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Abstract It has often been claimed that SBSE uses so-called ‘embarrassingly paral-
lel’ algorithms that will imbue SBSE applications with easy routes to dramatic perfor-
mance improvements. However, despite recent advances in multicore computation,
this claim remains largely theoretical; there are few reports of performance improve-
ments using multicore SBSE. This paper shows how inexpensive General Purpose
computing on Graphical Processing Units (GPGPU) can be used to massively paral-
lelise suitably adapted SBSE algorithms, thereby making progress towards cheap,
easy and useful SBSE parallelism. The paper presents results for three different
algorithms: NSGA2, SPEA2, and the Two Archive Evolutionary Algorithm, all three
of which are adapted for multi-objective regression test selection and minimization.
The results show that all three algorithms achieved performance improvements up to
25 times, using widely available standard GPUs. We also found that the speed-up was
observed to be statistically strongly correlated to the size of the problem instance; as
the problem gets harder the performance improvements also get better.
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1 Introduction

Search Based Software Engineering (SBSE) is a promising sub-area within Software
Engineering that reformulates Software Engineering problems as search-based opti-
misation problems (Clark et al. 2003; Harman 2007; Harman and Jones 2001). There
has been much recent interest in SBSE, with over 800 papers on the topic and several
recent surveys (Ali et al. 2010; Afzal et al. 2009; Räihä 2009; Harman et al. 2012).

One weakness shared by many SBSE techniques is their significant execution
time. It is an inherent drawback because many meta-heuristic optimisation algo-
rithms are designed in such a way that they evaluate a large number of potential
candidates to arrive at the set of proposed solutions. This process is often computa-
tionally demanding and can render an SBSE technique infeasible in practice, because
it would simply require too much time to optimise for complex real-world SE prob-
lems. Lack of scalability has been shown to be an important barrier to wider uptake of
Software Engineering research (Cordy 2003; Chau and Tam 1997; Premkumar and
Potter 1995).

Fortunately, many of the algorithms used in SBSE, such as the most widely used
evolutionary algorithms (Harman et al. 2012), are classified as ‘embarrassingly par-
allel’ due to their inherent potential for parallelism. The high computational require-
ment created by the necessity to examine many solutions does not necessitate long
elapsed time as the examinations can be done in parallel. The computation process
(fitness evaluation) for each candidate solution is identical, thereby making the
overall process well-suited to Single Instruction Multiple Data (SIMD) parallelism.

The use of multicore computing is rapidly becoming commonplace, with very
widely available and inexpensive platforms that offer several hundreds of processing
elements that implement SIMD parallelism. Furthermore, it is likely that we shall see
significant advances in such platforms in the near future, with thousands and perhaps
tens of thousands of simple processing elements becoming available within the reach
of ‘standard’ desktop computation.

Many SBSE fitness functions are ideally-suited to such simple processing ele-
ments. However, there has been little work on multicore SBSE. The first authors to
suggest the use of multicore SBSE were Mitchell et al. (2001) who used a distributed
architecture to parallelise modularisation through the application of search-based
clustering. Subsequently, Mahdavi et al. (2003) used a cluster of standard PCs to
implement a parallel hill climbing algorithm. More recently, Asadi et al. (2010) used
a distributed architecture to parallelise a genetic algorithm for the concept location
problem. However, hitherto, no authors1 have used General Purpose computing on
Graphical Processing Units (GPGPU) for SBSE.

In this paper we propose GPGPU SBSE; the use of GPGPU devices to achieve
multicore execution of SBSE, using simple fitness computations mapped across the
multiple processing elements of standard GPGPU architectures. We report results
for the application of GPGPU SBSE to the multi-objective regression test selection
problem (also known as test case minimization).

1This paper is an extended version of our SSBSE 2011 paper (Yoo et al. 2011a), which was the first
to propose GPGPU SBSE.
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In order to apply GPGPU to Software Engineering optimisation problems, the
specialized graphics manipulation hardware needs to be harnessed for a purpose
for which it was not originally designed. Fortunately, the recent trend towards
‘general purpose’ graphics processing units lends itself well to this task. The un-
derlying firmware typically implements certain matrix manipulation operations very
efficiently. The key to unlocking the potential of GPGPU therefore lies in the ability
to reformulate the optimisation problem in terms of these specific matrix manipula-
tion operations.

This paper focusses on the problem of Search Based Regression Testing, which
is one problem in the general area of Search Based Software Testing. Regression
Testing is concerned with the process of re–testing software after change. After each
change to the system, the pool of available test data needs to be re-executed in order
to check whether change has introduced new faults. Regression Testing therefore
seeks to answer the question ‘has the software regressed?’. There have been several
survey papers on Regression Testing applications and techniques that provide a more
detailed treatment (Harrold and Orso 2008; Yoo and Harman 2012a; Engström et al.
2009).

In search based regression testing, the goal is to use search based optimisation
algorithms to find optimal sets of test cases (regression test suite minimisation Yoo
and Harman 2007) or to order test cases for regression testing (regression test priori-
tisation Walcott et al. 2006; Li et al. 2007). This paper concentrates upon the former
problem of regression test minimisation. Recent results have shown that this is a
promising area of SBSE application; the results obtained from the SBSE algorithms
have been shown to be human competitive (de Souza et al. 2010).

Fast regression test minimisation is an important problem for practical software
testers, particularly where large volumes of testing are required on a tight build
schedule. For instance, the IBM middleware product used as one of the systems in
the empirical study in this paper is a case in point. While it takes over four hours to
execute the entire test suite for this system, the typical smoke test scenario performed
after each code submit is assigned only an hour or less of testing time, forcing the
tester to select a subset of tests from the available pool. A multi-objective approach
to test suite minimisation (Yoo and Harman 2007) provides an ideal solution as it can
recommend subsets of tests that can be executed within different time budgets. How-
ever, as the selection of tests in the smoke tests is not static and depends on the code
submitted, the given time budget should account for both the computation involved
in test suite minimisation and for running the tests. Therefore it is important that
test suite optimization will be done in a small fraction of the time, thereby allowing
sophisticated minimisation to be used on standard machines.

The paper modifies three widely used evolutionary algorithms (SPEA2, NSGA2
and the Two Archive Algorithm) for the multi-objective regression test minimisation
problem. The algorithms are modified to support implementation on a GPU by
transforming the fitness evaluation of the population of individual solutions into a
matrix-multiplication problem, which is inherently parallel and renders itself very
favourably to the GPGPU approach. This transformation to matrix-multiplication
is entirely straightforward and may well be applicable to other SBSE problems,
allowing them to benefit from similar scale-ups to those reported in this paper.

The modified algorithms have been implemented using OpenCL technology, a
framework for GPGPU. The paper reports the results of the application of the
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parallelised GPGPU algorithms on 13 real-world programs, including widely stud-
ied, but relatively small examples from the Siemens’ suite (Hutchins et al. 1994),
through larger more realistic real-world examples from the Software-Infrastructure
Repository (SIR) for testing (Do et al. 2005), and on a very large IBM middleware
regression testing problem.

The primary contributions of the paper are as follows:

1. The paper presents results for real-world instances of the multi-objective test
suite minimisation problem. The results indicate that dramatic speed-up is
achievable. For the systems used in the empirical study, speed-ups over 25×
were observed. The empirical evidence suggests that, for larger problems where
the scale-up is the most needed, the degree of speed-up is the most dramatic; a
problem that takes over an hour using conventional techniques, can be solved in
minutes using the GPGPU approach. This has important practical ramifications
because regression testing cycles are often compressed: overnight build cycles
are not uncommon.

2. The paper studies three different multi-objective evolutionary algorithms based
on both GPU- and CPU-based parallelisation methods to provide robust empir-
ical evidence for the scalability conferred by the use of GPGPU. The GPGPU
parallelisation technique maintained the same level of speed-up across all al-
gorithms studied. The empirical evidence highlights the limitations of CPU-
based parallelisation: with smaller problems, multi threading overheads erode
the speed-up, whereas with larger problems it fails to scale as well as GPU-based
parallelisation.

3. The paper explores the factors that influence the degree of speed-up achieved,
revealing that both program size and test suite size are closely correlated to the
degree of speed-up achieved. The data have a good fit to a model for which
increases in the degree of scale-up achieved are logarithmic in both program and
test suite size.

The rest of the paper is organised as follows. Section 2 presents background
material on test suite minimisation and GPGPU-based evolutionary computation.
Section 3 describes how the test suite minimisation problem is re-formulated for a
parallel algorithm, which is described in detail in Section 4. Section 5 describes the
details of the empirical study, the results of which are analysed in Section 6. Section 7
discusses threats to validity and Section 8 presents the related work. Section 9
concludes.

2 Background

Multi-objective Test Suite Minimisation The need for test suite minimisation arises
when the regression test suite of an existing software system grows to such an extent
that it may no longer be feasible to execute the entire test suite (Rothermel et al.
2002b). In order to reduce the size of the test suite, any redundant test cases in
the test suite need to be identified and removed. One widely accepted criterion for
redundancy is defined in relation to the coverage achieved by test cases (Rothermel
et al. 1998; Black et al. 2004). If the test coverage achieved by test case t1 is a subset
of the test coverage achieved by test case t2, it can be said that the execution of t1
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is redundant as long as t2 is also executed. The aim of test suite minimisation is to
obtain the smallest subset of test cases that are not redundant with respect to a set of
test requirements. More formally, test suite minimisation problem can be defined as
follows (Yoo and Harman 2012a):

2.1 Test Suite Minimisation Problem

Given A test suite of m tests, T, a set of l test requirements {r1, . . . , rl}, that must be
satisfied to provide the desired ‘adequate’ testing of the program, and subsets of T,
Tis, one associated with each of the ris such that any one of the test cases t j belonging
to Ti can be used to achieve requirement ri.

Problem Find a minimal representative set,2 T ′, of test cases from T that satisfies
all ris.

The testing criterion is satisfied when every test-case requirement in {r1, . . . , rl} is
satisfied. A test-case requirement, ri, is satisfied by any test case, t j, that belongs to
Ti, a subset of T. If we represent test cases as vertices of a bipartite graph on the
left side, and the requirements on the right side, and the satisfiability relationship as
edges between two sides, the minimal representative set of test cases is the hitting
set of Tis (i.e. the subset of vertices on the left, the union of whose connected right
side vertices equals the set of all requirements). Furthermore, in order to maximise
the effect of minimisation, T ′ should be the minimal hitting set of Tis. The minimal
representative set problem is an NP-complete problem as is the dual problem of the
minimal set cover problem (Garey and Johnson 1979).

The NP-hardness of the problem encouraged the use of heuristics and meta-
heuristics. The greedy approach (Offutt et al. 1995) as well as other heuristics for
minimal hitting set and set cover problem (Harrold et al. 1993; Chen and Lau 1995)
have been applied to test suite minimisation but these approaches were not cost-
cognisant and only dealt with a single objective (test coverage). With the single-
objective problem formulation, the solution to the test suite minimisation problem is
one subset of test cases that maximises the test coverage with minimum redundancy.

Later, the problem was reformulated as a multi-objective optimisation prob-
lem (Yoo and Harman 2007). With the multi-objective problem formulation, the
solution to the test suite minimisation problem is not just a single solution but a set of
non-dominated, Pareto-efficient solutions. This set of solutions reveals the trade-off
between test coverage and the cost of testing that is specific to the test suite in consid-
eration. For example, with the solution to the multi-objective test suite minimisation
problem, it is possible not only to know what the minimal subset that achieves the
maximum test coverage is, but also to know how much test coverage is possible for
any given testing budget.

Since the greedy algorithm may not always produce Pareto optimal solutions
for multi-objective test suite minimisation problems, Multi-Objective Evolutionary
Algorithms (MOEAs) have been applied (Maia et al. 2009; Yoo and Harman 2007).
While this paper studies three selected MOEAs, the principle of parallelising fitness

2Given a universe (in our context, all test requirements), a representative set is the set of subsets of
universe (in our context, subsets of test requirements achieved by different tests) that whose union
is equal to the universe.
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evaluation of multiple solutions in the population of an MOEA applies universally
to any MOEA.

GPGPU and Evolutionary Algorithms Graphics cards have become a compelling
platform for intensive computation, with a set of resource-hungry graphic manip-
ulation problems that have driven the rapid advances in their performance and
programmability (Owens et al. 2007). As a result, consumer-level graphics cards
boast tremendous memory bandwidth and computational power. For example, ATI
Radeon HD4850 (the graphics card used in the empirical study in the paper), costing
about $150 as of April 2010, provides 1000GFlops processing rate and 63.6 GB/s
memory bandwidth. Graphics cards are also becoming faster more quickly compared
to CPUs. In general, it has been reported that the computational capabilities of
graphics cards, measured by metrics of graphics performance, have compounded
at the average yearly rate of 1.7× (rendered pixels/s) to 2.3× (rendered ver-
tices/s) (Owens et al. 2007). This significantly outperforms the growth in traditional
microprocessors; using the SPEC benchmark, the yearly rate of growth for CPU
performance has been measured at 1.4× by a recent survey (Ekman et al. 2005).

The disparity between the two platforms is caused by the different architecture.
CPUs are optimised for executing sequential code, whereas GPUs are optimised for
executing the same instruction (the graphics shader) with data parallelism (different
objects on the screen). This Single Instruction Multiple Data (SIMD) architecture
facilitates hardware-controlled massive data parallelism, which results in the higher
performance for certain types of problems in which a large dataset has to be
submitted to the same operations.

It is precisely this massive data-parallelism of General-Purpose computing on
Graphics Processing Units (GPGPU) that makes GPGPU as an ideal platform for
parallel evolutionary algorithms. Many of these algorithms require the calculation
of fitness (single instruction) for multiple individual solutions in the population
pool (multiple data). Early work has exploited this potential for parallelism with
both single- and multi-objective evolutionary algorithms (Tsutsui and Fujimoto 2009;
Wilson and Banzhaf 2009; Wong 2009). However, most existing evaluation has been
performed on benchmark problems rather than practical applications.

3 Parallel Formulation of MOEA for Test Suite Minimisation

Parallel Fitness Evaluation The paper considers, for parallelisation, a multi-
objective test suite minimisation problem from existing work (Yoo and Harman
2007). In order to parallelise test suite minimisation, the fitness evaluation of
a generation of individual solutions for the test suite minimisation problem is
re-formulated as a matrix multiplication problem. Instead of computing the two
objectives (i.e. coverage of test requirements and execution cost) for each individual
solution, the solutions in the entire population are represented as a matrix, which in
turn is multiplied by another matrix that represents the trace data of the entire test
suite. The result is a matrix that contains information for both test goal coverage
and execution cost. While the paper considers structural coverage as the test goal,
the proposed approach is equally applicable to any other testing criteria, either
coverage generated such as data-flow coverage and functional coverage or even



556 Empir Software Eng (2013) 18:550–593

those generated manually, provided that there is a clear mapping between tests and
the test requirements they achieve.

More formally, let matrix A contain the trace data that capture the test require-
ments achieved by each test; the number of rows of A equals the number of test
requirements to be covered, l, and the number of columns of A equals the number of
test cases in the test suite, m. Entry ai, j of A stores 1 if the test goal fi was executed
(i.e. covered) by test case t j, 0 otherwise.

A =

⎛
⎜⎜⎝

a1,1 . . . a1,m

a2,1 . . . a2,m

. . .

al,1 . . . al,m

⎞
⎟⎟⎠

The multiplier matrix, B, is a representation of the current population of individ-
ual solutions that are being considered by a given MOEA. Let B be an m-by-n matrix,
where n is the size of population for the given MOEA. Entry b j,k of B stores 1 if test
case t j is selected by the individual pk, 0 otherwise. In other words, each column in
matrix B corresponds to a vector of decision variables that denote the selected test
cases.

B =

⎛
⎜⎜⎝

b 1,1 . . . b 1,n

b 2,1 . . . b 2,n

. . .

b m,1 . . . b m,n

⎞
⎟⎟⎠

The fitness evaluation of the entire generation is performed by the matrix multipli-
cation of C = A × B. Matrix C is a l-by-n matrix; entry ci,k of C denotes the number
of times test goal fi was covered by different test cases that had been selected by the
individual pk.

Cost and Coverage In order to incorporate the execution cost as an additional
objective to the MOEA, the basic reformulation is extended with an extra row in
matrix A. The new matrix, A′, is an l + 1 by m matrix that contains the cost of each
individual test case in the last row. The extra row in A′ results in an additional row
in C′ which equals to A′ × B as follows:

A′ =

⎛
⎜⎜⎜⎜⎝

a1,1 . . . a1,m

a2,1 . . . a2,m

. . .

al,1 . . . al,m

cost(t1) . . . cost(tm)

⎞
⎟⎟⎟⎟⎠

C′ =

⎛
⎜⎜⎜⎜⎝

c1,1 . . . c1,n

c2,1 . . . c2,n

. . .

cl,1 . . . cl,n

cost(p1) . . . cost(pn)

⎞
⎟⎟⎟⎟⎠

By definition, an entry cl+1,k in the last row in C′ is defined as cl+1,k =∑m
j=1 al+1, j · b j,k = ∑m

j=1 cost(t j) · b j,k. That is, cl+1,k equals the sum of costs of all test
cases selected (b j,k equals 1) by the k-th individual solution pk, i.e. cost(pk). Similarly,
after the multiplication, the k-th column of matrix C′ contains the coverage of test
requirements achieved by individual solution pk. However, this information needs
to be summarised into a percentage coverage, using a step function f as follows:
coverage(pk) =

∑m
i=1 f (ci,k)

l , f (x) = 1 (x > 0) or 0 (otherwise). The role of the step
function is to translate the linear sum of how many times a test goal has been covered
into boolean coverage of whether it was covered or not.
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The cost objective can be calculated as a part of the matrix multiplication because
it can be linearly computed from the decision variable vectors (columns of matrix
B). Other objectives that share the linearity may also be computed using matrix
multiplication. However, the coverage of test requirements requires a separate step
to be performed. Each column of C′ contains the number of times individual testing
requirements were covered by the corresponding solution; in order to calculate the
coverage metric for a solution, it is required to iterate over the corresponding column
of C′. The coverage calculation is highly parallel in nature because each column can
be independently iterated over and, therefore, can take the advantage of GPGPU
architecture by running multiple threads.

4 Algorithms

This section presents the parallel fitness evaluation components for CPU and GPU
and introduces the MOEAs that are used in the paper.

Parallel Matrix Multiplication Algorithm Matrix multiplication is inherently paral-
lelisable as the calculation for an individual entry of the product matrix does not
depend on the calculation of any other entry. Algorithm 1 shows the pseudo-code of
the parallel matrix multiplication algorithm using the matrix notation in Section 3.

Algorithm 1 uses one thread per element of matrix C′, resulting in a total of (l +
1) · n threads. Each thread is identified with unique thread id, tid. Given a thread id,
Algorithm 1 calculates the corresponding element of the resulting matrix, C′

y,x given
the width of matrix A, wA, i.e. y = tid

wB
and x = tid mod wB.

Algorithm 1 Parallel matrix multiplication
Input: The thread id, tid; arrays containing l + 1 by m and m by n matrices, A′ and
B; the width of matrix A′ and B, wA′ and wB

Output: An array of length (l + 1)n to store matrix C′
MatMult(tid, A′, B, wA′ , wB)

(1) x ← tid mod wB

(2) y ← �tid/wB�
(3) v ← 0
(4) for k = 0 to wA′ − 1
(5) v ← v + A′[y · wA′ + k] · B[k · wB + x]
(6) C′[y ∗ wB + x] ← v

Coverage Collection Algorithm After matrix-multiplication using Algorithm 1, cov-
erage information is collected using a separate algorithm, pseudo-code of which is
shown in Algorithm 2. Unlike Algorithm 1, the coverage collection algorithm only
requires n threads, i.e. one thread per column in matrix C′.

The loop in Line (2) and (3) counts the number of structural elements that have
been executed by the individual solution ptid. The coverage is calculated by dividing
this number by the total number of structural elements that need to be covered.
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While coverage information requires a separate collection phase, the sum of costs
for each individual solution has been calculated by Algorithm 1 as a part of the matrix
multiplication following the extension in Section 3.

Algorithm 2 Parallel coverage collection
Input: The thread id, tid; an array containing the result of matrix-multiplication, C′;
the width of matrix A′, wA′ and the height of matrix A′, hA′

Output: An array containing the coverage achieved by each individual solution,
coverage
CollectCoverage(tid, C′, wA′ , hA′ )

(1) e ← 0
(2) for k = 0 to hA′ − 1
(3) if C′[k · wB′ + tid] > 0 then e ← e + 1
(4) coverage[tid] ← e/(hA′ − 1)

5 Experimental Setup

5.1 Research Questions

This section presents the research questions studied in the paper. RQ1 and RQ2
concern the scalability achieved by the speed-up through the use of GPGPU,
whereas RQ3 concerns the practical implications of the speed-up and the consequent
scalability to the practitioners.

RQ1. Speed-up what is the speed-up factor of GPU- and CPU-based parallel
versions of MOEAs over the untreated CPU-based version of the same algorithms
for multi-objective test suite minimisation problem?

RQ2. Correlation what are the factors of the problem instances that have the
highest correlation to the speed-up achieved, and what is the correlation between
these factors and the resulting speed-up?

RQ3. Insight what are the realistic benefits of the scalability that is achieved by the
GPGPU approach to software engineers?

RQ1 is answered by observing the dynamic execution time of the parallel versions
of the studied algorithms as well as the untreated single-threaded algorithms. For
RQ2, two factors constitute the size of test suite minimisation problem: the number
of test cases in the test suite and the number of test requirements in System Under
Test (SUT) that need to be covered. The speed-up values measured for RQ1 are
statistically analysed to investigate the correlation between the speed-up and these
two size factors. RQ3 is answered by analysing the result of test suite minimisation
obtained for a real-world testing problem.
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Table 1 Subject programs used for the empirical study

Subject Description Program size Test suite size

printtokens Lexical analyser 188 315–3192

4,130
schedule Priority scheduler 142 224–2272

2,650
printtokens2 Lexical analyser 199 4,115
schedule2 Priority scheduler 142 2,710
tcas Aircraft collision avoidance system 65 1,608
totinfo Statistics computation utility 124 1,052
flex Lexical analyser 3,965 103
gzip Compression utility 2,007 213
sed Stream text editor 1,789 370
space Array Definition Language (ADL) interpreter 3,268 154–1603

replace Pattern matching & substitution tool 242 5,545
bash Unix shell 6,167 1,061
ibm An IBM middleware system 61,7701 181
1For the IBM middleware system, the program size represents the number of functions that need to
be covered. The coverage objective for the IBM system also denotes function coverage. For all other
subject, the size and the coverage objective are measured and calculated using LOC
2For schedule and printtokens, four coverage-adequate test suites were randomly selected
from those provided by SIR, as well as the complete test suite
3For space, four randomly selected, coverage-adequate test suites were used

5.2 Subjects

Table 1 shows the subject programs for the empirical study. Twelve of the programs
and test suites are from the Software Infrastructure Repository (SIR) (Do et al.
2005). In order to obtain test suites with varying sizes ranging from a few hundred to
a few thousand test cases, the study includes multiple test suites for some subject
programs. For printtokens and schedule, smaller test suites are coverage-
adequate test suites, whereas larger test suites include all the available test cases.
To avoid selection bias, four smaller test suites were randomly selected from the
pool of available tests for each program. In the case of space, SIR contains multiple
coverage-adequate test suites of similar sizes; four test suites were selected randomly.

The subjects also include a large system-level test suite from IBM. For this subject,
the coverage information was maintained at the function level. The test suite contains
only 181 test cases, but these test cases are used to cover 61,770 functions in the
system.

Each test suite has an associated execution cost dataset. For the subject programs
from SIR, the execution costs were measured by observing the number of instruc-
tions required by the execution of tests. This was performed using a well-known
profiling tool, valgrind (Nethercote and Seward 2007), which executes the given
program on a virtual processor. For ibm, physical wall-clock time data, measured in
seconds, were provided by IBM. The entire test suite for ibm takes more than 4 h to
execute.

5.3 Implementation and Hardware

Implementation The paper uses the open source Java MOEA library, jMetal
(Durillo et al. 2006, 2010) as a library of untreated versions of MOEAs: NSGA-II
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and SPEA2 are included in the jMetal library; The Two Archive algorithm has
been implemented using the infrastructure provided by the library. The untreated
versions of MOEAs evaluate the fitness of individual solutions in the population one
at a time, which incurs method invocations regarding the retrieval of coverage and
cost information.

The GPGPU-based parallel versions of these three algorithms are implemented
in the OpenCL GPGPU framework using a Java wrapper called JavaCL (Chafik
2009). The CPU-based parallel versions of the three algorithms use a parallel pro-
gramming library for Java called JOMP (Bull et al. 2000). JOMP allows parameterised
configuration of the number of threads to use. The parallelisation is only applied
to the fitness evaluation step because it is not clear whether certain steps in the
studied algorithms, such as sorting, may yield sufficient efficiency when performed
in parallel.

All three algorithms are configured with population size of 256 following the
standard recommendation to set the number of threads to multiples of 32 or
64 (ATI Stream Computing 1010). The archive size for SPEA2 and The Two Archive
algorithm is also set to 256. The stopping criterion for all three algorithms is to reach
the maximum number of fitness evaluations, which is set to 64,000, allowing 250
generations to be evaluated.

All three algorithms solve the test suite minimisation problem by selecting Pareto-
optimal subsets of test cases, represented by binary strings that form columns in
matrix B in Section 3. The initial population is generated by randomly setting the
individual bits of these binary strings so that the initial solutions are randomly
distributed in the phenotype space.

NSGA-II and SPEA2 use the binary tournament selection operator. The Two
Archive algorithm uses the uniform selection operator as described in the original
paper (Praditwong and Yao 2006): the selection operator first selects one of the
two archives with equal probability and then selects one solution from the chosen
archive with uniform probability distribution. All three algorithms use the single-
point crossover operator with probability of crossover set to 0.9 and the single bit-flip
mutation operator with the mutation rate of 1

n where n is the length of the bit-string
(i.e. the number of test requirements).

Hardware All algorithms have been evaluated on a machine with a quad-core Intel
Core i7 CPU (2.8 GHz clock speed) and 4 GB memory, running Mac OS X 10.6.5
with Darwin Kernel 10.6.0 for x86_64 architecture. The Java Virtual Machine used
to execute the algorithms is Java SE Runtime with version 1.6.0_22. The GPGPU-
based versions of MOEAs have been evaluated on an ATI Radeon HD4850 graphics
card with 800 stream processors running at 625 MHz clock speed and 512 MB
GDDR3 onboard memory.

5.4 Evaluation

The paper compares three MOEAs, each with five different configurations: the
untreated configuration (hereafter refered to CPU), the GPGPU configuration (GPU)
and the JOMP-based parallel configurations with 1, 2, and 4 threads (JOMP1/2/4).
The configuration with one thread (JOMP1) is included to observe the speed-up
achieved by evaluating the fitness of the entire population using matrix multiplica-
tion, instead of evaluating the solutions one by one as in the untreated versions of
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MOEA. Any speed-up achieved by JOMP1 over CPU is, therefore, primarily achieved
by the code-level optimisation that removes the method invocation overheads. On
the other hand, JOMP1 does incur an additional thread management overhead.

In total, there are 15 different configurations (three algorithms with five
configurations each). For each subject test suite, the 15 configurations were executed
30 times in order to cater for the inherent randomness in dynamic execution time,
measured using the system clock. The speed-up is calculated by dividing the amount
of the time that the CPU configuration required with the amount of the time that
parallel configurations required. While we discuss the speed-up values only using the
total execution time, we also provide observations of the three parts break-down of
the total execution time (Timetotal) for each algorithm as below:

– Initialisation (Timeinit): the time it takes for the algorithm to initialise the test
suite data in a usable form; for example, GPU configurations of MOEAs need to
transfer the test suite data onto the graphics card.

– Fitness Evaluation (Timefitness): the time it takes for the algorithm to evaluate the
fitness values of different generations during its runtime.

– Remaining (Timeremaining): the remaining parts of the execution time, most of
which is used for archive management, genetic operations, etc.

6 Results

This section presents the speed-up measurements of the single-threaded, CPU-based
multi-threaded, and GPGPU-based multi-threaded approaches and analyses the
correlation between the speed-up and problem size.

6.1 Speed-up

Figure 1 presents the mean paired speed-up results of all configurations. The mean
paired speed-up values were calculated by dividing the execution time of CPU with
the corresponding execution time of the parallel configurations for each of the 30
observations. Tables 2, 3 and 4 contain the speed-up data in more detail, whereas the
statistical analysis of the raw information can be obtained from Tables 12, 13 and 14
in the Appendix.

Overall, the observed paired mean speed-up ranges from 0.47× to 25.09×. While
the different archive management strategies used by each MOEAs make it difficult
to compare the execution time results directly (because the different amount of heap
used by each may affect JVM’s performance differently), it is possible to observe
the general trend that the speed-up tends to increase as the problem size grows. The
speed-up values below 1.0 show that the overhead of thread management and the
additional communication can be detrimental for the problems of sufficiently small
size. However, as the problem size grows, JOMP1 becomes faster than CPU with all
algorithms, indicating that the amount of reduced method call overhead eventually
becomes greater that the thread management overhead.
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Fig. 1 Mean paired speed-ups achieved by different algorithms and parallel configurations

With the largest dataset, ibm, the GPU configuration of NSGA-II reduces the
average execution time of CPU, 4,347 s (1 h 12 min and 27 s), to the average of
174 s (2 min and 54 s). The speed-up remains consistently above 3.0× for all three
algorithms if the problem size is larger than that of flex, i.e. about 400,000 (103
tests × 3,965 test requirements).

To provide inferential statistical analysis of the observed execution time data have
been compared using the Mann-Whitney ‘U’ test. The Mann-Whitney ‘U’ test is a
non-parametric statistical hypothesis test, i.e. it allows the comparison of two samples
with unknown distribution. The execution time data observed with JOMP1/2/4
and GPU configurations were compared to those from CPU configuration. The null
hypothesis is that there is no difference between the parallel configurations and CPU
configuration; the alternative hypothesis is that the execution time of the parallel
configurations is smaller than that of CPU configuration.

Tables 5, 6 and 7 present the resulting p-values. With JOMP1 and JOMP2
configurations, the alternative hypothesis is rejected for 39 and 12 cases at the
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Table 2 Speed-up results for
NSGA-II

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.83 1.21 1.54 2.14
printtokens-2 0.83 1.23 1.56 2.20
printtokens-3 0.82 1.21 1.53 2.13
printtokens-4 0.84 1.22 1.54 2.19
schedule-1 0.97 1.22 1.40 1.56
schedule-2 0.96 1.22 1.41 1.46
schedule-3 0.96 1.22 1.39 1.45
schedule-4 0.95 1.20 1.37 1.43
printtokens 0.76 1.24 1.44 4.52
schedule 0.69 1.08 1.26 3.38
printtokens2 0.72 1.18 1.37 4.38
schedule2 0.71 1.09 1.27 3.09
tcas 0.84 1.10 1.30 1.94
totinfo 0.90 1.28 1.61 2.50
flex 1.58 2.76 4.19 6.82
gzip 1.19 2.15 3.31 8.00
sed 1.02 1.87 3.04 10.28
space-1 1.77 3.22 5.10 10.51
space-2 1.86 3.34 5.19 10.88
space-3 1.80 3.27 5.16 10.63
space-4 1.76 3.25 5.12 10.54
replace 0.73 1.23 1.44 5.26
bash 1.54 2.90 4.87 25.09
ibm 3.01 5.55 9.04 24.85

Table 3 Speed-up results for
SPEA2

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.92 0.94 1.24 1.00
printtokens-2 1.00 0.93 1.36 1.11
printtokens-3 0.97 0.93 1.23 1.03
printtokens-4 1.01 0.94 1.31 1.03
schedule-1 1.00 0.90 1.86 0.97
schedule-2 1.04 0.95 1.92 1.01
schedule-3 0.96 0.89 1.49 0.95
schedule-4 1.01 0.90 1.69 0.94
printtokens 0.76 1.17 1.33 3.49
schedule 0.71 1.04 1.19 2.62
printtokens2 0.73 1.13 1.29 3.41
schedule2 0.73 1.06 1.19 2.44
tcas 0.86 1.03 1.14 1.61
totinfo 0.91 1.16 1.35 1.97
flex 1.48 2.05 2.69 3.22
gzip 1.15 1.78 2.39 3.51
sed 1.05 1.80 2.70 6.71
space-1 1.78 2.83 3.98 6.28
space-2 1.82 2.88 4.03 6.41
space-3 1.80 2.86 4.06 6.45
space-4 1.77 2.86 3.98 6.18
replace 0.74 1.19 1.37 4.06
bash 1.56 2.93 4.88 22.96
ibm 3.13 5.72 9.29 24.62
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Table 4 Speed-up results for
TAEA

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.73 1.19 1.68 2.60
printtokens-2 0.75 1.21 1.70 2.60
printtokens-3 0.73 1.18 1.66 2.61
printtokens-4 0.74 1.21 1.70 2.63
schedule-1 1.01 1.48 1.89 2.17
schedule-2 1.00 1.47 1.88 2.19
schedule-3 0.99 1.46 1.88 2.16
schedule-4 0.99 1.46 1.87 2.15
printtokens 0.47 0.82 0.98 4.58
schedule 0.49 0.84 1.03 3.94
printtokens2 0.47 0.83 1.00 4.63
schedule2 0.50 0.84 1.01 3.49
tcas 0.67 1.00 1.29 2.24
totinfo 0.68 1.09 1.54 2.99
flex 1.71 3.17 5.12 8.69
gzip 0.97 1.78 2.91 7.88
sed 0.85 1.60 2.66 10.85
space-1 1.79 3.29 5.33 12.01
space-2 1.83 3.39 5.53 12.51
space-3 1.79 3.33 5.49 12.21
space-4 1.77 3.31 5.43 11.93
replace 0.47 0.84 1.01 5.44
bash 0.88 1.69 2.89 17.71
ibm 2.06 3.87 6.54 20.97

Table 5 Mann-Whitney U test for NSGA-II

Subject pJOMP1 pJOMP2 pJOMP4 pGPU

printtokens-1 1.00e+00 1.51e−11 8.46e−18 1.51e−11
printtokens-2 1.00e+00 1.51e−11 8.46e−18 1.51e−11
printtokens-3 1.00e+00 1.51e−11 8.46e−18 8.46e−18
printtokens-4 1.00e+00 1.51e−11 1.51e−11 1.51e−11
schedule-1 1.00e+00 1.51e−11 1.51e−11 1.51e−11
schedule-2 1.00e+00 1.51e−11 8.46e−18 1.51e−11
schedule-3 1.00e+00 1.51e−11 1.51e−11 1.51e−11
schedule-4 1.00e+00 1.51e−11 1.51e−11 1.51e−11
printtokens 1.00e+00 8.46e-18 8.46e−18 8.46e−18
schedule 1.00e+00 1.51e−11 1.51e−11 8.46e−18
printtokens2 1.00e+00 1.51e−11 8.46e−18 1.51e−11
schedule2 1.00e+00 1.51e−11 8.46e−18 8.46e−18
tcas 1.00e+00 8.46e−18 8.46e−18 8.46e−18
totinfo 1.00e+00 1.51e−11 8.46e−18 8.46e−18
flex 8.46e−18 8.46e−18 1.51e−11 1.51e−11
gzip 1.51e−11 1.51e−11 1.51e−11 1.51e−11
sed 2.56e−07 8.46e-18 8.46e-18 1.51e−11
space-1 8.46e−18 8.46e−18 1.51e−11 1.51e−11
space-2 8.46e−18 8.46e−18 1.51e−11 1.51e−11
space-3 8.46e−18 8.46e−18 8.46e−18 1.51e−11
space-4 8.46e−18 8.46e−18 8.46e−18 1.51e−11
replace 1.00e+00 8.46e−18 1.51e−11 8.46e−18
bash 8.46e−18 8.46e−18 8.46e−18 8.46e−18
ibm 1.51e−11 8.46e−18 8.46e−18 1.51e−11
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Table 6 Mann-Whitney U test for SPEA2

Subject pJOMP1 pJOMP2 pJOMP4 pGPU

printtokens-1 9.99e−01 9.91e−01 8.71e−01 7.19e−01
printtokens-2 7.84e−01 9.81e−01 2.23e−01 3.06e−02
printtokens-3 9.39e−01 9.91e−01 9.85e−01 4.21e−01
printtokens-4 5.32e−01 9.85e−01 2.06e−01 3.71e−01
schedule-1 6.01e−01 1.00e+00 9.80e−01 9.01e−01
schedule-2 3.99e−02 9.99e−01 9.71e−01 3.27e−01
schedule-3 9.37e−01 1.00e+00 9.42e−01 9.59e−01
schedule-4 4.74e−01 1.00e+00 9.78e−01 9.94e−01
printtokens 1.00e+00 8.46e−18 1.50e−11 8.46e−18
schedule 1.00e+00 1.51e−11 1.50e−11 1.51e−11
printtokens2 1.00e+00 8.46e−18 1.50e−11 8.46e−18
schedule2 1.00e+00 1.51e−11 1.50e−11 1.51e−11
tcas 1.00e+00 1.51e−11 5.51e−07 1.51e−11
totinfo 1.00e+00 1.51e−11 1.50e−11 8.46e−18
flex 8.46e−18 8.46e−18 1.50e−11 8.46e−18
gzip 8.46e−18 8.46e−18 1.50e−11 8.46e−18
sed 8.46e−18 8.46e−18 1.50e−11 8.46e−18
space-1 8.46e−18 1.51e−11 1.50e−11 8.46e−18
space-2 8.46e−18 8.46e−18 1.50e−11 1.51e−11
space-3 8.46e−18 1.51e−11 1.50e−11 8.46e−18
space-4 8.46e−18 1.50e−11 1.50e−11 8.46e−18
replace 1.00e+00 1.50e−11 1.50e−11 8.46e−18
bash 8.46e−18 1.50e−11 1.50e−11 8.46e−18
ibm 8.46e−18 1.50e−11 1.50e−11 8.46e−18

Table 7 Mann-Whitney U test for TAEA

Subject pJOMP1 pJOMP2 pJOMP4 pGPU

printtokens-1 1.00e+00 1.48e−11 1.50e−11 1.51e−11
printtokens-2 1.00e+00 1.50e−11 1.49e−11 1.51e−11
printtokens-3 1.00e+00 1.50e−11 1.50e−11 1.51e−11
printtokens-4 1.00e+00 1.49e−11 1.49e−11 1.51e−11
schedule-1 3.86e−02 1.48e−11 1.49e−11 1.51e−11
schedule-2 9.96e−01 1.49e−11 1.48e−11 1.50e−11
schedule-3 9.99e−01 1.50e−11 1.50e−11 1.51e−11
schedule-4 7.63e−01 1.50e−11 1.50e−11 1.50e−11
printtokens 1.00e+00 1.00e+00 1.00e+00 1.51e−11
schedule 1.00e+00 1.00e+00 3.66e−10 1.51e−11
printtokens2 1.00e+00 1.00e+00 5.85e−01 1.51e−11
schedule2 1.00e+00 1.00e+00 2.54e−06 1.51e−11
tcas 1.00e+00 4.50e−01 1.50e−11 1.51e−11
totinfo 1.00e+00 1.50e−11 1.50e−11 1.51e−11
flex 1.50e−11 1.50e−11 1.50e−11 1.50e−11
gzip 1.00e+00 1.50e−11 1.49e−11 1.51e−11
sed 1.00e+00 1.50e−11 1.50e−11 1.51e-11
space-1 1.50e−11 1.50e−11 1.50e−11 1.51e−11
space-2 1.50e−11 1.50e−11 1.50e−11 1.51e−11
space-3 1.50e−11 1.50e−11 1.50e−11 1.51e−11
space-4 1.50e−11 1.50e−11 1.50e−11 1.51e−11
replace 1.00e+00 1.00e+00 2.10e−02 1.51e−11
bash 1.00e+00 1.50e−11 1.50e−11 1.51e−11
ibm 1.50e−11 1.50e−11 1.50e−11 1.51e−11
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confidence level of 95 %, respectively, out of of 42 cases with subjects with problem
sizes smaller than that of flex, providing evidence that the parallel configurations
required more time than the untreated configuration (CPU). With JOMP4 and
GPU configurations, the null hypothesis is universally rejected for all subjects with
problem sizes larger than that of flex, providing strong evidence that the parallel
configurations required less time than the untreated configuration (CPU). The par-
ticular results are naturally dependent on the choice of the graphics card that has
been used for the experiment. However, these results, taken together, provide strong
evidence that, for test suite minimisation problems of realistic sizes, the GPGPU
approach can provide a speed-up of at least 3.0×. This finding answers RQ1.

6.2 Correlation

Regarding RQ2, one important factor that contributes to the level of speed-up is
the speed of each individual computational unit in the graphics card. The HD4850
graphics card used in the experiment contains 800 stream processor units that are
normally used for the computation of geometric shading. Each of these processors
executes a single thread of Algorithm 1, of which there exist more than 800.
Therefore, if the individual stream processor is as powerful as a single core of the
CPU, the absolute upper bound on speed-up would be 800. In practice, the individual
processors run with a clock speed of 625 MHz, which makes them much slower
and, therefore, less powerful than a CPU core. This results in speed-up values lower
than 800.

In order to answer RQ2, statistical regression analysis was performed on the
correlation between the observed speed-up and the factors that constitute the size
of problems.

Three size factors have been analysed for the statistical regression: size of test
goal set, size of test suite and their product. The number of test requirements and
the number of test cases are denoted by l and m respectively, following the matrix
notation in Section 3: l is proportional to the number of threads the GPGPU-version
of the algorithm has to execute (as the size of the matrix C′ is l-by-n and n is fixed);
m denotes the amount of computation that needs to be performed by a single thread
(as each matrix-multiplication kernel computes a loop with m iterations). In addition
to these measurement, another size factor z = l · m is considered to represent the
perceived size of the minimisation problem. Table 8 shows the results of Spearman’s
rank correlation analysis between size factors and observed speed-ups.

Spearman’s rank correlation is a non-parametric measure of how well the rela-
tionship between two variables can be described using a monotonic function. As
one variable increases, the other variable will tend to increase monotonically if the
coefficient is close to 1, whereas it would decrease monotonically if the coefficient is
close to −1.

In all algorithms and configurations, the size factor l shows the strongest positive
correlation with speed-ups. The correlation coefficients for z are weaker than those
for l or, in the case of JOMP1 for the Two Archive algorithm, negative. The
correlation for m remains negative for all algorithms and configurations.

To gain further insights into the correlation between size and the speed-up
observed, a regression analysis was performed. Factor z is considered in isolation,
whereas l and m are considered together; each variable has been considered in
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Table 8 Spearman’s rank
correlation coefficients
between three size factors
and speed-ups

Algorithm Config ρz ρl ρm

NSGA-II JOMP1 0.2257 0.6399 −0.8338
JOMP2 0.4908 0.7800 −0.6423
JOMP4 0.4788 0.8227 −0.6378
GPGPU 0.8760 0.8617 −0.2299

SPEA2 JOMP1 0.2327 0.6646 −0.7827
JOMP2 0.7897 0.7977 −0.3375
JOMP4 0.6852 0.7201 −0.3286
GPGPU 0.9022 0.7618 −0.1286

TAEA JOMP1 −0.0084 0.5225 −0.9302
JOMP2 0.1527 0.6580 −0.8867
JOMP4 0.1671 0.6686 −0.8760
GPGPU 0.8723 0.8729 −0.2536

its linear form (z, l and m) and logarithmic form (log z, log l and log m). This
results in 6 different combinations of regression models. Tables 9, 10 and 11 in the
Appendix present the detailed results of regression analysis for the three algorithms
respectively.

With a few exceptions of very small margins (NSGA-II with JOMP4 and SPEA2
with JOMP1, JOMP4, and GPU), the model with the highest r2 correlation for all
algorithms and configurations is Sp = α log l + β log m + γ . Figure 2 shows the 3D
plot of this model for the GPU and JOMP4 configuration of the Two Archive
algorithm.

The observed trend is that the inclusion of log l results in higher correlation,
whereas models that use l in its linear form tend to result in lower correlation.

Fig. 2 3D-plot of regression
model
Sp = α log l + β log m + γ for
GPU (solid line) and JOMP4
(dotted line) configurations for
two archive algorithm
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This supports the results of Spearman’s rank correlation analysis in Table 8. The
coefficients for the best-fit regression model for GPU, Sp = α log l + β log m + γ , can
explain why the speed-up results for space test suites are higher than those for test
suites with z values such as tcas, gzip and replace. Apart from bash and ibm,
space has the largest number of test requirements to cover, i.e. l. Since α is more
than twice larger than β, a higher value of l has more impact to Sp than m.

Based on the analysis, RQ2 is answered as follows: the observed speed-up shows
a strong linear correlation to the log of the number of test requirements to cover and
the log of the number of test cases in the test suite. The positive correlation provides
evidence that GPU-based parallelisation scales up.

Furthermore, within the observed data, the speed-up continues to increase as
the problem size grows, which suggests that the graphics card did not reach its full
computational capacity. It may be that, for larger problems, the speed-up would be
even greater than those observed in this paper. The finding that the scalability factor
increases with overall problem size is a very encouraging finding; as the problem gets
harder, the solution gets better.

6.3 Insights

This section discusses a possible real-world scenario in which the parallelisation of
multi-objective test suite minimisation can have a high impact. A smoke test is a
testing activity that is usually performed in a very short window of time to detect the
most obvious faults, such as system crashes. IBM’s smoke test practice is to allow
from 30 to 60 min of time to execute a subset of tests from a large test suite that
would require more than 4 h to execute in its entirety.

Using static smoke test suite is problematic as running the same tests at every
regression greatly reduces the likelihood of finding bugs. Therefore it is important to
recalculate the most relevant smoke test suite given the changes to the code. It is for
this reason that the cost of computation, especially the actual time it takes, becomes
very important.

Figure 3 shows two possible smoke test scenarios based on the results of CPU
and GPGPU configurations of NSGA-II. It is a plot of how much test requirement
coverage can be achieved during the given time, including the time needed for
multi-objective test suite minimisation. The solid line represents the scenario based
on the GPGPU configuration of the algorithm, whereas the dotted line represents
the scenario based on the CPU configuration. The beginning flat segment at the
bottom shows the time each configuration spends on the optimisation process; the
curved segment shows the trade-off between time and test coverage achieved by
the optimised test suite. Since the CPU configuration of NSGA-II takes longer than
60 min to terminate, it cannot contribute to any smoke test scenario that must be
completed within 60 min. On the other hand, the GPGPU configuration allows the
tester to consider a subset of tests that can be executed within 30 min. If the grey
region was wider than Fig. 3, the difference between two configurations would have
been even more dramatic.

This answers RQ3 as follows: a faster execution of optimisation algorithms enables
the tester not only to use the algorithms but also to exploit their results more
effectively. This real-world smoke test example from IBM demonstrates that scale-
ups accrued from the use of GPGPU are not only sources of efficiency improvement,
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Fig. 3 Comparison of smoke
test scenarios for IBM System
(ibm). The solid line shows the
trade-offs between time and
test coverage when GPU
configuration of NSGA-II is
used, whereas the dotted line
shows that of CPU. The grey
area shows the interesting
trade-off that the CPU
configuration fails to exploit
within 60 min
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they can also make possible test activities that are simply impossible without this
scalability.

The ability to execute a sophisticated optimisation algorithm within a relatively
short time also allows the tester to consider state-of-the-art regression testing
techniques with greater flexibility. The greater flexibility is obtained because the
cost of the optimisation does not have to be amortised across multiple iterations.
Many state-of-the-art regression testing techniques require the use of continuously
changing sets of testing data, such as recent fault history (Yoo and Harman 2007) or
the last time a specific test case has been executed (Kim and Porter 2002; Engström
et al. 2010). In addition to the use of dynamic testing data, the previous work also
showed that repeatedly using the same subset of a large test suite may impair the
fault detection capability of the regression testing (Yoo et al. 2009).

7 Threats to Validity

Threats to internal validity concern the factors that could have affected the experi-
ments in the paper. While GPGPU architecture has been researched for some time,
the commercially available GPGPU frameworks such as CUDA and OpenCL are
still in their early stages and, therefore, may contain faults in the implementation.

The GPGPU matrix-multiplication routine has been manually tested and vali-
dated with additional data apart from the test suites chosen for the empirical study.
Regarding the precision of the GPGPU-based calculation, the aim of the paper is to
investigate the potential speed-up that can be gained by using GPGPU, rather than
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to consider the effectiveness of the actual test suite minimisation in the context of
regression testing. Therefore, the precision issue does not constitute a major issue
for the aim of this study.

Threats to external validity concern any factor that might prevent the gener-
alisation of the result presented by the paper. Since the performance of GPGPU
computing is inherently hardware specific, the results reported in the paper may not
be reproducible in their exact form using other combinations of hardware compo-
nents. However, with the advances in graphics card architecture, it is more likely that
experiments with the same approach with newer graphics card will only improve the
speed-up results reported in the paper.

It should be also noted that optimising test suite minimisation using evolutionary
computation is an inherently ideal candidate for GPGPU computation as the refor-
mulated problem, matrix-multiplication, is highly parallel in nature. Other problems
in search-based software engineering may not render themselves as easily as the
test suite minimisation problem. However, this issue is inherent in any attempts to
parallelise a software engineering technique and not specific to GPGPU approach.

Threats to construct validity arise when measurements used in the experiments do
not capture the concepts they are supposed to represent. The speed-up calculation
was based on the measurements of execution time for both algorithms using system
clock, which was chosen because it represents the speed of a technique to the end-
user. Regarding the measurements of problem size used for the regression analysis,
there may exist more sophisticated measurements of test suites and program source
code that correlates better with the speed-up. However, both the number of test re-
quirements and the number of test cases are probably the most readily available mea-
surements about source code and test suites and provide a reasonable starting point
for this type of analysis.

8 Related Work

Recent developments in graphics hardware provide an affordable means of par-
allelism: not only is the hardware more affordable than that of multiple PCs but
also the management cost is much smaller than that required for a cluster of PCs,
because it depends on a single hardware component. GPGPU has been successfully
applied to various scientific computations (Boyer et al. 2009; Govindaraju et al.
2006), while Langdon and Banzhaf (2008) recently used GPGPU for performance
improvements in optimization problems. However, these techniques have not been
applied to Search Based Software Engineering problems, motivating the work
of this paper, i,e., the use of GPGPU to achieve performance improvements in
SBSE.

As a first instance of GPGPU SBSE, we study the SBSE application domain of
regression testing. Regression test selection (also known as test suite minimisation)
aims to reduce the number of tests to be executed by calculating the minimum set
of tests that are required to satisfy the given test requirements. The problem has
been formulated as the minimal hitting set problem (Harrold et al. 1993), which is
NP-hard (Garey and Johnson 1979).
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Various heuristics for the minimal representative set problem, or the minimal set
cover problem (the dual of the former), have been suggested for test suite minimi-
sation (Chen and Lau 1996; Offutt et al. 1995). However, empirical evaluations of
these techniques have reported conflicting views on the impact on fault detection
capability: some reported no impact (Wong et al. 1998, 1999) while others reported
compromised fault detection capability (Rothermel et al. 2002a, b).

One potential reason why test suite minimisation has a negative impact on the
fault detection capability is the fact that the criterion for minimisation is structural
coverage; achieving coverage alone may not be sufficient for revealing faults. This
paper uses the multi-objective approach based on Multi-Objective Evolutionary
Algorithm (MOEA) introduced by Yoo and Harman (2007); the paper also presents
the first attempt to parallelise test suite minimisation with sophisticated criteria
for scalability. Multi-objective forms of regression testing problems are increasingly
popular in SBSE work, since most real-world regression testing scenarios need to
satisfy multiple objectives (Harman 2011). Our SBSE approach to regression testing
has also been used at Google (Yoo et al. 2011b).

Population-based evolutionary algorithms are ideal candidates for GPGPU par-
allelisation (Owens et al. 2007) and existing work has shown successful implemen-
tations for classical problems. Tsutsui and Fujimoto implemented a single-objective
parallel Genetic Algorithm (GA) using GPU for the Quadratic Assignment Problem
(QAP) (Tsutsui and Fujimoto 2009). Wilson and Banzaf implemented a linear
Genetic Programming (GP) algorithm on XBox360 game consoles (Wilson and
Banzhaf 2009). Langdon and Banzaf implemented GP for GPU using an SIMD
interpreter for fitness evaluation (Langdon and Banzhaf 2008). Wong implemented
an MOEA on GPU and evaluated the implementation using a suite of benchmark
problems (Wong 2009). Wong’s implementation parallelised not only the fitness
evaluation step but also the parent selection, crossover & mutation operator as well
as the dominance checking.

Despite the highly parallelisable nature of many techniques used in SBSE, few
parallel algorithms have been used. Of 763 papers on SBSE (Zhang 2011) only three
present results for parallel execution of SBSE. Mitchell et al. used a distributed
architecture for their clustering tool Bunch (Mitchell et al. 2001). Mahdavi et al.
(2003) used a cluster of standard PCs to implement a parallel hill climbing algorithm.
Asadi et al. used a distributed Server-Client architecture for Concept Location
problem (Asadi et al. 2010). All three of these previous approaches use a distributed
architecture that requires multiple machines. The present paper is the first work on
SBSE that presents results for the highly affordable parallelism based on GPGPU.

There is existing work that re-implements meta-heuristic algorithms on GPGPU
for non-SBSE applications. This previous work ports the meta-heuristic algorithms
in their entirety (Wong 2009) to GPGPU, whereas the present paper concerns the
practical improvement in scalability of SBSE, rather than the technical feasibil-
ity of GPGPU-based meta-heuristic implementation. The present paper thus re-
implements only the most parallelisable module in Multi-Objective Evolutionary
Algorithms (MOEAs) and performs an extensive empirical evaluation of the impact
on scalability.
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We believe that this approach may also prove to be applicable to many other
SBSE problems. To achieve this, it will be necessary to develop new ways to port the
fitness computation to the GPGPU device. For some applications, such as test data
generation and re-generation problems (Ali et al. 2010; Yoo and Harman 2012b), this
may not be possible, because the fitness function requires execution of the program
under test; we cannot be sure that GPGPU devices will ever develop to the point that
execution of arbitrary code will become possible.

However, for other SBSE applications, such as requirements optimisation (Saliu
and Ruhe 2007; Zhang et al. 2011), prediction system feature selection (Kirsopp et al.
2002) and requirements sensitivity analysis (Harman et al. 2009), fitness computation
remains an oft-repeated and, thereby, SIMD-friendly requirement. Also, in these ap-
plication areas, the underlying Software Engineering problem may be characterised
using a table (albeit a very large one). In such cases, where the SBSE problem can be
formulated in terms of the optimisation of choices, based on a spreadsheet of known
values, this may prove to port well onto the SIMD architecture offered by GPGPU
devices.

Furthermore, for requirements optimisation problems there is known to be a close
similarity between the problem representation for search based requirements and
search based regression testing (Harman et al. 2012). As a result, the techniques used
here may also prove to be readily applicable to these problems with little need for
significant modification of our approach.

9 Conclusion

This paper presented the first results on GPGPU SBSE; the use of GPGPU-based
massive parallelism for improving scalability of regression testing, based on Search-
Based Software Engineering (SBSE). The advances in GPGPU architecture and the
consequent availability of parallelism provide an ideal platform for improving SBSE
scalability through SIMD parallelism.

The paper presents an evaluation of the GPGPU-based test suite minimisation
for real-world examples that include an industry-scale test suite. This approach to
GPGPU SBSE was evaluated on three popular multi-objective evolutionary algo-
rithms. The results show that the GPGPU-based optimisation can achieve a speed-
up of up to 25.09× compared to a single-threaded version of the same algorithm
executed on a CPU. The highest speed-up achieved by the CPU-based parallel
optimisation was 9.29×. Statistical analysis shows that the speed-up correlates to
the logarithmic of the problem size, i.e. the size of the program under test and the
size of the test suite. This finding indicates that as the problem becomes larger, the
scalability of the proposed approach increases; a very attractive finding. Future work
will include an empirical study of a wider range of test suites, as well as seeking
insights into why MOEAs benefit differently from parallelisation.
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Appendix

Tables 9, 10 and 11 present the results of regression analysis for the three algo-
rithm respectively. Tables 12, 13 and 14 contain the mean and standard deviation
of Timetotal, Timeinit, Timefitness and Timeremaining for NSGA-II, SPEA2 and Two
Archive algorithm respectively.

Table 9 Regression analysis for NSGA-II

Config Model α β γ R2

JOMP1 Sp ∼ z 1.56e−07 – 1.00e+00 0.4894
Sp ∼ log z 2.01e−01 – −1.34e+00 0.3423
Sp ∼ l + m 3.27e−05 −1.13e−04 1.17e+00 0.7060
Sp ∼ log l + m 2.69e−01 −4.83e−05 −4.79e−01 0.8487
Sp ∼ l + log m 3.12e−05 −1.78e−01 2.15e+00 0.7600
Sp ∼ log l + log m 2.62e−01 −6.83e−02 −6.15e−02 0.8509

JOMP2 Sp ∼ z 3.24e−07 – 1.58e+00 0.5009
Sp ∼ log z 4.78e−01 – −4.05e+00 0.4606
Sp ∼ l + m 6.64e−05 −1.82e−04 1.87e+00 0.6367
Sp ∼ log l + m 6.00e−01 −2.84e−05 −1.83e+00 0.9084
Sp ∼ l + log m 6.35e−05 −3.07e−01 3.58e+00 0.6836
Sp ∼ log l + log m 5.96e−01 −4.04e−02 −1.59e+00 0.9086

JOMP4 Sp ∼ z 5.80e−07 – 2.15e+00 0.5045
Sp ∼ log z 8.72e−01 – −8.13e+00 0.4814
Sp ∼ l + m 1.16e−04 −3.42e−04 2.70e+00 0.6199
Sp ∼ log l + m 1.08e+00 −5.93e−05 −4.00e+00 0.9322
Sp ∼ l + log m 1.11e−04 −5.49e−01 5.74e+00 0.6611
Sp ∼ log l + log m 1.08e+00 −5.50e−02 −3.72e+00 0.9313

GPU Sp ∼ z 2.25e−06 – 4.13e+00 0.7261
Sp ∼ log z 3.45e+00 – −3.66e+01 0.7178
Sp ∼ l + m 3.62e−04 −1.63e−04 5.33e+00 0.4685
Sp ∼ log l + m 3.53e+00 7.79e−04 −1.66e+01 0.8219
Sp ∼ l + log m 3.62e−04 −1.34e−01 5.98e+00 0.4676
Sp ∼ log l + log m 3.85e+00 1.69e+00 −2.82e+01 0.8713

Table 10 Regression analysis for SPEA2

Config Model α β γ R2

JOMP1 Sp ∼ z 1.60e−07 – 1.03e+00 0.5085
Sp ∼ log z 1.89e−01 – −1.16e+00 0.2988
Sp ∼ l + m 3.37e−05 −1.20e−04 1.21e+00 0.7443
Sp ∼ log l + m 2.58e−01 −6.08e−05 −3.57e−01 0.7987
Sp ∼ l + log m 3.23e−05 −1.79e−01 2.19e+00 0.7883
Sp ∼ log l + log m 2.50e−01 −7.97e−02 1.17e−01 0.7982
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Table 10 (continued)

Config Model α β γ R2

JOMP2 Sp ∼ z 3.67e−07 – 1.31e+00 0.6289
Sp ∼ log z 5.31e−01 – −4.94e+00 0.5567
Sp ∼ l + m 7.41e−05 −1.02e−04 1.53e+00 0.6867
Sp ∼ log l + m 6.14e−01 4.59e−05 −2.22e+00 0.8656
Sp ∼ l + log m 7.24e−05 −1.78e−01 2.52e+00 0.7031
Sp ∼ log l + log m 6.30e−01 9.28e−02 −2.85e+00 0.8700

JOMP4 Sp ∼ z 6.26e−07 – 1.78e+00 0.5504
Sp ∼ log z 7.86e−01 – −7.37e+00 0.3657
Sp ∼ l + m 1.23e−04 −2.40e−04 2.25e+00 0.5965
Sp ∼ log l + m 9.38e−01 −2.73e−05 −3.44e+00 0.6443
Sp ∼ l + log m 1.20e−04 −3.56e−01 4.19e+00 0.6081
Sp ∼ log l + log m 9.56e−01 3.15e−02 −3.78e+00 0.6442

GPU Sp ∼ z 2.32e−06 – 2.25e+00 0.8777
Sp ∼ log z 3.12e+00 – −3.42e+01 0.6666
Sp ∼ l + m 3.82e−04 1.98e−04 3.06e+00 0.5713
Sp ∼ log l + m 3.01e+00 8.99e−04 −1.52e+01 0.6657
Sp ∼ l + log m 3.90e−04 5.17e−01 4.89e−02 0.5791
Sp ∼ log l + log m 3.38e+00 1.96e+00 −2.88e+01 0.7417

Table 11 Regression analysis for two archive

Config Model α β γ R2

JOMP1 Sp ∼ z 7.34e−08 – 9.35e−01 0.1280
Sp ∼ log z 9.65e−02 – −1.92e−01 0.0931
Sp ∼ l + m 1.78e−05 −1.74e−04 1.14e+00 0.5412
Sp ∼ log l + m 1.94e−01 −1.20e−04 −7.59e−02 0.7637
Sp ∼ l + log m 1.54e−05 −2.79e−01 2.68e+00 0.7108
Sp ∼ log l + log m 1.64e−01 −2.01e−01 1.22e+00 0.8350

JOMP2 Sp ∼ z 1.60e−07 – 1.59e+00 0.1587
Sp ∼ log z 2.57e−01 – −1.45e+00 0.1731
Sp ∼ l + m 3.72e−05 −2.98e−04 1.95e+00 0.4942
Sp ∼ log l + m 4.31e−01 −1.73e−04 −7.67e−01 0.8095
Sp ∼ l + log m 3.27e−05 −4.94e−01 4.69e+00 0.6461
Sp ∼ log l + log m 3.84e−01 −3.04e−01 1.22e+00 0.8571

JOMP4 Sp ∼ z 3.12e−07 – 2.33e+00 0.1865
Sp ∼ log z 5.21e−01 – −3.84e+00 0.2196
Sp ∼ l + m 6.95e−05 −5.20e−04 2.97e+00 0.4990
Sp ∼ log l + m 8.17e−01 −2.82e−04 −2.18e+00 0.8556
Sp ∼ l + log m 6.17e−05 −8.50e−01 7.69e+00 0.6322
Sp ∼ log l + log m 7.46e−01 −4.77e−01 9.01e−01 0.8880

GPU Sp ∼ z 1.64e−06 – 4.96e+00 0.5728
Sp ∼ log z 2.79e+00 – −2.82e+01 0.7056
Sp ∼ l + m 2.83e−04 −3.54e−04 6.02e+00 0.4516
Sp ∼ log l + m 3.05e+00 5.02e−04 −1.31e+01 0.9417
Sp ∼ l + log m 2.76e−04 −6.36e−01 9.59e+00 0.4620
Sp ∼ log l + log m 3.21e+00 9.47e−01 −1.94e+01 0.9603
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