
19

Fault Localization Prioritization: Comparing Information-Theoretic
and Coverage-Based Approaches

SHIN YOO, MARK HARMAN, and DAVID CLARK, University College London

Test case prioritization techniques seek to maximize early fault detection. Fault localization seeks to use
test cases already executed to help find the fault location. There is a natural interplay between the two
techniques; once a fault is detected, we often switch focus to fault fixing, for which localization may be a
first step. In this article we introduce the Fault Localization Prioritization (FLP) problem, which combines
prioritization and localization. We evaluate three techniques: a novel FLP technique based on information
theory, FLINT (Fault Localization using INformation Theory), that we introduce in this article, a standard
Test Case Prioritization (TCP) technique, and a “test similarity technique” used in previous work. Our
evaluation uses five different releases of four software systems. The results indicate that FLP and TCP
can statistically significantly reduce fault localization costs for 73% and 76% of cases, respectively, and that
FLINT significantly outperforms similarity-based localization techniques in 52% of the cases considered in
the study.

Categories and Subject Descriptors: D.2.5.7 [Software Engineering]: Testing and Debugging—Debugging
Aids

General Terms: Algorithms

Additional Key Words and Phrases: Test case prioritization, fault localization, information theory

ACM Reference Format:
Yoo, S., Harman, M., and Clark, D. 2013. Fault localization prioritization: Comparing information-theoretic
and coverage-based approaches. ACM Trans. Softw. Eng. Methodol. 22, 3, Article 19 (July 2013), 29 pages.
DOI: http://dx.doi.org/10.1145/2491509.2491513

1. INTRODUCTION

Fault localization can be used to prioritize the statements of a program according to
the likelihood that each contains a fault that causes a known failure [Jones et al. 2002;
Renieres and Reiss 2003]. Regression test prioritization is used to order statements
according to early achievement of some testing goal such as coverage [Elbaum et al.
2000; Li et al. 2007; Rothermel et al. 2001; Yoo and Harman 2012].

Regression testing and fault localization are naturally complementary: we test to
see if change has introduced a fault and, if we discover that it has, we switch from
regression testing to fault localization as a first step towards fault fixing. Having fixed
the fault we switch back to regression testing and so the cycle continues. This “test-
find-fix” cycle is familiar to many software engineers.

Complete execution of all test cases in a regression test suite can be slow; execution
times of up to seven weeks have been reported in the literature [Rothermel et al.
2001]. For larger test suites, it may not be realistic to expect engineers to wait for all
test cases to be executed before they can start work on fault fixing. Also, it may not

Authors’ Addresses: S. Yoo (corresponding author), M. Harman, D. Clark, University College London, UK;
email: Shin.yoo@uci.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1049-331X/2013/07-ART19 $15.00

DOI: http://dx.doi.org/10.1145/2491509.2491513

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:2 S. Yoo et al.

be worth executing all test cases, once the first failure has been detected. In many
scenarios, as soon as the first failure is detected, the engineer will want to switch from
testing to fixing.

Even if the engineer does not wish to make this switch at the first failure, there may
be, at some subsequent test execution, a failure for which the engineer will want to
switch from testing to fixing: for example, if the engineer expects that the failure is
important, or requires immediate action. Also, if the engineer expects that the fault
which causes the currently detected failure will also cause many cascaded downstream
failures, then it would be wasteful to have to wait for regression testing to continue,
flagging up all such cascaded errors in the process.

There are many situations where this switch between testing and fixing may occur,
particularly when many faults have been inserted. In such a situation, regression
testing will be most likely an iterative process: executing test cases until the first fault
is found and then switching to fixing this first fault. Once the first fault is fixed, the
engineer will switch back to regression testing until the next fault is found.

Of course, whenever the engineer switches from testing to fixing, the prioritization
algorithm that provides automated support must also switch from test case prioritiza-
tion for fault revelation to test case prioritization for fault localization. Since the two
goals are different, the order in which the remaining test cases should be executed may
also be different.

One approach would be to switch immediately to fault localization, using the set of
test cases executed up to the point at which the failure was observed. In some situations,
this may be all that is required. However, there may be too few test cases for effective
fault localization, particularly if the first failure is observed early in the process. In this
situation testing will need to continue for a while to provide a sufficiently large pool
of test cases for effective localization. This raises the question that lies at the heart of
this article:

“Having found a fault, what is the best order in which to rank the remaining
test cases to maximize early localization of the fault?”

We call this problem the Fault Localization Prioritization (FLP) problem. Existing
approaches to fault localization need to be adapted to prioritize not just statements
(according to their suspiciousness), but also the test cases according to how well they
contribute to early elevation of faulty statement suspiciousness.

We believe that FLP, like many other testing problems, is a naturally information-
theoretic problem. That is, we seek to choose the next test case to be executed to be the
test case that gives the most information about where the fault might lie. Therefore, we
also introduce a novel information-theoretic approach called FLINT: Fault Localization
using INformation Theory. FLINT uses Shannon’s information theory [Shannon 1948]
to define an entropy reduction measure for test cases, such that the next test case
in an ordering is the one that maximally reduces fault locality entropy. This makes
Shannon’s mathematical theory of information a natural choice; one that we formalize,
implement, and evaluate in this article.

For the FLP problem, we order statements of the program according to their suspi-
ciousness, as is common with other work on fault localization. However, we also order
test cases according to their ability to increase the early identification of the suspicious-
ness of the faulty statement. In our experiments, we chose to use the widely studied
Tarantula suspiciousness metric [Jones et al. 2002; Jones and Harrold 2005]. How-
ever, the choice of suspiciousness measurement is a parameter to any FLP problem, so
one can easily incorporate metrics from other fault localization work [Cleve and Zeller
2005; Liblit et al. 2005; Renieres and Reiss 2003].

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:3

We evaluate our FLINT approach to FLP against three other alternatives. We use
a random ordering as a baseline to see whether any of our orderings has any value
compared to an arbitrary ordering. We also use two “more intelligent” alternatives
against which to compare our FLINT approach.

The first of these more intelligent approaches is to simply continue to order test cases
according to their coverage, as would be done by the continuation of the TCP approach.
It ought to make sense to continue to try to cover more of the code, particularly should
little coverage have been achieved when the engineer switches from testing to fixing.
Surely this would help with localization? This observation motives a comparison of
“standard TCP” with FLINT.

The second alternative against which we compare is based on the similarity between
tests [Artzi et al. 2010]. The intuition behind this approach is that similar tests that
have different pass/fail outcomes help to improve the effectiveness of fault localization,
as the similarity would maximize the chance that the fault is correlated with the rela-
tively small difference between tests. This suggests that we might consider prioritizing
the remaining test cases according to their similarity to the test case that revealed the
fault. We call this the similarity ordering.

We report the results of a set of empirical studies of the three techniques’ suitabil-
ity for FLP on five different releases of four software systems for which test suites
and fault information are available. We start by evaluating the effect of FLP on the
suspiciousness of the faulty statement. In order to qualify as a suitable method for
FLP, a technique must order test cases so that the faulty statement will attain higher
suspiciousness early in the prioritization.

Raising suspiciousness is only a necessary, but not a sufficient property for an FLP
method to be useful. There is an interaction between the suspiciousness metric and
the FLP technique and so the degree to which early suspiciousness elevation ensures
efficient fault localization also needs to be studied empirically. It could be that the
faulty statement has an early elevation of suspiciousness, as desired, but the effect
is masked by co-lateral early suspiciousness elevation of fault-free statements. This
can be assessed through an empirical study of the traditional fault localization cost of
the induced prioritizations of statements according to suspiciousness. In our empirical
study we report results for the elevation of suspiciousness and the traditional fault
localization cost.

Reducing cost (for test cases with known coverage) is also insufficient, on its own,
for FLP to be useful. In order to be useful a candidate the FLP technique must re-
duce traditional fault localization cost, but it also needs to cope with an “information-
impoverished environment”. That is, for those test cases already executed at the point
we switch from testing to fixing, we shall have reliable coverage. However, for those that
remain to be executed, we shall have to make do with coverage information available
from the previous version of the software.

This information is only partly accurate, because changes to the previous version of
the software that create the current version may also change test case coverage results
recorded for the previous version. We therefore evaluate the performance of the two
prioritization approaches for the “test-find-fix” cycle in which coverage information is
only available about the previous release. We also explore the correlation between good
performance of the FLP techniques on the previous release of the software with their
performance at the next release.

We may summarize the primary contributions of the article as follows.

(1) The article introduces a problem that we term the Fault Localization Prioritiza-
tion (FLP) problem, which we believe captures the “test-find-fix” cycle that many
engineers adopt in practice.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:4 S. Yoo et al.

(2) The article introduces FLINT, an information-theoretic approach to FLP.
Shannon entropy provides a quantitative theoretical foundation on which to build

a new approach to fault localization in which both statements and test cases are
prioritized. Statements are ordered by suspiciousness, while test cases are ordered
by the degree to which they reduce the entropy inherent in fault localization.

(3) The article presents the results of an empirical study that demonstrates that both
our FLP approaches outperform arbitrary ordering, making them sensible FLP
candidate techniques. Our study also reveals that information-theoretic ordering
outperforms the two more intelligent orderings: coverage-based TCP and similarity
ordering.

(4) The article presents results from a further empirical study that provides evidence
to support the claim that information-theoretic ordering copes well with imper-
fect, partial, and noisy information. This makes the approach applicable after code
changes have degraded existing test coverage information. Traditional test case pri-
oritization based on coverage also performs well in this information-impoverished
environment, though less well than FLINT.

(5) The article presents empirical evidence to support the claim that the engineer can
use past performance as a guide to determine which FLP technique to use.

The rest of the article is organized as follows: Section 2 explains the underlying
concepts of the suspiciousness metric and test case prioritization as well as presenting
a motivating example for FLINT. Section 3 presents the theoretical foundation for the
FLINT approach and sets out the research questions. Section 4 describes the algorithms
for FLINT. Section 5 discusses the experimental setup of the empirical study, the results
of which are analyzed in Section 6. Section 7 discusses threats to validity. Section 8
presents related work and Section 9 concludes.

2. BACKGROUND

2.1. Test Case Prioritization

Test case prioritization concerns the ordering of test cases for early maximization of
some desirable properties, such as the rate of fault detection [Yoo and Harman 2012].
It seeks to find the optimal permutation of the sequence of test cases with respect to
a property. It does not involve selection of the test cases, and assumes that the set of
test cases may be executed in the order of the permutation it produces, but that testing
may be terminated at some arbitrary point during the testing process. More formally,
the prioritization problem is defined as follows.

Definition 1 (The Test Case Prioritization Problem).
Given: a test suite T , the set of all permutations of T , PT , and a function from PT

to real numbers, f : PT → R.
Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ �= T ′)[f (T ′) ≥ f (T ′′)].

The ideal choice of the priority function, f , would be one that would result in an
ordering of tests with the maximum rate of fault detection. Since this information
is unavailable before the testing is finished, various surrogates including code cover-
age [Elbaum et al. 2000; Rothermel et al. 2001], test execution history [Kim and Porter
2002], and expert knowledge [Tonella et al. 2006; Yoo et al. 2009] have been studied.

2.2. Fault Localization Metrics

Fault location techniques aim to reduce the cost of debugging by automating the pro-
cess of searching for the location of the fault in the program. A widely studied ap-
proach to fault localization is to assign to each structural element in the program a

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:5

Table I. Motivating Example

Structural Test Test Test Tarantula Test Tarantula
Elements t1 t2 t3 Metric(τ) t4 Metric(τ)
s1 • • 0.00 0.00
s2 • • 0.00 0.00
s3 • • 0.00 0.00
s4 • 0.00 0.00
s5 • • 0.00 0.00
s6 • 1.00 • 1.00
s7 (faulty) • • 0.67 • 1.00
s8 • 1.00 • 1.00
s9 • • 0.67 • 0.50
Result P F P - F -

Coverage-based prioritization would execute t3 after the first failure
(t2), resulting in suboptimal suspiciousness metric values. However, if
t4 is executed after the first failure, the faulty s7 will get assigned the
optimal suspiciousness value.

suspiciousness value that corresponds to the relative likelihood of the element contain-
ing the fault [Liblit et al. 2005; Jones and Harrold 2005; Abreu et al. 2007]. For example,
the Tarantula suspiciousness metric [Jones and Harrold 2005] for a statement s in a
program is calculated as follows.

Tarantula metric τ (s) =
f ail(s)

total f ail
pass(s)

totalpass + f ail(s)
total f ail

(1)

In Eq. (1), f ail(s) and pass(s) represent the number of times the statement s was
executed by failing and passing tests, respectively, whereas total f ail and totalpass
represent the number of failing and passing tests.

The highest possible value for τ is 1 and the lowest is 0. If a statement s is executed
by all tests, at least one of which fails, it gets assigned τ = 0.5. A statement s′ gets
assigned τ = 1 if and only if all failing tests and none of the passing tests executes
s′. However, it is possible that some statements other than the faulty statement get a
higher τ value than s′. Suppose that s′ causes a failure only for certain input values,
whereas an error handling routine s′′ is executed whenever s′ fails: s′′ will get assigned
τ = 1, whereas s′ might get assigned τ less than 1 depending on the test input.

2.3. Prioritizing for Fault Localization

Existing work on fault localization treated the calculation of suspiciousness metrics
as a post hoc procedure. That is, fault localization was attempted only after the entire
test suite was executed. However, this contradicts the assumptions behind test case
prioritization, that is, that there may not be enough time to execute the entire test
suite.

Suppose that the tester encounters a failing test while executing a test suite prior-
itized for maximum fault detection capability. We argue that, after the initial failure,
different tests contribute different amounts of information regarding the location of
the faulty structural element. It follows that, after the initial failure, the tester should
choose a test that would provide the most information as the next test case whenever
possible, followed by other tests in the order of a decreasing amount of information
provided.

Consider the motivating example in Table I. Test t1 to t4 is prioritized based on the
structural coverage following the additional approach with resets [Elbaum et al. 2000].

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:6 S. Yoo et al.

The dots (•) show the coverage relation: for example, structural element s1 is covered
by test t1 and t3. The prioritized test suite detects the first fault with t2, which covers
the faulty element s7. Suppose that there is only time to execute one additional test:
the next two columns show what the final suspiciousness metric would look like if t3
or t4 is chosen to be executed. According to the coverage-based prioritization, the next
test is t3 and the faulty element will get assigned the suspiciousness of 0.67. However,
this is misleading as s6 and s8 are assigned with higher suspiciousness values. On the
other hand, if t4 is executed, the faulty element is assigned the suspiciousness of 1.0
along with other elements, which would be a more precise result. This shows that the
choice of the next test case can affect the accuracy of the suspiciousness metric if the
testing is terminated at an arbitrary point.

In reality, it is impossible to predict whether a test would pass or fail. Therefore, it
is also impossible to make the ideal choice for fault location. However, it is possible to
formulate a probabilistic approximation that can be used as a surrogate, much in the
same way as test case prioritization techniques use structural coverage as a surrogate
for the measure of fault detection capability. We turn to information theory for this
probabilistic approximation.

3. FAULT LOCALITY AND ENTROPY

This section presents the formulation of fault localization as an entropy reduction
process and outlines the research questions.

3.1. Problem Formulation

3.1.1. Assumptions and Basic Notations. Let S = {s1, . . . , sm} be the set of structural ele-
ments in the System Under Test (SUT); let T = {t1, . . . , tn} be the test suite with n tests.
A single element in S contains the fault. Let C : T → 2S be the mapping from tests to
executed structural elements, that is,

C(t) = {s ∈ S|t covers s when executed}.
Finally, let F(t) be a boolean statement that says test t has failed. Similarly, let B(s)

be a boolean statement that says structural element s contains a fault and P be the
mapping from events to probabilities. We will make the following assumptions for our
approximation.

(1) The results from all tests in T are deterministic, that is, ∀t ∈ T : F(t) ∨ ¬F(t).
(2) The suspiciousness metric is competent and does reflect the likelihood of faultiness,

that is, P(B(s)) ∼ τ (s).
(3) The mapping between tests and structural elements, C, is known (we relax this

assumption in Section 6.2).

The first assumption underpins most existing work for software testing. The second
assumption states that the suspiciousness metric we use will work as expected, that
is, higher suspiciousness of si ∈ S means a higher chance of si being faulty. This
assumption is supported by empirical evidence in the existing work [Jones and Harrold
2005; Abreu et al. 2007], the findings of which the article replicates. It is important
to acknowledge that our approach will only amplify the suspiciousness metric that is
used for the parametric τ : the better the suspiciousness metric is at localizing faults,
the better our approach will be at maximizing early fault localization. Regarding the
third assumption, the empirical study in the article considers both the case when it
holds and the case when it does not. The assumption about the knowledge of coverage
information may not be realistic in certain cases. However, when the exact information
C is not known, it is possible to approximate C with information from the testing of

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:7

the previous version, similar to the way in which test case prioritization techniques
use the coverage information from the previous version.

Now we describe the situation in which the ith test fails during testing. Without
losing generality, let Ti−1 be the set of the first i − 1 tests, {t1, . . . , ti−1}, that have
passed; let ti be the first failing test. For the sake of brevity, let TPi and TFi be the total
number of passing/failing tests, respectively, after executing the tests in Ti. Similarly,
let CPi(sj) and CFi(sj) be the number of times sj has been covered by passing/failing
tests, respectively, after executing the tests in Ti.

3.1.2. Entropy of Fault Locality. Given a set of tests at least one of which fails, it is
possible to calculate the suspiciousness of each statement based on the tests executed
up to and including the first test that has failed. Given a set of tests Ti = Ti−1 ∪ {ti},
let τ (s|Ti) denote the suspiciousness of s calculated using the tests in Ti. Based on
Assumption 2, the approximated probability that statement sj contains the fault, based
on the information observed with Ti, is calculated as the normalized suspiciousness
metric for sj .

PTi (B(sj)) = τ (sj |Ti)∑m
j=1 τ (sj |Ti)

(2)

The normalization is required to convert the set of suspiciousness metric values into
a probability distribution. Using this, Shannon’s entropy regarding the locality of the
fault can now be defined as follows.

HTi (S) = −
m∑

j=1

PTi (B(sj)) · log PTi (B(sj)) (3)

Ideally, fault localization is complete when we add sufficient tests so as to arrive at
some TN with HTN = 0: the probability P(B(s′)) will be 1 for the faulty statement s′
and 0 for the remaining statements. Our aim is to minimize HTN as much as possible.
This means not only increasing the suspiciousness of the faulty statement, but also
decreasing the suspiciousness of the nonfaulty statements.

When locating a fault that can be detected deterministically (Assumption 1), it should
be noted that the entropy of fault locality, calculated following Eq. (3), is identical for
the same set of tests, that is, T = T ′ → HT (S) = HT ′(S). That is, the same set of
tests yields the same amount of information regarding the locality of the fault. The
aim of FLINT is not, and cannot be, to increase the amount of information; rather, it
is to order tests so that the maximum information is extracted as early as possible. It
follows that the next test to execute, ti+1, should be the one that yields the smallest
HTi+1 (S).

3.1.3. Entropy Lookahead. To estimate HTi+1 (S) on the basis of what we know so far,
PTi+1 (B(sj)) needs to be approximated. Since it is not possible to predict whether ti+1
will pass or fail, we use conditional probability to express both cases, based on the law
of total probability, as

PTi+1 (B(sj)) = PTi+1 (B(sj)|F(ti+1)) · α

+ PTi+1 (B(sj)|¬F(ti+1)) · (1 − α), (4)

where α is the probability of ti+1 failing. The conditional probabilities PTi+1 (B(sj)|F(ti+1))
and PTi+1 (B(sj)|¬F(ti+1)) can be calculated using the Tarantula metric and Eq. (2): we
simply consider two separate cases (ti+1 passes or fails) and calculate the lookahead
suspiciousness metric accordingly.

The remaining term, α, is the probability that the (i + 1)th test fails, that is,
PTi+1 (F(ti+1)). Instead of using an arbitrarily fixed value, we use the observed feedback

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:8 S. Yoo et al.

Table II. Working Example: Calculation of Lookahead Entropy with the Test Example Shown in Section 2.2

Structural Test Test Test τ τ Lookahead Test τ τ Lookahead
Elements t1 t2 t3 if ¬F(t3) if F(t3) P(B(sj)) t4 if ¬F(t4) if F(t4) P(B(sj))
s1 • • 0.00 0.33 0.04 0.00 0.00 0.00
s2 • • 0.00 0.33 0.04 0.00 0.00 0.00
s3 • • 0.00 0.33 0.04 0.00 0.00 0.00
s4 • 0.00 0.00 0.00 0.00 0.00 0.00
s5 • • 0.00 0.33 0.19 0.00 0.00 0.13
s6 • 1.00 1.00 0.21 • 0.67 1.00 0.28
s7 (faulty) • • 0.67 1.00 0.26 • 0.67 1.00 0.28
s8 • 1.00 1.00 0.21 • 0.67 1.00 0.24
s9 • • 0.67 0.33 0.54 • 0.50 0.50 0.57
Result P F P F H = 0.87 P F H = 0.71

from the execution of tests in Ti as follows.

α = PTi+1 (F(ti+1)) ≈ TFi

TPi + TFi
(5)

1 − α = PTi+1 (¬F(ti+1)) ≈ TPi

TPi + TFi
(6)

Using the lookahead suspiciousness, Eqs. (5) and (6), it is possible to estimate Eq. (4),
that is, the lookahead probability of each statement containing the fault. Once normal-
ized, the lookahead probability distribution enables the calculation of the lookahead
entropy that is expected from the execution of each candidate test case for ti+1. For
faster fault localization after the detection of the first failing test, the tester should
select the next test case that is expected to yield the lowest entropy by the approxima-
tion.

It is important to note that, while we evaluate FLINT with the Tarantula metric
in the article, the entropy lookahead described in this section is independent of the
suspiciousness metric. The better the fault localization metric is, the more effective
FLINT becomes.

3.2. A Working Example

Let us revisit the example test scenario in Section 2.2. The first failure is detected
by t2, after which the tester has to determine the next test to execute between t3 and
t4. Table II explains the detailed steps of entropy lookahead. Columns 4 and 8 show
the coverage information of t3 and t4 respectively. With the coverage information and
specific assumptions about the test results, it is possible to calculate the lookahead
Tarantula metric. For example, assuming t3 passes, the lookahead Tarantula metric
value for s9 is

τ (s9) =
f ail(s9)

total f ail
pass(s9)

totalpass + f ail(s9)
total f ail

=
1
1

1
2 + 1

1

= 2
3

.

Columns 5 and 6 contain Tarantula metric values while assuming t3 passes (i.e.,
¬F(t3)) and fails (i.e., F(t3)) respectively. Similarly, columns 9 and 10 contain Tarantula
metric values while assuming t4 passes and fails. Normalizing these values results in
a probability distribution of P(B(s)|¬F(t)) and P(B(s)|F(t)).

After executing t1 and t2, we approximate the probability of the next test failing to
be 0.5, since T F

T P+T F = 1
1+1 . Now we use Eq. (4) to combine pass and fail cases. For

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:9

example, with t3, the lookahead probability pf s9 containing the fault is calculated as
follows.

P(B(s9)) = P(B(s9)|¬F(tf)) · P(¬F(tf)) + P(B(s9)|F(tf)) · P(F(tf))
= 0.67 ∗ 0.5 + 0.33 ∗ 0.5 = 0.54 (7)

Finally, combining the lookahead probability distribution with Eq. (3), we can calcu-
late the lookahead entropy for t3 and t4, which are 0.87 and 0.71 respectively. Since t4
produces a lower lookahead entropy value, FLINT will advise the tester to execute t4
before t3.

3.3. Multiple Faults

Section 3.1 assumed that we are locating a single fault. Ideally, if the suspiciousness
metric that is plugged into the fault locality entropy can deal with multiple faults,
FLINT will be able to cope with localizing multiple faults. For this, the ideal suspi-
ciousness metric would have to produce high values for all the structural elements
that contain the fault and low values for everything else. In reality, the structure of
the program, coupled with the locations of multiple faults, is likely to confound fault
localization metrics.

However, it is not unrealistic to expect the tester to benefit from FLINT even when
there exist multiple faults. For certain classes of programs and faults, we conjecture
that the tester would be able to connect different failures to corresponding faults. If the
tester can act as a filter of failure information, it is possible to utilize FLINT to target
multiple faults one by one.

3.4. Research Questions

The first set of empirical studies concerns the case when C, that is, the coverage
information for each test, is known. This corresponds to the use case in which the
tester wants to use FLINT for posteriori debugging, that is, seeking guidance for
debugging by ranking tests after executing all the tests in the order of the amount of
information they reveal regarding the locality of the fault. We will refer to this study
as the “precision” study because it utilizes the precise coverage information.

RQ1. Suspiciousness: Does FLINT increase the suspiciousness of the faulty statement
during testing? If so, by how much?

RQ2. Expense: If FLINT successfully increases the suspiciousness of the faulty
statement, does this result in a reduction in expense metric, that is, the percentage of
statements to be inspected before the tester encounters the faulty statement?

RQ1 is answered by observing the suspiciousness metric of the faulty statement dur-
ing the execution of the test suite in two different orders: coverage-based prioritization
and entropy-based prioritization. RQ2 is answered by analyzing the percentage of the
number of statements that the tester has to investigate, following the suspiciousness
ranking, until the faulty statement is encountered.

The second set of empirical studies considers the case when the coverage relation
between tests and statements is not known and, therefore, has to be replaced by the
coverage information from the previous version. This corresponds to the use case when
the tester wants to use FLINT for the actual execution of tests, not posteriori debugging.
We will refer to this study as the “robustness” study because it investigates how robust
FLINT is when coverage information is not precise.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:10 S. Yoo et al.

RQ3. Robustness: Does the use of coverage information from the previous version
affect the effectiveness of FLINT? If so, by how much?

RQ4. Correlation: Is there any correlation between the results obtained using outdated
and current coverage information?

RQ3 is answered by observing the suspiciousness and expense metric while applying
FLINT with coverage information from previous versions. RQ4 is answered by analyz-
ing the statistical correlation between results obtained using outdated coverage (i.e.,
using coverage from version n − 1 to prioritize version n) and current coverage (i.e.,
using coverage from version n to prioritize version n) for the same subject and the same
fault. If there is a positive correlation, the tester can decide whether to use FLINT in
version n based on the performance of FLINT measured using the coverage and faults
information from version n − 1.

4. ALGORITHMS

4.1. Entropy Lookahead Algorithm

To keep the pseudocode concise, let us assume that the counter functions described
in Section 3.1, TP, TF, CPi, CFi : S → N, as well as the coverage relation, C, remain
available throughout Algorithms 1 and 2. The variable i denotes, whenever present,
that the algorithm is seeking to find the i-th test to execute.

Algorithm 1 presents the lookahead algorithm for entropy. The loop in line (1) calcu-
lates the lookahead suspiciousness for each statement, sj : Lines from (2) to (4) calculate
τp, j , that is, the lookahead suspiciousness of sj for the case when that test t executes
sj (i.e., sj ∈ C(t)) and passes (hence the increase of cp, pass counter, by 1). Similarly,
lines from (5) to (7) calculate τ f, j for the case when test t executes sj (i.e., sj ∈ C(t))
and passes (hence the increase of c f , failure counter, by 1). Both cases use Eq. (1) to
calculate the lookahead suspiciousness values. Line (11) combines passing and failing
lookahead cases using the conditional probability defined in Eq. (4) in Section 3.1.3,
while line (12) calculates the sum of all probabilities. Line (13) calculates the lookahead
entropy using the result from line (12) to normalize the probability distribution.

ALGORITHM 1: Entropy Lookahead

EL(t)
Input: A candidate test, t
Output: Lookahead entropy, H
(1) foreach sj ∈ S
(2) cp ← CPi(sj)
(3) if sj ∈ C(t) then cp ← cp + 1
(4) τp, j ←TARANTULA(TPi + 1, TFi, cp, CFi(sj))
(5) c f ← CFi(sj)
(6) if sj ∈ C(t) then c f ← c f + 1
(7) τ f, j ←TARANTULA(TPi, TFi + 1, CPi(sj), c f)
(8) P ← {pj = 0|1 ≤ j ≤ m}
(9) Psum ← 0
(10) foreach sj ∈ S
(11) pj ← TFi

TPi+TFi
· τ f, j∑m

j=1 τ f, j
+ TPi

TPi+TFi
· τp, j∑m

j=1 τp, j

(12) Psum ← Psum + pj

(13) H ← ∑
pj∈P − pj

Psum
· log pj

Psum

(14) return H

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:11

Table III. Subject Programs from SIR

Subject # of Tests Lines of Code Executable Lines
flex 567 12,407–14,244 3,393–3,965
grep 199 12,653–13,363 3,078–3,314
gzip 214 6,576– 7,996 1,705–1,993
sed 360 8,082–11,990 1,923–2,172

ALGORITHM 2: FLINT
FLINT(T)
(1) G ← {}
(2) while |G| < |T |
(3) t ← NEXTTCPORDER(index)
(4) Execute t and update TPi, TFi, CPi

and CFi
(5) G ← G ∪ {t}
(6) if t fails then break
(7) R ← T − G
(8) while |R| > 0
(9) Pick t ∈ R s.t. ∀(t′ ∈ R)(t′ �= t)(EL(t) ≤

EL(t′))
(10) Execute t and update TPi, TFi, CPi

and CFi
(11) R ← R − {t}

4.2. FLINT Algorithm

Algorithm 2 illustrates the top-level algorithm for FLINT. We assume the test suite
T is already prioritized using the additional TCP approach [Elbaum et al. 2000]:
NEXTTCPORDER() is an iterator over the prioritized test suite. The loop in line (2) follows
the TCP ordering until the first failure is encountered. Once the failure is detected, it is
possible to calculate the lookahead entropy following Algorithm 1. The loop in line (8)
chooses the next test t such that the lookahead entropy of t is lower than any other
choice. FLINT repeats this until all tests are prioritized.

The computational complexity of the FLINT algorithm depends on the number of
tests in the test suite and the number of statements in SUT. For a test suite with
n tests, Algorithm 1, the entropy lookahead, requires O(n). For a SUT with m state-
ments, Algorithm 2 needs to invoke EL(t) mtimes. Therefore, the overall computational
complexity of FLINT is O(mn).

5. EXPERIMENTAL SETUP

5.1. Subjects

Table III lists the subject programs studied in the article. All four Unix utility programs
are obtained from Software Infrastructure Repository (SIR) [Do et al. 2005] along
with their test suites: flex is a lexical analyzer, grep is a text-search utility, gzip is
a compression utility, and sed is a stream text editor. We consider five consecutive
versions for each program. Table IV presents the quantity of changes, measured in
terms of the numbers of insertions and deletions in the source code, between consecutive
versions. This was measured using the standard diff tool, with options to ignore white
space and blank lines and to minimize the number of changes.

Since SIR only contains the fault matrices, statement coverage information was
collected using the widely used GNU profiler, gcov. The number of executable lines in
Table III is produced by gcov version 4.3.2 running on Linux version 2.6.27. Both the

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:12 S. Yoo et al.

Table IV. Insertions/Deletions in Source Code between Versions

Subject V1 →V2 V2 →V3 V3 →V4 V4 →V5
flex 3,758/1,891 881/834 204/121 234/248
grep 1,196/621 2,376/2,232 2,310/2,324 9/76
gzip 820/196 196/140 2581/2517 1139/467
sed 7,321/3,406 7,603/9.543 47/92 4,004/7,343

Table V. Number of Studied Faults

Subject V1 V2 V3 V4 V5
flex 15 14 7 9 2
grep 2 1 5 3 0
gzip 7 3 0 3 5
sed 0 5 6 1 4

coverage-based test case prioritization and FLINT have been performed using only the
executable lines.

For each subject program, we selected a test suite that can be applied across all
five versions. This is to ensure that, when FLINT is being applied to version n of
the program, there exists matching coverage data for each test from version n − 1.
However, test suites for versions 4 and 5 of sed were completely rewritten from those
for the previous versions and, therefore, could not be used as part of the robustness
study.

5.2. Faults & Versions

SIR provides a total of 219 (both real and seeded) faults across the five versions of the
four subject programs [Do et al. 2005]. Out of 219 faults, 35 were excluded because these
faults were unreachable in the compiled binary for the experimental environment. Out
of the remaining 184 faults, another 92 were excluded because they were not detected by
any test from the chosen test suites. The article thus considers the remaining 92 faults,
which are listed in Table V.

The robustness study uses versions from 2 to 5 of subject programs, because it
requires coverage information from the previous version. Therefore, the robustness
study considers only 63 faults.

5.3. Evaluation

We compare both the FLINT approach and traditional Test Case Prioritization (TCP,
hereafter) with random orderings of tests to assess the effectiveness of each for early
fault localization. For each pair of subject programs and available faults, we have
evaluated 30 random orderings and measured the average effort required for fault
localization.

The precision study utilizes both TCP and FLINT using the coverage information of
the current version, whereas the robustness study depends on the coverage information
from the previous version.

The research question RQ2 concerns a widely studied metric that measures the
effectiveness of fault localization, expense [Renieres and Reiss 2003], which is defined
as follows.

Expense = rank of faulty statement
of executable statements

· 100

The numerator is the rank of the faulty statement when sorted according to the
suspiciousness metric: the ranks assigned to tied statements are equal to the sum
of the number of the tied statements and the number of statements ranked before

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:13

them [Yu et al. 2008; Renieres and Reiss 2003]. The expense metric represents the
percentage of the source code the tester must investigate before the faulty statement
will be encountered. Intuitively, higher suspiciousness for the faulty statement should
result in a lower expense metric. However, for the reasons discussed in Section 2.2, the
suspiciousness metric and the expense metric may not always agree with each other.

The Tarantula metric was originally developed as a visualization for fault localization
and contained two components: hue and brightness [Jones et al. 2001]. We use the
hue component as suspiciousness metric following other work [Abreu et al. 2007; Yu
et al. 2008], reserving brightness as a means of discriminating when hue gives a tied
suspiciousness of two or more statements1.

We execute the test suite following random ordering, TCP ordering, and FLINT order-
ing. The TCP ordering is obtained using the additional approach with resets [Elbaum
et al. 2000]. After executing each test for each ordering, we calculate the suspiciousness
of the faulty statement and the corresponding expense metric, thus providing a time
series of both metrics for each ordering.

The improvement in suspiciousness is observed by measuring the increment in sus-
piciousness achieved by FLINT and TCP over random; the improvement in expense
is observed by measuring the reduction in expense achieved by FLINT and TCP over
random ordering. Finally, we compare the expense reduction of FLINT and TCP to
each other. We report the comparison of mean values and the results of the statistical
hypothesis tests.

By definition, FLINT, TCP, and random all produce the same suspiciousness metric
value for all statements and, therefore, the same expense value after the entire test
suite has been executed. However, our interest lies in the case when the testing is
terminated at an arbitrary point in time. Since there is no set point at which we
can announce the fault has been localized, it is not possible to calculate the specific
number of tests required to localize a fault. Rather, the aim of prioritizing tests for
fault localization is to ensure the cost of fault localization is as low as possible even if
the testing is terminated prematurely. To measure the benefit of FLP techniques, we
calculate the mean suspiciousness and the mean expense reduction from nobservations
made after executing 1, 2, . . . n tests. The mean values represent the suspiciousness and
the expense reduction that can be expected by the tester if the testing is terminated at
an arbitrary point. We also apply statistical hypothesis test to the set of n observations
and categorize the results into the following.

—Positive with Significance (PS). The technique shows statistically significant
improvement over the random ordering.

—Positive with No significance (PN). The mean value of the metric does show improve-
ment, but without statistical significance.

—Equal(EQ). The technique performs as well as the random ordering.
—Negative with No significance (NN). The mean value of the metric does show

degeneration, but without statistical significance.
—Negative with Significance (NS). The technique shows statistically significant

degeneration compared to the random ordering.

Category EQ is possible when, for example, the faulty statement is detected by the first
test and its suspiciousness remains 1.0 throughout the testing, regardless of the order-
ing of tests: any ordering produced by TCP or FLINT will always result in the same
suspiciousness values.

1This use of brightness as a tie-breaker was suggested by one of the anonymous referees.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:14 S. Yoo et al.

Table VI. Summary of Results from Precision Study

Subject Ver. τ̄R τ̄T τ̄F ¯�ET R ¯�EF R ¯�EFT

flex 1 0.80 0.81 0.83 0.64 1.53 0.90
flex 2 0.79 0.88 0.88 5.08 7.29 2.22
flex 3 0.77 0.86 0.86 5.53 5.79 0.26
flex 4 0.87 0.87 0.90 −1.24 0.74 1.99
flex 5 0.96 0.94 0.95 −6.99 −1.46 5.53
grep 1 0.88 0.90 0.95 1.04 1.18 0.14
grep 2 0.67 0.66 0.83 1.91 4.88 2.98
grep 3 0.65 0.76 0.83 6.81 10.64 3.83
grep 4 0.93 0.87 0.84 −1.07 −2.33 −1.26
gzip 1 0.71 0.85 0.86 11.90 11.56 −0.35
gzip 2 0.73 0.75 0.72 0.27 0.75 0.48
gzip 4 0.65 0.98 0.97 32.42 32.30 −0.12
gzip 5 0.69 0.89 0.91 15.97 14.90 −1.06
sed 2 0.75 0.78 0.76 0.37 1.33 0.96
sed 3 0.89 0.96 0.97 6.81 6.67 −0.14
sed 4 0.59 0.94 0.94 35.28 35.28 0.00
sed 5 0.91 0.95 0.95 3.57 3.42 −0.15

6. RESULTS

6.1. Precision Study

Table VI contains the results from the precision study as well as the statistical anal-
ysis. The statistical details for each individual fault can be found in Table XII in the
Appendix. Columns τ̄R, τ̄T , and τ̄F contain the mean suspiciousness of the faulty state-
ment, over the entire test suite, by random, TCP, and FLINT respectively. Columns

¯�ET R and ¯�EF R contain the mean reductions in the expense metric achieved by TCP
and FLINT over random, respectively. ¯�EFT is the mean reduction in the expense
metric achieved by FLINT over TCP.

For FLINT to produce more effective fault localization, it should provide the tester
with higher suspiciousness and lower expense metric for the faulty statement. This is
analyzed using the Mann-Whitney “U” test. The Mann-Whitney “U” test is a nonpara-
metric statistical hypothesis test, that is, it allows the comparison of two samples with
unknown distributions. Columns H1, H2, and H3 contain the result classifications of
the Mann-Whitney “U” test for the expense metric. The null hypothesis for all three
hypothesis tests is that there is no difference in the mean values between the com-
pared approaches. For H1, the alternative hypothesis is that TCP produces a lower
mean expense than random does (ĒT < ĒR); for H2, the alternative hypothesis is that
FLINT produces a lower mean expense than random does (ĒF < ĒR). Similarly, for H3,
the alternative hypothesis is that FLINT produces a lower mean expense than TCP
does (ĒF < ĒT). The confidence level is 95%2.

Table VII contains the classification of the statistical hypothesis testing for the pre-
cision study. Both TCP and FLINT produce a lower mean expense metric for more than
70% of the faults. However, random also produces a lower mean expense metric than

2Given a test suite with n tests, our “sample” for the Mann-Whitney “U” test is n comparisons of expense
between two permutations of the test suite, one after the execution of each test following the permutation
respectively. Consequently, our sample size is equal to the population size for comparing two permutations
(i.e., we make all available comparisons). In the case with the random ordering, we compare FLINT and TCP
against the average values from 30 random orderings.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:15

Table VII. Hypothesis Test for Precision Study

Hypothesis PS PN EQ NN NS

H1 : ĒT < ĒR 72.83% 0.00% 0.00% 0.00% 27.17%
H2 : ĒF < ĒR 76.09% 1.09% 0.00% 1.09% 21.74%
H3 : ĒF < ĒT 40.22% 4.35% 9.78% 3.26% 42.39%

both approaches for more than 25%. Considering the existing evidence that test case
prioritization is effective for early fault detection, the results suggest that prioritiza-
tion of test cases for early fault localization may be an entirely different task from
prioritization for early fault detection.

The results for H3 in Table VII also suggest that FLINT performs equally well or
better than TCP for about 54% of the studied faults. Considering that each fault is
unique not only in its own characteristics but also in its interaction with the structure
of the SUT and the test suite, assessing the risk of applying FLINT to faults for which
TCP does better may not be obvious. However, the robustness study in Section 6.2
provides a potential way forward in deciding whether or not to apply FLINT or TCP.

Figure 1 provides a more detailed explanation with exemplar cases. The upper panes
of each of its 4 subfigures show how the suspiciousness metric for the faulty statement
changes during the execution of tests, following the orders from random, TCP, and
FLINT. The lower panes show the reductions in expense (�ET R and �EF R).

Figure 1(a) shows a case when both TCP and FLINT produce mean expense values
that belong to a PS category. FLINT produces higher suspiciousness than the other two
approaches during most of the duration of the testing, which results in reductions in
expense.

Figures 1(b) and 1(c) represent two interesting cases. Reduction in expense is
achieved despite the fact that the suspiciousness metric for the faulty statement from
FLINT either remains identical to that of TCP at 1.0 (Figure 1(b)), or even becomes
lower (Figure 1(c)). These results are achieved because choosing a test that produces
the lowest entropy may not only increase the suspiciousness of the faulty statement
but also lower the suspiciousness of the nonfaulty statements (Section 3.1.2).

However, the results also show that an increment of the suspiciousness metric may
not always result in a reduction in expense, as discussed in Sections 2.2 and 5.3. In
Figure 1(d), although FLINT achieves a higher suspiciousness metric for the fault
F TW 1 for version 5 of gzip than other approaches, it fails to make reductions in ex-
pense. This provides evidence that a higher suspiciousness value for the faulty state-
ment may not always result in a lower expense for locating it.

To answer RQ1, Tables VI and XII provide evidence that FLINT achieves a higher
suspiciousness for the faulty statement during the execution of the test suite for many of
the studied faults. More importantly, the increased suspiciousness leads to reductions
in expense in many cases, which provides the answer to RQ2: FLINT reduces the
expense metric with statistical significance for 76% of the studied faults when compared
to random ordering. The cases presented in Figure 1 show that the reduction in expense
is possible, even when increasing the suspiciousness of the faulty statement is not
possible.

6.2. Robustness Study

Table VIII contains the results from the robustness study as well as the statistical
analysis. The statistical details for each individual fault can be found in Table XIII.
The results of the statistical hypothesis tests are summarized in Table IX. Both TCP
and FLINT produce lower mean expense than random for about 70% of the studied
faults.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:16 S. Yoo et al.

grep, v3, F_KP_3

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(a)

flex, v5, F_JR_2

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(b)
flex, v1, F_JR_2

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−4
0

−2
0

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(c)

gzip, v5, F_TW_1

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−1
0

−5
0

5
E

xp
en

se
 R

ed
uc

tio
n

Exp. Reduction FLINT
Exp. Reduction Greedy

(d)

Fig. 1. Plots of suspiciousness and expense reduction from the precision study. Figure 1(a) represents the
cases when the FLINT approach produces higher suspiciousness and lower expense. Figures 1(b) and 1(c)
represent the cases when the reduction in entropy achieved by FLINT results in reduced expense, even
though the suspiciousness value of the faulty statement is largely equal to that of TCP (Figure 1(b)) or even
lower (Figure 1(c)). However, in Figure 1(d), the suspiciousness metric is not in alignment with expense: the
increased suspiciousness metric resulted in higher expense.

Figure 2 presents the representative outcome of the robustness study. Figures 2(a)
and 2(b) contain the plots for the same faults depicted in Figure 1(a) and 1(b). It shows
that the changes in suspiciousness of the faulty statement retain similar patterns when
FLINT is applied using coverage information from the previous version rather than
the current version. The results shown in these two plots remain positive, as they did
for the precision study.

Similarly, Figures 2(c) and 2(d) show cases that correspond to Figure 1(c) and
Figure 1(d). Even when FLINT depends on coverage information from the previous
version, it is possible either to reduce expense metric without producing higher sus-
piciousness (Figure 1(c)) or to increase suspiciousness without necessarily reducing
expense (Figure 1(d)).

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:17

Table VIII. Summary of Results from Robustness Study

Subject Ver. ¯τR ¯τT ¯τF ¯�ET R ¯�EF R ¯�EFT

flex 2 0.79 0.87 0.88 4.79 5.95 1.16
flex 3 0.77 0.86 0.86 5.53 5.79 0.26
flex 4 0.87 0.87 0.90 −1.24 0.93 2.18
flex 5 0.96 0.94 0.95 −6.99 −1.48 5.51
grep 2 0.67 0.66 0.83 −3.35 4.90 8.25
grep 3 0.65 0.76 0.83 6.69 11.09 4.41
grep 4 0.93 0.93 0.90 1.88 0.62 −1.25
gzip 2 0.73 0.76 0.70 0.81 1.08 0.27
gzip 4 0.65 0.98 0.97 32.43 32.31 −0.12
gzip 5 0.69 0.89 0.86 16.32 15.58 −0.75
sed 2 0.75 0.78 0.77 0.27 0.78 0.52
sed 3 0.89 0.96 0.97 6.83 7.09 0.26

Table IX. Hypothesis Test for Robustness Study

Hypothesis PS PN EQ NN NS

H1 : ĒT < ĒR 69.84% 0.00% 0.00% 0.00% 30.16%
H2 : ĒF < ĒR 69.84% 3.17% 0.00% 1.59% 25.40%
H3 : ĒF < ĒT 44.44% 4.76% 9.52% 0.00% 41.27%

To answer RQ3, comparing the results of the robustness study (Table XIII and IX,
Figure 2) to those of the precision study indicates that the use of previous coverage
information does not affect the performance of FLINT in any significant way. The
trends and patterns observed in the precision study manifest themselves again in
the robustness study. Both TCP and FLINT achieved statistically significant expense
reductions for about 70% of the studied faults.

To answer RQ4, we compare the reductions in expense obtained using the cover-
age from current versions with those obtained using the coverage from the previous
versions, for each of 63 faults from versions 2 to 5 of the four subject programs. The
impact of outdated coverage information is analyzed by testing Pearson’s correlation
between the expense reduction obtained with precise and outdated information. If the
use of outdated coverage information has no impact, there will be a perfect Pearson’s
correlation with ρ = 1.0. A strong positive correlation will indicate that coverage in-
formation from the previous version can be used without damaging the performance of
fault localization techniques.

Figure 3 shows the correlation observed in the �ET R, �EF R, and �EFT values for
the 63 faults studied for the robustness study. The x-axis denotes the reductions in
expense obtained for each fault using the precise (i.e., current) coverage information.
The y-axis denotes the reductions in expense for the same fault using the outdated
(i.e., previous) coverage information. All three plots show strong positive correlations
with statistical significance. This provides an answer to RQ4: the impact of outdated
coverage information on the performance of fault localization techniques is not signifi-
cant. In particular, Figure 3(c) provides supporting evidence that developers can decide
which fault localization technique to use, based on how well each technique performs
for localizing known faults from the previous version.

6.3. Comparison to Similarity Sorting

One potential approach to prioritizing test cases for faster fault localization would be
to sort the test cases according to the similarity to the first test that has detected the
fault [Artzi et al. 2010], hoping that similar tests would also fail and contribute to

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:18 S. Yoo et al.

grep, v3, F_KP_3

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(a)

flex, v5, F_JR_2

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(b)
flex, v5, F_AA_4

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(c)

sed, v2, F_AG_19

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−2
0

−1
0

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(d)

Fig. 2. Plots of suspiciousness and expense reduction from the robustness study. Figures 2(a) and 2(b) cor-
respond to Figures 1(a) and 1(b) respectively: FLINT achieves improved suspiciousness and reduced expense
for these faults, despite the use of outdated coverage information from the previous version. Figure 2(c)
shows another case where FLINT achieves a reduction in expense even though its suspiciousness is lower
than that of random, similar to Figure 1(c). Figure 2(d) shows a negative case when increased suspiciousness
does not lead to a reduction in expense.

higher suspiciousness value for the real faulty statement3. To compare FLINT to this
approach, we have implemented the similarity sorting approach. To measure the simi-
larity between test cases, we adopted Hamming distance between the binary execution
traces of test cases. For a program with n statements, the execution trace of a test is a
binary string of length n: the i-th digit is 1 if the i-th statement was executed by the
test, 0 if not. Binary execution trace has been used to effectively capture the similarity
between test cases for regression testing techniques [Leon and Podgurski 2003; Yoo
et al. 2009].

3This “similarity” approach was suggested to us by one of the anonymous referees.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:19

Fig. 3. Correlation plots that show the impact of using coverage information from previous versions. Each
data point corresponds to the reductions in expense with previous and current coverage with respect to
localizing a specific fault. The closer to 1.0 the correlation coefficient is, the smaller the impact of using
coverage information from previous versions will be. The p-values for the Pearson’s correlation test for all
three cases are less than 10−10.

Algorithm 3 illustrates the pseudocode of the similarity sorting approach. The
algorithm is similar to FLINT described in Algorithm 2 except lines (7) and (11).
In line (7), the similarity sorting algorithm records the first failing test case, tf . In
line (11), the algorithm chooses the test case with minimum Hamming distance to
tf as the next test to execute: function HD(t1, t2) denotes the calculation of Hamming
distance between the execution trace of test t1 and t2.

ALGORITHM 3: SimilaritySort

SIMILARITYSORT(T)
(1) G ← {}
(2) while |G| < |T |
(3) t ← NEXTTCPORDER(index)
(4) Execute t and update TPi, TFi, CPi and CFi
(5) G ← G ∪ {t}
(6) if t fails
(7) tf ← t
(8) break
(9) R ← T − G
(10) while |R| > 0
(11) Pick t ∈ R s.t. ∀(t′ ∈ R)(t′ �= t)(HD(t, tf) ≤ HD(t′, tf))
(12) Execute t and update TPi, TFi, CPi and CFi
(13) R ← R − {t}

Table X presents the result of comparison between FLINT and the similarity sorting
approach. Detailed results for each individual fault can be found in Table XIV. Both
techniques are evaluated against the random baseline results: ¯�EF R denotes the re-
duction of expense produced by FLINT over the random, whereas ¯�ESR denotes the
reduction of expense brought in by the similarity sorting approach over the random.
Columns H contains the results of Mann-Whitney “U” test in the manner described
in Section 5.3. The null hypothesis is that there is no difference in mean expense re-
duction between two approaches. The alternative hypothesis is that FLINT produces
smaller expense values than the similarity sorting approach.

Overall, it can be seen that the similarity sorting approach fails to achieve reductions
in expense for many faults. Table X and XIV show that FLINT produces lower expense,

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:20 S. Yoo et al.

Table X. Results of Comparison to Similarity Sorting Approach

Subject Ver. ¯τR ¯τF τ̄S ¯�EF R ¯�ESR ¯�EFS

flex 1 0.80 0.83 0.86 1.53 1.51 0.03
flex 2 0.79 0.88 0.81 7.29 5.11 2.18
flex 3 0.77 0.86 0.86 5.79 4.39 1.40
flex 4 0.87 0.90 0.86 0.74 −2.68 3.42
flex 5 0.96 0.95 0.76 −1.46 −23.09 21.63
grep 1 0.88 0.95 0.88 1.18 −3.75 4.94
grep 2 0.67 0.83 0.55 4.88 −0.89 5.78
grep 3 0.65 0.83 0.63 10.64 1.65 8.99
grep 4 0.93 0.84 0.83 −2.33 −1.99 −0.34
gzip 1 0.71 0.86 0.86 11.56 11.58 −0.02
gzip 2 0.73 0.72 0.69 0.75 0.17 0.57
gzip 4 0.65 0.97 0.97 32.30 32.33 −0.03
gzip 5 0.69 0.91 0.84 14.90 13.54 1.37
sed 2 0.75 0.76 0.68 1.33 −3.20 4.53
sed 3 0.89 0.97 0.95 6.67 7.11 −0.44
sed 4 0.59 0.94 0.94 35.28 35.28 0.00
sed 5 0.91 0.95 0.94 3.42 3.82 −0.40

Table XI. Hypothesis Test for Similarity Sorting Study

Hypothesis PS PN EQ NN NS

H : ĒF < ĒS 52.17% 3.26% 10.87% 10.87% 22.83%

with statistical significance, than the similarity sorting approach for over 50% of the
studied faults. It may appear surprising that the similarity sorting approach fails to
consistently outperform the random prioritization. We conjecture that this is due to the
discrepancies between the actual semantic similarity between tests and that between
execution traces measured in Hamming distance. Depending on the location and the
nature of a fault, sorting tests according to Hamming distance to the failing one may or
may not prioritize reproduction of the fault (i.e., the next sorted test does execute the
faulty statement but does not fail, therefore hindering the fault localization process).
When the sorting does not contribute to the fault reproduction, the approach may fail
to outperform the random prioritization.

7. THREATS TO VALIDITY

There are a few threats to validity regarding the generalization of the results presented
in this article. First, FLINT was evaluated using only Tarantula metric as the basis
of probability distribution. Using other fault localization metrics may lead to different
results. However, the overall approach of FLINT should apply, regardless of the choice
of the fault localization metric, as long as the assumptions stated in Section 3.1.1 are
met. Second, different faults or subject programs may affect the performance of FLINT.
We have tried to include various types of faults across multiple versions of subject pro-
grams, but only additional study can further reduce this threat. Similarly, the degrees
of change between consecutive versions can vary widely: changes that are significantly
different from those we studied may result in different levels of effectiveness when
FLINT is used with coverage information from the previous version. Finally, certain
classes of faults may not satisfy the assumptions stated in Section 3.1.1. For example,
concurrency faults or any failure that is caused in a nondeterministic manner can af-
fect the performance of FLINT adversely. While it is beyond the scope of this article,

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:21

we conjecture that the entropy model of fault locality would have to be extended with
a probabilistic model in order for it to cater for nondeterministic factors.

8. RELATED WORK

Test case prioritization is a regression testing technique that aims to maximize the rate
of fault detection when the testing is terminated at an arbitrary point [Yoo and Harman
2012]. Since the fault information is not known, test case prioritization techniques
often rely on surrogates, for which structural coverage is widely used [Rothermel et al.
2001; Elbaum et al. 2000; Li et al. 2007]. Other prioritization criteria such as execution
history [Kim and Porter 2002], execution profile [Leon and Podgurski 2003], and expert
knowledge [Tonella et al. 2006; Yoo et al. 2009] have also been studied. However,
test case prioritization techniques do not separately consider the case when a fault
is actually detected during the execution of the prioritized test suite. This article is
the first to consider the effectiveness of fault localization under the impact of time
constraints.

Fault localization is a debugging technique that aims to aid the tester to locate a
detected fault [Renieres and Reiss 2003]. Existing work focuses on coverage-based
metrics, program spectra analysis, or the Program Dependence Graph (PDG) to locate
faults [Renieres and Reiss 2003; Cleve and Zeller 2005; Liblit et al. 2005; Jones and
Harrold 2005; Abreu et al. 2007]. Recent work uses a probabilistic causal inference
model for better fault localization [Baah et al. 2010] or fuzzy set logic to improve the
relationship between tests and fault locality [Hao et al. 2008]. There is existing work
that investigates how fault localization is affected by test suite reduction [Yu et al.
2008] or test case prioritization [Jiang et al. 2009].

There are existing techniques for prioritizing tests for fault localization. Gonzalez-
Sanchez et al. prioritized test cases for fault localization by minimizing the fault lo-
cality entropy similarly to FLINT [Gonzalez-Sanchez et al. 2011]. The technique from
Gonzalez-Sanchez uses Bayesian theory to calculate suspiciousness and prioritize the
entire test suite for fault localization only. FLINT can use any existing fault localization
metric to calculate the entropy and takes over from a normal test case prioritization
technique only after the first failing test is executed, thereby preserving both fault
detection and localization capability. Artzi et al. proposed that fault localization can be
aided by generating and executing tests that have similar execution paths to that of
the failing one [Artzi et al. 2010]. The intuition is that similar tests with passing and
failing results would maximize the chance that the fault is correlated with the small
difference between them.

Information theory [Cover and Thomas 1991], now an extensive branch of proba-
bility theory with many applications, was famously founded by Claude Shannon in a
single paper [Shannon 1948]. It has been applied in many research areas related to
computer science including machine learning, analysis of algorithms, and data min-
ing. Applications to software engineering, and particularly to programming languages,
have been less common. Software metrics [Allen and Khoshgoftaar 1999] and software
evolution [Arbuckle 2011] are both areas which have seen contributions but the most
active area at the present time is program analysis for quantifying information flow.

Questions about Quantified Information Flow (QIF) arise naturally in the theory of
dependence, particularly in the theory of security, in order to measure the strength
of dependence (e.g., for potential covert channels). It is not surprising that one of
the the earliest applications of Shannon information to programming languages was
in Denning’s 1982 book on cryptography and data security [Denning 1982] where it
appears in an informal discussion of how to analyze program constructs in terms of in-
formation flow, along with an attempt to define flow quantity. Although it subsequently
became fashionable to use information theory in discussions of security properties for

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:22 S. Yoo et al.

software systems, the first automatable analysis for QIF did not appear until 2002
[Clark et al. 2002]. This latter work was extended to a Turing complete language
[Clark et al. 2007] and to a process language [Boreale et al. 2010]. In the last five
years, a vibrant community of researchers into QIF has developed. However, all the
applications to date have been concerned with flow security.

Our article introduces a novel application of Shannon entropy to the analysis of
programs and has potential for extension to a theoretical framework for a probabilistic
approach to testing. It is not QIF based but it adopts a similar approach to Clarkson et
alia’s Bayesian-influenced paper on quantifying information flow [Clarkson et al. 2009].
The paper describes a security attack in which a series of experiments successively
update the attacker’s belief about the probability distribution on the space of secrets
with the aim of refining that probability distribution to the one in which the actual
secret input to the program has probability 1 while all others have probability 0.

9. CONCLUSION AND FUTURE WORK

This article presents the first use of information theory for fault localization. We build
an entropy model for the locality of the fault. The probability distribution of the locality
of the fault is approximated using an existing fault localization metric. The proposed
technique, FLINT, aims to improve the effectiveness of fault localization by trying to
reduce the Shannon entropy of the locality of the fault. While the article uses the
Tarantula metric, any fault localization metric can be plugged into FLINT.

We evaluate FLINT by evaluating its effectiveness for a novel problem: Fault Lo-
calization Prioritization (FLP). Once a test suite, prioritized for early fault detection,
detects a fault, we switch to the FLINT approach to maximize the chance of early
fault localization, even if testing is terminated prematurely. Empirical evaluation of
FLINT shows that it is possible to increase the suspiciousness metric and reduce the
fault localization cost for more than 70% of the studied faults.

Future work will include the use of more advanced fault localization analysis for
the lookahead method, with an emphasis on reducing the discrepancy between the
suspiciousness and the expense metric.

APPENDIX

Table XII. Detailed Statistical Analysis for Precision Study

Subject Fault ID ¯τR ¯τT ¯τF ¯�ET R H1 ¯�EF R H2 ¯�EFT H3

flex V1

F AA 6 0.48 0.53 0.55 2.78 PS 1.88 PS −0.90 NS
F AA 1 0.76 0.78 0.76 0.89 PS 9.46 PS 8.57 PS
F AA 2 0.99 1.00 1.00 0.40 PS 0.11 PS −0.29 NS
F AA 3 0.53 0.59 0.75 4.56 PS −0.23 NS −4.79 NS
F JR 4 1.00 1.00 1.00 0.04 NS −1.89 NS −1.93 NS
F JR 6 1.00 1.00 1.00 0.05 PS −4.36 NS −4.41 NS
F JR 5 1.00 1.00 1.00 0.62 PS 0.56 PS −0.07 NS
F JR 2 0.78 0.78 0.76 −0.46 PS 8.11 PS 8.57 PS
F JR 3 1.00 1.00 1.00 2.55 PS −1.12 PS −3.67 NS
F HD 3 0.99 1.00 1.00 0.82 PS 0.53 PS −0.29 NS
F HD 1 0.51 0.54 0.56 −0.90 NS 3.26 PS 4.16 PS
F HD 6 0.53 0.51 0.50 −5.25 NS 4.19 PS 9.44 PS
F HD 7 0.93 0.95 0.99 0.72 NS 0.52 PS −0.21 PS
F HD 4 0.51 0.53 0.56 2.57 PS 3.41 PS 0.84 PS
F HD 5 1.00 1.00 1.00 0.12 PS −1.41 PS −1.53 PS

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:23

Table XII. (Continued)

Subject Fault ID ¯τR ¯τT ¯τF ¯�ET R H1 ¯�EF R H2 ¯�EFT H3

flex V2

F AA 4 0.63 0.63 0.61 1.50 PS −0.54 PS −2.04 NS
F AA 5 0.61 0.61 0.64 −2.84 NS 0.87 PS 3.71 PS
F AA 2 0.46 0.50 0.50 −6.46 NS −2.32 NN 4.14 PS
F AA 3 0.46 0.99 0.99 52.50 PS 52.50 PS 0.00 EQ
F JR 6 0.48 0.97 0.97 35.62 PS 35.78 PS 0.15 PS
F HD 8 0.96 0.96 0.99 −10.92 NS 1.78 PS 12.70 PS
F JR 5 1.00 1.00 1.00 0.10 PS −0.01 NS −0.10 NS
F JR 2 0.97 0.96 0.99 −11.54 NS 1.16 PS 12.70 PS
F JR 3 1.00 0.99 1.00 −6.02 NS −3.25 NS 2.77 PS
F JR 1 1.00 1.00 1.00 0.09 PS −0.01 NS −0.10 NS
F HD 2 0.88 1.00 1.00 12.38 PS 11.87 PS −0.51 NS
F HD 6 0.99 1.00 1.00 0.36 PS −5.64 NS −6.00 NS
F HD 7 0.95 1.00 1.00 4.92 PS 4.92 PS −0.00 NN
F HD 4 0.69 0.69 0.71 1.39 PS 5.00 PS 3.61 PS

flex V3

F AA 4 0.49 0.50 0.50 −5.26 NS −1.57 NS 3.69 PS
F AA 5 0.99 1.00 1.00 0.55 PS 0.31 PS −0.24 NS
F AA 3 0.34 0.53 0.54 1.80 PS 1.54 PS −0.26 NS
F JR 5 0.80 1.00 1.00 19.67 PS 19.21 PS −0.46 NS
F JR 2 0.99 1.00 1.00 0.52 PS 0.28 PS −0.24 NS
F JR 3 0.79 1.00 1.00 20.26 PS 19.79 PS −0.46 NS
F HD 6 0.98 1.00 1.00 1.19 PS 0.95 PS −0.24 NS

flex V4

F AA 7 0.99 0.98 0.99 −1.01 NS 1.75 PS 2.76 PS
F AA 1 0.80 0.81 0.89 0.13 PS 0.93 PS 0.80 PS
F AA 2 0.99 1.00 1.00 0.70 PS 0.44 PN −0.26 NS
F AA 3 0.51 0.54 0.63 −3.25 NS 4.99 PS 8.25 PS
F JR 4 0.99 0.99 0.99 −5.80 NS −4.39 NS 1.41 PS
F JR 2 0.99 1.00 1.00 0.70 NS −1.33 NS −2.02 NS
F JR 3 1.00 1.00 1.00 0.57 PS −0.08 PS −0.65 NS
F JR 1 0.51 0.54 0.63 −3.83 NS 4.42 PS 8.25 PS
F HD 5 0.99 1.00 1.00 0.61 PS −0.05 PS −0.65 NS

flex V5
F AA 4 0.92 0.89 0.91 −15.04 NS −3.74 NS 11.29 PS
F JR 2 1.00 1.00 1.00 1.05 PS 0.81 PS −0.24 NS

grep V1
F KP 2 1.00 1.00 1.00 −0.16 PS −1.77 NS −1.61 NS
F DG 4 0.77 0.80 0.91 2.24 PS 4.14 PS 1.90 PS

grep V2 F DG 1 0.67 0.66 0.83 1.91 PS 4.88 PS 2.98 PS

grep V3

F KP 7 0.49 0.84 0.84 35.42 PS 35.42 PS 0.00 EQ
F KP 3 0.62 0.65 0.76 −1.31 PS 7.32 PS 8.62 PS
F DG 8 0.42 0.60 0.70 2.00 PS 0.67 PS −1.32 NS
F DG 2 0.97 0.96 0.99 −4.04 NS 5.52 PS 9.56 PS
F DG 3 0.73 0.75 0.85 1.99 PS 4.29 PS 2.30 PN

grep V4
F KP 8 0.93 1.00 1.00 6.79 PS 4.58 PS −2.20 NS
F DG 3 0.89 0.62 0.62 −9.73 PS −9.74 PS −0.00 NS
F KP 6 0.97 0.98 0.90 −0.26 PS −1.84 NS −1.58 NS

gzip V1

F KL 2 0.47 0.81 0.82 10.51 PS 11.62 PS 1.12 PS
F KL 6 0.50 0.41 0.42 0.34 NS 0.34 NS 0.00 EQ
F KP 10 0.57 0.99 0.99 40.25 PS 40.25 PS 0.00 EQ
F KP 11 0.79 0.77 0.83 −3.06 NS −3.35 NS −0.29 PS
F KP 9 0.79 1.00 1.00 20.07 PS 19.54 PS −0.54 NN
F TW 3 0.90 1.00 1.00 10.68 PS 10.43 PS −0.25 NN
F KP 1 0.94 0.98 0.97 4.52 PS 2.06 PS −2.46 NS

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:24 S. Yoo et al.

Table XII. (Continued)

Subject Fault ID ¯τR ¯τT ¯τF ¯�ET R H1 ¯�EF R H2 ¯�EFT H3

gzip V2
F KL 1 0.67 0.73 0.62 −0.43 PS 0.34 PS 0.77 PS
F KL 3 0.93 0.87 0.90 1.07 PS 1.93 PS 0.86 PS
F KL 8 0.58 0.66 0.65 0.17 PS −0.03 PS −0.20 NS

gzip V4
F KL 1 0.50 0.99 0.99 46.53 PS 46.53 PS −0.00 NS
F KL 8 0.90 0.96 0.94 6.88 PS 6.53 PS −0.35 NS
F KP 3 0.53 0.99 0.99 43.85 PS 43.85 PS 0.00 EQ

gzip V5

F KL 1 0.93 0.96 0.95 5.75 PS 5.42 PS −0.33 NS
F KL 2 0.66 0.89 0.87 12.07 PS 9.66 PS −2.40 NS
F KL 4 0.50 0.91 0.91 34.90 PS 34.90 PS 0.00 EQ
F KL 8 0.69 0.95 0.95 25.75 PS 25.75 PS 0.00 EQ
F TW 1 0.67 0.74 0.86 1.36 PS −1.22 NS −2.58 NS

sed V2

F AG 20 0.62 0.64 0.63 0.71 PS 1.13 PS 0.42 PN
F AG 17 0.34 0.38 0.41 2.81 PS 2.99 PS 0.18 PS
F AG 12 0.94 0.96 0.97 0.49 NS 1.85 PS 1.36 PS
F AG 19 0.88 0.92 0.85 −3.69 NS −0.66 PS 3.03 PS
F AG 2 0.95 0.98 0.95 1.51 PS 1.34 NS −0.17 NS

sed V3

F AG 15 0.93 0.94 0.95 0.10 NS 0.59 PS 0.48 PS
F AG 5 0.82 0.88 0.91 5.69 PS 5.69 PS 0.00 PN
F AG 17 0.99 0.99 0.98 −0.71 NS −1.98 NS −1.27 NS
F AG 6 0.67 1.00 1.00 32.91 PS 32.92 PS 0.01 PN
F AG 11 0.95 0.98 0.99 0.93 NS 0.83 NS −0.10 PS
F AG 18 0.96 0.97 0.97 1.95 PS 1.97 PS 0.03 PS

sed V4 F KRM 2 0.59 0.94 0.94 35.28 PS 35.28 PS 0.00 EQ

sed V5

F KRM 8 0.97 0.99 0.99 1.18 PS 1.06 PS −0.11 NS
F KRM 1 0.92 0.94 0.94 1.48 NS 0.92 NS −0.56 PS
F KRM 2 0.97 1.00 1.00 3.38 PS 3.47 PS 0.09 PS
F KRM 10 0.78 0.87 0.89 8.23 PS 8.23 PS 0.00 EQ

Table XIII. Detailed Statistical Analysis for Robustness Study

Subject Fault ID ¯τR ¯τT ¯τF ¯�ET R H1 ¯�EF R H2 ¯�EFT H3

flex V2

F AA 4 0.63 0.63 0.61 1.64 PS 3.23 PS 1.58 PS
F AA 5 0.61 0.60 0.63 −2.69 NS −0.29 PS 2.39 PS
F AA 2 0.46 0.50 0.50 −6.49 NS −2.26 PS 4.24 PS
F AA 3 0.46 0.96 0.96 49.37 PS 49.37 PS 0.00 EQ
F JR 6 0.48 0.97 0.98 35.62 PS 35.79 PS 0.17 PS
F HD 8 0.96 0.95 0.96 −11.36 NS −7.48 NS 3.87 PS
F JR 5 1.00 1.00 1.00 0.10 PS 0.03 NS −0.06 NS
F JR 2 0.97 0.95 0.96 −11.98 NS −8.11 NS 3.87 PS
F JR 3 1.00 0.99 0.99 −6.35 NS −5.96 NS 0.39 PS
F JR 1 1.00 1.00 1.00 0.09 PS 0.03 NS −0.06 NS
F HD 2 0.88 1.00 1.00 12.37 PS 11.24 PS −1.13 NS
F HD 6 0.99 1.00 1.00 0.39 PS −2.04 NS −2.43 NS
F HD 7 0.95 1.00 1.00 4.90 PS 4.92 PS 0.02 PN
F HD 4 0.69 0.69 0.71 1.44 PS 4.87 PS 3.44 PS

flex V3

F AA 4 0.49 0.50 0.50 −5.26 NS −1.58 NS 3.68 PS
F AA 5 0.99 1.00 1.00 0.55 PS 0.31 PS −0.24 NS
F AA 3 0.34 0.53 0.54 1.80 PS 1.54 PS −0.25 NS
F JR 5 0.80 1.00 1.00 19.67 PS 19.23 PS −0.44 NS
F JR 2 0.99 1.00 1.00 0.52 PS 0.28 PS −0.24 NS
F JR 3 0.79 1.00 1.00 20.26 PS 19.82 PS −0.44 NS
F HD 6 0.98 1.00 1.00 1.19 PS 0.95 PS −0.24 NS

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:25

Table XIII. (Continued)

Subject Fault ID ¯τR ¯τT ¯τF ¯�ET R H1 ¯�EF R H2 ¯�EFT H3

flex V4

F AA 7 0.99 0.98 0.99 −1.01 NS 1.75 PS 2.76 PS
F AA 1 0.80 0.81 0.87 0.13 PS 0.82 PS 0.69 PS
F AA 2 0.99 1.00 1.00 0.70 PS 0.45 PN −0.25 NS
F AA 3 0.51 0.54 0.63 −3.25 NS 4.94 PS 8.19 PS
F JR 4 0.99 0.99 1.00 −5.80 NS −2.75 NS 3.05 PS
F JR 2 0.99 1.00 1.00 0.70 NS −1.60 NS −2.30 NS
F JR 3 1.00 1.00 1.00 0.57 PS 0.20 PS −0.37 NS
F JR 1 0.51 0.54 0.63 −3.83 NS 4.37 PS 8.19 PS
F HD 5 0.99 1.00 1.00 0.61 PS 0.24 PS −0.37 NS

flex V5
F AA 4 0.92 0.89 0.90 −15.04 NS −3.77 NS 11.26 PS
F JR 2 1.00 1.00 1.00 1.05 PS 0.81 PS −0.24 NS

grep V2 F DG 1 0.67 0.66 0.83 −3.35 NS 4.90 PS 8.25 PS

grep V3

F KP 7 0.49 0.84 0.84 34.91 PS 34.91 PS 0.00 EQ
F KP 3 0.62 0.65 0.76 −1.45 PS 7.39 PS 8.84 PS
F DG 8 0.42 0.59 0.70 2.02 PS 2.28 PS 0.26 PS
F DG 2 0.97 0.96 0.99 −4.11 NS 5.38 PS 9.49 PS
F DG 3 0.73 0.75 0.86 2.06 PS 5.49 PS 3.44 PS

grep V4
F KP 8 0.93 1.00 1.00 6.79 PS 4.73 PS −2.06 NS
F DG 3 0.89 0.82 0.81 −0.90 PS −1.01 NN −0.12 NS
F KP 6 0.97 0.98 0.90 −0.26 PS −1.84 NS −1.58 NS

gzip V2
F KL 1 0.67 0.73 0.59 −0.52 PS −0.36 NS 0.16 NS
F KL 3 0.93 0.91 0.95 2.92 PS 3.50 PS 0.59 PS
F KL 8 0.58 0.66 0.55 0.04 PS 0.11 PS 0.07 PN

gzip V4
F KL 1 0.50 0.99 0.99 46.53 PS 46.53 PS 0.00 EQ
F KL 8 0.90 0.96 0.95 6.92 PS 6.56 PS −0.35 NS
F KP 3 0.53 0.99 0.99 43.85 PS 43.85 PS 0.00 EQ

gzip V5

F KL 1 0.93 0.96 0.94 5.75 PS 5.41 PS −0.34 NS
F KL 2 0.66 0.89 0.86 12.07 PS 9.09 PS −2.98 NS
F KL 4 0.50 0.93 0.93 35.96 PS 35.96 PS 0.00 EQ
F KL 8 0.69 0.96 0.95 26.22 PS 26.22 PS 0.00 EQ
F TW 1 0.67 0.72 0.63 1.62 PS 1.21 PS −0.41 PS

sed V2

F AG 20 0.62 0.65 0.60 0.60 PS 0.11 PN −0.49 NS
F AG 17 0.34 0.38 0.40 2.44 PS 2.61 PS 0.17 PS
F AG 12 0.94 0.95 0.98 0.45 NS 1.56 PS 1.10 PS
F AG 19 0.88 0.92 0.94 −3.71 NS −1.69 NS 2.02 PS
F AG 2 0.95 0.98 0.94 1.55 PS 1.32 NS −0.23 NS

sed V3

F AG 15 0.93 0.94 0.95 −0.21 NS 0.05 NS 0.26 PN
F AG 5 0.82 0.87 0.91 5.39 PS 5.41 PS 0.01 PS
F AG 17 0.99 0.99 0.99 −0.39 NS −3.06 NS −2.67 NS
F AG 6 0.67 1.00 1.00 32.78 PS 32.99 PS 0.20 NS
F AG 11 0.95 0.97 0.98 0.88 NS 4.63 PS 3.75 PS
F AG 18 0.96 0.98 0.98 2.50 PS 2.53 PS 0.03 PS

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:26 S. Yoo et al.

Table XIV. Detailed Statistical Analysis of Comparison to Similarity Sorting Approach

Subject Fault ID ¯τF τ̄S ¯�EF R ¯�ESR H

flex V1

F AA 6 0.55 0.50 1.88 −11.73 PS
F AA 1 0.76 0.97 9.46 24.34 NS
F AA 2 1.00 1.00 0.11 0.25 NS
F AA 3 0.75 0.50 −0.23 −11.58 PS
F JR 4 1.00 1.00 −1.89 −1.91 PN
F JR 6 1.00 1.00 −4.36 −2.13 PS
F JR 5 1.00 1.00 0.56 0.49 PS
F JR 2 0.76 0.97 8.11 22.98 NS
F JR 3 1.00 1.00 −1.12 −20.14 PS
F HD 3 1.00 1.00 0.53 0.67 NS
F HD 1 0.56 0.50 3.26 −8.81 PS
F HD 6 0.50 0.98 4.19 43.32 NS
F HD 7 0.99 0.94 0.52 −0.01 PS
F HD 4 0.56 0.50 3.41 −12.89 PS
F HD 5 1.00 1.00 −1.41 −0.23 PS

flex V2

F AA 4 0.61 0.77 −0.54 34.09 NS
F AA 5 0.64 0.52 0.87 17.12 NS
F AA 2 0.50 0.50 −2.32 −16.40 PS
F AA 3 0.99 0.99 52.50 52.50 EQ
F JR 6 0.97 0.97 35.78 35.84 PS
F HD 8 0.99 0.54 1.78 −28.51 PS
F JR 5 1.00 1.00 −0.01 0.04 PS
F JR 2 0.99 0.54 1.16 −29.13 PS
F JR 3 1.00 0.97 −3.25 −12.48 PS
F JR 1 1.00 1.00 −0.01 0.04 PS
F HD 2 1.00 1.00 11.87 12.08 PS
F HD 6 1.00 1.00 −5.64 0.08 NS
F HD 7 1.00 1.00 4.92 4.88 PN
F HD 4 0.71 0.52 5.00 1.46 PS

flex V3

F AA 4 0.50 0.50 −1.57 −0.67 NS
F AA 5 1.00 1.00 0.31 0.44 NS
F AA 3 0.54 0.50 1.54 −10.20 PS
F JR 5 1.00 1.00 19.21 19.53 NN
F JR 2 1.00 1.00 0.28 0.41 NS
F JR 3 1.00 1.00 19.79 20.12 NN
F HD 6 1.00 1.00 0.95 1.07 NS

flex V4

F AA 7 0.99 1.00 1.75 1.96 NN
F AA 1 0.89 0.81 0.93 −0.49 PS
F AA 2 1.00 1.00 0.44 0.42 PS
F AA 3 0.63 0.50 4.99 −7.88 PS
F JR 4 0.99 0.97 −4.39 −11.69 PS
F JR 2 1.00 1.00 −1.33 0.73 NS
F JR 3 1.00 1.00 −0.08 0.64 NS
F JR 1 0.63 0.50 4.42 −8.45 PS
F HD 5 1.00 1.00 −0.05 0.68 NS

flex V5
F AA 4 0.91 0.52 −3.74 −27.66 PS
F JR 2 1.00 1.00 0.81 −18.53 PS

grep V1
F KP 2 1.00 1.00 −1.77 −8.26 PS
F DG 4 0.91 0.76 4.14 0.76 PS

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:27

Table XIV. (Continued)

Subject Fault ID ¯τF τ̄S ¯�EF R ¯�ESR H
grep V2 F DG 1 0.83 0.55 4.88 −0.89 PS

grep V3

F KP 7 0.84 0.84 35.42 35.42 EQ
F KP 3 0.76 0.51 7.32 −8.77 PS
F DG 8 0.70 0.51 0.67 −0.34 PS
F DG 2 0.99 0.70 5.52 −11.96 PS
F DG 3 0.85 0.56 4.29 −6.07 PS

grep V4
F KP 8 1.00 1.00 4.58 6.17 NN
F DG 3 0.62 0.61 −9.74 −9.93 PS
F KP 6 0.90 0.88 −1.84 −2.21 PS

gzip V1

F KL 2 0.82 0.81 11.62 11.10 PS
F KL 6 0.42 0.42 0.34 0.34 EQ
F KP 10 0.99 0.99 40.25 40.25 EQ
F KP 11 0.83 0.84 −3.35 −4.22 PS
F KP 9 1.00 1.00 19.54 20.33 NN
F TW 3 1.00 1.00 10.43 10.39 PN
F KP 1 0.97 0.98 2.06 2.86 NS

gzip V2
F KL 1 0.62 0.56 0.34 0.44 NS
F KL 3 0.90 0.87 1.93 0.27 PS
F KL 8 0.65 0.62 −0.03 −0.18 PS

gzip V4
F KL 1 0.99 0.99 46.53 46.53 EQ
F KL 8 0.94 0.94 6.53 6.62 NN
F KP 3 0.99 0.99 43.85 43.85 EQ

gzip V5

F KL 1 0.95 0.94 5.42 5.50 NN
F KL 2 0.87 0.85 9.66 7.42 PS
F KL 4 0.91 0.91 34.90 34.90 EQ
F KL 8 0.95 0.95 25.75 25.75 EQ
F TW 1 0.86 0.53 −1.22 −5.90 PS

sed V2

F AG 20 0.63 0.53 1.13 −7.25 PS
F AG 17 0.41 0.40 2.99 3.26 NS
F AG 12 0.97 0.83 1.85 −6.63 PS
F AG 19 0.85 0.73 −0.66 −6.73 PS
F AG 2 0.95 0.93 1.34 1.36 PS

sed V3

F AG 15 0.95 0.92 0.59 0.83 PS
F AG 5 0.91 0.89 5.69 5.70 NN
F AG 17 0.98 1.00 −1.98 1.01 NS
F AG 6 1.00 1.00 32.92 33.35 NS
F AG 11 0.99 0.93 0.83 −0.17 PS
F AG 18 0.97 0.97 1.97 1.97 NN

sed V4 F KRM 2 0.94 0.94 35.28 35.28 EQ

sed V5

F KRM 8 0.99 0.98 1.06 1.10 NN
F KRM 1 0.94 0.93 0.92 2.99 NS
F KRM 2 1.00 1.00 3.47 2.96 PS
F KRM 10 0.89 0.86 8.23 8.23 EQ

REFERENCES

ABREU, R., ZOETEWEIJ, P., AND VAN GEMUND, A. J. C. 2007. On the accuracy of spectrum-based fault localization.
In Proceedings of the Testing: Academic and Industrial Conference Practice and Research Techniques -
MUTATION. IEEE Computer Society, 89–98.

ALLEN, E. B. AND KHOSHGOFTAAR, T. M. 1999. Measuring coupling and cohesion: An information-theory ap-
proach. In Proceedings of the 6th International Symposium on Software Metrics (METRICS’99). IEEE.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

19:28 S. Yoo et al.

ARBUCKLE, T. 2011. Studying software evolution using artefacts’ shared information content. Sci. Comput.
Program. 76, 12, 1078–1097.

ARTZI, S., DOLBY, J., TIP, F., AND PISTOIA, M. 2010. Directed test generation for effective fault localization. In
Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA’10). ACM
Press, New York, 49–60.

BAAH, G. K., PODGURSKI, A., AND HARROLD, M. J. 2010. Causal inference for statistical fault localization. In
Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA’10). ACM
Press, New York, 73–84.

BOREALE, M., CLARK, D., AND GORLA, D. 2010. A semiring-based trace semantics for processes with applications
to information leakage analysis. In Theoretical Computer Science, C. Calude and V. Sassone, Eds., IFIP
Advances in Information and Communication Technology, vol. 323, Springer, 340–354.

CLARK, D., HUNT, S., AND MALACARIA, P. 2002. Quantitative analysis of the leakage of confidential data. Electron.
Not. Theor. Comput. Sci. 59, 3, 1–14.

CLARK, D., HUNT, S., AND MALACARIA, P. 2007. A static analysis for quantifying information flow in a simple
imperative language. J. Comput. Secur. 15, 3, 321–372.

CLARKSON, M. R., MYERS, A. C., AND SCHNEIDER, F. B. 2009. Quantifying information flow with beliefs. J. Comput.
Secur. 17, 5, 655–701.

CLEVE, H. AND ZELLER, A. 2005. Locating causes of program failures. In Proceedings of the 27th International
Conference on Software Engineering (ICSE’05). ACM Press, New York, 342–351.

COVER, T. M. AND THOMAS, J. A. 1991. Elements of Information Theory. Wiley Interscience.
DENNING, D. E. R. 1982. Cryptography and Data Security. Addison-Wesley.
DO, H., ELBAUM, S. G., AND ROTHERMEL, G. 2005. Supporting controlled experimentation with testing tech-

niques: An infrastructure and its potential impact. Empirical Softw. Engin. 10, 4, 405–435.
ELBAUM, S. G., MALISHEVSKY, A. G., AND ROTHERMEL, G. 2000. Prioritizing test cases for regression testing. In

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’00). ACM Press,
New York, 102–112.

GONZALEZ-SANCHEZ, A., PIEL, E., ABREU, R., GROSS, H.-G., AND VAN GEMUND, A. J. C. 2011. Prioritizing tests for
software fault diagnosis. Softw. Pract. Exper. 41, 10, 1105–1129.

HAO, D., ZHANG, L., PAN, Y., MEI, H., AND SUN, J. 2008. On similarity-awareness in testing-based fault local-
ization. Autom. Softw. Engin. 15, 207–249.

JIANG, B., ZHANG, Z., TSE, T. H., AND CHEN, T. Y. 2009. How well do test case prioritization techniques support
statistical fault localization. In Proceedings of the 33rd Annual International Computer Software and
Applications Conference (COMPSAC’09). IEEE Computer Society Press, 99–106.

JONES, J. A. AND HARROLD, M. J. 2005. Empirical evaluation of the tarantula automatic fault-localization
technique. In Proceedings of the 20th International Conference on Automated Software Engineering
(ASE’05). ACM Press, New York, 273–282.

JONES, J. A., HARROLD, M. J., AND STASKO, J. 2002. Visualization of test information to assist fault localization.
In Proceedings of the 24th International Conference on Software Engineering. ACM Press, New York,
467–477.

JONES, J. A., HARROLD, M. J., AND STASKO, J. T. 2001. Visualization for fault localization. In Proceedings of the
ICSE Workshop on Software Visualization. 71–75.

KIM, J.-M. AND PORTER, A. 2002. A history-based test prioritization technique for regression testing in resource
constrained environments. In Proceedings of the 24th International Conference on Software Engineering.
ACM Press, New York, 119–129.

LEON, D. AND PODGURSKI, A. 2003. A comparison of coverage-based and distribution-based techniques for
filtering and prioritizing test cases. In Proceedings of the IEEE International Symposium on Software
Reliability Engineering (ISSRE’03). IEEE Computer Society Press, 442–456.

LI, Z., HARMAN, M., AND HIERONS, R. M. 2007. Search algorithms for regression test case prioritization. IEEE
Trans. Softw. Engin. 33, 4, 225–237.

LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN, M. I. 2005. Scalable statistical bug isolation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’05). ACM Press, New York, 15–26.

RENIERES, M. AND REISS, S. 2003. Fault localization with nearest neighbor queries. In Proceedings of the 18th

International Conference on Automated Software Engineering. 30–39.
ROTHERMEL, G., UNTCH, R. J., AND CHU, C. 2001. Prioritizing test cases for regression testing. IEEE Trans.

Softw. Engin. 27, 10, 929–948.
SHANNON, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

Fault Localization Prioritization: Information-Theoretic and Coverage-Based Approaches 19:29

TONELLA, P., AVESANI, P., AND SUSI, A. 2006. Using the case-based ranking methodology for test case prioriti-
zation. In Proceedings of the 22nd International Conference on Software Maintenance (ICSM’06). IEEE
Computer Society, 123–133.

YOO, S. AND HARMAN, M. 2012. Regression testing minimisation, selection and prioritisation: A survey. Softw.
Testing Verif. Reliabil. 22, 2, 67–120.

YOO, S., HARMAN, M., TONELLA, P., AND SUSI, A. 2009. Clustering test cases to achieve effective and scalable
prioritization incorporating expert knowledge. In Proceedings of International Symposium on Software
Testing and Analysis (ISSTA’09). ACM Press, New York, 201–211.

YU, Y., JONES, J. A., AND HARROLD, M. J. 2008. An empirical study of the effects of test-suite reduction on fault
localization. In Proceedings of the International Conference on Software Engineering (ICSE’08). ACM
Press, New York, 201–210.

Received April 2011; revised April 2012; accepted May 2012

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 19, Pub. date: July 2013.

