(laptop) version, which has the same cache provision as the Xeon CPU. Finally,
to investigate how well the amortised optimisation can adapt to an environment

2 NIA3CIN is made available as open source software at https://bitbucket.org/ntrolls/
niacin.

https://bitbucket.org/ntrolls/niacin
https://bitbucket.org/ntrolls/niacin
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Table 3. Information about CPUs for which BMM was optimised

CPU Clock frequency L1 instruction cache L1 data cache

Intel Xeon W3680a 3.33 GHz 32 KB 32 KB

Intel Core-i7 3820QMa 2.7 GHz 32 KB 32 KB

ARM1176 (BCM2835 SoC)b 250MHz 16 KB 16 KB
aThese Intel CPUs share data and instruction caches between two processor threads.
bRaspberry Pi Model B, first edition.

with very limited resources, we use the ARM1176 core on a Broadcom BCM2835
System-on-Chip, which is found in Raspberry Pi version 1 model B. Both Intel
CPUs ran OS X 10.10.2 and Java SE Runtime (build 1.8.0 25-b17) with the
HotSpot 64-Bit Server VM (build 25.25-b02); Raspberry Pi ran Linux 3.18.8
and Java SE Runtime (build 1.8.0-b132, mixed mode) with the HotSpot Client
VM (build 25.0-b70, mixed mode).

Data Collection. For this study, to have a control group without the amortised
optimisation would mean to execute the BMM algorithm with a fixed arbitrary
block size, which would contribute little to investigating how the optimisation
can help. Instead, we fixed the starting block size to 2 and repeated matrix multi-
plications for 100 times on different CPUs: 80 multiplications have been used by
the amortised optimisation to search for the best block size, while the remaining
20 multiplications used the known best block size. This process was repeated for
20 times per CPU to cater for the inherent randomness in the algorithm. On
Intel CPUs, we used matrices of size 1,000 by 1,000; on the Raspberry Pi, we
used matrices of size 500 by 500. The fitness value is measured by the number
of floating point operations per millisecond, using the system clock.

4.3 Results

Figure 5 shows the results of the amortised optimisation of the BMM algorithm
for different CPUs. The boxplots on the left show how the fitness value (the
number of floating point operations per millisecond) across the 20 different runs
(x-axis represents the number of times the BMM is executed). The boxplots on
the right show which block size was tried: although the hill climbing algorithm
relies on the random restart at different points in different runs, these boxplots
still reveal interesting trends in the optimisation of the block size. The vertical
lines depict the point at which the optimisation stops and the BMM starts using
the best known solution.

Both Xeon and Core-i7 benefit from larger block size, up to around 30, which
can be observed from the relatively smooth shapes formed of individual boxplots
and the straight, consistent increase in the block size in executions 1 to 30. Block
sizes from ARM1176 show a much wider exploration of the search space, which
did not necessarily result in increased fitness value. For all three CPUs, both
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Fig. 5. Changes in the fitness (i.e. number of floating point operations per millisecond)
and the block size from 20 runs of BMM for different CPUs. BMM on both Xeon
and Core-i7 benefits from increasing block sizes up to around 30. BMM on ARM1176
performs better with much a smaller block size.

the fitness values and the block sizes show relatively small dispersion, suggesting
that the optimisations did converge.

Table 4 shows the descriptive statistics of the BMM algorithm, before (i.e. of
the first executions of each of the 20 runs) and after the amortised optimisation
(i.e. of the last 20 executions of each of the 20 runs). Both the fitness values and
the block sizes passed Shapiro-Wilk normality test. For all CPUs, the amortised
optimisation can significantly increase the performance of the BMM. An inter-
esting observation is the comparison of Xeon and Core-i7. Despite the higher
clock frequency, Xeon performs fewer floating point operations per millisecond.
While seemingly counter-intuitive, this shows that NIA3CIN exploits the capa-
bilities of each CPU appropriately. The Xeon W3680 is an older model than the
Core-i7 3820QM, and the Core-i7 has been shown to outperform the Xeon in a
single core benchmark [1].

Note that this optimisation has been performed automatically and while the
BMM was operating correctly, using 80 executions. More importantly, if the
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Table 4. Descriptive statistics of the BMM algorithm

CPU Block size = 2 Optimised

Mean fitness Std. Dev. Mean fitness Std. Dev. Mean block size Std. Dev.

Xeon 305189.00 1118.35 634510.13 17254.99 32.25 10.52

Core-i7 377196.74 6360.66 863878.91 34566.63 44.05 26.85

ARM1176 6531.64 124.07 10486.23 574.29 12.90 8.97

algorithm is deployed onto a different CPU, the optimisation can start again
simply by assigning more budget for fitness evaluations. This can be a significant
reduction in effort compared to manual trial and error approach.

5 Related Work

Existing SBSE work that seek to improve non-functional properties almost exclu-
sively uses offline optimisation. Langdon and Harman improved a non-functional
property of a non-trivial C++ program using Genetic Programming (GP) [13].
The GP modified several lines in the source code of the original program, making
it 70 times faster on average while being as good as the original semantically.
The GP-based improvement is much more profound than changing the value of
a variable, as it actually patches the source code. However, it also required a sig-
nificant amount of computation time for off-line optimisation. GP has also been
applied to specialise the MiniSAT solver for specific problem instances [15]. Wu et
al. optimised the behaviour of the dynamic memory allocation in C programs by
revealing and optimising hidden parameters [19]. While the aspect of parameter
optimisation bears similarity to this paper, Wu et al. also optimised the SUMO
in an offline environment. As far as we know, this is the first work that injects
the optimisation into the SUMO so that the non-functional properties can be
optimised in situ.

6 Conclusion

This paper introduces the concept of amortised optimisation and presented
two case studies: optimisation of JIT compilation parameters of pypy Python
runtime, and optimisation of the block size of Blocked Matrix Multiplication
(BMM) algorithm. In both cases, the optimisation gradually takes place while
the Software Under Metaheuristic Optimisation (SUMO) operates normally.
Both implementations are available as ready-to-use open source libraries. Using
these libraries, developers can inject online adaptivity into their software sys-
tem, allowing users to gain performance simply by using the software repeatedly.
The JIT optimisation can result in up to 8.6 % improvement in speed; the BMM
optimisation can adapt to new hardware platform by finding an effective block
size automatically.
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