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Abstract

Search Based Software Engineering (SBSE) is an emerging paradigm in which search based
optimisation algorithms are used to balance multiple software engineering objectives. The
SBSE approach has been the subject of much recent interest. However, despite the fact that
many optimisation algorithms are highly parallel, there has been very little work on exploit-
ing this potential for scalability. This is an important oversight because scalability is so often
a critical Software Engineering success factor. This paper shows how relatively inexpensive
General Purpose computing on Graphical Processing Unit (GPGPU) can be used to run suit-
ably adapted optimisation algorithms, opening up the possibility of cheap scalability. The
paper develops a search based optimisation approach for multiple objective regression test op-
timisation, evaluating it on benchmark regression testing problems as well as larger real world
problems. The results indicate that speed–ups of over 20x are possible using widely available
standard GPUs. It is also encouraging that the results reveal a statistically strong correlation
between larger problem instances and the degree of speed up achieved.
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1 Introduction

Search Based Software Engineering (SBSE) seeks to reformulate Software Engineering problems as
search-based optimisation problems [1–3]. Using SBSE, optimal or near optimal solutions are sought
in a search space of candidate solutions, guided by a fitness function that distinguishes between better and
worse solutions. The search is automated by implementing one or more search based optimisation algo-
rithms, tailored for the Software Engineering problem in hand. There has been a recent upsurge of interest
in SBSE which has produced several recent surveys [4–7].

There is a pressing need for scalable solutions to Software Engineering problems. This applies to SBSE
work just as much as it does to other aspects of Software Engineering. Scalability is widely regarded as one
of the key problems for Software Engineering research and development [8, 9]. Furthermore, throughout
its history, lack of scalability has been cited as an important barrier to wider uptake in Software Engineer-
ing [10–12]. Without scalable solutions, potentially valuable Software Engineering innovations may not
be fully exploited.

Many search based optimisation techniques, such as evolutionary algorithms are classified as ‘embar-
rassingly parallel’ because of their potential for scalability through parallel execution of fitness computa-
tions [13]. However, this possibility for significant speed–up (and consequent scalability) has been largely
overlooked in the SBSE literature. The first authors to suggest the exploitation of parallel execution were
Mitchell et al. [14] who used a distributed architecture to parallelise modulularisation through the appli-
cation of search-based clustering. Subsequently, Mahdavi et al. [15] used a cluster of standard PCs to
implemented a parallel hill climbing algorithm. More recently, Asadi et al. [16] used a distributed archi-
tecture to parallelise a genetic algorithm for the concept location problem.

Of 658 papers on SBSE [17] only these three present results for parallel execution of SBSE. Given the ‘em-
barrassingly parallel’ nature of the underlying approach and the need for scalability, it is perhaps surprising
that there has not been more. One possible historical barrier to wider application of parallel execution has
been the high cost of parallel execution architectures and infrastructure. All three previous results cited
in the previous paragraph used a cluster of machines to achieve parallelism. While commodity PCs have
significantly reduced the cost of clusters, the management of one can still be a non-trivial task, restricting
the potential availability for individual developers.

Fortunately, recent work [18] has shown how a newly emerging parallelism, originally designed for graphic
manipulations, can be exploited for non–graphical tasks using General Purpose computing on Graphical
Processing Unit (GPGPU) [19]. Modern graphics hardware provides an affordable mean to parallelism:
not only the hardware is more affordable than multiple PCs but also the management cost is much smaller
than a cluster of PCs because it depends a single hardware component. GPGPU has been successfully
applied to various scientific computations [20, 21]. However, these techniques have never been applied to
Software Engineering problems and so it remains open as to whether large-scale, affordable speed–up is
possible for Software Engineering applications using GPGPU to parallelise SBSE.

In SBSE research, the hitherto most widely studied topic has been Search Based Software Testing [7]. This
paper focusses on the problem of Search Based Regression Testing, which is one problem in the general
area of Search Based Software Testing. Regression Testing is concerned with the process of re–testing
software after change. After each change to the system, the pool of available test data needs to be re-
executed in order to check whether change has introduced new faults. Regression Testing therefore seeks
to answer the question ’has the software regressed?’. There have been several survey papers on Regression
Testing applications and techniques that provide a more detailed treatment [22–25].

In search based regression testing, the goal is to use search based optimisation algorithms to find optimal
sets of test cases (regression test suite minimisation [26]) or to order test cases for regression testing (re-
gression test prioritisation [27, 28]). In this paper we concentrate upon the former problem of regression
test minimisation. Recent results have shown that this is a promising area of SBSE application; the results
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obtained from the SBSE algorithms are human competitive [29].

Fast regression test minimisation is an important problem for practical software testers, particularly where
large volumes of testing are required on a tight build schedule. For instance, the IBM middleware product
used as one of the systems in the empirical study in this paper is a case in point. In order to execute all
test cases of this system a total time of seven weeks would be required. Therefore, it is clearly important
to find smaller, yet still effective minimised suites. However, in order to perform an overnight build, the
time spend on the computation of the minimal data set must also be taken into account. Using our GPGPU
approach this time is reduced from over an hour to just under 3 minutes, thereby allowing sophisticated
minimisation to be used on standard machines without compromising the overall build cycle.

The paper presents a modified multi-objective evolutionary algorithm for the multi-objective regression test
minimisation problem. The algorithm is modified to support implementation on a GPU by transforming
the fitness evaluation of the population of individual solutions into a matrix-multiplication problem, which
is inherently parallel and renders itself very favourably to the GPGPU approach. This algorithm has been
implemented using OpenCL technology, a framework for GPGPU. The paper reports the results of the
application of the parallelised GPGPU algorithm on 13 real world programs, including widely studied,
but relatively small toy examples from the Siemens’ suite [30], through larger more realistic real world
examples from the Software-Infrastructure Repository (SIR) for testing [31] and on to a very large scale
IBM middleware regression testing problem.

The primary contributions of the paper are as follows:

1. The paper is the first to develop SBSE algorithms for GPGPU as a mechanism for affordable massive
parallelism.

2. The paper presents results for real world instances of the multi objective test suite minimisation
problem. The results indicate that dramatic speed–up is achievable. For the systems used in the
empirical study, speed–ups over 20x were observed. The empirical evidence suggests that for larger
problems, where the scale up is most needed, the degree of speed–up is most dramatic; a problem
that takes several hours using conventional techniques, can be solved in minutes using our GPGPU
approach. This has important practical ramifications because regression testing cycles are often
compressed: overnight build cycles are not uncommon.

3. The paper explores the factors that influence the degree of speed–up achieved, revealing that both
program size and test suite size are closely correlated to the degree of speed–up achieved. The data
have a good fit to a model for which increases in the degree of scale up achieved are logarithmic in
both program and test suite size.

The rest of the paper is organised as follows. Section 2 presents backgrounds and related work in test
suite minimisation and GPGPU-based evolutionary computation. Section 3 describes how the test suite
minimisation problem is re-formulated for a parallel algorithm, which is described in detail in Section 4.
Section 5 describes the details of the empirical study, the results of which is analysed in Section 6. Section 7
discusses threats to validity and Section 8 discusses the related work. Section 9 concludes.

2 Background

2.1 Multi-Objective Test Suite Minimisation

The need for test suite minimisation arises when the regression test suite of an existing software system
grows to such an extent that it may no longer be feasible to execute the entire test suite [32]. In order to
reduce the size of the test suite, any redundant test cases in the test suite need to be identified and removed.

Regression Testing requires optimisation because of the problem posed by large data sets. That is, organi-
sations with good testing policies quickly accrue large pools of test data. For example, the regression test
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suite used for smoke-test of an IBM middleware takes over 4 hours if executed in its entirety. However,
a typical smoke-test scenario allows 1 hour at maximum, forcing the engineer either to select a set of test
cases from the available pool or to prioritise the order in which the test cases are considered. The cost of
this selection or prioritisation may not be amortised if the engineer wants to apply the process with every
iteration in order to reflect the most recent test history or to use the whole test suite more evenly. However,
without this optimisation of the regression testing process, the engineer will simply run out of time to com-
plete the task. Without optimisation, the engineer may have failed to execute the most optimal set of test
cases when time runs out.

One widely accepted criterion for redundancy is defined in relation to the coverage achieved by test
cases [33–37]. If the test coverage achieved by test case t1 is a subset of the test coverage achieved by
test case t2, it can be said that the execution of t1 is redundant as long as t2 is also executed. The aim
of test suite minimisation is to obtain the smallest subset of test cases that are not redundant with respect
to a set of test requirements. More formally, test suite minimisation problem can be defined as follows [24]:

Test Suite Minimisation Problem

Given: A test suite of m tests, T , a set of l test goals {r1, . . . , rl}, that must be satisfied to provide the
desired ‘adequate’ testing of the program, and subsets of T , Tis, one associated with each of the ris such
that any one of the test cases tj belonging to Ti can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies all ris.

The testing criterion is satisfied when every test-case requirement in {r1, . . . , rl} is satisfied. A test-case
requirement, ri, is satisfied by any test case, tj , that belongs to Ti, a subset of T . Therefore, the representa-
tive set of test cases is the hitting set of Tis. Furthermore, in order to maximise the effect of minimisation,
T ′ should be the minimal hitting set of Tis. The minimal hitting-set problem is an NP-complete problem
as is the dual problem of the minimal set cover problem [38].

The NP-hardness of the problem encouraged the use of heuristics and meta-heuristics. The greedy ap-
proach [35] as well as other heuristics for minimal hitting set and set cover problem [33, 34] have been
applied to test suite minimisation but these approaches were not cost-cognisant and only dealt with a single
objective (test coverage). With the single-objective problem formulation, the solution to the test suite min-
imisation problem is one subset of test cases that maximises the test coverage with minimum redundancy.

Later, the problem was reformulated as a multi-objective optimisation problem [26]. With the multi-
objective problem formulation, the solution to the test suite minimisation problem is not just a single
solution but a set of non-dominated, Pareto-efficient solutions. This set of solutions reveals the trade-off
between test coverage and the cost of testing that is specific to the test suite in consideration. For example,
with the solution to the multi-objective test suite minimisation problem, it is possible not only to know what
the minimal subset that achieves the maximum test coverage is, but also to know how much test coverage
is possible for any given testing budget.

Since the greedy algorithm does not cope with multiple objectives very well, Multi-Objective Evolutionary
Algorithms have been applied to the multi-objective formulation of the test suite minimisation [26, 39].
While the paper concerns a novel MOEA that has not been applied to the test suite minimisation problem
before, the principle of parallelising fitness evaluation of multiple solutions in the population of an MOEA
applies universally to any MOEA.
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2.2 GPGPU and Evolutionary Algorithms

Graphics cards have become a compelling platform for intensive computation, with a set of resource-
hungry graphic manipulation problems that have driven the rapid advances in their performance and pro-
grammability [19]. As a result, consumer-level graphics cards boast tremendous memory bandwidth and
computational power. For example, ATI Radeon HD4850 (the graphics card used in the empirical study
in the paper), costing about $150 as of April 2010, provides 1000GFlops processing rate and 63.6GB/s
memory bandwidth. Graphics cards are also becoming faster more quickly compared to CPUs. In general,
it has been reported that the computational capabilities of graphics cards, measured by metrics of graphics
performance, have compounded at the average yearly rate of 1.7x (rendered pixels/s) to 2.3x (rendered
vertices/s) [19]. This significantly outperforms the growth in traditional microprocessors; the yearly rate of
growth for CPUs has been measured at 1.4x by a recent survey [40].

The disparity between two platforms is caused by the different architecture. CPUs are optimised for execut-
ing sequential code, whereas GPUs are optimised for executing the same instruction (the graphics shader)
with data-parallelism (different objects on the screen). This Single-Instruction/Multiple-Data (SIMD) ar-
chitecture facilitates hardware-controlled massive data-parallelism, which in turn results in the higher per-
formance.

Interestingly, it is precisely the massive data-parallelism of General-Purpose computing on Graphics Pro-
cessing Units (GPGPU) that presents GPGPU as an ideal platform for parallel evolutionary algorithms.
Many of these algorithms require the calculation of fitness (single instruction) for multiple individual so-
lutions in the population pool (multiple data). Early work has exploited this potential for parallelism with
both single- and multi-objective evolutionary algorithms [41–44]. However, most existing evaluation has
been performed on benchmark problems rather than practical applications.

3 Parallel Formulation of MOEA Test Suite Minimisation

3.1 Parallel Fitness Evaluation

In order to parallelise test suite minimisation, the fitness evaluation of a generation of individual solutions
for test suite minimisation problem is re-formulated as a matrix multiplication problem. Instead of com-
puting the two objectives (i.e. coverage of test goals and execution cost) for each individual solution, the
solutions in the entire population is represented as a matrix, which in turn is multiplied to another matrix
that represents the trace data of the entire test suite. The result is a matrix that contains information for
both test goal coverage and execution cost. While the paper mainly considers structural coverage as test
goal, the proposed approach is equally applicable to other testing criteria, such as data-flow coverage or
even functional requirements provided that there is a clear mapping between tests and requirements.

More formally, let matrix A contain the trace data that capture the test goals achieved by each test; the
number of rows of A equals the number of test goals to be covered, l, and the number of columns of A
equals the number of test cases in the test suite, m. Entry ai,j of A stores 1 if the test goal fi was executed
(i.e. covered) by test case tj , 0 otherwise.

A =


a1,1 . . . a1,m
a2,1 . . . a2,m

. . .
al,1 . . . al,m


MatrixA describes the existing test suite and its capability, which does not change during the optimisation;
therefore it remains fixed throughout the calculation.

The multiplier matrix is a representation of the current population of individual solutions that are being
considered by a given MOEA. Let B be an m-by-n matrix, where n is the size of population for the given
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MOEA. Entry bj,k of B stores 1 if test case tj is selected by the individual pk, 0 otherwise.

B =


b1,1 . . . b1,n
b2,1 . . . b2,n

. . .
bm,1 . . . bm,n


The fitness evaluation of the entire generation is performed by the matrix multiplication of C = A × B.
Matrix C is a l-by-n matrix; entry ci,k of C denotes the number of times test goal fi was covered by
different test cases that had been selected by the individual pk.

3.2 Cost and Coverage

In order to incorporate the execution cost as an additional objective to MOEA, the basic reformulation in
Section 3.1 is extended with an extra row in matrix A. The new matrix, A′, is an l + 1 by m matrix and
contains the cost of each individual test case in the last row:

A′ =


a1,1 . . . a1,m
a2,1 . . . a2,m

. . .
al,1 . . . al,m

cost(t1) . . . cost(tm)


The extra row in A′ results in an additional row in C ′ which equals to A′ ×B:

C ′ =


c1,1 . . . c1,n
c2,1 . . . c2,n

. . .
cl,1 . . . cl,n

cost(p1) . . . cost(pn)


By definition, an entry cl+1,k in the last row in C ′ is defined as follows:

cl+1,k =
m∑
j=1

al+1,j · bj,k =
m∑
j=1

cost(tj) · bj,k

That is, cl+1,k equals the sum of costs of all test cases selected by individual solution pk, i.e. cost(pk).
Similarly, after the multiplication, the k-th column of matrixC ′ contains the coverage of test goals achieved
by individual solution pk. However, this information needs to be summarised into a percentage coverage,
using a step function f as follows:

coverage(pk) =

∑m
i=1 f(ck)

m

f(x) =

{
1 (x > 0)
0 otherwise

While the cost objective is calculated as a part of the matrix multiplication, the coverage of test goals
requires a separate step to be calculated. However, coverage calculation is also of highly parallel nature
because each column can be independently summarised and, therefore, can take the advantage of GPGPU
architecture by running n threads.
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4 Algorithms

This section presents the parallel fitness evaluation components for CPU and GPU and introduces the
MOEAs that are used in the paper.

4.1 Parallel Matrix Multiplication Algorithm

Matrix multiplication is inherently parallelisable as the calculation for individual entry of the product matrix
does not depend on the calculation of any other entry. Algorithm 1 shows the pseudo-code of the parallel
matrix multiplication algorithm using the matrix notation in Section 3.

Algorithm 1: Pseudo-code for Parallel Matrix Multiplication
Input: The thread id, tid, an array to store an l + 1 by m matrix, A, an array to store an m by n array,
B, the width of matrix A, wA and the width of matrix B, wB

Output: An array to store an l + 1 by n matrix, C
MATMULT(tid, A, B, wA, wB)
(1) x← tid mod wA

(2) y ← tid÷ wA

(3) v ← 0
(4) for k = 0 to wA − 1
(5) v ← v +A[y ∗ wA + k] ∗B[k ∗ wB + x]
(6) C ′[y ∗ wB + x]← v

Algorithm 1 uses one thread per an element of matrixC ′, resulting in a total of (l+1)·n threads. Each thread
is identified with an unique thread id, tid. Given a thread id, Algorithm 1 calculates the corresponding
element of the resultring matrix, C ′y,x given the width of matrix A, wA(y = tid÷wA, x = tid mod wA).

4.2 Coverage Collection Algorithm

After the matrix-multiplication is finished using Algorithm 1, the coverage information is collected using
a separate algorithm whose pseudo-code is shown in Algorithm 2. Unlike Algorithm 1, the coverage
collection algorithm only requires n threads, i.e. one thread per a column in matrix C ′.

The loop in Line (3) and (4) counts the number of structural elements that have been executed by the
individual solution ptid. The coverage is calculated by dividing this number with the total number of
structural elements that need to be covered.

Algorithm 2: Pseudo-code for Parallel Coverage Collection Algorithm
Input: The thread id, tid, an array containing the result of matrix-multiplication,C ′, the width of matrix
A, wA and the height of matrix A, hA
Output: An array containing the coverage achieved by each individual solution, coverage
COLLECTCOVERAGE(tid, C ′, wA, hA)
(1) e← 0
(2) for k = 0 to wA − 1
(3) if C ′[k ∗ wA + tid] > 0 then e← e+ 1
(4) coverage[tid]← e/hA

While coverage information requires a separate collection phase, the sum of costs for each individual
solution has been calculated by Algorithm 1 as a part of the matrix multiplication following the extension
in Section 3.2.
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4.3 Multi-Objective Evolutionary Algorithm

This paper uses three Multi-Objective Evolutionary Algorithms (MOEAs) in conjunction with the GPGPU-
based fitness evaluation component described in Section 4.1 and 4.2: NSGA-II [45], SPEA2 [46] and Two
Archive Algorithm [47]. The main difference between these MOEAs lies in the way they promote diversity
in the population. NSGA-II uses the concept of crowding-distance [45]: intuitively, given a pair of non-
dominated solutions, the selection operator of NSGA-II gives higher priority to one further away, in the
search space, from the rest of the population. SPEA2 uses a density function that is an adaptation of the
distance to the k-th nearest neighbour [48] in order to spread the population evenly across the search space.
Two Archive algorithm uses two separate archives, one for convergence and the other for diversity: when
the diversity archive reaches its size limit, it gets pruned starting with the solution with the shortest distance
to other solutions in the archive [47].

All three algorithms solve the test suite minimisation problem by selecting Pareto-optimal subsets of test
cases, represented by binary strings that form columns in matrix B in Section 3.1. Initial population is
generated by randomly setting the individual bits of these binary strings so that the initial solutions are
randomly distributed in the phenotype space.

Subject Program Size Program
(LoC) Description

Siemens Suite

printtokens 188 Lexical analyser
printtokens2 199 Lexical analyser
schedule 142 Priority scheduler
schedule2 142 Priority scheduler
tcas 65 Aircraft collision avoidance system
totinfo 124 Statistics computation utility
replace 242 Pattern matching & substitution tool

European Space Agency space 3,628 Array Definition Language (ADL) interpreter

Unix Utility

flex 3,965 Lexical analyser
gzip 2,007 Compression utility
sed 1,789 Stream text editor
bash 6,167 Unix shell

IBM Haifa haifa ∗61,770 An IBM middleware system

Table 1: Subject programs used for the empirical study. (*: for the IBM middleware system, the program
size represents the number of functional requirements that need to be covered, i.e., tested.)

5 Experimental Setup

5.1 Research Questions

This section presents the research questions studied in the paper. RQ1 and RQ2 concern the scalability
achieved by the speed-up through the use of GPGPU.

RQ1. Speed–up: what is the speed–up factor of GPU- and CPU-based parallel versions of MOEAs over
the untreated CPU-based version of the same algorithms for multi-objective test suite minimisation prob-
lem?

RQ2. Correlation: what are the factors that have the highest correlation to the speed–up, and what is the
correlation between these factors and the resulting speed–up?

RQ1 is answered by observing the dynamic execution time of the parallel versions of the studied algo-
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rithms as well as the untreated single-threaded algorithms. For RQ2, two factors constitute the size of
test suite minimisation problem: the number of test cases in the test suite and the number of test goals in
System Under Test (SUT) that need to be covered. The speed–up values measured for RQ1 are statistically
analysed to investigate the correlation between the speed–up and these two size factors.

RQ3. Insight: what are the realistic benefits of the scalability that is achieved by the GPGPU approach to
software engineers?

RQ3 concerns the practical implications of the speed-up and the following scalability to the practitioners.
This is answered by analysing the result of test suite minimisation obtained for a real-world testing problem.

5.2 Subjects

Table 1 shows the subject programs for the empirical study. 12 of the programs and test suites are from
Software Infrastructure Repository (SIR) [31]. Table 2 shows the size of test suites for the subject programs.
In order to obtain test suites with varying sizes ranging from a few hundred to a few thousand test cases,
the study includes multiple test suites for some subject programs. For printtokens and schedule,
smaller test suites are coverage-adequate test suites, whereas larger test suites include all the available test
cases. To avoid selection bias, four small test suites were randomly selected from each program. In the
case of space, SIR contains multiple coverage-adequate test suites of similar sizes; fout test suites were
selected randomly.

The subjects also include a large system-level test suite from IBM. For this subject, the coverage is calcu-
lated not over structural elements but over functional testing criteria: each of the elements are testing goals
that needs to be ticked (executed). The test suite contains only 181 test cases, but these test cases are used
to check 61,770 testing goals.

Subject No. of Test Suite
Statement Size

printtokens 188 ∗315-319
188 4,130

schedule 142 ∗224-227
142 2,650

tcas 65 1,608
totinfo 124 1,052
schedule2 142 2,710
flex 3,965 103
gzip 2,007 213
space 3,628 ∗154-160
sed 1,789 370
printtokens2 199 4,115
replace 242 5,545
bash 6,167 1,061
haifa ∗∗61,770 181

Table 2: Test suites used for the empirical study (*: for schedule and printtokens, 4 randomly se-
lected, coverage-adequate test suites were considered as well as the complete test suite in SIR. For space,
4 randomly selected, coverage-adequate test suites were considered. **: The studied IBM system contained
61,770 test requirements, which provided coverage information.)
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5.3 Implementation

The paper uses the open source Java MOEA library, jMetal [49, 50] as a library of untreated versions of
MOEAs: NSGA-II and SPEA2 are included in the jMetal library; Two Archive Algorithm has been im-
plemented using the infrastructure provided by the library. The untreated versions of MOEAs evaluate the
fitness of individual solutions in the population one at a time, which incurs method invocations regarding
the retrieval of coverage and cost information.

GPGPU-based parallel algorithms uses the OpenCL GPGPU framework using a Java wrapper called
JavaCL [51]. CPU-based parallel algorithms uses a parallel programming library for Java called
JOMP [52]. JOMP allows parameterised configuration of the number of threads to use.

All three algorithms are configured with population size of 256 following the standard recommendation
to set the number of threads to multiples of 32 or 64 [53]. The archive size for SPEA2 and Two Archive
Algorithm is set to equal to 256. The stopping criterion for all three algorithms is to reach the maximum
number of fitness evaluations, which is set to 64,000, allowing 250 generations to be evaluated.

NSGA-II and SPEA2 uses the binary tournament selection operator. Two Archive algorithm uses the
uniform selection operator as described in the original paper [47]: the selection operator first selects one of
the two archived with equal probability and then selects one solution from the chosen archive with uniform
probability distribution. All three algorithms uses the single-point crossover operator with probability of
0.9 and the single bit-flip mutation operator with the mutation rate of 1

n where n is the length of the bit-
string (i.e. the number of test goals).

5.4 Hardware

All configurations of MOEAs have been evaluated on a machine with Intel Core i7 CPU (2.8GHz clock
speed) and 4GB memory, running Mac OS X 10.6.5. The Java Virtual Machine used to execute the algo-
rithms is Java SE Runtime with version 1.6.0 22. While the CPU employs a quad-core architecture, the use
of Hyper-Threading technology [54] enabled it to provide 8 virtual cores. The GPGPU-based versions of
MOEAs have been evaluated on an ATI Radeon HD4850 graphics card with 800 stream processors running
at 625MHz clock speed and 512MB GDDR3 onboard memory.

5.5 Evaluation

The paper compares three MOEAs, each with seven different variations: the untreated version (hereafter
refered to CPU version), the GPGPU version (GPU) and the JOMP-based parallel version with 1, 2, and 4
threads (JOMP1/2/4). The configuration with one thread is included to observe the speed-up achieved by
evaluating the fitness of the entire population using matrix multiplication, instead of evaluating the solutions
one by one as in the untreated versions of MOEAs. Any speed–up achieved by JOMP1 versions of over
CPU version is, therefore, mainly achieved from the optimisation that gets rid of the method invocation
overheads. On the other hand, JOMP1 versions do suffer from thread management overhead.

In total, there are 15 different configurations (three algorithms with five configurations). For each subject
test suite, the 15 configurations have been executed 30 times in order to cater for the inherent randomness
in dynamic execution time. The observation of algorithm execution time (Timetotal) is broken down to the
following three parts:

• Initialisation (Timeinit): the time it takes for the algorithm to initialise the test suite data in a usable
form; for example, GPGPU versions of MOEAs need to transfer the test suite data onto the graphics
card.

• Fitness Evaluation (Timefitness): the time it takes for the algorithm to evaluate the fitness values of
different generations during its runtime.
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Figure 1: Mean paired speed-ups achieved by combinations of different fitness evaluation methods over
the untreated CPU version of each algorithm.

• Remaining (Timeremaining): the remaining parts of the execution time, most of which is used for
archive management, genetic operations, etc.

Execution time is measured using the system clock. The speed-up is calculated by dividing the amount of
the time that the CPU version of MOEAs took with the amount of the time parallel versions of MOEAs
took.

6 Results

This section presents the speed-up measurements of the single-threaded and GPGPU-based approaches and
analyses the correlation between the speed-up and problem size.

6.1 Speed–up

Figure 1 presents the mean paired speed–up results of all configurations. The mean paired speed–up values
were calculated by dividing the execution time of the untreated version with the corresponding execution
time of the parallel version for each of the 30 observations. Table 3, 4 and 5 contain the speed–up data in
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Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.83 1.21 1.54 2.14
printtokens-2 0.83 1.23 1.56 2.20
printtokens-3 0.82 1.21 1.53 2.13
printtokens-4 0.84 1.22 1.54 2.19
schedule-1 0.97 1.22 1.40 1.56
schedule-2 0.96 1.22 1.41 1.46
schedule-3 0.96 1.22 1.39 1.45
schedule-4 0.95 1.20 1.37 1.43
printtokens 0.76 1.24 1.44 4.52
schedule 0.69 1.08 1.26 3.38
printtokens2 0.72 1.18 1.37 4.38
schedule2 0.71 1.09 1.27 3.09
tcas 0.84 1.10 1.30 1.94
totinfo 0.90 1.28 1.61 2.50
flex 1.58 2.76 4.19 6.82
gzip 1.19 2.15 3.31 8.00
sed 1.02 1.87 3.04 10.28
space-1 1.77 3.22 5.10 10.51
space-2 1.86 3.34 5.19 10.88
space-3 1.80 3.27 5.16 10.63
space-4 1.76 3.25 5.12 10.54
replace 0.73 1.23 1.44 5.26
bash 1.54 2.90 4.87 25.09
haifa 3.01 5.55 9.04 24.85

Table 3: speed–up results for NSGA-II algorithm

more detail, whereas the statistical analysis of the raw information can be obtained from Table 9, 10 and 11
in the appendix.

Overall, the observed paired mean speed–up ranges from 0.47x to over 24.0x times. While the different
archive management strategy used by the studied MOEAs make it difficult to compare the execution time
result directly (because the different amount of heap usage may affect JVM’s performance), it is possible
to observe the general trend that the speed–up tends to increase as the problem size grows. The speed–up
values below 1.0 show that the overhead of thread management and the additional communication can
be detrimental for the problems of relatively smaller sizes. However, as the problem size grows, JOMP1
becomes faster than CPU with all algorithms, indicating that the amount of reduced method call overhead
eventually becomes greater thatn the thread management overhead.

With the largest dataset, haifa, the GPU version of NSGA-II reduces the average execution time of CPU
version, 1 hour 12 minutes and 27 seconds, into the average of 2 minutes an 54 seconds. The speed–up
remains consistently above 3.0x for all three algorithms if the problem size is larger than that of flex, i.e.
about 400,000 (103 tests × 3,965 test goals). While this particular results are dependent on the choice of
the graphics card that has been used for this experiment, it suggest evidence that, for test suite minimisation
problems of realistic sizes, the GPGPU approach can provide a speed–up of at least 3.0x, which answers
RQ1.

6.2 Correlation

Regarding RQ2, one important factor that contributes to the level of speed–up is the speed of each indi-
vidual computational unit in the graphics card. The HD4850 graphics card used in the experiment contains
800 stream processor units that are normally used for the computation of geometric shading. Each of these
stream processors execute a single thread of Algorithm 1, of which there exist more than 800. Therefore,
if the individual stream processor is as powerful as a single core of the CPU, the absolute upper bound of
speed–up would be 800. In practice, the individual stream processor runs with the clock speed of 625MHz,
which makes them much slower and, therefore, less powerful than a CPU core. This results in speed–up
values lower than 800.
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Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.92 0.94 1.24 1.00
printtokens-2 1.00 0.93 1.36 1.11
printtokens-3 0.97 0.93 1.23 1.03
printtokens-4 1.01 0.94 1.31 1.03
schedule-1 1.00 0.90 1.86 0.97
schedule-2 1.04 0.95 1.92 1.01
schedule-3 0.96 0.89 1.49 0.95
schedule-4 1.01 0.90 1.69 0.94
printtokens 0.76 1.17 1.33 3.49
schedule 0.71 1.04 1.19 2.62
printtokens2 0.73 1.13 1.29 3.41
schedule2 0.73 1.06 1.19 2.44
tcas 0.86 1.03 1.14 1.61
totinfo 0.91 1.16 1.35 1.97
flex 1.48 2.05 2.69 3.22
gzip 1.15 1.78 2.39 3.51
sed 1.05 1.80 2.70 6.71
space-1 1.78 2.83 3.98 6.28
space-2 1.82 2.88 4.03 6.41
space-3 1.80 2.86 4.06 6.45
space-4 1.77 2.86 3.98 6.18
replace 0.74 1.19 1.37 4.06
bash 1.56 2.93 4.88 22.96
haifa 3.13 5.72 9.29 24.62

Table 4: speed–up results for SPEA2 algorithm

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.73 1.19 1.68 2.60
printtokens-2 0.75 1.21 1.70 2.60
printtokens-3 0.73 1.18 1.66 2.61
printtokens-4 0.74 1.21 1.70 2.63
schedule-1 1.01 1.48 1.89 2.17
schedule-2 1.00 1.47 1.88 2.19
schedule-3 0.99 1.46 1.88 2.16
schedule-4 0.99 1.46 1.87 2.15
printtokens 0.47 0.82 0.98 4.58
schedule 0.49 0.84 1.03 3.94
printtokens2 0.47 0.83 1.00 4.63
schedule2 0.50 0.84 1.01 3.49
tcas 0.67 1.00 1.29 2.24
totinfo 0.68 1.09 1.54 2.99
flex 1.71 3.17 5.12 8.69
gzip 0.97 1.78 2.91 7.88
sed 0.85 1.60 2.66 10.85
space-1 1.79 3.29 5.33 12.01
space-2 1.83 3.39 5.53 12.51
space-3 1.79 3.33 5.49 12.21
space-4 1.77 3.31 5.43 11.93
replace 0.47 0.84 1.01 5.44
bash 0.88 1.69 2.89 17.71
haifa 2.06 3.87 6.54 20.97

Table 5: speed–up results for Two Archive algorithm
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Config Model α β γ R2

JOMP1

Sp ∼ z 1.56e-07 - 1.00e+00 0.4894
Sp ∼ log z 2.01e-01 - -1.34e+00 0.3423
Sp ∼ l +m 3.27e-05 -1.13e-04 1.17e+00 0.7060
Sp ∼ log l +m 2.69e-01 -4.83e-05 -4.79e-01 0.8487
Sp ∼ l + logm 3.12e-05 -1.78e-01 2.15e+00 0.7600
Sp ∼ log l + logm 2.62e-01 -6.83e-02 -6.15e-02 0.8509

JOMP2

Sp ∼ z 3.24e-07 - 1.58e+00 0.5009
Sp ∼ log z 4.78e-01 - -4.05e+00 0.4606
Sp ∼ l +m 6.64e-05 -1.82e-04 1.87e+00 0.6367
Sp ∼ log l +m 6.00e-01 -2.84e-05 -1.83e+00 0.9084
Sp ∼ l + logm 6.35e-05 -3.07e-01 3.58e+00 0.6836
Sp ∼ log l + logm 5.96e-01 -4.04e-02 -1.59e+00 0.9086

JOMP4

Sp ∼ z 5.80e-07 - 2.15e+00 0.5045
Sp ∼ log z 8.72e-01 - -8.13e+00 0.4814
Sp ∼ l +m 1.16e-04 -3.42e-04 2.70e+00 0.6199
Sp ∼ log l +m 1.08e+00 -5.93e-05 -4.00e+00 0.9322
Sp ∼ l + logm 1.11e-04 -5.49e-01 5.74e+00 0.6611
Sp ∼ log l + logm 1.08e+00 -5.50e-02 -3.72e+00 0.9313

GPGPU

Sp ∼ z 2.25e-06 - 4.13e+00 0.7261
Sp ∼ log z 3.45e+00 - -3.66e+01 0.7178
Sp ∼ l +m 3.62e-04 -1.63e-04 5.33e+00 0.4685
Sp ∼ log l +m 3.53e+00 7.79e-04 -1.66e+01 0.8219
Sp ∼ l + logm 3.62e-04 -1.34e-01 5.98e+00 0.4676
Sp ∼ log l + logm 3.85e+00 1.69e+00 -2.82e+01 0.8713

Table 6: Regression Analysis for NSGA-II

However, within the observed data, the speed–up continues to increase as the problem size grows, which
suggests that the graphics card did not reach its full computational capacity. In order to answer RQ2,
statistical regression analysis was performed on the correlation between the observed speed–up and the
factors that constitute the size of problems.

Three size factors have been analysed for the regression: the number of test goals and the number of
test cases are denoted by l and m respectively, following the matrix notation in Section 3: l correlates
to the number of threads the GPGPU-version of the algorithm has to execute (as the size of the matrix
C ′ is l-by-n and n is fixed); m correlates to the amount of computation that needs to be performed by a
single thread (as each matrix-multiplication kernel computes a loop with m iterations). In addition to these
measurement, another size factor z = l ·m is considered to represent the perceived size of the minimisation
problem. Factor z is considered in isolation, whereas l and m are considered together; each variable has
been considered in its linear form (z, l and m) and logarithmic form (log z, log l and logm). This results
in 6 different combinations of regression models. Table 6, 7 and 8 present the results of regression analysis
for three algorithm respectively.

With a few exceptions of very small margins (NSGA-II with JOMP4 and SPEA2 with JOMP1 & JOMP4),
the model with the highest r2 correlation for all versions and configurations is Sp = α log l+ β logm+ γ.
Figure 2 shows the 3D plot of this model for GPU and JOMP4 configuration for Two Archive algorithm.
The observed trend is that the inclusion of log l results in higher correlation values, whereas models that
use l in its linear form tend to result in lowest correlation values. The coefficients for the best-fit regression
model for GPU, Sp = α log l + β logm + γ, can explain why the speed–up results for space test suites
are higher than those for test suites with z values such as tcas, gzip and replace. Apart from bash
and haifa, space has the largest number of test goals to cover, i.e. l. Since α is more than twice larger
than β, a higher value of l has more impact to Sp than m.

Based on the analysis, RQ2 is answered as follows: the observed speed–up shows a strong linear correlation
to the log of the number of test goals to cover and the log of the number of test cases in the test suite.
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Config Model α β γ R2

JOMP1

Sp ∼ z 1.60e-07 - 1.03e+00 0.5085
Sp ∼ log z 1.89e-01 - -1.16e+00 0.2988
Sp ∼ l +m 3.37e-05 -1.20e-04 1.21e+00 0.7443
Sp ∼ log l +m 2.58e-01 -6.08e-05 -3.57e-01 0.7987
Sp ∼ l + logm 3.23e-05 -1.79e-01 2.19e+00 0.7883
Sp ∼ log l + logm 2.50e-01 -7.97e-02 1.17e-01 0.7982

JOMP2

Sp ∼ z 3.67e-07 - 1.31e+00 0.6289
Sp ∼ log z 5.31e-01 - -4.94e+00 0.5567
Sp ∼ l +m 7.41e-05 -1.02e-04 1.53e+00 0.6867
Sp ∼ log l +m 6.14e-01 4.59e-05 -2.22e+00 0.8656
Sp ∼ l + logm 7.24e-05 -1.78e-01 2.52e+00 0.7031
Sp ∼ log l + logm 6.30e-01 9.28e-02 -2.85e+00 0.8700

JOMP4

Sp ∼ z 6.26e-07 - 1.78e+00 0.5504
Sp ∼ log z 7.86e-01 - -7.37e+00 0.3657
Sp ∼ l +m 1.23e-04 -2.40e-04 2.25e+00 0.5965
Sp ∼ log l +m 9.38e-01 -2.73e-05 -3.44e+00 0.6443
Sp ∼ l + logm 1.20e-04 -3.56e-01 4.19e+00 0.6081
Sp ∼ log l + logm 9.56e-01 3.15e-02 -3.78e+00 0.6442

GPGPU

Sp ∼ z 2.32e-06 - 2.25e+00 0.8777
Sp ∼ log z 3.12e+00 - -3.42e+01 0.6666
Sp ∼ l +m 3.82e-04 1.98e-04 3.06e+00 0.5713
Sp ∼ log l +m 3.01e+00 8.99e-04 -1.52e+01 0.6657
Sp ∼ l + logm 3.90e-04 5.17e-01 4.89e-02 0.5791
Sp ∼ log l + logm 3.38e+00 1.96e+00 -2.88e+01 0.7417

Table 7: Regression Analysis for SPEA2

6.3 Insights

Figure 3 shows two possible smoke test scenarios based on the results of CPU and GPU versions of NSGA-
II. The solid line represents the scenario based on the GPU version of the algorithm, whereas the dotted line
represents the scenario based on the CPU version. The flat segment shows the time each version spends
on the optimisation; the curved segment shows the trade-off between time and test coverage. Since the
CPU version of NSGA-II takes longer than 60 minutes to terminate, it cannot contribute to any smoke test
scenario that requires to finish within 60 minutes. On the other hand, the GPU version allows the tester to
consider a subset of tests that can be executed under 30 minutes. If the grey region was wider than Figure 3,
the difference between two configuration would have been even more dramatic. This answers RQ3 as
follows: a faster execution of optimisation algorithms enables the tester not only to use the algorithms but
also to exploit their results more effectively.

The ability to execute a sophisticated optimisation algorithm within a relatively short time allows the tester
to consider state-of-the-arts regression testing techniques with greater flexibility, because the cost of the
optimisation does not have to be amortised across multiple iterations. Many state-of-arts regression testing
techniques require the use of continuously changing sets of testing data, such as recent fault history [26] or
the last time a specific test case has been executed [55, 56]. In addition to the use of dynamic testing data,
the previous work also showed that repeatedly using the same subset of a large test suite may impair the
fault detection capability of the regression testing [57].

7 Threats to Validity

Threats to internal validity concern the factors that could have affected the experiment in the paper. While
GPGPU architecture has been researched for some time, the commercially available GPGPU frameworks
such as CUDA and OpenCL are still in their early stages and, therefore, may contain faults in the implemen-
tation. The GPGPU matrix-multiplication routine has been manually tested and validated with additional
data apart from the test suites chosen for the empirical study. Regarding the precision of the GPGPU-
based calculation, the aim of the paper is to investigate the potential speed–up that can be gained by using
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Config Model α β γ R2

JOMP1

Sp ∼ z 7.34e-08 - 9.35e-01 0.1280
Sp ∼ log z 9.65e-02 - -1.92e-01 0.0931
Sp ∼ l +m 1.78e-05 -1.74e-04 1.14e+00 0.5412
Sp ∼ log l +m 1.94e-01 -1.20e-04 -7.59e-02 0.7637
Sp ∼ l + logm 1.54e-05 -2.79e-01 2.68e+00 0.7108
Sp ∼ log l + logm 1.64e-01 -2.01e-01 1.22e+00 0.8350

JOMP2

Sp ∼ z 1.60e-07 - 1.59e+00 0.1587
Sp ∼ log z 2.57e-01 - -1.45e+00 0.1731
Sp ∼ l +m 3.72e-05 -2.98e-04 1.95e+00 0.4942
Sp ∼ log l +m 4.31e-01 -1.73e-04 -7.67e-01 0.8095
Sp ∼ l + logm 3.27e-05 -4.94e-01 4.69e+00 0.6461
Sp ∼ log l + logm 3.84e-01 -3.04e-01 1.22e+00 0.8571

JOMP4

Sp ∼ z 3.12e-07 - 2.33e+00 0.1865
Sp ∼ log z 5.21e-01 - -3.84e+00 0.2196
Sp ∼ l +m 6.95e-05 -5.20e-04 2.97e+00 0.4990
Sp ∼ log l +m 8.17e-01 -2.82e-04 -2.18e+00 0.8556
Sp ∼ l + logm 6.17e-05 -8.50e-01 7.69e+00 0.6322
Sp ∼ log l + logm 7.46e-01 -4.77e-01 9.01e-01 0.8880

GPGPU

Sp ∼ z 1.64e-06 - 4.96e+00 0.5728
Sp ∼ log z 2.79e+00 - -2.82e+01 0.7056
Sp ∼ l +m 2.83e-04 -3.54e-04 6.02e+00 0.4516
Sp ∼ log l +m 3.05e+00 5.02e-04 -1.31e+01 0.9417
Sp ∼ l + logm 2.76e-04 -6.36e-01 9.59e+00 0.4620
Sp ∼ log l + logm 3.21e+00 9.47e-01 -1.94e+01 0.9603

Table 8: Regression Analysis for Two Archive
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Figure 2: 3D-plot of regression model Sp = α log l+β logm+γ for GPGPU(solid line) and JOMP4(dotted
line) configurations for Two Archive algorithm
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Figure 3: Comparison of smoke test scenarios for IBM System (haifa). The solid line shows the trade-
offs between time and test coverage when GPU version of NSGA-II is used, whereas the dotted line shows
that of CPU version. The grey area shows the interesting trade-off that the CPU version fails to exploit
within 60 minutes.

GPGPU, rather than to consider the effectiveness of the actual test suite minimisation in the context of
regression testing. Therefore, the precision issue does not constitute a major issue for the aim of this study.

Threats to external validity concern any factor that might prevent the generalisation of the result presented
by the paper. Since the performance of GPGPU computing is inherently hardware specific, the results
reported in the paper may not be reproducible in their exact form using other combinations of hardware
components. However, with the advances in graphics card architecture, it is more likely that any repro-
duction of the same approach with newer graphics card will only improve the speed–up results reported in
the paper. It should be also noted that optimising test suite minimisation using evolutionary computation is
an inherently ideal candidate for GPGPU computation as the reformulated problem, matrix-multiplication,
is highly parallel in nature. Other problems in search-based software engineering may not render them-
selves as easily as the test suite minimisation problem. However, this issue is universal to any attempts to
parallelise a software engineering technique and not specific to GPGPU approach.

Threats to construct validity arises when measurements used in the experiment do not capture the concepts
they are supposed to represent. The speed–up calculation was based on the measurements of execution
time for both algorithms using system clock, which was chosen because it probably represents the speed
of a technique best to the end-user. Regarding the measurements of problem size used for the regression
analysis, there may exist more sophisticated measurements of test suites and program source code that
correlates better with the speed–up. However, both the number of test goals and the number of test cases
are probably the most readily available measurements about source code and test suites and provide a
reasonable starting point for this type of analysis.

8 Related Work

Test suite minimisation aims to reduce the number of tests to be executed by calculating the minimum
set of tests that are required to satisfy the given test requirements. The problem has been formulated as
the minimal hitting set problem [33], which is NP-hard [38]. Various heuristics for the minimal hitting
set problem, or the minimal set cover problem (the duality of the former), have been suggested for the
test suite minimisation [33–35, 58]. However, empirical evaluations of these techniques have reported
conflicting views on the impact on fault detection capability: some reported no impact [59,60] while others

RN/11/07 Page 16



Highly Scalable Multi-Objective Test Suite Minimisation Using Graphics CardS. Yoo, M. Harman & S. Ur

reported compromised fault detection capability [32, 61].

One potential reason why test suite minimisation has negative impact on the fault detection capability is
the fact that the criterion for minimisation is structural coverage; achieving coverage along may not be
sufficient for revealing faults. Recent techniques have used multiple criteria for minimisation [26, 37] or
criteria other than structural coverage [62–65]. This paper uses the multi-objective approach based on
Multi-Objective Evolutionary Algorithm (MOEA) introduced by Yoo and Harman [26]; this paper also
presents the first attempt to parallelise test suite minimisation with sophisticated criteria for scalability.

Population-based evolutionary algorithms are ideal candidate for parallelisation on graphics cards [19]
and existing work have shown successful implementations for classical problems. Tsutsui and Fujimoto
implemented a single-objective parallel Genetic Algorithm (GA) using GPU for the Quadratic Assignment
Problem (QAP) [41]. Wilson and Banzaf have implemented linear Genetic Programming (GP) algorithm
on XBox360 game consoles [42]. Langdon and Banzaf have implemented GP for GPU using an SIMD
interpreter for fitness evaluation [18]. Wong has shown an implementation of an MOEA on GPU and
evaluated the implementation using a suite of benchmark problems [44]. This paper shows that the speed-up
achieved by using GPGPU can have a significant impact on the practical scalability of real-world problems
by presenting an empirical study of real-world problems.

Despite the highly parallelisable nature of many techniques used in SBSE, few parallel algorithms have
been used. Mitchell et al. used a distributed architecture for their clustering tool Bunch [14]. Asadi et al.
also used a distributed Server-Client architecture for Concept Location problem [16]. However, both work
use a distributed architecture that uses multiple machines; this paper is the first work in SBSE that presents
highly affordable parallelism based on GPGPU.

9 Conclusion

This paper presents the first use of GPGPU-based massive parallelism for improving scalability of a re-
gression testing technique based on Search-Based Software Engineering (SBSE). Many algorithms used in
SBSE are population-based evolutionary algorithms that are considered to be ‘embarrassingly parallel’ in
nature. The advances in GPGPU architecture and the wide availability of parallelism that follows provides
an ideal platform for parallelising and, therefore improving the scalability of these algorithms.

The paper presents an evaluation of the GPGPU-based test suite minimisation for real-world examples that
include an industry-scale test suite. The results show that the GPGPU-based optimisation can achieve a
speed–up of up to 2100% compared to a single-threaded version of the same algorithm executed on a CPU.
Statistical analysis shows that the speed–up correlates to the logarithmic of the problem size, i.e. the size
of the program under test and the size of the test suite.
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Appendix

Table 9: Execution time of NSGA-II algotirhm

Subject Config T̄total σTtotal
T̄init σTinit

T̄fitness σTfitness
T̄remaining σTremaining

printtokens-1 CPU 12265.23 133.47 0.00 0.00 8565.77 63.68 3699.47 104.78
printtokens-1 JOMP1 14869.77 379.38 5.83 0.45 11084.23 310.38 3779.70 119.98
printtokens-1 JOMP2 10112.50 146.97 5.70 0.46 5905.90 87.01 4200.90 107.54
printtokens-1 JOMP4 7950.77 165.02 5.67 0.47 3633.93 63.73 4311.17 127.42
printtokens-1 GPGPU 5739.60 145.89 469.33 3.64 1934.33 124.20 3335.93 100.65
printtokens-2 CPU 12518.40 146.89 0.00 0.00 8756.17 68.64 3762.23 109.13
printtokens-2 JOMP1 15029.73 383.27 5.77 0.62 11220.00 297.28 3803.97 120.04
printtokens-2 JOMP2 10162.13 140.35 5.73 0.44 5954.07 88.72 4202.33 102.93
printtokens-2 JOMP4 8036.67 131.23 5.80 0.40 3692.87 68.79 4338.00 103.05
printtokens-2 GPGPU 5685.50 146.80 468.90 2.20 1867.03 109.29 3349.57 95.57
printtokens-3 CPU 12335.80 131.26 0.00 0.00 8626.63 60.42 3709.17 102.36
printtokens-3 JOMP1 14965.80 416.84 5.80 0.48 11179.60 297.77 3780.40 156.59
printtokens-3 JOMP2 10185.57 128.75 5.53 0.50 5930.50 73.85 4249.53 102.33
printtokens-3 JOMP4 8086.13 167.18 5.77 0.42 3688.27 84.40 4392.10 112.38
printtokens-3 GPGPU 5784.47 157.36 468.33 4.78 1952.60 127.56 3363.53 82.57
printtokens-4 CPU 12360.47 115.52 0.00 0.00 8670.77 62.58 3689.70 81.87
printtokens-4 JOMP1 14690.43 337.86 5.73 0.44 11004.50 264.70 3680.20 141.57
printtokens-4 JOMP2 10140.37 115.35 5.70 0.46 5944.17 85.72 4190.50 104.89
printtokens-4 JOMP4 8010.47 199.55 5.63 0.48 3673.30 129.08 4331.53 129.24
printtokens-4 GPGPU 5642.50 157.42 467.80 2.91 1883.70 139.35 3291.00 90.03
schedule-1 CPU 7638.67 117.48 0.00 0.00 4439.20 70.69 3199.47 65.11
schedule-1 JOMP1 7871.10 107.36 3.40 0.49 4679.13 86.89 3188.57 82.29
schedule-1 JOMP2 6257.03 90.83 3.47 0.50 2630.67 54.54 3622.90 105.58
schedule-1 JOMP4 5450.87 97.13 3.57 0.50 1740.70 43.13 3706.60 84.68
schedule-1 GPGPU 4893.73 219.03 475.37 2.50 1631.47 213.80 2786.90 82.99
schedule-2 CPU 7745.30 104.94 0.00 0.00 4499.87 39.01 3245.43 80.30
schedule-2 JOMP1 8032.80 113.87 3.53 0.50 4793.07 75.86 3236.20 90.57
schedule-2 JOMP2 6341.13 111.05 3.60 0.49 2676.43 49.23 3661.10 97.28
schedule-2 JOMP4 5504.40 141.96 3.47 0.50 1760.17 57.80 3740.77 104.00
schedule-2 GPGPU 5304.50 112.85 474.90 2.17 2028.83 21.46 2800.77 93.53
schedule-3 CPU 7646.40 124.66 0.00 0.00 4461.60 53.81 3184.80 89.71
schedule-3 JOMP1 7941.90 129.85 3.47 0.50 4715.47 99.74 3222.97 92.20
schedule-3 JOMP2 6251.20 95.49 3.47 0.50 2632.60 39.48 3615.13 96.39
schedule-3 JOMP4 5509.93 125.49 3.60 0.49 1750.40 50.08 3755.93 92.32
schedule-3 GPGPU 5285.13 120.56 474.57 1.56 2026.90 19.19 2783.67 104.82
schedule-4 CPU 7611.70 92.16 0.00 0.00 4430.17 41.45 3181.53 69.16
schedule-4 JOMP1 8033.37 122.39 3.47 0.50 4792.00 92.38 3237.90 96.45
schedule-4 JOMP2 6359.90 85.07 3.63 0.48 2693.93 45.06 3662.33 84.43
schedule-4 JOMP4 5553.03 100.72 3.53 0.50 1771.70 38.32 3777.80 88.11
schedule-4 GPGPU 5307.77 112.28 474.83 1.85 2037.33 20.37 2795.60 96.75
printtokens CPU 201468.50 1017.39 0.00 0.00 168824.77 933.12 32643.73 217.17
printtokens JOMP1 264294.97 730.51 12.20 0.40 231541.57 668.03 32741.20 268.03
printtokens JOMP2 162367.67 368.62 12.47 0.50 124352.20 351.64 38003.00 298.90
printtokens JOMP4 140384.07 319.11 12.23 0.42 102300.67 184.97 38071.17 242.94
printtokens GPGPU 44592.67 234.10 470.10 1.35 12097.70 26.65 32024.87 234.80
schedule CPU 95693.77 607.90 0.00 0.00 74140.63 504.25 21553.13 175.79
schedule JOMP1 139348.20 609.53 16.73 0.51 117751.40 547.86 21580.07 310.49
schedule JOMP2 88385.17 383.10 16.53 0.50 63433.77 271.22 24934.87 304.31
schedule JOMP4 75779.67 584.89 16.63 0.55 50686.53 377.03 25076.50 480.73
schedule GPGPU 28351.07 324.36 464.73 1.59 6899.33 20.27 20987.00 328.10
printtokens2 CPU 200409.53 1007.63 0.00 0.00 167983.10 860.30 32426.43 256.84
printtokens2 JOMP1 278160.67 788.57 12.57 0.50 245605.30 794.70 32542.80 217.64
printtokens2 JOMP2 169781.93 604.65 12.33 0.54 132011.97 481.70 37757.63 340.18
printtokens2 JOMP4 146077.10 460.93 12.43 0.50 108003.00 325.04 38061.67 335.96
printtokens2 GPGPU 45705.40 221.84 470.67 1.30 13294.90 27.15 31939.83 219.62
schedule2 CPU 88307.47 907.51 0.00 0.00 66683.77 728.58 21623.70 409.08
schedule2 JOMP1 124601.87 585.05 16.33 0.60 102931.23 557.67 21654.30 409.55
schedule2 JOMP2 80791.20 587.41 16.70 0.97 55709.73 231.85 25064.77 491.77
schedule2 JOMP4 69575.73 536.93 16.50 1.06 44214.20 299.20 25345.03 424.66
schedule2 GPGPU 28571.07 359.22 462.53 1.80 6794.00 21.28 21314.53 363.45
tcas CPU 33098.07 403.64 0.00 0.00 19479.47 335.46 13618.60 126.26
tcas JOMP1 39282.17 423.11 14.07 1.31 25542.43 408.53 13725.67 178.59
tcas JOMP2 30021.70 308.38 14.20 1.30 14239.20 215.67 15768.30 189.47
tcas JOMP4 25391.43 229.51 14.10 1.47 9460.17 189.81 15917.17 242.64
tcas GPGPU 17099.93 166.20 466.40 2.32 3476.97 22.49 13156.57 163.79
totinfo CPU 33547.10 414.49 0.00 0.00 23190.27 212.64 10356.83 236.96
totinfo JOMP1 37089.93 305.02 13.23 1.33 26853.87 285.81 10222.83 146.45
totinfo JOMP2 26280.27 277.43 13.43 1.17 14567.70 155.58 11699.13 196.05
totinfo JOMP4 20867.60 208.74 13.70 1.59 8988.33 76.84 11865.57 189.78
totinfo GPGPU 13409.37 131.48 465.00 3.04 3065.73 28.02 9878.63 132.19
flex CPU 68898.23 562.97 0.00 0.00 66074.40 554.00 2823.83 60.97
flex JOMP1 43761.27 1667.94 14.07 0.73 40925.87 1678.87 2821.33 74.69
flex JOMP2 24966.77 513.57 13.63 0.48 21769.90 509.27 3183.23 60.48
flex JOMP4 16441.23 232.20 13.90 0.54 13223.03 231.11 3204.30 71.58
flex GPGPU 10103.20 65.62 465.27 2.31 7225.33 10.47 2412.60 66.89
gzip CPU 73950.87 959.62 0.00 0.00 70627.90 946.41 3322.97 58.53
gzip JOMP1 62003.70 1154.83 12.77 0.76 58680.57 1157.14 3310.37 65.29
gzip JOMP2 34440.27 591.68 12.40 0.55 30655.77 582.96 3772.10 87.57
gzip JOMP4 22367.40 539.74 12.57 0.80 18535.70 545.24 3819.13 82.22
gzip GPGPU 9240.03 69.80 463.90 1.70 5831.23 9.23 2944.90 69.46
sed CPU 124817.33 1976.92 0.00 0.00 120265.57 1930.36 4551.77 72.83
sed JOMP1 122040.30 1435.61 11.73 0.57 117454.93 1441.36 4573.63 68.62
sed JOMP2 66612.53 649.39 11.53 0.56 61453.23 645.79 5147.77 82.37
sed JOMP4 41056.63 385.78 11.47 0.56 35821.10 398.33 5224.07 81.48
sed GPGPU 12147.77 75.00 467.27 2.14 7498.07 11.22 4182.43 77.26
space-1 CPU 128911.03 3000.98 0.00 0.00 125323.07 2979.24 3587.97 62.34
space-1 JOMP1 72884.27 1545.06 13.27 0.81 69262.87 1538.28 3608.13 74.12
space-1 JOMP2 39989.00 878.97 13.13 0.43 35861.10 859.12 4114.77 89.34
space-1 JOMP4 25293.07 395.23 13.20 0.40 21164.57 392.79 4115.30 86.67
space-1 GPGPU 12270.57 61.69 466.80 1.80 8622.20 10.40 3181.57 64.01
space-2 CPU 126462.67 2652.95 0.00 0.00 122919.20 2592.98 3543.47 87.69
space-2 JOMP1 68066.23 1147.03 13.07 0.44 64527.43 1164.34 3525.73 78.28
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space-2 JOMP2 37911.63 594.27 13.17 0.37 33840.57 583.31 4057.90 71.06
space-2 JOMP4 24380.70 555.05 13.00 0.26 20286.67 553.22 4081.03 69.44
space-2 GPGPU 11625.40 68.16 465.10 1.62 8021.33 9.84 3138.97 68.86
space-3 CPU 130576.67 2677.40 0.00 0.00 126974.30 2640.58 3602.37 73.72
space-3 JOMP1 72470.93 1543.13 13.03 0.31 68864.00 1531.11 3593.90 75.07
space-3 JOMP2 39988.90 784.99 13.10 0.54 35870.73 777.28 4105.07 78.43
space-3 JOMP4 25302.80 447.97 13.20 0.40 21153.63 433.21 4135.97 74.92
space-3 GPGPU 12279.10 84.11 466.67 1.94 8622.53 8.05 3189.90 86.12
space-4 CPU 128981.73 3442.49 0.00 0.00 125395.00 3394.39 3586.73 78.57
space-4 JOMP1 73208.10 2310.12 13.10 0.30 69642.43 2325.78 3552.57 61.09
space-4 JOMP2 39689.37 800.83 13.13 0.34 35634.33 818.95 4041.90 91.29
space-4 JOMP4 25216.80 351.18 13.07 0.36 21115.67 332.19 4088.07 82.16
space-4 GPGPU 12233.17 81.10 466.30 1.73 8622.07 10.74 3144.80 80.37
replace CPU 325246.37 1698.49 0.00 0.00 281927.93 1405.19 43318.43 848.20
replace JOMP1 445375.07 1524.35 13.30 0.46 402127.67 1236.82 43234.10 835.37
replace JOMP2 265138.93 1078.85 13.20 0.48 214949.63 672.27 50176.10 848.70
replace JOMP4 225739.00 892.89 13.20 0.48 175134.70 253.04 50591.10 888.86
replace GPGPU 61807.93 519.29 472.07 3.92 18291.03 31.20 43044.83 523.68
bash CPU 2071836.07 29845.30 0.00 0.00 2051591.57 29674.30 20244.50 206.06
bash JOMP1 1346585.83 16962.75 53.30 1.39 1326396.90 16966.54 20135.63 159.67
bash JOMP2 715605.03 11951.22 53.37 1.25 693778.67 11979.47 21773.00 150.21
bash JOMP4 425783.60 5673.48 54.07 1.73 403970.63 5677.03 21758.90 209.60
bash GPGPU 82574.53 194.61 517.07 2.35 62371.57 13.89 19685.90 189.82
haifa CPU 4347517.13 462072.40 0.00 0.00 4178547.93 831883.88 168969.20 709728.80
haifa JOMP1 1445294.57 38625.23 136.07 3.59 1406525.60 39448.65 38632.90 5916.45
haifa JOMP2 783762.87 20494.64 136.13 3.48 745728.40 20522.99 37898.33 3591.78
haifa JOMP4 481433.27 11823.74 135.63 3.77 444301.60 11749.65 36996.03 784.43
haifa GPGPU 174990.80 5095.10 613.67 61.27 136661.40 849.63 37715.73 4931.15

Table 10: Execution time of SPEA2 algotirhm

Subject Config T̄total σTtotal
T̄init σTinit

T̄fitness σTfitness
T̄remaining σTremaining

printtokens-1 CPU 54737.30 7183.20 0.00 0.00 8562.97 75.10 46174.33 7167.90
printtokens-1 JOMP1 60409.20 7729.38 5.73 0.44 10825.50 121.39 49577.97 7709.26
printtokens-1 JOMP2 59056.57 7209.10 5.73 0.44 5840.13 69.33 53210.70 7212.29
printtokens-1 JOMP4 52838.37 15410.19 5.77 0.42 3571.33 39.62 49261.27 15434.46
printtokens-1 GPGPU 55810.83 7876.04 471.83 14.16 3535.63 35.46 51803.37 7864.52
printtokens-2 CPU 61021.80 9959.34 0.00 0.00 8769.17 68.85 52252.63 9922.10
printtokens-2 JOMP1 61762.40 7379.62 5.80 0.40 11007.90 168.96 50748.70 7391.38
printtokens-2 JOMP2 67094.07 12558.61 5.77 0.42 5971.47 76.16 61116.83 12560.31
printtokens-2 JOMP4 54581.23 15862.40 5.90 0.30 3634.47 68.27 50940.87 15904.60
printtokens-2 GPGPU 56347.47 8010.39 468.90 2.36 3521.87 30.39 52356.70 8007.62
printtokens-3 CPU 55246.60 8305.32 0.00 0.00 8658.43 66.02 46588.17 8299.09
printtokens-3 JOMP1 57619.10 6555.12 5.83 0.37 10936.97 133.77 46676.30 6526.33
printtokens-3 JOMP2 60952.13 11448.43 5.63 0.48 5931.23 59.59 55015.27 11439.49
printtokens-3 JOMP4 57878.43 19310.31 5.67 0.47 3601.83 44.26 54270.93 19337.38
printtokens-3 GPGPU 54563.63 7163.49 467.97 1.83 3530.53 22.73 50565.13 7159.91
printtokens-4 CPU 59433.97 7999.19 0.00 0.00 8692.00 70.85 50741.97 7986.66
printtokens-4 JOMP1 59541.43 6497.08 5.67 0.47 10950.07 156.36 48585.70 6514.42
printtokens-4 JOMP2 64436.50 8461.38 5.77 0.42 5915.53 64.97 58515.20 8458.26
printtokens-4 JOMP4 56524.23 20522.42 5.67 0.47 3590.87 51.32 52927.70 20535.99
printtokens-4 GPGPU 58235.23 5732.37 467.17 2.38 3101.50 570.40 54666.57 5759.73
schedule-1 CPU 103525.27 10751.91 0.00 0.00 4445.07 31.51 99080.20 10752.81
schedule-1 JOMP1 104730.07 13222.87 3.70 0.46 4700.47 109.48 100025.90 13203.26
schedule-1 JOMP2 115522.53 9903.85 3.63 0.48 2618.30 49.96 112900.60 9911.08
schedule-1 JOMP4 100832.93 35751.09 3.77 0.42 1669.10 31.57 99160.07 35770.11
schedule-1 GPGPU 108538.97 13846.59 475.30 1.66 2570.70 165.46 105492.97 13856.20
schedule-2 CPU 111070.57 8120.00 0.00 0.00 4522.30 32.82 106548.27 8118.41
schedule-2 JOMP1 107589.33 8283.42 3.70 0.46 4799.63 61.40 102786.00 8297.07
schedule-2 JOMP2 117569.23 9742.41 3.57 0.50 2684.60 48.63 114881.07 9751.08
schedule-2 JOMP4 106101.20 37473.79 3.40 0.49 1694.33 39.42 104403.47 37495.24
schedule-2 GPGPU 110804.83 9195.29 476.23 2.68 2616.37 10.64 107712.23 9196.71
schedule-3 CPU 67744.33 8141.45 0.00 0.00 4479.80 34.50 63264.53 8158.15
schedule-3 JOMP1 71534.80 8905.75 3.67 0.47 4676.60 68.23 66854.53 8912.32
schedule-3 JOMP2 77546.20 9676.54 3.47 0.50 2624.80 59.67 74917.93 9667.77
schedule-3 JOMP4 67597.97 24248.38 3.60 0.49 1665.37 35.18 65929.00 24263.71
schedule-3 GPGPU 71874.93 8807.73 474.87 1.48 2621.33 8.62 68778.73 8808.51
schedule-4 CPU 83107.30 9619.47 0.00 0.00 4449.13 40.74 78658.17 9599.56
schedule-4 JOMP1 83825.20 11900.34 3.67 0.47 4780.03 83.15 79041.50 11903.98
schedule-4 JOMP2 93997.57 13035.56 3.57 0.50 2658.10 56.89 91335.90 13040.25
schedule-4 JOMP4 83453.57 30179.48 3.73 0.44 1682.83 32.68 81767.00 30193.44
schedule-4 GPGPU 88935.70 9241.76 474.93 2.06 2622.30 10.36 85838.47 9240.44
printtokens CPU 218854.33 1726.93 0.00 0.00 168196.60 1514.85 50657.73 327.32
printtokens JOMP1 287307.47 1127.93 12.37 0.55 236604.07 929.05 50691.03 355.26
printtokens JOMP2 186358.63 576.28 12.47 0.85 127034.93 346.14 59311.23 386.97
printtokens JOMP4 164231.80 2976.55 12.20 0.40 103544.77 472.16 60674.83 2558.07
printtokens GPGPU 62718.07 617.76 470.47 1.50 12305.87 27.83 49941.73 617.07
schedule CPU 108266.97 707.22 0.00 0.00 73895.10 578.85 34371.87 213.91
schedule JOMP1 152762.60 743.22 16.60 0.49 118391.37 599.61 34354.63 549.03
schedule JOMP2 104064.37 734.29 16.43 0.50 63909.73 307.38 40138.20 679.72
schedule JOMP4 91078.00 2702.94 16.57 0.50 50229.77 412.43 40831.67 2467.27
schedule GPGPU 41389.13 616.10 464.77 1.12 7065.23 24.31 33859.13 621.14
printtokens2 CPU 218065.40 885.64 0.00 0.00 167678.67 670.63 50386.73 385.17
printtokens2 JOMP1 298648.77 940.76 12.43 0.62 248103.87 788.46 50532.47 367.08
printtokens2 JOMP2 192170.00 478.57 12.47 0.50 132948.23 405.78 59209.30 293.85
printtokens2 JOMP4 168897.87 2981.31 12.17 0.37 108599.40 488.40 60286.30 2579.16
printtokens2 GPGPU 63975.20 273.85 485.47 79.59 13622.70 27.21 49867.03 313.69
schedule2 CPU 101383.53 1208.80 0.00 0.00 67082.43 1167.92 34301.10 624.25
schedule2 JOMP1 138615.47 2661.56 16.73 1.09 103845.77 1939.76 34752.97 918.69
schedule2 JOMP2 95390.57 928.84 16.67 1.11 55567.10 200.16 39806.80 881.44
schedule2 JOMP4 85278.97 2484.97 16.37 0.60 44539.50 439.27 40723.10 2316.45
schedule2 GPGPU 41635.23 648.52 462.50 1.41 6981.63 23.46 34191.10 641.56
tcas CPU 41985.83 338.61 0.00 0.00 19457.23 195.99 22528.60 207.74
tcas JOMP1 48657.30 796.67 14.10 1.37 25970.57 431.74 22672.63 412.30
tcas JOMP2 40586.10 295.08 13.70 1.16 14255.30 214.12 26317.10 227.65
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tcas JOMP4 37024.63 2397.64 14.30 1.00 9625.57 222.57 27384.77 2238.37
tcas GPGPU 26093.17 226.88 465.57 2.73 3544.30 63.69 22083.30 188.19
totinfo CPU 40370.83 424.62 0.00 0.00 23053.97 205.96 17316.87 250.47
totinfo JOMP1 44349.27 366.13 13.47 1.33 27013.60 233.96 17322.20 259.02
totinfo JOMP2 34824.07 391.81 13.10 1.11 14644.00 189.26 20166.97 285.14
totinfo JOMP4 29982.03 1869.13 13.63 1.76 8985.83 155.63 20982.57 1745.97
totinfo GPGPU 20475.40 242.92 464.03 1.96 3071.80 56.35 16939.57 222.17
flex CPU 85954.07 1862.67 0.00 0.00 67851.50 638.68 18102.57 1641.89
flex JOMP1 57963.13 1777.55 13.83 0.64 40302.90 1188.90 17646.40 1186.56
flex JOMP2 41961.70 1604.81 13.90 0.83 21351.73 522.14 20596.07 1538.22
flex JOMP4 32708.03 4129.65 14.30 0.59 12716.27 304.51 19977.47 4062.74
flex GPGPU 26750.37 1510.63 465.13 1.96 7324.43 28.65 18960.80 1490.76
gzip CPU 90650.70 1740.26 0.00 0.00 73402.77 908.02 17247.93 1519.11
gzip JOMP1 78942.40 2740.94 13.37 2.85 60347.33 1754.09 18581.70 1995.90
gzip JOMP2 51022.47 1655.06 12.67 0.54 30961.97 595.97 20047.83 1539.96
gzip JOMP4 38451.73 4173.62 12.40 0.49 18194.50 454.46 20244.83 4111.11
gzip GPGPU 25936.73 1699.42 464.23 2.03 5960.30 22.46 19512.20 1683.50
sed CPU 136519.00 1517.32 0.00 0.00 123618.43 1653.37 12900.57 1057.79
sed JOMP1 129451.17 1686.10 11.53 0.62 116950.97 1566.68 12488.67 902.30
sed JOMP2 75734.37 1315.20 11.73 0.44 61552.53 469.44 14170.10 1074.68
sed JOMP4 50505.77 1092.84 11.73 0.44 35754.93 437.79 14739.10 1097.59
sed GPGPU 20424.73 1333.13 467.80 2.20 7508.57 16.12 12448.37 1322.58
space-1 CPU 144209.27 2733.97 0.00 0.00 130875.73 2677.66 13333.53 327.63
space-1 JOMP1 80985.53 1312.87 13.13 0.34 67619.57 1327.43 13352.83 244.88
space-1 JOMP2 51000.47 761.16 13.07 0.25 35512.43 712.74 15474.97 274.02
space-1 JOMP4 36331.47 1763.56 13.17 0.37 21285.83 526.62 15032.47 1454.21
space-1 GPGPU 22959.10 424.20 467.00 4.86 8677.07 8.74 13815.03 424.17
space-2 CPU 140650.20 2961.17 0.00 0.00 127750.53 2992.23 12899.67 275.49
space-2 JOMP1 77375.50 1296.40 12.97 0.18 64315.27 1264.78 13047.27 253.93
space-2 JOMP2 48832.40 578.12 13.13 0.34 33724.50 528.94 15094.77 294.24
space-2 JOMP4 34990.77 1657.58 13.00 0.58 20272.27 444.72 14705.50 1387.08
space-2 GPGPU 21956.33 388.68 466.50 1.86 8069.80 11.64 13420.03 390.20
space-3 CPU 146322.57 2154.38 0.00 0.00 133057.60 2094.56 13264.97 232.56
space-3 JOMP1 81090.77 1440.19 13.13 0.43 67842.80 1410.05 13234.83 252.39
space-3 JOMP2 51179.13 956.43 13.10 0.40 35734.40 895.88 15431.63 274.58
space-3 JOMP4 36106.43 1604.97 13.13 0.50 21230.63 421.11 14862.67 1428.65
space-3 GPGPU 22679.07 279.30 466.53 2.01 8672.27 8.97 13540.27 277.75
space-4 CPU 143502.33 3316.32 0.00 0.00 129979.30 3294.07 13523.03 307.61
space-4 JOMP1 81009.73 1379.42 13.07 0.25 67473.00 1373.53 13523.67 273.02
space-4 JOMP2 50280.77 1640.55 13.13 0.34 35278.87 550.71 14988.77 1489.76
space-4 JOMP4 36162.23 1593.24 12.93 0.25 20978.10 366.36 15171.20 1510.98
space-4 GPGPU 23215.27 480.33 465.63 1.52 8675.47 8.98 14074.17 479.95
replace CPU 348104.93 2187.83 0.00 0.00 281450.50 1536.71 66654.43 1342.59
replace JOMP1 469796.70 1506.10 13.40 0.55 403195.30 980.27 66588.00 1178.14
replace JOMP2 292941.60 3840.15 13.17 0.37 215710.27 774.62 77218.17 3352.11
replace JOMP4 254205.57 3788.56 13.13 0.34 175560.03 745.43 78632.40 3260.21
replace GPGPU 85664.63 735.20 471.57 2.19 18829.70 31.29 66363.37 736.89
bash CPU 2130058.33 26423.09 0.00 0.00 2099565.87 26226.12 30492.47 296.06
bash JOMP1 1363130.33 25211.50 53.93 1.57 1332820.57 25252.03 30255.83 282.71
bash JOMP2 727041.77 9231.70 53.60 1.54 692904.27 9237.17 34083.90 1158.28
bash JOMP4 436764.23 6370.28 54.33 1.19 402476.50 6614.83 34233.40 1205.63
bash GPGPU 92768.33 298.38 516.80 1.74 62381.57 12.13 29869.97 294.00
haifa CPU 4605875.50 460148.49 0.00 0.00 4558144.60 456561.49 47730.90 3707.93
haifa JOMP1 1472382.37 43731.58 137.50 3.70 1423957.80 43151.02 48287.07 4840.65
haifa JOMP2 805397.90 19822.93 136.53 3.79 755478.63 19194.49 49782.73 5430.14
haifa JOMP4 496257.47 15594.50 135.97 2.96 447501.90 14863.69 48619.60 1572.93
haifa GPGPU 187426.13 6736.59 645.33 157.36 136904.93 1187.38 49875.87 6015.35

Table 11: Execution time of Two Archive algotirhm

Subject Config T̄total σTtotal
T̄init σTinit

T̄fitness σTfitness
T̄remaining σTremaining

printtokens-1 CPU 9126.60 126.85 0.00 0.00 7742.80 102.28 1383.80 45.34
printtokens-1 JOMP1 12467.17 88.56 5.67 0.47 11116.57 184.10 1344.93 132.62
printtokens-1 JOMP2 7658.47 132.18 5.43 0.50 6122.23 50.27 1530.80 155.90
printtokens-1 JOMP4 5439.40 158.63 5.83 0.37 3862.43 36.76 1571.13 163.76
printtokens-1 GPGPU 3514.80 115.19 471.27 16.17 2121.33 101.65 922.20 33.19
printtokens-2 CPU 9397.17 116.54 0.00 0.00 7966.17 97.71 1431.00 31.85
printtokens-2 JOMP1 12594.73 166.41 5.60 0.49 11217.67 103.84 1371.47 131.01
printtokens-2 JOMP2 7799.87 155.56 5.70 0.46 6231.20 46.99 1562.97 157.90
printtokens-2 JOMP4 5536.53 142.51 5.80 0.40 3914.27 36.16 1616.47 156.45
printtokens-2 GPGPU 3619.00 132.69 468.73 2.61 2173.53 112.02 976.73 32.15
printtokens-3 CPU 9070.03 107.27 0.00 0.00 7711.27 100.75 1358.77 19.02
printtokens-3 JOMP1 12474.47 147.29 5.70 0.46 11166.27 108.31 1302.50 126.92
printtokens-3 JOMP2 7678.93 128.32 5.67 0.60 6174.80 36.77 1498.47 138.76
printtokens-3 JOMP4 5454.77 158.54 5.33 0.47 3895.80 31.81 1553.63 147.48
printtokens-3 GPGPU 3480.23 91.11 469.60 6.18 2110.93 78.05 899.70 22.23
printtokens-4 CPU 9266.03 103.05 0.00 0.00 7881.93 89.80 1384.10 29.26
printtokens-4 JOMP1 12518.37 159.55 5.70 0.46 11195.47 83.36 1317.20 147.05
printtokens-4 JOMP2 7689.80 146.34 5.53 0.50 6165.00 48.71 1519.27 170.63
printtokens-4 JOMP4 5458.00 161.15 5.57 0.50 3874.77 35.22 1577.67 162.46
printtokens-4 GPGPU 3523.97 131.34 470.67 8.37 2123.60 119.18 929.70 30.61
schedule-1 CPU 6075.77 84.26 0.00 0.00 4843.37 63.16 1232.40 42.59
schedule-1 JOMP1 5998.63 174.12 3.50 0.50 4818.23 56.72 1176.90 162.28
schedule-1 JOMP2 4110.47 228.08 3.27 0.44 2776.67 54.51 1330.53 186.69
schedule-1 JOMP4 3240.50 239.13 3.53 0.50 1865.17 49.68 1371.80 196.83
schedule-1 GPGPU 2794.13 38.75 475.10 2.68 1574.63 14.94 744.40 37.45
schedule-2 CPU 6127.60 64.40 0.00 0.00 4890.77 53.02 1236.83 21.30
schedule-2 JOMP1 6126.73 167.85 3.37 0.48 4944.30 46.59 1179.07 163.06
schedule-2 JOMP2 4184.70 212.05 3.53 0.50 2824.23 37.85 1356.93 195.68
schedule-2 JOMP4 3282.10 239.99 3.57 0.62 1883.30 50.56 1395.23 195.09
schedule-2 GPGPU 2794.80 17.58 475.23 4.42 1569.53 13.10 750.03 15.16
schedule-3 CPU 5937.73 86.90 0.00 0.00 4756.67 61.36 1181.07 32.17
schedule-3 JOMP1 5985.37 180.29 3.33 0.47 4842.53 67.39 1139.50 150.55
schedule-3 JOMP2 4080.90 210.65 3.40 0.49 2781.77 42.53 1295.73 177.25
schedule-3 JOMP4 3182.80 231.91 3.40 0.49 1859.47 57.61 1319.93 179.05
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schedule-3 GPGPU 2750.83 34.19 475.00 4.06 1587.83 16.11 688.00 38.95
schedule-4 CPU 6041.80 170.24 0.00 0.00 4818.93 130.01 1222.87 45.36
schedule-4 JOMP1 6078.70 177.02 3.50 0.50 4912.13 59.95 1163.07 164.25
schedule-4 JOMP2 4156.27 222.57 3.57 0.50 2801.57 59.08 1351.13 197.12
schedule-4 JOMP4 3247.27 232.23 3.20 0.40 1881.07 47.90 1363.00 192.78
schedule-4 GPGPU 2807.13 37.09 474.17 1.37 1590.10 23.66 742.87 49.50
printtokens CPU 116826.10 624.55 0.00 0.00 106223.67 599.05 10602.43 71.58
printtokens JOMP1 249776.57 1050.07 12.03 0.18 239145.43 1066.37 10619.10 95.66
printtokens JOMP2 142503.97 679.32 12.13 0.34 130157.10 739.65 12334.73 193.63
printtokens JOMP4 118927.97 554.48 12.07 0.25 106493.77 563.52 12422.13 160.67
printtokens GPGPU 25521.53 142.94 471.53 2.93 14880.73 113.84 10169.27 60.71
schedule CPU 62042.50 865.19 0.00 0.00 55003.57 828.49 7038.93 47.23
schedule JOMP1 126570.23 554.57 14.63 0.80 119589.93 564.16 6965.67 120.73
schedule JOMP2 73743.40 367.67 14.73 1.00 65575.97 380.06 8152.70 142.48
schedule JOMP4 60463.40 441.32 14.67 0.65 52194.73 499.49 8254.00 210.47
schedule GPGPU 15748.17 124.66 466.57 6.87 8648.73 81.42 6632.87 68.09
printtokens2 CPU 123929.63 1103.11 0.00 0.00 113296.40 1078.22 10633.23 35.64
printtokens2 JOMP1 261326.87 910.11 12.13 0.34 250733.73 981.87 10581.00 198.33
printtokens2 JOMP2 148466.10 470.87 12.00 0.00 136103.07 525.71 12351.03 168.36
printtokens2 JOMP4 123841.30 433.05 12.07 0.25 111424.20 436.40 12405.03 241.67
printtokens2 GPGPU 26748.17 133.66 471.20 2.01 16101.30 109.75 10175.67 53.47
schedule2 CPU 55375.07 707.72 0.00 0.00 48138.83 681.86 7236.23 67.16
schedule2 JOMP1 111285.10 737.20 14.33 0.47 104218.50 346.99 7052.27 618.16
schedule2 JOMP2 65829.53 287.60 14.90 1.11 57524.27 354.33 8290.37 201.67
schedule2 JOMP4 54595.20 419.74 14.87 1.45 46196.63 466.64 8383.70 246.43
schedule2 GPGPU 15855.27 70.13 464.43 2.63 8644.97 73.30 6745.87 41.31
tcas CPU 20871.43 90.69 0.00 0.00 16171.60 71.28 4699.83 38.20
tcas JOMP1 31284.30 245.13 13.93 1.48 26661.40 308.60 4608.97 213.03
tcas JOMP2 20876.13 183.96 13.37 1.25 15493.03 253.82 5369.73 223.50
tcas JOMP4 16128.80 224.15 13.27 0.81 10689.37 139.32 5426.17 289.61
tcas GPGPU 9308.23 166.32 472.33 25.73 4563.17 142.94 4272.73 90.77
totinfo CPU 20730.80 484.32 0.00 0.00 17584.63 476.84 3146.17 28.83
totinfo JOMP1 30592.67 208.11 12.93 0.85 27496.30 182.47 3083.43 129.72
totinfo JOMP2 18946.33 155.43 13.40 1.69 15360.80 170.58 3572.13 170.04
totinfo JOMP4 13462.13 275.21 12.67 0.54 9813.60 203.27 3635.87 171.23
totinfo GPGPU 6940.73 38.39 465.30 2.15 3762.67 33.53 2712.77 28.69
flex CPU 71001.13 549.11 0.00 0.00 70153.80 541.84 847.33 30.53
flex JOMP1 41637.27 1145.73 13.30 0.46 40827.47 1149.14 796.50 133.08
flex JOMP2 22405.10 745.27 13.20 0.40 21483.07 739.98 908.83 158.59
flex JOMP4 13882.63 412.73 13.30 0.46 12958.20 344.10 911.13 159.68
flex GPGPU 8171.10 24.95 464.70 1.62 7274.80 8.56 431.60 25.19
gzip CPU 57868.43 684.16 0.00 0.00 56558.87 678.22 1309.57 29.27
gzip JOMP1 59787.40 858.20 12.97 0.75 58544.00 859.46 1230.43 151.80
gzip JOMP2 32495.43 697.43 12.83 0.37 31049.13 669.21 1433.47 160.91
gzip JOMP4 19922.97 283.05 12.70 0.46 18453.80 232.66 1456.47 172.53
gzip GPGPU 7342.70 23.51 465.40 1.99 6017.30 16.96 860.00 20.26
sed CPU 101820.83 2056.00 0.00 0.00 100210.43 2055.16 1610.40 34.95
sed JOMP1 119835.67 1005.12 11.27 0.44 118254.57 1027.73 1569.83 121.53
sed JOMP2 63544.80 665.11 11.23 0.42 61734.17 690.43 1799.40 115.92
sed JOMP4 38235.60 431.45 11.17 0.37 36391.20 376.47 1833.23 124.44
sed GPGPU 9386.03 28.80 467.40 1.17 7753.57 11.73 1165.07 26.66
space-1 CPU 124296.60 1476.27 0.00 0.00 122756.60 1459.08 1540.00 24.09
space-1 JOMP1 69564.13 1057.82 13.30 0.46 68097.53 989.21 1453.30 166.96
space-1 JOMP2 37794.93 631.99 13.70 0.46 36065.37 571.77 1715.87 133.71
space-1 JOMP4 23342.97 498.70 13.50 0.50 21573.17 465.26 1756.30 121.08
space-1 GPGPU 10346.67 35.57 467.60 3.10 8763.73 10.90 1115.33 39.34
space-2 CPU 121329.57 1983.92 0.00 0.00 119826.43 1967.27 1503.13 25.03
space-2 JOMP1 66364.53 1008.83 13.70 0.46 64902.90 923.76 1447.93 160.68
space-2 JOMP2 35846.80 494.02 13.40 0.49 34136.60 466.86 1696.80 154.29
space-2 JOMP4 21940.43 360.38 13.37 0.48 20221.23 257.62 1705.83 199.13
space-2 GPGPU 9700.07 25.03 466.83 1.55 8147.17 9.38 1086.07 27.75
space-3 CPU 126114.77 2653.15 0.00 0.00 124586.27 2628.86 1528.50 34.71
space-3 JOMP1 70485.43 912.41 13.63 0.48 69016.53 918.78 1455.27 153.50
space-3 JOMP2 37861.03 440.74 13.47 0.50 36182.00 490.41 1665.57 185.65
space-3 JOMP4 22984.63 462.90 13.63 0.48 21253.93 419.50 1717.07 208.97
space-3 GPGPU 10327.40 29.02 467.47 1.89 8763.63 13.79 1096.30 29.10
space-4 CPU 123416.00 1596.55 0.00 0.00 121890.70 1580.69 1525.30 25.12
space-4 JOMP1 69634.33 1280.05 13.50 0.50 68162.20 1222.59 1458.63 124.06
space-4 JOMP2 37268.80 670.57 13.67 0.47 35554.63 620.05 1700.50 143.71
space-4 JOMP4 22738.10 273.34 13.40 0.49 21004.40 227.08 1720.30 183.28
space-4 GPGPU 10341.97 31.83 467.63 3.31 8765.67 9.73 1108.67 33.49
replace CPU 197579.20 4653.83 0.00 0.00 183648.37 4512.88 13930.83 175.74
replace JOMP1 420619.97 906.13 13.27 0.44 406724.80 864.00 13881.90 276.66
replace JOMP2 236038.03 814.39 13.40 0.49 219521.77 557.41 16502.87 632.13
replace JOMP4 195827.97 468.77 13.33 0.60 179560.27 376.03 16254.37 300.60
replace GPGPU 36315.70 322.90 473.40 2.50 22125.53 179.07 13716.77 256.86
bash CPU 1193310.07 18851.34 0.00 0.00 1188921.17 18790.88 4388.90 69.23
bash JOMP1 1354828.80 20224.41 53.00 0.97 1350286.23 20221.98 4489.57 414.13
bash JOMP2 705998.83 7061.49 53.57 0.92 700673.77 7103.10 5271.50 741.65
bash JOMP4 413619.80 6377.16 54.10 1.64 408339.13 6412.11 5226.57 471.50
bash GPGPU 67379.67 81.06 518.43 9.40 63013.40 26.44 3847.83 71.51
haifa CPU 2916323.63 46962.47 0.00 0.00 2914980.77 46967.53 1342.87 35.61
haifa JOMP1 1414298.60 50912.92 136.37 3.06 1413007.20 50902.83 1155.03 156.13
haifa JOMP2 754894.63 20118.08 135.70 2.90 753402.47 20084.07 1356.47 147.91
haifa JOMP4 446434.20 13787.74 133.87 3.02 444931.47 13775.29 1368.87 171.03
haifa GPGPU 139075.90 84.86 622.10 65.31 137737.47 84.69 716.33 74.27
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