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Abstract

Test suite minimisation techniques seek to reduce the effort required for
regression testing by selecting a subset of test suites. In previous work,
the problem has been considered as a single-objective optimisation problem.
However, real world regression testing can be a complex process in which
multiple testing criteria and constraints are involved. This paper presents
the concept of Pareto efficiency for the test suite minimisation problem. The
Pareto efficient approach is inherently capable of dealing with multiple ob-
jectives, providing the decision maker with a group of solutions that are not
dominated by each other. The paper illustrates the benefits of Pareto ef-
ficient multi-objective test suite minimisation with empirical studies of two
and three objective formulations, in which multiple objectives such as cov-
erage and past fault-detection history are considered. The paper utilises
a hybrid, multi-objective genetic algorithm that combines the efficient ap-
proximation of the greedy approach with the capability of population based
genetic algorithm to produce higher-quality Pareto fronts.
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1. Introduction

Regression testing is performed in order to guarantee that the recent
changes in a program do not interfere with the functionality of the unchanged
parts. The most straightforward approach to guarantee this is to execute
all of the existing test cases to ensure that the new changes are harmless.
However, this retest-all approach is often infeasible because, over time, the
size of the test suite grows. Thus it may become prohibitively expensive
to execute the entire test suite. Furthermore, as the development cycle of
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software moves to shorter iterations, the regression testing often needs to be
performed within a severely restricted time frame using limited resources.

A group of ‘test case management’ techniques have emerged to cope with
these limitations, one of which is test suite minimisation (sometimes called
reduction). A test suite minimisation technique identifies the subset of the
original test suite that is deemed to be redundant, and either removes the
subset from the original test suite permanently or reject it for the current
iteration of regression testing.

However, testing often involves multiple test criteria and conflicting con-
straints. For example, different types of testing, such as functional testing
and structural testing, may require different testing criteria [1]. The tester
may also benefit from considering multiple testing criteria simply because
there is no single most ideal testing criterion. For example, real fault detec-
tion rate may be the most ideal testing criterion but it cannot be known until
testing finishes. Code coverage is a widely used surrogate, but there does not
exist a guaranteed correlation between code coverage and fault detection ca-
pability [2]. Therefore, it may be valuable to complement code coverage with
fault detection history. There may also exist other types of domain knowl-
edge that may contribute to the accuracy and efficiency of testing process.

Apart from testing criteria, there also may exist multiple constraints on
the testing process. For example, cost is one of the essential constraints
because the whole purpose of test suite minimisation and prioritisation is
to reduce testing cost. One important cost measure, considered by other
researchers [3, 4, 5], is the execution time of the test suites. With emerging
trends like the agile software development paradigm [6], regression testing
often needs to be completed in even more limited time than in previous
paradigms. Execution time, as well as other resources like human efforts and
hardware equipments, can become critical constraints to testing process.

Existing approaches to regression test suite minimisation (and prioritisa-
tion) have been single-objective approaches that have sought to optimise a
single-objective function. Even where there exists more than one objective,
these multiple objectives have been combined into a single-objective fitness
function. For example, the recent work on test case prioritisation [3] concerns
both code coverage and cost, which is essentially a two-objective formulation
of the test case prioritisation problem. However, it is dealt with by confla-
tion to a single-objective of coverage per unit cost. Where there are multiple
competing and conflicting objectives the optimisation literature recommends
the consideration of a Pareto optimal optimisation approach [7, 8]. Such a
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Pareto optimal approach is able to take account of the need to balance the
conflicting objectives, all of which the software engineer seeks to optimise.

This paper presents the first multi-objective formulation of the test suite
minimisation problem and applies a hybrid algorithm that combines existing
greedy approach with a well known Multi-Objective Evolutionary Algorithm,
NSGA-II. It is likely that a tester would want to optimise several, possibly
conflicting constraints, for which this approach will be well suited.

The primary contributions of this paper are as follows:

1. The paper introduces a multi-objective formulation of the regression
test suite minimisation problem and instantiates this with two ver-
sions: A two-objective formulation that caters for coverage and cost
and a three objective formulation that caters for coverage, cost and
fault history. The formulations facilitate a theoretical treatment of the
optimality of the greedy algorithm and makes it possible to establish a
relationship between the multi-objective problems of test case prioriti-
sation and test suite minimisation.

2. The paper presents two algorithms for solving the two and three objec-
tive instances of the test suite minimisation problem: a re-formulation
of the single–objective greedy algorithm, and a hybrid variant of NSGA-
II of Deb et al. [9], which we call HNSGA-II. The hybrid nature of
HNSGA-II is based on the known fact that the greedy algorithm pro-
duces a good approximation to the set cover problem, which forms the
basis of the test suite minimisation problem.

3. The paper presents the results for these algorithms, when applied to the
two-objective version of the problem using, as subjects, five non-trivial
real world programs from Software-architecture Infrastructure Repos-
itory, SIR [10]. The results confirm the theoretical analysis, revealing
cases where the search based algorithms out–perform the greedy ap-
proach. More importantly, the results show that the hybrid approach
is capable of filling in large gaps in the Pareto fronts approximated by
the greedy algorithm.

4. The paper also presents results from an empirical study of the al-
gorithms applied to the three objective formulation of the problem.
These results also show that the hybrid approaches can out–perform
the greedy approach.

The rest of this paper is organised as follows. Section 2 describes re-
lated work. Section 3 introduces the multi-objective formulation of test suite
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minimisation, giving theoretical results and connections between the min-
imisation and prioritisation problems. Section 4 shows that the additional
greedy algorithm produces a good approximation, which forms the basis of
the hybrid approach used in the present paper. Section 5 presents two em-
pirical studies of multi-objective test suite minimisation for two and three
objective versions of the multi-objective formulation. The results of the em-
pirical studies are analysed in Section 6. Finally, Section 7 concludes with
directions for future work.

2. Background

The existing literature on test case management can be categorised into
three different areas of investigation; test suite minimisation (or reduction),
test case selection, and test case prioritisation.

Test suite minimisation shares many similarities with test case selection.
It selects a subset of the test suite that satisfies all the test requirements.

Test Case Minimisation
Given: a test suite T = {t1, t2, . . . , tn} and a set of test requirements

R = {r1, r2, . . . , tm}
Problem: to find the smallest T ′ such that T ′ ⊂ T , ∀r ∈ R(T ′ satisfies r).

One major difference between test suite minimisation and test case se-
lection is that test case selection chooses a temporary subset of test cases
based on the modifications made to a specific version of System Under Test,
whereas test suite minimisation reduces the test suite based on some exter-
nal criterion such as structural coverage. Harrold et al. formulated test suite
minimisation as a minimal hitting set problem, and applied a heuristic ap-
proach [1]. This paper considers test suite minimisation as a non-weighted
version of the set-cover problem, which is equivalent to the hitting set prob-
lem.

It is known that test suite minimisation can be efficient provided that the
cost of the reduction is smaller than the gain in the cost of the reduced test
suite [11]. However, a weakness of test suite reduction is that the removal
of some test cases from the test suite may potentially reduce the fault de-
tecting capability of the test suite too. Some studies have shown that the
fault-detection capability of the test suite was indeed damaged [12], while oth-
ers have shown that the reduced test suite still preserved its fault-detection
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capability [13]. The reduction technique studied by Harrold et al. is of par-
ticular interest in the context of this paper because the technique considers
multiple criteria when deciding whether to preserve a test case or not [1].
Their technique converts this multi-objective problem into a series of single-
objective problems, by solving the problem for the first objective then uses
this intermediate solution as the starting point of the solution for the next
objective. While this sequential approach is one of the classical techniques
to solve multi-objective optimisation problems, it may produce less optimal
results compared to Pareto-efficient approach because the earlier objectives
may restrict the possibility of finding potential solutions to the objectives
solved later.

Test case selection focuses on selecting a subset of the test suite in order
to test software modifications. The selection is typically made in terms of
the structure of the program P and the test suite T . Several techniques have
been considered, including symbolic execution [14], flow graph based [15] and
dependence graph based approaches [16, 17].

Test case prioritisation is a closely related topic, in which the goal is to
find an optimal order in which to execute test cases. The ideal ordering
of test cases would be the one that maximises the rate of fault detection.
However, since the fault information is not known to the tester in advance,
prioritisation techniques have to depend on surrogates. Rothermel et al. de-
fined test case prioritisation problem as follows:

Test Case Prioritisation
Given: a test suite, T , the set of permutations of T , PT ; a function from

PT to real numbers, f .
Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥

f(T ′′)].

The function f acts as a surrogate for the unknown rate of fault detection.
One of the most widely used metrics for f : PT → R is APFD (Average
Percentage of Fault Detected), which rewards orderings with earlier fault
detection abilities [18]. The additional greedy algorithm is known to produce
good results for the test case prioritisation problem [19, 20, 21]. Rothermel
et al. introduced APFDc, the cost cognizant version of APFD [3], which
inspired our formulation of the weighted objective greedy algorithm. Elbaum
et al. [4] expanded the problem to incorporate not just the cost of test cases,
but the severity of the detected faults.
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Walcott et al. also take time into account in their work on the test
case prioritisation problem [5]. Their approach to prioritisation combines
both selection and prioritisation problems into a single-objective, which is
the weighted sum of the selection fitness and prioritisation fitness. The co-
efficients used for weights are defined to ensure that selection fitness is the
primary objective, while ordering is secondary.

This paper is an extension of a conference paper by the same authors [22].
This previous work applied NSGA-II and an island genetic algorithm variant
of NSGA-II to both two and three-objective formulations for the programs
from Siemens suite and space. The results showed that the search-based
techniques produce wider and more efficient Pareto-frontier for smaller pro-
grams, while the additional greedy algorithm produces a good approximation
for space. This observation provided the basis for the formulation of the hy-
brid approach in the present paper. The empirical results in the present
paper shows that adopting the hybrid approach indeed produces better re-
sults; the approximation produced by the additional greedy algorithm is
complemented by intermediate solutions that are found by NSGA-II. These
intermediate solutions add valuable information to the trade-offs between
testing criteria and resources.

3. Multi-Objective Paradigm

This section introduces the multi-objective formulation of test suite min-
imisation. Section 3.1 introduces the Pareto optimal formulation of the test
suite minimisation problem. Section 3.2 explores the theoretical properties of
the two-objective greedy algorithm, while Section 3.3 shows the relationship
between multi-objective selection and prioritisation.

3.1. Pareto Optimality

Pareto optimality is a notion from economics with broad range of ap-
plications in game theory and engineering. The original presentation of the
Pareto optimality is that, given a set of alternative allocations and a set of
individuals, allocation A is an improvement over allocation B only if A can
make at least one person better off than B, without making any other worse
off [23].

Based on this, the multi-objective optimisation problem can be defined
as the problem of finding a vector of decision variables x, which optimises
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a vector of M objective functions fi(x) where i = 1, . . . ,M . The objective
functions are the mathematical description of the optimisation criteria.

Without the loss of generality, it is assumed that the goal is to maximise
fi where i = 1, . . . ,M . A decision vector x is said to dominate a decision
vector y (also written x � y) if and only if their objective vectors fi(x) and
fi(y) satisfies:

∀i ∈ {1, . . . ,M}.fi(x) ≥ fi(y) and

∃i ∈ {1, . . . ,M}.fi(x) > fi(y)

All decision vectors that are not dominated by any other decision vector
are said to form the Pareto optimal set, while the corresponding objective
vectors are said to form the Pareto frontier. Now the multi-objective opti-
misation problem can be defined as follows:

Given: a vector of decision variables, x, and a set of objective functions,
fi(x) where i = 1, . . . ,M

Definition: maximise {f1(x), . . . , fM(x)} by finding the Pareto optimal
set over the feasible set of solutions.

Identifying the Pareto frontier is particularly useful in engineering because
the decision maker can use the frontier to make a well-informed decision
that balances the trade-offs between the objectives. The knowledge of these
trade-offs proved to be useful in various other engineering domains such as
architecture [24], chemical engineering [25], and aerodynamics [26].

The multi-objective test suite minimisation problem is to select a Pareto
efficient subset of the test suite, based on multiple test criteria. It can be
defined as follows:

Multi-Objective Test Suite Minimisation
Given: a test suite, T , a vector of M objective functions, fi, i = 1, . . . ,M .
Problem: to find a subset of T , T ′, such that T ′ is a Pareto optimal set

with respect to the set of objective functions, fi, i = 1, . . . ,M .

The objective functions are the mathematical descriptions of test criteria
concerned. A subset t1 is said to dominate t2 when ({f1(t1), . . . , fM(t1)}), the
decision vector for t1 dominates that of t2. The resulting subset of the test
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suite, T ′, has several benefits in regards to the regression testing, as shown
in Section 3.2.

3.2. Properties of 2-Objective Coverage Based Selection

Here we instantiate the two objective formulation with code coverage as
a measure of test adequacy and execution time as a measure of cost. Thus,
code coverage becomes one of the two objectives, and it should be maximised
for a given cost. Time is the other objective, which should be minimised for
a given code coverage.

In this instantiation of the problem, should there exist a subset of test
suite S with coverage C and execution time T on the Pareto frontier, it
means that:

• T1. No other subset of S can achieve more coverage than C without
spending more time than T .

• T2. No other subset of S can finish in less time than T while achieving
a coverage that is equal to or greater than C.

This is the implication of Pareto optimality. Rather than obtaining a
single answer that approximates the global optimum in the search space for
a single objective, we obtain a set of points, each of which denotes one possible
way of balancing the two objectives in a globally optimal way. Each member
of the Pareto frontier is therefore a candidate solution to the problem, upon
which it is not possible to improve.

In the single objective formulation of test suite minimisation, greedy al-
gorithms have been used to maximise coverage. The greedy approach starts
with an empty test set as the ‘current solution’ and iteratively adds a test
case which gives the most coverage of those that remain. A variant, addi-
tional greedy, improves on this by adding to the current solution the test
case that gives the best additional coverage to the current solution. Each
addition by the greedy algorithm of a new test case to the ‘current solution’
denotes a candidate element of the Pareto frontier.

Greedy algorithms have proved effective for the single objective formu-
lation, so they make a sensible starting point for the consideration of the
multi-objective formulation. In order to optimise both coverage and cost,
the additional greedy algorithm will need to be formulated to measure not
coverage, but coverage per unit time. This produces a single objective cost
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cognizant variant of the greedy algorithm, similar to that used by Mali-
shevsky et al. for the single objective prioritisation problem [3].

Suppose that the additional greedy algorithm has chosen a test case t that
covers a set of structural elements, s. Let Cov(s) be the coverage of test case
t and let Time(t) be the execution time of t. Assume that the selection of t
increases the coverage by ∆Cov(s). By definition, there is no single test case
t′ (which would cover s′) that the algorithm could have chosen, such that
∆Cov(s′) > ∆Cov(s) and Time(t′) ≤ Time(t) (otherwise the algorithm
would have picked t′). Therefore, the selection of a test case made by the
two objective cost cognizant additional greedy algorithm cannot be improved
upon by the addition of another single case. However, this leaves open the
possibility that there may be a set of test cases that, taken together, could
have produced a better approximation to the Pareto front.

Let us consider the case of the basic greedy algorithm that selects one
test case at a time. It turns out that any selection of a test case made by
the additional greedy algorithm can only be improved with respect to T2.
It is not possible to improve on the selection made by the additional greedy
algorithm with respect to T1. This observation is stated and proved more
formally below.

Proposition 1 (Partial Optimality).
The selection of a test case made by the additional greedy algorithm cannot
be improved upon with respect to T1.

Proof 1. Suppose the contrary. That is, let t1 be a test case that covers a
set of structural elements, s1. Suppose there also exists a pair of test cases,
t2 and t3, covering s2 and s3 respectively, that together improve upon t1 by
achieving more coverage without spending more time. By definition, we have

∆Cov(s2)

Time(t2)
<

∆Cov(s1)

Time(t1)
and

∆Cov(s3)

Time(t3)
<

∆Cov(s1)

Time(t1)
(1)

because, otherwise, the additional greedy algorithm would not have selected
t1. From this, it follows that

Time(t1) · (∆Cov(s2) + ∆Cov(s3)) < ∆Cov(s1) · (Time(t2) +Time(t3)) (2)

However, in order for t2 and t3 to be collectively a better choice than t1
we require t2 and t3 to achieve higher increase in coverage, taking no longer
than t1. That is,
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∆Cov(s2 ∪ s3) > ∆Cov(s1) (3)

and

Time(t2) + Time(t3) ≤ Time(t1) (4)

Combining step 2 and step 4, we get: ∆Cov(s2)+∆Cov(s3) < ∆Cov(s1).
Now, because code coverage is a set theoretic concept, it is not possible for the
coverage of the union to be greater than the sum of the coverage of the parts.
Therefore we have: ∆Cov(s2 ∪ s3) ≤ ∆Cov(s2) + ∆Cov(s3). By transitivity,
∆Cov(s2 ∪ s3) < ∆Cov(s1), which contradicts step 3, so we must conclude
that it is not possible to dominate the selection made by the additional greedy
algorithm by breaking T1.

Program Points Exec. Time

t1 X X X X X X X X 4
t2 X X X X X X X X X 5
t3 X X X X 3
t4 X X X X X 3

Table 1: An example of a test suite where the additional greedy algorithm
produces suboptimal minimisation of test cases

However it is possible to construct an example that shows that the addi-
tional greedy algorithm does not produce solutions that are Pareto efficient
with respect to T2. Such an example is shown in Table 1. The first choice of
the additional greedy algorithm will be t1, which has the additional coverage
per unit time value of 0.8

4
= 0.2 (T2, T3, T4 each has 0.18, 0.13̃, and 0.16̃). The

second choice will be t2 with the additional coverage per unit time value of
0.2
5

= 0.04, whereas t3 and t4 each has 0.03̃ and 0. At this point, the algo-
rithm achieves 100% coverage in 9 units of time. However, the same amount
of coverage is also achievable in 8 units of time by selecting t2 and t3, so the
subset {t2, t3} dominates the subset {t1, t2}.

It is indeed possible to extend the greedy approach to consider a pair
of test cases, rather than a single test case, at a time, to overcome this
problem. This formulation of the greedy approach is often called a 2-way
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greedy algorithm. Then, however, it would be possible to construct another
counter-exmple that consists of a set of 3 test cases. Eventually, for n test
cases, an n-way greedy approach is required to ensure its Pareto-optimality
with respect to T2. However, the n-way greedy approach would be identical
to an exhaustive search, which is not practical.

Furthermore, though the additional greedy algorithm may produce points
that are Pareto efficient with respect to T1, it does not produce a complete
Pareto frontier. The existence of t4 in the above example demonstrates this.
According to the additional greedy algorithm, the first decision point chosen
for this example would be the subset of {t1}, which achieves 80% coverage
in 4 units of time. The subset {t1} is on the Pareto frontier because no
other test case can achieve 80% coverage in 4 units of time. However, the
subset of {t4} is also on the Pareto frontier, because no other test case can
achieve 50% coverage in 3 units of time. This point {t4} on the Pareto
frontier is ignored by the additional greedy algorithm. As we will see in the
next subsection, this issue is important, because it is necessary to produce
the most complete approximation to the Pareto frontier possible in order to
exploit the relationship between multi-objective selection and prioritisation.

3.3. The Relationship Between Multi Objective Selection and Prioritisation

While they are formally different concepts, test suite minimisation and
test case prioritisation problems are closely related to each other. Test case
prioritisation concerns the ideal ordering of a given test suite. Since it only
changes the order of a given test suite, it is not capable of producing an
efficient test case scheduling when the available time is shorter than the
total time required by the test suite, assuming that the test suite can be
executed in its entirety.

Figure 1 shows the result that the additional greedy algorithm produces
with the test data shown in Table 1, along with the real Pareto frontier of the
test data. If the tester applies the existing test case prioritisation techniques
based on the additional greedy algorithm, the algorithm will produce an
ordering of t1 − t2 for the test cases in Table 1.

If the tester is allowed 9 units of time for the testing, it is possible to follow
the ordering produced by the additional greedy algorithm; t1 is executed first,
followed by t2, at which point a final coverage of 100% is achieved in 9 units
of time. However, let us suppose that the testing environment allows only 6
units of time for the testing. According to the additional greedy algorithm,
the tester should fall back to the first data point, {t1}, since it is not possible
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Figure 1: Comparison between the Pareto frontier and the results of the
additional greedy algorithm from the test data shown in Table 1

to execute both t1 and t2 in the given time. This achieves 80% coverage in 4
units of time, but leaves 2 units of time unused. However, the Pareto frontier
tells us that the subset of {t2} can achieve 90% coverage in 5 units of time,
making more efficient use of the given time. Similarly, it also reveals that,
should the budget allow only 3 units of time, it is still possible to achieve
50% coverage by executing T4. Furthermore, the Pareto frontier also shows us
that a coverage of 100% is achievable in only 8 units of time, which is shorter
than the 9 units of time predicted by the additional greedy algorithm.

Concerning the limitations of the testing environment, it is possible to
consider a few different scenarios. First, it may be the case that the entire
regression can be executed, regardless of the amount of time it takes. In
this scenario, only prioritisation matters as the complete test suite can be
executed. Second, there may be a case where the tester is given an exact
amount of time available for the regression testing. The benefits of knowing
the existence of {t2, t3} and {t4} as candidate selections of test cases becomes
clear under this scenario, where there is a cost constraint, i.e., testing budget.
Prioritisation alone cannot optimise the testing process in such a situation,
because it is not capable of selecting test cases. Fortunately, the Pareto
efficient approach enables the tester to make an informed decision about the
regression testing under such constrained scenarios. Finally, there may exist
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cases where the tester does not know the exact amount of time available for
the regression testing but has to cater for the possibility that testing may
be stopped abruptly. In this scenario, only prioritisation matters because it
seeks to maximise the early fault detection. However, the knowledge of trade-
offs between testing criteria and testing budget can still provide a valuable
frame of reference when measuring the progress of testing procedure.

The second scenario discussed here is increasingly relevant because of
the trend towards shorter development cycles. For example, nightly build
is widely adopted in open source software development [27]. This process
usually involves regression testing, which naturally needs to be completed
within tight, inflexible time constraints. In order to construct an efficient
test sequence under such constraints, an appropriate subset of test cases
should be selected first. This subset can subsequently be prioritised in order
to achieve the ideal ordering among the selected test cases. This way, test
suite minimisation and test case prioritisation techniques can be used in
combination in order to achieve more efficient regression testing.

4. Greedy Algorithm

Code coverage is a discrete and bounded concept, in a sense that there
exist only a finite number of entities (i.e. statements or blocks) to cover.
Therefore, the problem of maximising code coverage can be reformulated as
a weighted set-cover problem as follows:

Weighted Set Cover Problem
Given: a universe U with n elements, a set S of m subsets of U with

cost1, . . . , costm
Problem: to find C such that C ⊆ S,

⋃
Si∈C Si = U , and

∀S ′ ⊆ S[
⋃

Si∈S′ Si = U →
∑

Si∈C costi ≤
∑

Si∈S′ costi]

The additional greedy algorithm is illustrated in Algorithm 1. Let U be
the universe, {e1, . . . , en}; S the set containing S1, . . . , Sm, the subsets of U
such that

⋃
i Si = U ; cost1, . . . , costm the cost of each subset in S. Without

loss of generality, it is assumed that there exists a subset S ′ ⊂ S that covers U
completely. Through line (4) of Algorithm 1, the additional greedy algorithm
picks Sj ∈ S according to the density of the set, costj/|Sj−C|. The minimum
density corresponds to the maximum increase in coverage per cost in each
iteration.
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Algorithm 1: Outline of additional greedy algorithm
AdditionalGreedy(U , S)
(1) C ← φ // covered elements in U
(2) repeat
(3) j ← mink(costk/|Sk − C|)
(4) add Sj to solution
(5) C = C

⋃
Sj

(6) until C = U

The set-covering problem is known to be NP-hard [28]. Fortunately, the
additional greedy algorithm is also empirically known to be efficient for solv-
ing test case prioritisation problems [18]. The weighted set-cover problem is
essentially a selection problem. However, the requirement in test case priori-
tisation, i.e. to maximise the test adequacy as early as possible, combined
with the inherent nature of the algorithm, allows the greedy algorithm to
simultaneously produce an efficient solution for the prioritisation problem,
which is a sequencing problem.

With respect to T2 in Section 3.2, it is known that the additional greedy
algorithm gives an approximation ratio of lnn [29], with n being the input
size, i.e. the size of test suite in the context of the present paper. However,
the theoretical analysis in Section 3.2 suggests that there exist solutions that
are better than those approximated by the greedy algorithm. This paper
introduces a hybrid approach that utilises both the deterministic additional
greedy algorithm and a population-based multi-objective genetic algorithm
in order to produce better solutions more efficiently.

5. Empirical Studies

This section explains the experiments conducted to explore the two and
three objective formulations of the multi-objective selection problem. Sec-
tion 5.1 describes subjects studied and Section 5.2 describes the objectives to
be optimised. Section 5.3 describes the algorithms studied, while Section 5.4
explains the mechanisms by which these algorithms will be evaluated in the
two empirical studies. Finally Section 5.5 sets out research questions.
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5.1. Subjects

A total of 5 programs are studied in this paper: the program space from
the European Space Agency, and the GNU open-source programs flex, grep,
gzip, and sed. These programs range from 6,199 to 19,737 lines of code,
and they are all real world applications with non-trivial test suites. The
software artifacts and their test suites were available from Software-artifact
Infrastructure Repository (SIR) [10].

For GNU open-source programs, the largest test suite available from the
archive was selected. The program space has multiple test suites; the test
suite that provides the highest code coverage was selected among the available
test suites. The size of the programs and their test suites are shown in
Table 2.

Program Lines of code Test suite size Description

flex 15,297 567 Lexical analyser
grep 15,633 806 Regular expression utility
gzip 8,889 213 Compression tool
sed 19,737 370 Non-iterative text editor
space 6,199 156 European Space Agency program

Table 2: Size of test suites and studied programs

5.2. Objectives

It is not the aim of this paper to enter into a discussion concerning which
objectives are more important for regression testing. We simply note that,
irrespective of arguments about their suitability, coverage and fault histories
are likely candidate objectives for assessing test adequacy and that execution
time is one realistic measure of effort. It also should be noted that it is not
the intention of the present paper to confine the test criteria to coverage-
based measurements. The formulations for which the paper reports results
serve to illustrate the possibilities created by a multi-objective approach.

For the two-objective formulation, statement coverage and computational
cost of test cases will be used as objectives. The additional objective used
in the three objective formulation is the past fault detection history. Each
software artifact used in this paper has several seeded faults (taken from the
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data available on the SIR [10]). SIR records the test cases that reveal these
faults. Using this information, it is possible to assign past fault coverage to
each test case subset, corresponding to how many of the known past faults
in the previous version this subset would have revealed (for the evaluation
of the three-objective formulation, grep was excluded because no historical
fault information was available for it).

The statement level coverage information used in this paper was measured
using the GNU compiler, gcc, and its profiling tool, gcov. The instrumen-
tation is performed by gcc during compilation. The instrumented subject
program produces execution-trace information with each execution, which is
converted to statement level coverage information using gcov.

Physical execution time of test cases is hard to measure accurately. Mea-
surement is confounded by many external factors; different hardware, appli-
cation software and operating system. In particular, any measurement of
execution time is likely to be affected by aspects of the environment uncon-
nected to the choice of test cases. Such factors include concurrent execution,
caching and other low-level processor optimisations.

In this paper we circumvent these issues by using the software profiling
tool, Valgrind, which executes the program in an emulated, virtual CPU [30].
The computational cost of each test case was measured by counting the num-
ber of virtual instruction codes executed by the emulated environment. Val-
grind was created to allow just this sort of precise and unequivocal assessment
of computational effort; it allows us to argue that these counts are directly
proportional to the cost of the test case execution.

5.3. Algorithms

5.3.1. Hybrid Multi-Objective Algorithm

Population-based genetic algorithms are inherently well-suited to multi-
objective optimisation problems because of their ability to retain multiple
solutions. In this paper NSGA-II is used. NSGA-II is a multi-objective
genetic algorithm developed by Deb et al. [9]. It produces a group of solutions
that collectively form the final state of the Pareto-frontier when the algorithm
terminates. NSGA-II is based on elitism, which means that, unless better
solutions are found, the best-so-far solutions are always retained.

NSGA-II differs from normal genetic algorithms in two major aspects.
First, selection of individual solutions for the next generation is based on
Pareto optimality. NSGA-II uses an algorithm called fast-nondominated
sorting, which classifies individual solutions into different dominance levels.
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Algorithm 2: Outline of the main loop for NSGA-II
NSGA-II-Main-Loop(Generation counter, t, Parent popula-
tion, Pt, Children population, Qt, Population size, N)
(1) Rt ← Pt ∪Qt

(2) F ← fast-nondominated-sort(Rt)
(3) Pt+1 ← ∅ and i← 1
(4) repeat
(5) Crowding-distance-assignment(Fi)
(6) Pt+1 ← Pt+1 ∪ Fi

(7) i← i+ 1
(8) until |Pt+1|+ |Fi| ≤ N
(9) Sort(Fi,≺n)
(10) Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
(11) Qt+1 ← make-new-population(Pt+1)
(12) t← t+ 1

For example, solutions on the current Pareto-frontier get assigned dominance
level of 0. Then, after taking these solutions out, fast-nondominated sorting
calculates the Pareto-frontier of the remaining population; solutions on this
second frontier get assigned dominance level of 1, and so on. The domi-
nance level becomes the basis of selection of individual solutions for the next
generation.

The second difference concerns the concept of crowding distance. When
NSGA-II has to select one out of two individual solutions with the same
dominance level, it relies on the crowding distance to make the selection.
Intuitively, the crowding distance of an individual solution is the normalised
sum of distances from other individuals with respect to each objective. An
individual with higher crowding distance is located in the part of the solution
space that is sparsely populated. In order to obtain wider Pareto-frontiers,
NSGA-II rewards individuals with higher crowding distance when the dom-
inance level is the same. In the context of test suite minimisation under
cost-constraints, it means that the algorithm seeks to produce a higher vari-
ety of decision points that correspond to different testing budgets.

Algorithm 2 presents a top-level outline of the main loop of NSGA-II.
In line (2), Fast-Nondominated-Sort() assigns dominance level to indi-
viduals. In the loop that spans from line (4) to (8), the algorithm adds as
many non-dominated frontiers (i.e. sets of solutions with the same domi-
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nance level) as possible to the next generation. Any remaining slots in the
next generation are filled in according to the descending order of crowding
distance in line (9) and (10).

The present paper utilises a variant of the basic NSGA-II, called Hybrid
NSGA-II (HNSGA-II). The additional greedy algorithm is known to produce
an efficient approximation to the set cover problem [29], but Section 3.2 also
shows that there can exist solutions that are better than those found by
the greedy algorithm. Therefore, it is natural to complement the additional
greedy algorithm with NSGA-II by taking the results from the additional
greedy algorithm as the initial population, which is how HNSGA-II works.
Thanks to elitism, the approximation produced by the additional greedy
algorithm will be discarded only when more efficient solutions are found.
Additionally, HNSGA-II also includes the same number of random solutions
as the number of solutions produced by the additional greedy algorithm in
order to guarantee a certain level of diversity in the initial population.

HNSGA-II algorithm was executed 20 times for each subject program in
order to account for their inherent randomness. HNSGA-II uses single-point
crossover and bit-flip mutation. Crossover rate and mutation rate were set
to 0.1. Because of the hybrid approach to the initial population, HNSGA-II
uses different population size and maximum fitness evaluation count for each
subject programs, which is shown in Table 3.

Program Population size Max. fitness evaluation

flex 92 9,200
grep 154 15,400
gzip 42 4,200
sed 64 6,400
space 232 23,200

Table 3: HNSGA-II Configurations for Subject Programs

5.3.2. Greedy Algorithms

Two Greedy Algorithms were also implemented. For the two-objective
formulation, a cost cognizant version of the additional greedy algorithm was
implemented. For the three objective formulation, code coverage, fault cov-
erage and execution time were combined by taking the weighted sum of [code
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coverage per unit time] and [fault coverage per unit time] using the classical
weighted-sum approach. WithM different objectives, fi with i = 1, 2, . . . ,M ,
the weighted-sum approach calculates the single-objective, f ′, as follows:

f ′ =
M∑
i=1

(wi · fi),
M∑
i=1

wi = 1

Both the additional code coverage per unit time and additional past fault
coverage per unit time were combined using coefficients of 0.5 and 0.5, thereby
giving equal weighting to each objective.

5.4. Evaluation Mechanisms

The difficulty of evaluating Pareto frontiers lies in the fact that the ab-
solute frame of reference is the real Pareto frontier, which, by definition, is
impossible to know a priori. Instead, a reference Pareto frontier can be con-
structed and used when comparing different algorithms with respect to the
Pareto frontiers that they produce. The reference frontier represents the hy-
brid of all approaches, combining the best of each. It is one of the advantages
of Pareto optimality that results for various approaches can be combined in
this way.

More formally, let us assume that we have N different Pareto frontiers,
Pi with i = 1, 2, . . . , N . A reference Pareto frontier, Pref , can be formulated
as follows. Let P ′ be the union of all Pi with i = 1, 2, . . . , N . Then:

Pref ⊂ P ′, (∀p ∈ Pref )(@q ∈ P ′)(q � p)

For all the programs, the reference Pareto-frontier was produced by com-
bining the result of the additional greedy algorithm and the multiple execu-
tions of HNSGA-II.

One of the methods to compare Pareto frontiers is to look at the num-
ber of solutions that are not dominated by the reference Pareto frontier.
By definition, Pref is not dominated by any of the N different Pareto fron-
tiers, because it consists of the best parts of the different Pareto frontiers.
However, each of N different Pareto frontiers may be partly dominated by
Pref . Therefore, these N different Pareto frontiers can be compared with
each other by counting the number of solutions that are not dominated by
Pref in each Pareto frontier.

Another meaningful measurement is the size of each Pareto frontier.
Achieving larger Pareto frontiers is one of the important goals of Pareto

19



optimisation. This is particularly of concern in engineering application, be-
cause a larger Pareto frontier means a larger number of alternatives available
to the decision maker.

Both the number of non-dominated solutions and the size of Pareto fron-
tiers were measured and statistically analysed in this paper using an one-
sided Wilcoxon signed-rank test. The Wilcoxon signed-rank test is a non-
parametric hypothesis test that does not require any assumption on the para-
metric distribution of the samples. It tests the null hypothesis that the means
of two normally distributed groups are equal. In the context of this paper,
the null hypothesis is that with two different algorithms, the mean values of
the size of Pareto frontiers and the number of solutions that are not domi-
nated by the reference Pareto frontier are equivalent. For these tests the α
level was set to 0.95. Significant p− values suggest that the null hypothesis
should be rejected in favour of the alternative hypothesis, which states that
one of the algorithm produces a larger Pareto frontier or a larger number of
non-dominated solutions.

5.5. Research Questions

This paper aims to provide empirical evidence to answer the four research
questions stated below. RQ1 concerns whether the use of the hybrid multi-
objective optimisation technique can be validated by identifying solutions
that cannot be found by single-objective greedy approach.

RQ1: Do the situations theoretically predicted in Section 3.2 arise in prac-
tice? That is, does there exist a situation in which the Pareto efficient ap-
proach can provide the tester with additional information, either by finding
solutions that achieve identical coverage in less time or by producing addi-
tional points on the Pareto-frontier?

If the answer to RQ1 is positive, i.e. if solutions formally identified as
theoretically possible in Section 3.2 actually exist in practice, by definition of
the elitism in the hybrid algorithm guarantees improved results. RQ2 and
RQ3 concern how much improvement can be observed and at what cost.
Improvements are measured by the contribution to the reference frontier as
described in Section 5.4. The costs of improvement are evaluated by the
execution time of optimisation algorithms.
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RQ2: How much improvement, in terms of the number of non-dominated
solutions, do the greedy and the hybrid algorithm produce for the 2-objective
formulation? What is the cost of the improvement?

RQ3: How much improvement, in terms of the number of non-dominated
solutions, do the greedy and the hybrid algorithm produce for the 3-objective
formulation? What is the cost of the improvement?

Finally, RQ4 concerns the potential insights that can be obtained by
performing the multi-objective optimisation of test suite minimisation.

RQ4: What can be said about the shape of the Pareto frontiers, both approx-
imated and optimal? What insights do they reveal concerning the tester’s
dilemma as to how to balance the trade-offs between objectives?

The first three research questions will be answered quantitatively using
the approaches described in Section 5.4. The last research question is more
qualitative in nature.

6. Results and Analysis

The results for the 2-objective formulation for the five different subjects
are shown in Figure 2. The figures are provided for illustration and quali-
tative evaluation only. For complete quantitative data, see Table 4. Plotted
data-points for the reference Pareto-frontier and the additional greedy al-
gorithm represent the entire respective results. With HNSGA-II, a single
execution out of 20 executions was chosen for each subject program, in order
to increase the readability. The variance in its complete results over 20 runs
can be seen in Table 4.

The results provide a positive answer to RQ1; the results for flex and
gzip show that HNSGA-II is capable of finding solutions that are not found
by the additional greedy algorithm. For both programs, the groups of data-
points on the right end, produced by the additional greedy algorithm, indi-
cate that after a certain point a large amount of computational resource is
required in order to cover the remaining small amount of the program. How-
ever, the intermediate data-points produced by HNSGA-II suggest that it is
still possible to increase the coverage without requiring the same amount of
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Figure 2: Plot of Pareto fron-
tier for two-objective formulation.
For flex and grep, HNSGA-II
finds data points between two
groups of solution.
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resource. In a testing environment with limited resource, these data-points
may provide important alternatives to the tester.

While it is difficult to read from the plotted graphs, Table 4 shows that
some of the solutions produced by the additional greedy algorithm for flex

and gzip are dominated by HNSGA-II with statistical significance. Note
that, for HNSGA-II, all solutions found by the algorithm are by definition
non-dominated because of the elitism; therefore, we only present the number
of non-dominated solutions, nND, and do not record the size of the Pareto-
frontier separately. For these programs, the size of the reference frontier is
larger than the number of non-dominated solutions produced by the addi-
tional greedy algorithm, implying that HNSGA-II produced and contributed
solutions that dominate some of those produced by the additional greedy.

Apart from the additional solutions found for flex and gzip, the Pareto-
frontiers produced by HNSGA-II are largely non-dominated by the reference
frontier, suggesting that HNSGA-II succeeds at finding the solutions on the
reference frontier. It is noticeable that, with grep, sed and space, none of
the solutions produced by the additional greedy algorithm is dominated by
the reference frontier, meaning that HNSGA-II was not able to improve on
these solutions. This suggests that the results may indeed be close to the
optimal Pareto-frontier. Combined with RQ1, this answers RQ2 by showing
the existence of additional solutions on Pareto-frontier. The approximations
produced by the additional greedy algorithm are close to the optimal so-
lution. However, the hybrid approach complements the approximations by
finding intermediate solutions that cannot be found by the additional greedy
algorithm.

Figure 3 shows the results for the three objective formulation. The
3D plots display the solutions produced by the weighted-sum additional
greedy algorithm and HNSGA-II. The intermediate points that were found
by HNSGA-II in two-objective formulation are still present in the 3D plot,
showing that HNSGA-II is capable of improving upon the solutions pro-
duced by the additional greedy algorithm in three-objective formulation as
well. Table 5 also shows that HNSGA-II contributes solutions that dominate
those produced by the additional greedy algorithm in programs flex, gzip
and space with statistical significance. Let us also note that, while it fails
to gain statistical significance, the result for sed consistently produce higher
n̄ND values than nND values by the additional greedy. These results provide
a positive answer to RQ3.

In order to provide a more concrete quantitative analysis of the answers
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Figure 3: Plots of Pareto frontier for three objective formulation. Programs
with fault-history show an elbow-point where the rates of both coverages
change.
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2 Objectives

Program
Reference Add.Greedy HNSGA-II

Size Size nND n̄ND σND p

flex 52 46 46 51.80 1.58 3.6x10−9

grep 77 77 77 77 0 1.0
gzip 23 21 20 23.60 1.05 3.2x10−9

sed 32 32 32 32 0 1.0
space 116 116 116 116 0 1.0

Table 4: The statistical analysis of the results for two-objective formulation.
The average size of Pareto-frontiers for flex and gzip, which is larger than
those of the additional greedy algorithm, reflects the findings of the interme-
diate solutions for those programs shown in Figure 2. Also, only 108 of 116
solutions provided by the additional greedy for space are non-dominated by
the reference frontier, implying that 8 of its solutions were dominated by the
solutions produced by HNSGA-II.

to RQ2 and RQ3, we compare the results obtained using tests for statistical
significance. In two-objective formulation, HNSGA-II consistently produces
Pareto-frontiers of the same size as the additional greedy algorithm for grep,
sed and space. It also produces larger Pareto-frontier than the additional
greedy algorithm for flex and gzip; the observed p − values for the com-
parison of the frontier size are significant at the 95% level. The additional
solutions produced by HNSGA-II for flex and gzip are the intermediate
solutions we have observed in the plotted graphs.

For grep, sed and space, HNSGA-II consistently produces the same num-
ber of non-dominated solutions (n̄ND) as the additional greedy algorithm.
The observed p− value for flex and gzip, however, accepts the alternative
hypothesis at 95% significance level, which means HNSGA-II has produced
larger numbers of non-dominated solutions for these subject programs.

In three-objective formulation, HNSGA-II constantly produces Pareto-
frontiers of a size larger than that of the additional greedy algorithm for
sed (i.e. n̄ND = 35 compared to nND = 33). While the result fails to gain
statistical significance, it shows that HNSGA-II improved upon the result
from the additional greedy algorithm. For flex, gzip and space, the ob-
served p-values are significant at the 95% level, resulting in the acceptance
of the alternative hypothesis (i.e. HNSGA-II produces larger number of non-
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dominated solutions than the additional greedy).
Turning to the last research question, RQ4, a more qualitative analysis is

required. This is made possible by the visualisations of the solutions plotted
in Figures 2 and 3, as well as the two-dimensional projections in Figure 4 and
5. In two-objective formulation, it is noticeable that all the programs share
similar shape of Pareto-frontier with an elbow point where the rate of increase
in the coverage changes abruptly. Such elbow points are considered important
in the study of Pareto optimality. They indicate points of particular interest
where the balance of trade offs inherent in the objectives changes.

With flex and gzip, the changes are even more extreme in a sense that
the rightmost end of the plot is separated from the rest of the solutions. This
change of the increase rate and the resulting flat tail may suggest a general
relation between the code coverage and the computational cost, implying that
there only exist a certain part of the software that is relatively inexpensive
to cover. It is also interesting that the similarity in the shape of Pareto-
frontier is shared across programs with incomplete test suites with less-than-
optimal total coverage (flex, grep, gzip, sed) and the program with a rather
complete test suite (space).

In three-objective formulation, there still exist elbow points in all pro-
gram. More interestingly, the change in the increase rate does not only
involve coverage vs. execution time, but fault coverage vs. code coverage as
well, which is particularly evident in the case with sed. It is observed that
once past the elbow point, the past fault detection rate rarely increases while
the code coverage still increaes. These results provide evidence to suggest
that the faults seeded into these programs under controlled environment is
rather concentrated within parts of the software that is relatively inexpensive
to cover. However more data is required to see whether this phenomenon is
specific to the set of programs we have chosen to study in the present paper,
or whether it is generic to test case.

Another important observation is that the weighted-sum greedy algorithm
performs very well, despite the known fact that it does not necessarily cope
well with multi-objective optimisation problems. This provide evidence to
suggest that, within the program studies in the paper, there may exist a
strong correlation between the code coverage and the past fault coverage.
However, it is subject to debate whether the code coverage subsumes the
fault coverage, and more data is required to see whether this is a generic
tendency between two coverage concepts.

Table 6 contains the average execution time of each algorithm. The ex-
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Figure 4: Two-dimensional projections of Figure 3 for flex and gzip. It can
be observed that the fault coverage is often maximised before the statement
coverage is fully maximised.
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Figure 5: Two-dimensional projections of Figure 3 for sed and space. It can
be observed that the fault coverage is often maximised before the statement
coverage is fully maximised.
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3 Objectives

Program
Reference Add.Greedy HNSGA-II

Size Size nND n̄ND σND p

flex 52 46 45 53.55 1.79 3.6x10−9

gzip 25 22 22 25.35 0.87 2.9x10−9

sed 35 35 33 35 0 1.0
space 121 115 99 115.35 0.81 0.042

Table 5: The statistical analysis of the results for three-objective formula-
tion. For flex and gzip, HNSGA-II still retain the intermediate solutions
found in two-objective formulation, resulting in wider Pareto-frontier than
the additional greedy algorithm.

Program Greedy(2Obj) HNSGA-II(2Obj) Greedy(3Obj) HNSGA-II(3Obj)

flex 4.383s 19.646s 6.461s 4m 3.980s
grep 11.774s 20.068s 18.335s 10m 1.719s
gzip 0.481s 1.120s - -
sed 1.245s 2.776s 1.978s 2m 4.777s
space 2.117s 10.892s 3.300s 21m 57.205s

Table 6: Average Execution Time for Algorithms

ecution time was measured using a machine with Intel Core Duo processor
running at 2.16GHz with 2GB RAM. The algorithms were implemented in
Java with no explicit attempt to optimise it for speed. For two-objective
formulation, the execution time of HNSGA-II algorithm remains under 20
seconds for all programs. For three-objective formulation, the additional ob-
jective has a significant impact, increasing the execution time up to over 20
minutes.

6.1. Summary of Answers to the Research Questions

RQ1 is positively answered by the solutions found by HNSGA-II for
flex,gzip and space. For these programs, HNSGA-II produces solutions
that dominate some of the solutions produced by the greedy approach. Par-
ticularly for flex and gzip, HNSGA-II finds solutions that fill the large gap
that existed in the Pareto-frontier estimated by the greedy approach. These
solutions make it possible to increase coverage with reduced resource require-
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ments. The solutions also provide important alternatives in cost-constrained
testing environments.

RQ2 and RQ3 are answered by the statistical analysis shown in Table 4
and Table 5. The Pareto-frontier approximated by the greedy approach is
mostly not dominated by the hybrid approach, suggesting that the greedy
approach is an efficient approximation technique. However, HNSGA-II com-
plements the greedy approach by finding additional solutions that provide
important alternatives. The overhead of using HNSGA-II can vary. For
a large software product, the retest-all regression testing approach can be
inhibitive and the overhead of using HNSGA-II for more precise test suite
minimisation may be justified. For smaller software products, the results
of the empirical study suggest that greedy approach may provide a good
approximation.

In answering RQ4, the shapes of the Pareto-frontiers provide interesting
insights into correlations between code coverage, fault coverage and cost. The
universal existence of ‘elbow points’ suggests that there exist points where the
balance of trade-offs between coverage and cost changes dramatically. The
Pareto-frontiers of three-objective formulation also reveal how widely the
faults are located in the program code. This suggests that Pareto analysis is
able to provide useful insights into the structure of the solution space.

6.2. Threats to Validity

Threats to internal validity concern the factors that might have affected
the multi-objective optimisation techniques used in the paper. One potential
concern involves the accuracy of the instrumentation of the subject software,
e.g. the correctness of the coverage information. To address this, a widely
used and well tested open-source profiler/compiler tool (GNU gcc and gcov)
was used to collect code coverage information. The fault coverage information
was extracted from SIR - a well-managed software archive [10]. Precisely
determined computational cost was used in place of the physical execution
time in order to raise the precision of the cost information using the Valgrind
profiling tool [30].

Another potential internal threat comes from the selection, optimisation
and parameterisation of the meta-heuristic techniques themselves. No par-
ticular algorithm is known to be effective for the multi-objective test suite
minimisation problem. However the genetic algorithm used in this paper is
known to be effective for a wide range of multi-objective problems [31, 32],
and the previous work strongly suggests that a hybrid approach between the
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greedy algorithm and the genetic algorithm will be well-suited for the prob-
lem. The algorithms used in the present paper can serve as a basis for the
future research. Systematic parameterisation of meta-heuristic optimisation
lies beyond the scope of this paper. This is a current topic in the optimisation
community, which seeks hyper-heuristics [33].

Usually, evaluation of a hybrid algorithm involves a comparison to its
original components. In this paper, the elitism in NSGA-II guaranteed that
any solution obtained by HNSGA-II will not be dominated by those obtained
by NSGA-II and, therefore, a direct comparision to NSGA-II was not per-
formed.

Threats to external validity concern the conditions that limit generali-
sation from the result. The primary concern for this paper is the represen-
tativeness of the subjects that were studied. This threat can be addressed
only by additional research using a wider range of software artifacts and
optimisation techniques.

7. Conclusion and Future Work

This paper introduced the concept of Pareto efficient multi-objective op-
timisation to the problem of test suite minimisation. It described the benefits
of Pareto efficient multi-objective optimisation, and presented an empirical
study that investigated the relative effectiveness of two algorithms for Pareto
efficient multi-objective test suite minimisation. The two-objective formula-
tion of the existing test case prioritisation problem, in particular, shows that
multi-objective approach can lead to more efficient testing decisions. The
empirical results obtained reveal that greedy algorithms (which perform well
for single-objective formulations) are not always Pareto efficient in the multi-
objective paradigm, motivating the study of meta-heuristic search techniques.
Future work will consider a wider range of software artifacts with different
meta-heuristic multi-objective optimisation techniques.
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