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Abstract—Multi-Objective Set Cover problem forms the ba-
sis of many optimisation problems in software testing because
the concept of code coverage is based on the set theory.
This paper presents Mask-Coding, a novel representation of
solutions for set cover optimisation problems that explores
the problem space rather than the solution space. The new
representation is empirically evaluated with set cover problems
formulated from real code coverage data. The results show that
Mask-Coding representation can improve both the convergence
and diversity of the Pareto-efficient solution set of the multi-
objective set cover optimisation.
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I. INTRODUCTION

Multi-Objective Set cover Problem forms an important
basis for optimisation problems in software testing. The set
cover problem itself is essential to software testing because
the concept of code coverage is based on the set theory.
For example, the problem of reducing redundancy in test
suite can be formulated as a set cover problem [1]–[3].
Multi-Objective approach to set cover problem highlights the
trade-offs between the coverage and the cost (often execution
time of test cases). Instead of obtaining the maximum set
cover, the Multi-Objective Set Cover aims to identify all the
maximum coverage possible values for any given budget [4],
[5]. While the traditional greedy heuristic is very effective to
single-objective set cover problems, its inability to cope with
additional objectives facilitated the use of Multi-Objective
Evolutionary Algorithms (MOEAs) [5], [6].

Two important factors when applying a meta-heuristic
algorithm to a software engineering problem is the fitness
function and the representation of a candidate solution [7]. It
is known that the choice of the representation of a solution
can have a significant impact on the performance of a
meta-heuristic algorithm [8], [9]. For example, Rothlauf et
al. report that the use of Random NetKey representation
reduced the distance to the optimal solution by almost 13%
compared to the conventional Characteristic Vector (CV)
representation for network design problem [9].

The de-facto standard representation for set cover problem
is to encode the selection of subsets as a binary string:

the ith digit of the binary string is 1 if the test case ti is
included in the solution and 0 otherwise. Following this, the
neighbouring solutions for local search algorithms are often
defined as solutions with a single digit different from the
original solution. Genetic operators work similarly on the
binary string representation; cross-over mixes the choice of
test cases, while a single bit-flip mutation adds or subtracts a
test case. While the bit-string representation is innocuous in
itself, it may not be the ideal representation for the set cover
problems that deal with code coverage. The empirical study
presents some evidence that the bit-string representation
may actually be sub-optimal for Multi-Objective Set Cover
problem based on code coverage data.

This paper presents a novel representation for set cover
problems called Mask-Coding representation. The main idea
behind the new representation is to replace the solution space
with the problem space, following the approach of Storer
et al. to Job-Shop Scheduling Problem [10]. Mask-Coding
representation still uses binary strings, but an instance of
Mask-Coding representation would denote an alternative set
cover problem in the problem space. The evaluation of this
instance would require an efficient and effective domain
specific construction heuristic: in case of set cover problem,
this would be the greedy algorithm. The solution to the
alternative problem, obtained by the construction heuristic,
is then evaluated against the original problem.

One potential strength of problem space exploration is that
it can be free of the challenges that arise from the features of
the solution search landscape, such as a large plateau. The
empirical evaluation of the new representation on widely
studied code coverage data shows that it can indeed improve
the performance of multi-objective meta-heuristic algorithms
both in terms of convergence and diversity of the resulting
Pareto-front.

The contributions of this paper are as follows:
1) This paper introduces a novel representation for set

cover problems, Mask-Coding representation, based
on the idea of problem space exploration.

2) The paper presents empirical evidence that the widely
used binary string representation may not be ideal for
set cover problems based on code coverage data.



3) The paper presents an empirical evaluation of Mask-
Coding representation using multi-objective test suite
minimisation problems with real-world coverage data.
The results show that the new representation can
improve both the convergence and diversity of the
results. In the context of software testing, this means
more efficient regression testing with more insightful
cost-benefit analysis of regression test suites.

The rest of the paper is organised as follows: Section II
describes the problems in traditional binary string repre-
sentation with empirical evidence. Section III introduces
Mask-Coding representation and the idea of problem space
exploration. Section IV presents the research questions and
describes the settings for the empirical study based on
test suite minimisation problems, the result of which is
discussed in Section V. Section VI presents related work
and Section VII concludes.

II. PROBLEMS IN TRADITIONAL BINARY STRING
REPRESENTATION

A. Set Cover Problem

Single-objective set cover problem is NP-hard [11] and
can be described as follows: given several sets that share
some common elements, the goal is to select the minimum
number of these sets so that the selected sets contain all the
elements that are contained in any of the input sets. More
formally,

Set Cover Optimisation Problem
Given a universe U of n elements and a family S of m
subsets of U , a cover is a subfamily C ⊆ U whose union is
equal to U . The problem is to find a cover of U that uses
the fewest sets.

It may not be possible to cover U completely. For ex-
ample, assume that U is the set of all program statements
in SUT (System Under Test) and S is the collection of
execution traces of test cases: any unreachable code in SUT
will not be covered by any combination of traces in S. In this
case, the goal of set cover optimisation becomes to achieve
the highest coverage possible with the fewest sets. Coverage
is defined as the ratio between the size of the cover and the
size of U , i.e.:

coverage(C) =
|
⋃

Si∈C Si|
|U|

Multi-Objective Set Cover optimisation assigns cost to
each set in S and adopts an additional objective to actively
minimise the cost. More formally,

Multi-Objective Set Cover Optimisation Problem
Given a universe U , a family S of subsets of U and a cost
function cost : S → R, the problem is to find a cover C
that maximises coverage(C) and minimises

∑
Si∈C cost(Si).

While the definition of the multi-objective formulation
appears similar to that of the single-objective set cover
problem, the Pareto-optimisation [12] of both objectives
shows the trade-off between coverage and cost of the set
cover, which has application to software testing [5].

B. Binary String Representation and Dimensional Plateau

When applying meta-heuristic optimisation to set cover
problem, the most commonly used representation of an
individual solution is the binary string representation [4]–
[6]. The length of the binary string is equal to the number
of subsets in family S. If the member Si of S is included
in the solution, the ith digit of the binary string is 1; if it is
not included, 0.

While the definition of the binary string representation
is innocuous in nature, there is a specific problem that
arises when it is used for set cover problems based on
code coverage data. It is known that different paths in
a program get executed with different frequency. For ex-
ample, the initialisation code will be executed with every
execution, while a procedure that deals with a very rare
situation, e.g. exception handling code, will be executed
less frequently. Since code coverage data represent recorded
execution traces, this difference in execution frequency will
be reflected in the data. More formally, this means that a
significantly large number of members in family S (i.e. test
cases) may cover similar sets of elements in U that take up
the majority of U .

This redundancy in coverage has an important implication
for the traditional binary string representation, namely, a
large plateau in the coverage dimension. Intuitively, if a
large number of members in S covers largely similar sets of
the majority of elements in U , the chance for any mutation
on an arbitrary digit i of the binary string representation
to make any impact on coverage significantly decreases.
This is because there is a high probability that Sj such that
i 6= j, Sj ∈ S will cover the same or very similar set of
elements in U . This would result in a large plateau in the
coverage dimension of the search space. This problem will
be referred to as the dimensional plateau problem:

Dimensional Plateau: in multi-objective search landscape,
if one of the objective value remains the same while the
other objectives changes, this creates a dimensional plateau
for the dimension of the unchanging objective.

When applied to the multi-objective test suite minimisa-
tion problem, the existence of a dimensional plateau would
mean that the search algorithm may fail to find any solutions
with low-coverage and low-cost. If the search algorithm fails
to escape the coverage dimensional plateau, it will only
optimise the cost of the subset of test cases that will achieve
the maximum coverage. Reaching the part of the search



landscape where solutions with lower coverage/lower cost
exist may be very challenging.

III. MASK-CODING REPRESENTATION

A. Problem Space Exploration

The idea of problem space exploration was first introduced
by Storer et al. in order to design a new neighbourhood
definition for stochastic local search for sequencing prob-
lems [10]. A similar idea was also introduced under the
name of ‘noising method’ by Charon et al [13]. The key
idea lies in the observation that often there exists a fast and
deterministic heuristic for many combinatorial optimisation
problems. Given such a heuristic h, and a problem instance
p, it is possible to calculate a solution s very efficiently
and, therefore, the pair (h, p) can be read as an encoding
for a solution s = h(p). By perturbing the heuristic h, the
problem p, or both, a subset of solutions can be generated,
which forms the neighbourhood for the local search. The
representation used by the local search is not an encoding
of the solution for the original problem p, but an encoding
of the perturbation d. The problem p can be perturbed by
changing the original problem data, whereas the heuristic h
can be perturbed by changing its configuration. In the con-
text of the paper, let us focus on the problem perturbation.

The problem space exploration can be powerful when the
search landscape in the solution space for the original prob-
lem p presents challenges such as a large plateau. Problem
space exploration can be used for any class of problems
for which there exists a fast and deterministic construction
heuristic. Since Storer et al. demonstrated the idea with Job
Shop Scheduling Problem, it has been successfully applied
to various combinatorial optimisation problems including 0-
1 Multiple Knapsack Problem [14], Graph Partitioning Prob-
lem [15], Routing Problem [16] and Travelling Salesman
Problem [17].

B. Mask-Coding Representation

The representation for problem perturbation is sometimes
called ‘Weight-Coding’ because the perturbation is repre-
sented by a vector of weights that is applied to the original
problem data [14], [16]. For example, the perturbation vector
for a 0-1 knapsack problem would be a collection of weights
that will be multiplied to the value of each item in the 0-1
Knapsack Problem.

For set cover problems, a vector of real numbers is
not suitable for perturbation as the data consist of sets.
Mask-Coding representation introduced in the paper uses
bit-masking to perturb either the universe, U , or the family
of subsets, S, or both. A genotype representation of a
solution encoded with Mask-Coding would still be a binary
string, but it does not depict the selection of members
in S as in the traditional binary string representation.
Depending on where the masking is applied, there are
three different ways to apply Mask-Coding representation

to the genotype representation for multi-objective set cover
problem: U-mask, S-mask and US-mask.

1) U-Mask Representation: An U-mask perturbs the orig-
inal problem p by masking a subset of elements in U .
An instance of U-mask representation is a binary string,
d = d1d2 . . . dn, whose length equals the size of the
original universe, U . Without losing generality, let U be an
ordered set with n elements, {e1, . . . , en}. The perturbed
(i.e. masked) universe, Ud only contains elements ei such
that di = 1. More formally,

Ud = U − {ei|di = 0}

Similarly, the subsets of U in S are also masked using d:
Sd = {Sd

j |∀Sj ∈ S, Sd
j = Sj − {ei|di = 0}}

The pair of (Ud,Sd) denotes the perturbed problem.
Let x be the traditional binary string representation of
the solution to the perturbed problem (Ud,Sd), which is
obtained using a construction heuristic h. It follows that x
can also be a solution to the original problem (U ,S) because
the length of x remains equal to |S| and is irrelevant to
neither the length nor the cardinality of d. Therefore, it
is possible to measure coverage or cost of the set cover
expressed with x using the original problem data, (U ,S).
Algorithm 1 illustrates the process of measuring coverage
and cost of a solution encoded with U-mask representation
using the greedy algorithm as the construction heuristic (see
Section IV-D for details of the construction heuristic).

Algorithm 1: Fitness evaluation for Multi-Objective Set
Cover optimisation using U Mask-Coding representation and
greedy heuristic

Input: the original universe, U , the original family of
subsets, S, a solution encoded with S-mask, d
Output: a coverage of d, coveraged, and a cost of d,
costd
FITNESSEVALUATIONFORUMASK(U , S , d)
(1) Ud = U − {ei|di = 0}
(2) Sd = {Sd

j |∀Sj ∈ S, Sd
j = Sj − {ei|di = 0}}

(3) x← greedy(Ud,Sd)
(4) coveraged ← coverage(x,U ,S)
(5) costd ← cost(x,U ,S)
(6) return coveraged, costd

2) S-Mask Representation: An S-mask perturbs the orig-
inal problem by masking a subset of family members in S.
An instance of S-mask is a binary string, d = d1d2 . . . dm,
whose length equals the size of the original S. Without
losing generality, let S be an ordered set with m subsets of
U , {S1, . . . , Sm}. After perturbation, the original U remains
the same. However, the perturbed S is defined as follows:

Sd = S − {Sj |dj = 1}

The pair of (U ,Sd) forms the perturbed problem. Unlike
U-mask, the solution x of the perturbed problem cannot be



accepted as a solution to the original problem as the length of
x would be equal to the size of Sd rather than S. Therefore,
the solution x to (U ,Sd) needs to be decoded into a solution
x′ = x′1 . . . x

′
m for the original problem (U ,S). Each digit

of x′ is defined as follows w.r.t. the mask d:

x′i =

{
1 if dj = 1 and Sj is selected by x
0 otherwise

Algorithm 2 shows the process of measuring coverage and
cost of a solution encoded with S-mask representation using
greedy algorithm as the construction heuristic.

Algorithm 2: Fitness evaluation for Multi-Objective Set
Cover optimisation using S Mask-Coding representation and
greedy heuristic

Input: the original universe, U , the original family of
subsets, S, a solution encoded with S-mask, d
Output: a coverage of d, coveraged, and a cost of d,
costd
FITNESSEVALUATIONFORSMASK(U , S, d)
(1) Sd = S − {Sj |dj = 1}
(2) x← greedy(U ,Sd)
(3) x′ ← decode(x, d)
(4) coveraged ← coverage(x′,U ,S)
(5) costd ← cost(x′,U ,S)
(6) return coveraged, costd

3) US-Mask Representation: It is also possible to perturb
both U and S simultaneously. An instance of US-mask is a
binary string of length (n+m), d = d1d2 . . . dn+m. The first
n digits of d form the U mask, du, whereas the following m
digits form the S mask, ds. The perturbation of U remains
the same as in the case of U masking:

Udu = U − {ei|dui = 0}

However, the perturbation of S requires a different ap-
proach. First, the members of S that are masked by ds
should be removed from Sds. Second, the masked elements
of U should be also masked in each member of Sds. More
formally,

Sds = {Sds
j |∀Sj ∈ S − {Sj |dsj = 1},
Sds
j = Sj − {ei|dui = 0}}

Since S has also been perturbed, the solution x from
greedy algorithm needs to be decoded following the descrip-
tion in Section III-B2.

IV. EXPERIMENTAL SET-UP

A. Research Questions

The aim of the empirical study is to evaluate the impact of
Mask-Coding representation on the optimisation of set cover
problems based on code coverage data. The empirical study
compares 4 different representations for Multi-Objective Set

Cover: the traditional binary string representation, the U-
mask representation, the S-mask representation and the US-
mask representation. In comparing these representations, the
paper asks the following research questions:

• RQ1. Convergence: how well do the solutions from
each representation converge to the optimal Pareto-
frontier?

• RQ2. Diversity: how diverse are the solutions from
each representation?

• RQ3. Efficiency: what is the impact of using Mask-
Coding representation on the running time of the algo-
rithm?

RQ1 and RQ2 are answered by analysing the Pareto-
fronts produced by different representations. Ideal mea-
surement of convergence and diversity would require the
knowledge of the true Pareto-fronts. Since it is not available,
reference Pareto-fronts are formed by combining all the
available results. RQ3 concerns the additional computation
resource required when using Mask-Coding representation,
i.e. that of greedy algorithm. It is answered by measuring
the execution time of each representation.

B. Subjects

Table I shows the subject test suites used in the empirical
study. The test suites are obtained from Software Infrastruc-
ture Repository [18]. The set cover problem is instantiated
with statement coverage data. That is, the universe U corre-
sponds to the set of all statements in programs. In turn, the
family of subsets S corresponds to the set of all execution
traces of all the test cases in test suites. Two different types
of test suites were deliberately chosen: ones with a small U
and a large S (printtokens and tcas) and ones with
a large U and a small S (flex and gzip). The level of
redundancy in S (i.e. test suites) is much higher in the test
suites that belong to the first class than the second class. Note
that, while the test suites in the first class have already been
studied for multi-objective test suite minimisation [5], only
smaller subsets of the entire test suite have been considered.
This paper deliberately uses the entire pool of test cases in
order to force the high level of redundancy.

Table I
SIZES OF FOUR SUBJECT TEST SUITES OBTAINED FROM SIR

Subject No. of statements Test Suite Size

printtokens 189 4,115
tcas 65 1,608
flex 3,965 103
gzip 2,007 213

The coverage for each test has been measured using
gcov, a widely used code profiling tool from the gcc
compiler suite. The cost of executing each test has been
measured using valgrind profiling tool [19]; for the



execution of each test, the number of CPU instructions has
been measured and used as the execution cost.

While the empirical study is based on code coverage data,
its aim is to analyse the impact of Mask-Coding represen-
tation rather than to show their benefits in the context of
software testing. Therefore, the impact of Multi-Objective
Test Suite Minimisation on fault detection capability lies
beyond the interest of this paper and will not be considered.

C. MOEA Algorithm

The four representations are evaluated using a Multi-
Objective Evolutionary Algorithm (MOEA) called Two-
Archive Algorithm [20]. Two Archive Algorithm maintains
two separate memorisation archive for convergence and
diversity respectively. Algorithm 3 shows the high-level
outline of Two-Archive Algorithm.

The key idea behind Two-Archive Algorithm lies in the
algorithm that collects non-dominated solutions to two sepa-
rate archives. A non-dominated solution from the population
is first compared to both archives. If the new solution is
dominated by a solution from archives, it is discarded. If the
new solution is not dominated, there are two possibilities: 1)
the new solution dominates a solution in archives, in which
case the dominated solution is removed from the archive and
the new solution is added to the convergence archive, and 2)
the new solution is not dominated by and does not dominate
any solution in archives, in which case the new solution is
added to the diversity archive. In order to control the size of
the archive, solutions are removed from the diversity archive
when the size goes over a predefined limit: the solution in
diversity archive that has the shortest distance to any solution
in the convergence archive is removed. For more details,
readers are encouraged to refer to Praditwong and Yao [20].

Algorithm 3: Outline of Two-Archive Algorithm

(1) Initialise the population
(2) Initialise archives to the empty set
(3) Evaluate initial population
(4) while stopping criterion is not met
(5) Collect non-dominated individuals to archives
(6) Select parents from archives
(7) Generate a new population from parents
(8) Evaluate the new population

When using Mask-Coding, the individual solutions in
the population represent the masking, i.e. the input d of
Algorithm 1-??, rather than the actual solution. The selection
operator for Two-Archive Algorithm selects two parents
from both archives with uniform probability distribution. It
also uses the standard single-point crossover operator with
the crossover rate of 0.9 and the single bit-flip mutation. The
population size was set to 100. The stopping criterion was
set to the maximum of 25,000 fitness evaluations.

D. Construction Heuristic

Fitness evaluation using problem space exploration re-
quires an efficient and effective construction heuristic. For
set cover, the greedy algorithm is known to produce results
that are within lnn of the optimal cost [21]. Algorithm 4
describes the additional greedy algorithm used as the con-
struction heuristic in the empirical study.

Algorithm 4: Outline of additional greedy algorithm
ADDITIONALGREEDY(U , S)
(1) C ← φ // covered elements in U
(2) repeat
(3) k ← mink(costk/|Sk − C|)
(4) add Sk to solution
(5) C = C

⋃
Sk

(6) until C = U

E. Evaluation

In order to cater for the inherent randomness in
population-based evolutionary algorithm, each experiment
was repeated 30 times. The reference Pareto-fronts for con-
vergence and diversity research questions were formed by
combining solutions from all four representations and iden-
tifying a Pareto-front from the combined set of solutions,
i.e. the results from 120 individual runs (4 representations,
30 runs per representation).

RQ1 and RQ2 are answered by statistically analysing the
number of solutions contributed to the reference Pareto-front
by each representation. The hypothesis test is performed
using t-test; while the distribution of the sample is not
known, the central limit theorem dictates that the distribution
approximates the normal distribution with a large enough
sample size [22]. Additionally, Wilcoxon’s rank-sum test, the
non-parametric alternative, would not produce the precise p-
value under the existence of ties, which have been frequently
observed in the results.

V. RESULTS AND ANALYSIS

A. Convergence

Figure 1 shows the boxplots of the number of unique
solutions contributed to the reference Pareto-fronts by each
representation. The plot u0s0 represents neither U nor S
mask, i.e. the traditional binary string representation. Re-
spectively, u1 and s1 represent U- and S-mask being used.

One surprising finding is that the traditional binary string
representation failed to produce any solution on the reference
Pareto-front in the cases of printtokens and tcas.
Additionally, even though the redundancy is not so severe
in the test suite of gzip, the traditional binary string
representation contributes very little. This shows that the
traditional binary string representation may not be effective
if the search landscape contains a large plateau (which, in
the case of printtokens and tcas, is incurred by the
high level of redundancy in the test suites).



u0s0 u0s1 u1s0 u1s1

0
2

4
6

8

printtokens

# 
of

 c
on

tr
ib

ut
ed

 s
ol

ut
io

ns

u0s0 u0s1 u1s0 u1s1

0
2

4
6

8
10

tcas

# 
of

 c
on

tr
ib

ut
ed

 s
ol

ut
io

ns

●●●●

u0s0 u0s1 u1s0 u1s1

0
5

10
15

20
25

flex

# 
of

 c
on

tr
ib

ut
ed

 s
ol

ut
io

ns

●●●●●● ●

●●

●

u0s0 u0s1 u1s0 u1s1

0
10

20
30

40
50

gzip

# 
of

 c
on

tr
ib

ut
ed

 s
ol

ut
io

ns

Figure 1. Number of unique solutions that are contributed to the reference Parefo-front by different representations. Boxplot u0s0 represents both U
and S masking turned off, i.e. the traditional binary string representation, whereas u1 and s1 represent U and S masking turned on respectively. While
different combinations of Mask-Coding work best for different problems, US- and U -mask tend to produce a larger number of non-dominated solutions
for 3 out of 4 datasets.

Table II
MEAN AND STANDARD DEVIATION OF THE NUMBER OF UNIQUE
SOLUTIONS CONTRIBUTED TO THE REFERENCE PARETO-FRONT

Subject Traditional U -Mask S-Mask US-Mask
n̄ σ n̄ σ n̄ σ n̄ σ

printtokens 0.0 0.0 4.83 1.55 0.0 0.0 3.57 2.63
tcas 0.0 0.0 9.60 0.55 0.0 0.0 8.80 1.83
flex 19.47 1.26 3.56 0.56 0.13 0.34 2.23 1.26
gzip 0.20 0.40 0.0 0.0 0.03 0.18 14.83 18.49

In printtokens, tcas and gzip, U-mask tends to
contribute the most to the number of solutions contributed
to the reference Pareto-front. Interestingly, U-mask seems
to be more effective than US-mask for printtokens and
tcas. In all programs, S-mask alone did not perform very
well. Table II shows the statistical details of the results
presented in Figure 1.

Table III shows the results of statistical hypothesis test
of the data presented in Figure 1. The comparison between
the traditional binary string representation and Mask-Coding
representations does not require any statistical analysis: the
results from the traditional representation is either almost
always 0 (printtokens, tcas and gzip) or completely
surpasses other representations (flex). Rather, the statisti-
cal analysis was performed to see whether U-mask is more
effective than US-mask with statistical significance. The null
hypothesis is that n̄U and n̄US are the same. The alternative
hypothesis is that n̄U is greater than n̄US . The hypothesis is
tested with one-tailed t-test with 95% significance level.

In printtokens, tcas and flex, the null hypothesis
is rejected with statistical significance, meaning that U-mask
produces more unique solutions on the reference Pareto-
front than US-mask. From Table II and Table III, RQ1
is answered as follows: Mask-Coding representation results
in higher convergence compared to the traditional binary
string representation if the search landscape contains a large
dimensional plateau. This claim is backed by the observation

Table III
THE p-VALUES OF THE STATISTICAL HYPOTHESIS TEST BETWEEN n̄U

AND n̄US . THE HYPOTHESIS IS TESTED WITH ONE-TAILED t-TEST WITH
THE SIGNIFICANCE LEVEL OF 95%.

Subject p-value (n̄U > n̄US )

printtokens 0.015
tcas 0.015
flex < 0.001
gzip 1.0

of larger number of unique solutions contributed to the
reference Pareto-fronts for subjects printtokens and
tcas.

B. Diversity

In order to answer RQ2, the number of unique solutions
produced by each representation is compared statistically.
Unlike Section V-A, all solutions produced by each repre-
sentation are considered, regardless of whether they are on
the reference Pareto-fronts or not.

Table IV
MEAN AND STANDARD DEVIATION OF THE NUMBER OF UNIQUE

SOLUTIONS PRODUCED BY EACH REPRESENTATION.

Subject Traditional U -Mask S-Mask US-Mask
n̄ σ n̄ σ n̄ σ n̄ σ

prttkn 1.03 0.18 10.7 1.83 1.0 0.0 11.03 3.40
tcas 1.00 0.0 9.60 0.55 1.0 0.0 8.80 1.83
flex 26.73 2.34 8.66 1.81 26.77 6.13 41.07 8.57
gzip 1.10 0.30 16.77 3.87 47.30 8.47 126.77 21.07

Figure 2 shows the boxplots of the number of unique
solutions produced by each representation. When compared
to Figure 1, it can be observed that US-mask had produced
some solutions for printtokens that were dominated
by the solutions produced by U-mask. Another interesting
observation is that US-mask has produced a much larger
number of solutions for flex compared to the traditional
binary string representation, but most of those additional
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Figure 2. Number of unique solutions that are produced by different representations. Boxplot u0s0 represents both U and S masking turned off, i.e. the
traditional binary string representation, whereas u1 and s1 represent U and S masking turned on respectively. Overall, US-mask tends to produce a larger
number solutions compared to other representations.

Table V
THE p-VALUES OF THE STATISTICAL HYPOTHESIS TEST BETWEEN n̄US ,
n̄U , n̄S AND n̄0 (TRADITIONAL BINARY STRING REPRESENTATION) FOR
RQ2. THE HYPOTHESIS IS TESTED WITH ONE-TAILED t-TEST WITH THE

SIGNIFICANCE LEVEL OF 95%.

Subject p-value
n̄US > n̄0 n̄U > n̄0 n̄S > n̄0

flex < 10−9 1.0 0.48
gzip < 10−19 < 10−19 < 10−19

solutions were at the same time dominated by the solutions
produced by the binary string representation.

Since the boxplots for printtokens and tcas largely
reproduce the results in Figure 1 for which the traditional
binary string representation and S-mask do not produce
almost any solution at all, the statistical analysis of diversity
results focuses on the cases of flex and gzip. For
each representation, the null hypothesis is that there is no
difference in the number of unique solutions produced by the
traditional binary string representation and the corresponding
Mask-Coding representation. The alternative hypothesis is
that the corresponding Mask-Coding representation produces
a larger number of unique solutions. The results from the
traditional binary string representation are denoted with n̄0.

Table V shows the result of the statistical hypothesis test.
For flex, the alternative hypothesis is only accepted for
US-mask at the significance level of 95%. For gzip, all
three Mask-Coding representations produce a larger number
of unique solutions compared to the traditional binary string
representation.

Figure 3 shows the shape of Pareto-fronts produced by
different representations in order to facilitate more qualita-
tive analysis of the results. The plot for each representation
consists of non-dominated solutions collected from the com-
bined results of the 30 repeated runs. For printtokens
and tcas, the Pareto-fronts from both US- and U-mask
covers the widest range of solutions. In contrast, the tra-
ditional binary string representation fails to escape the
dimensional plateau and produces only one solution.

With flex and gzip, it can be observed that all three
types of Mask-Coding largely fail to produce solutions with
low cost and low coverage. This may be explained by the
differences in redundancy in test suites. Solutions with low
cost and low coverage will in turn require the inclusion
of test cases with extremely low cost and coverage. These
test cases are more likely to represent less frequent usage
pattern of the program, e.g. error handling routines, and,
therefore, the proportion of such test cases in the entire test
suite is likely to be small. If the test suite has a very high
level of redundancy that can lead to a dimensional plateau,
the probability for the masking to hide these low cost/low
coverage test cases is relatively low. On the other hand, if the
level of redundancy is low, the probability for the masking to
hide these test cases increase. This in turn may prevent the
optimisation algorithm to produce solutions with low cost
and low coverage.

Overall, RQ2 is answered as follows: if the set cover
problem contains a high level of redundancy in S that can
lead to a dimensional plateau, Mask-Coding representation
can help escaping the dimensional plateau to produce a
Pareto-front with high diversity.

C. Impact on Performance

Since the fitness evaluation for Mask-Coding represen-
tation involves using a separate construction heuristic, it
requires additional computation resources. Figure 4 shows
the boxplots of the wall-clock execution time measured
for the runs of different representations. While all three
Mask-Coding representations require more computational
resources than the traditional binary string representation,
the amount of resources additionally required differs depend-
ing on the type of masking.

For printtokens and tcas, U- and S-mask requires
similarly large amounts of additional computational cost
whereas US-mask requires significantly less. The combined
use of both types of masking has reduced the size of problem
instances for the construction heuristic significantly enough
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Figure 3. The shape of Pareto-fronts produced by different representations. Each Pareto-front consists of non-dominated solutions collected from the
combined results of the 30 repeated runs. The x-axis is in a logarithmic scale.

to have an impact on the overall execution time. However,
for flex and gzip, only S-mask seems to make any
difference in the amount of additionally required compu-
tational resources. This is probably because |U| is much
larger than |S|. Masking one element in U saves |S| steps
for the construction heuristic, and vice versa. Therefore, if
|U| � |S|, the impact of S-mask is much bigger than that
of U-mask.

For all subjects, all three Mask-Coding representation
require a significantly large amount of additional com-
putation power. This partially answers RQ4. However, it
should be noted that the data presented in Figure 4 are the

measurements of execution time for fixed number of fitness
evaluations. That is, the algorithms may have continued to
run even after they have converged. Therefore, these data
should not be read as the true cost of the use of Mask-
Coding, which can be only measured by the time it took
to converge to the Pareto-front. However, since the use of
convergence as a stopping criterion requires the knowledge
of the true Pareto-front a priori, here only the additional
overhead of using Mask-Coding is studied and presented.

D. Threats to Validity

There are a few threats to validity regarding the gener-
alisation of the results presented in this paper. First, most
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Figure 4. Execution time required by the use of different representations. Boxplot u0s0 represents both U and S masking turned off, i.e. the traditional
binary string representation, whereas u1 and s1 represent U and S masking turned on respectively. For printtokens and tcas, US-mask requires the
least amount of time as the use of both types of masking reduces the computational cost for the construction heuristic by reducing the problem size. For
flex and gzip, since |U| is much larger than |S|, U -masking requires less computational cost for the construction heuristic than S-masking.

of existing work on problem space exploration has been
done with single objective optimisation. The implications
of applying the same idea to multi-objective optimisation
problems are not clear and Mask-Coding representation
may perform differently when applied to single-objective
problems. This can only be answered with further empirical
evaluation of the new representation. However, this paper
chooses to evaluate the new representation with respect
to the multi-objective optimisation because, in the context
of Search-Based Software Engineering, the multi-objective
version of set cover problem provides much more value
to practitioners compared to the single-objective version
of the same problem [5]. Second, there is no evidence
that the additional greedy algorithm is the ideal choice
of construction heuristic for the approach presented here.
However, the additional greedy algorithm was selected due
to its known effectiveness for set cover problem and it fits
the profile of an ideal construction heuristic.

Threats to construct validity arises when the measurement
used in the study does not reflect the concepts they represent.
It should be noted that the research question on perfor-
mance only evaluates the additional computational resource
required by the masking. It does not reflect the savings in
fitness evaluation that could have been gained if the stopping
criterion was set differently. For example, if the true refer-
ence Pareto-front had been known, the stopping criterion
could have been set with respect to the distance to the
reference Pareto-front. If the new representation converges
faster than the traditional representation, it would require
less fitness evaluations. However, without the knowledge of
the true Pareto-fronts, it was not possible to set the stopping
criterion with respect to convergence.

VI. RELATED WORK

Problem space exploration was first suggested by Storer
et al. in an attempt to improve the optimisation for Job-
Shop Scheduling problem [10]. A similar approach was also
introduced as noising by Charon and Hudry [13]. Storer

et al. discussed two different approaches of exploring the
problem space: by perturbing the problem and by perturbing
the construction heuristic (e.g. changing parameters of the
construction heuristic). Since the additional greedy algo-
rithm does not require any parameter tuning, the heuristic
perturbation has not been considered in this paper.

The idea was applied to various combinatorial optimi-
sation problems including 0-1 Multiple Knapsack Prob-
lem [14], Graph Partitioning Problem [15], Routing Prob-
lem [16] and Travelling Salesman Problem [17]. For all
of these problems, the problem perturbation is represented
as a vector of real numbers, which are usually weights
that are multiplied to the numbers in the original problem.
Therefore, these representations are often called weight-
coding. However, no existing work uses bit-masking to
perturb problem data expressed as sets.

Set-cover problem formed the basis of the widely studied
test suite minimisation problem [1], [2], [23], [24]. Recently,
formulating the test suite minimisation problem as a multi-
objective set cover optimisation is an emerging trend found
in search-based software testing [4]–[6]. This is because
shorter development cycle often require the precise knowl-
edge of how much testing is feasible given a budget on
time. All of the existing work rely on the traditional binary
string representation and, therefore, potentially suffer from
the existence of dimensional plateau.

VII. CONCLUSIONS AND FUTURE WORK

The paper introduces Mask-Coding, a novel representation
for solutions of multi-objective set cover problem based
on the concept of problem space exploration and prob-
lem perturbation. Mask-Coding uses bit-masks to perturb
instances of set-cover problems. The empirical evaluation
of the novel representation has shown that it can outperform
the traditional binary string representation, especially under
the existence of the dimensional plateau. Future work will
consider evaluation of the representation with wider problem
instances.
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