
Evaluating Machine Learning-Based Test Case
Prioritization in the Real World: An Experiment with

SAP HANA
Jeongki Son

SAP Labs Korea
Seoul, South Korea

jeongki.son@sap.com

Gabin An
KAIST

Daejeon, South Korea
gabin.an@kaist.ac.kr

Jingun Hong
SAP Labs Korea

Seoul, South Korea
jingun.hong@sap.com

Shin Yoo
KAIST

Daejeon, South Korea
shin.yoo@kaist.ac.kr

Abstract—Test Case Prioritization (TCP) aims to find orderings
of regression test suite execution so that failures can be detected
as early as possible. Recently, Machine Learning (ML) based
techniques have been proposed and evaluated using open-source
projects and their test histories. We report our evaluation of these
ML-based TCP techniques, both Reinforcement Learning (RL)
and Supervised Learning (SL) based ones, using the industrial
testing data collected from SAP HANA, a large-scale database
management system. Specifically, our study compares 37 different
TCP techniques, including 14 RL models on two datasets, 4
SL models, and 5 non-ML baselines, using real-world testing
data of SAP HANA collected over eight months. Our evaluation
focuses on both the performance and cost-efficiency of these
techniques in the context of Continuous Integration for large-
scale industrial projects. The results reveal that while RL models
show promising performance, they require significant training
time. RL models with sampled data offer a balance between
performance and efficiency. Interestingly, the best-performing RL
model outperformed or matched non-ML baselines. However, the
gradient-boosted SL technique consistently outperformed both RL
models and baselines in terms of effectiveness and efficiency, even
with complete retraining at each test cycle. Despite RL’s capability
for incremental learning, it demands substantial training time and
still falls short in accuracy compared to SL. Our findings suggest
that, even in a large-scale industrial setting, fully retraining an
SL model for each cycle proves to be the most effective and
efficient approach for TCP, offering superior performance and
cost-efficiency compared to RL and traditional methods.

Index Terms—test case prioritization, machine learning

I. INTRODUCTION

In the software development lifecycle, regression testing
plays a crucial role in ensuring that new code changes
introduced to a program do not break existing functionalities [1].
As software systems grow and evolve, their regression test
suites also tend to grow larger, leading to inefficiencies and
extended testing times. The increasing size of the regression
test suite can have a significant impact on the efficiency
of the overall CI/CD process, as testing is the most time-
consuming task [2]. This issue is especially amplified for a
large-scale industrial database management system, such as
SAP HANA (with >36M LoC) [3], which are essential for the
functioning of other systems and thus require thorough quality
assurance measures, including extensive regression testing. To

reduce the high cost of testing and also to provide test results
back to the developers more quickly, SAP HANA employs a
multi-layered testing strategy, including local, pre-submit, post-
submit, and extended testing phases [3]. Further, the existing
test infrastructure for SAP HANA leverages a container-based
model that enables parallel execution of tests across both on-
premises and cloud environments [4]. However, despite the
parallelization, the pre-submit testing phase still remains a
bottleneck in the development workflow, often taking several
hours due to the heavy load of SQL query testing as well as
the frequency at which new changes are submitted to be tested.

In this scenario, Test Case Prioritization (TCP) can play an
important role by ordering the test cases to detect faults as early
as possible [1], [5], in turn enabling quicker reporting of test
failures to developers. Additionally, when testing resources are
limited, TCP can also be used to select test cases by running
the top-k ranked test cases [6]. Due to its usefulness, numerous
studies have integrated TCP into industrial scenarios [7]–[12]:
they typically prioritize test cases based on their coverage
(so that higher coverage is achieved as early as possible) or
historical data (so that a test that has not been executed for
the longest time is given higher priority). Recently, beyond
simple dynamic or historical analysis, Machine Learning (ML)
techniques have been actively proposed and applied to TCP [13],
as the learning-to-rank models fit well with the TCP problem.
However, while various ML-based TCP methods are being
proposed and tested on open-source projects [14], there remains
a gap in comprehensive comparative studies of these ML-based
TCP techniques on a large-scale industrial project.

In this study, we share our experience of employing a
range of ML-based TCP techniques using historical test case
execution data from SAP HANA. Our analysis includes the
empirical evaluation of seven reinforcement learning algorithms
following the formulation of Bagherzadeh et al. [15] and tree-
based supervised learning algorithms including three state-of-
the-art gradient boosting algorithms, namely CatBoost [16],
XGBoost [17], and LightGBM [18], along with Random
Forest [19]. The results show that state-of-the-art gradient-boost
supervised learning techniques can outperform RL-based TCP
with the pairwise ranking model, which is the best-performing

979-8-3315-0814-2/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST 2025, Naples, Italy
Industry Track

522

ranking model for RL.

II. BACKGROUND AND RELATED WORK

This section introduces the background on test case priori-
tization and reviews some of the closest related work on the
use of machine learning techniques to solve this problem.

A. Test Case Prioritization (TCP)

There are broadly two distinct approaches to TCP: general
and version-specific TCP [20]. General TCP techniques involve
ordering test cases within a test suite T for a program P , to
find an order that remains effective across future versions of
P . These techniques typically depend on a broad range of
program or test information, such as test coverage [20], but are
known to be less effective in a modern Continuous Integration
(CI) process where incremental changes are made to software
frequently. Version-specific TCP techniques, on the other hand,
focus on ordering test cases specifically to test changes from
a specific version P to another version P ′. These techniques
are therefore mostly change-aware [21], and closely consider
the specific changes or modifications introduced in the new
version of the program, P ′. In this work, we also focus on the
change-aware TCP to facilitate the regression testing process
within the CI process of SAP HANA. For more comprehensive
information about TCP, please refer to the recent survey [5].

B. Machine Learning based TCP

Machine Learning (ML) techniques have been widely
adopted to solve the TCP problem, as surveyed in Pan et
al. [13]. Most ML-based TCP techniques utilize the Learning-
To-Rank [22] approach, where a model takes a set of test cases,
characterized by various features, and learns to predict the best
order to execute them to detect faults as early as possible, from
historical failure data.

Reinforcement Learning (RL) and Supervised Learning (SL)
are the major ML techniques used in TCP [14]. Bagherzadeh
et al. [15] have applied pointwise, pairwise, and listwise
learning-to-rank formulations to model TCP as an RL problem,
and evaluated 10 state-of-the-art RL algorithms, resulting in
a set of 21 different RL configurations. They demonstrated
that their best RL models outperformed the accuracy of the
ranking model based on Multiple Additive Regression Trees
(MART), a.k.a. Gradient Boosting Trees, which exhibited
superior performance compared to the RL models in Bertolino
et al. [23]. Yaraghi et al. [24] compare multiple supervised-
learning-based ranking models, such as MART and Random
Forest, using a comprehensive set of features and various
publicly available CI datasets. The study found that Random
Forest with full features shows significantly better performance
than other ranking models, including MART. Zhao et al. [14]
conducted a comparative study on the performance of 11
different ML-based TCP (both SL and RL) using 11 GitHub
open-source projects and showed that the pre-trained MART
model performs the best, suggesting that cross-project training
helps improve the TCP effectiveness.

Fig. 1. Visualization of test case results across 662 failed testing cycles used
in the experiment: red dots indicate failed tests, white represents passed tests,
and gray marks tests that were not executed

All of the aforementioned studies [14], [15], [24] utilized
the implementation of the SL-based ranking models available
in the RankLib1 library rather than using the latest gradient
boosting models, such as XGBoost [17] or CatBoost [16],
despite XGBoost known to outperform other SL-based ranking
models for TCP [25]. To the best of our knowledge, we present
the first comparison between the state-of-the-art RL-based TCP
techniques [15] and the state-of-the-art gradient boosting tree
models using large-scale industry data.

III. EXPERIMENT DESIGN

In this study, we utilize the industry CI data from SAP
HANA to perform a comprehensive comparison between the
state-of-the-art RL algorithms and ensemble-based learning
algorithms, including Boosting (Gradient Boosting Trees) and
Bagging (Random Forest). We assess the effectiveness of
these algorithms using the readily available and lightweight
features extracted from the historical CI data in SAP HANA.
This section offers detailed information about the dataset and
the features used for evaluation and explains the specific
implementation details of the ML algorithms used.

A. Data Collection and Preparation

To assess the performance of the ML-based TCP algorithms,
we gathered data from the failed testing cycles of the pre-
submit testing results in SAP HANA. The data was collected
during the period starting from April 25, 2023, to December 22,
2023. For each testing cycle, we recorded the list of executed
test cases and their verdicts, i.e., whether they passed or failed,
along with the features collected for each test case. The plot
in Figure 1 visualizes failed test cases across failed testing
cycles. On average, there are about 5.68 failures per build,
with a maximum of 291 failures in a single build (note that
we only consider failed cycles here). The plot indicates diverse

1https://github.com/codelibs/ranklib

523

failures across test cases, with 85% of test cases failing at
least once. This suggests that the TCP problem in our context
can be considered non-trivial as there is a broad range of
issues rather than a concentration on specific issues. Using
the collected 662 failed cycles with 647 distinct test cases,
we evaluate RL-based TCP techniques using the incremental
learning approach: as additional failed cycles are gathered, the
training data grows, and the model is incrementally updated.
Following Bagherzadeh et al. [15], we first choose all failing
tests accumulated up to the current cycle, and randomly sample
an equal number of passing tests, to balance the dataset as
well as to improve efficiency. For the SL-based techniques, we
use the whole dataset accumulated up to each test cycle for
training, because they are fast enough.

B. Features

A recent study on TCP conducted by Yaraghi et al. [24]
reports that the features that rely solely on test execution
history are the easiest to collect. Furthermore, they also found
that the simple test history features have more impact on the
effectiveness of TCP compared to the more expensive coverage
features. Since the codebase of SAP HANA is extensive, we
focus primarily on using the most lightweight and readily
available features, which are the history-based features, as
recommended by Yaraghi et al. [24].

In addition, we do consider test coverage as it can provide
valuable insights for version-specific TCP. We use the latest
dynamic coverage information of each test case, as the
periodically updated coverage data [26] is available for SAP
HANA. Finally, we include lexical similarities between the
changed files and test case names to capture the relevance
between the test cases and the code change.

Overall, we use a total of 25 features to represent each test
case for a given testing cycle. The used features are broadly
divided into the following two categories: Test-Related and
Change-Related. The definitions of all used features are as
follows:

1) Test-Related Features: While these features have been
taken from existing work on TCP [7], [24], [25], [27], the
definitions of some features have been slightly adjusted to fit
our context. Features with a time window are collected with
d ∈ {10, 30, 90}.

• Age (d days) [7], [24]: The ID difference between the
current testing cycle and the earliest cycle that executed
a test case within the last d days.

• Last Fail Age (d days) [24], [27]: The ID difference
between the current testing cycle and the latest cycle
where a test case failed within the last d days.

• Last Transition Age (d days) [24], [27]: The ID
difference between the current testing cycle and the latest
cycle where the verdict of a test case changed from fail
to pass or vice versa.

• Average Execution Time (d days) [24], [25]: The average
of the execution times of a test case in the last d days.

• Max Execution Time (d days) [24]: The maximum of
the execution times of a test case in the last d days.

• Fail Rate (d days) [24]: The ratio of the number of failed
executions to the total number of executions of the test
case.

• Transition Rate (d days) [24], [27]: The rate of transitions
of the test case verdicts.

• Last Verdict [24]: The result of the last execution of a
test case (failing: -1, passing: 1).

• Last Execution Time [24]: The duration of the last
execution.

2) Change-Related Features: These features concern the
changes between previous version P and the current version
under test, P ′.

• Lexical Similarity [27]: The lexical similarity between a
set of changed file names (i.e., docs) and a test case name
(i.e., query) using TF-IDF and cosine similarity. There
are multiple Information-Retrieval-based TCP techniques,
such as REPiR [28], that consider the test source code
as documents and the change information as queries.
However, in SAP HANA, we do not use the test case
code but only their names because the test cases in SAP
HANA are written in Python and mostly invoke SQL
queries, while the software itself is mostly written in
C++.

• Test Coverage of Modified Code [26]: The proportion
of changed lines covered by a test case. Test coverage is
measured weekly in SAP HANA, and the latest coverage
data for each test case is used. Since this could lead
to slight mismatches in line numbers over time, a ±10
line padding is applied to the changed lines to cater for
potential discrepancies.

C. Implementation of ML Models

We investigate both RL- and SL-based TCP. For RL, we
explore seven different techniques, based on the ranking models
proposed by Bagherzadeh et al. [15]. For SL, our focus is on
ensemble-based decision tree models. This section describes
the implementation details for each of the ML techniques.

1) Implementation of Reinforcement Learning Algorithms:
We adapt RL-based TCP techniques proposed by Bagherzadeh
et al. [15] for our dataset. Specifically, we use the RL algo-
rithm implementation from the Stable-Baselines3 (v2.2.1) [29]
and configure the RL environment using the Gym library
(v0.26.2) [30]. We use seven different state-of-the-art RL algo-
rithms to train the agents: Advantage Actor-Critic (A2C) [31],
Deep Deterministic Policy Gradient (DDPG), Deep Q-Networks
(DQN) [32], Proximal Policy Optimization (PPO) [33], Soft
Actor-Critic (SAC) [34], Twin Delayed DDPG (TD3) [35], and
Trust Region Policy Optimization (TRPO) [36].

Pointwise Ranking Model: The RL agent considers a single
test case and assigns a score from the continuous range between
0 and 1 to each test as an action. Tests are then sorted according
to their scores, and the reward is computed based on the
difference between the normalized optimal rank of the test
case and their current score. Only RL algorithms that support
a continuous action space (i.e., the priority score), can be used

524

for the pointwise ranking: A2C, DDPG, PPO, SAC, TD3, and
TRPO.

Pairwise Ranking Model: The RL agent considers a pair
of tests and performs a step-wise bubble sort based on the
comparison of priority between the pair as an action. The
reward is computed based on the correctness of priority
comparison with respect to the optimal order. Since the action
space is discrete (i.e., to determine which of the two test cases
has higher priority), RL algorithms that support a discrete
action space can be used for pairwise ranking: A2C, DQN,
PPO, and TRPO.

Listwise Ranking Model: The RL agent considers the entire
test suite, and gradually construct the ordering by selecting the
index of the test case with the highest priority as an action.
The reward is computed based on the difference between the
normalized optimal rank of the test case and the normalized
rank in the current ordering. Since the action is discrete (i.e.,
integer index), only RL algorithms that support a discrete action
space can be applied for the listwise ranking: A2C, DQN, PPO,
and TRPO.

The number of steps (the total number of samples to train on)
was set based on the worst case as in the previous work [15]
with some modifications. For instance, in the pairwise ranking,
we employed a bubble sort algorithm with quadratic complexity,
which requires n2 steps per learning episode, where n is the
number of test cases in each run. Also, we fixed the number
of episodes as 5 for all experiments. All algorithms were
trained using their default parameters except for Listwise with
DQN, where we set the buffer size to 10,000 due to memory
constraints.

2) Implementation of Decision Tree Based Ensemble Models:
Decision-tree-based ensemble models are an effective and
robust approach for a variety of regression and classification
tasks. These SL models are also commonly employed for
ranking tasks, due to their adaptability to distinct objective
functions. We utilize state-of-the-art gradient boosting decision
tree algorithms (libraries), XGBoost [17], CatBoost [16], and
LightGBM [37], along with a decision-tree-based bagging
algorithm, Random Forest, using the implementation provided
by the scikit-learn [38] library.

We employ the ranker library for XGBoost, CatBoost,
and LightGBM, and the classifier for RandomForest, with
their default parameters. In XGBoost (v2.0.3), XGBRanker
employs the ’rank:ndcg’ objective function by default. This
function is based on LambdaMART [39], a pairwise learn-
to-rank algorithm, and utilizes a surrogate gradient derived
from the Normalized Discounted Cumulative Gain (NDCG)
metric. The default objective function for CatBoostRanker
in CatBoost (v1.2.2) is YetiRank, which also corresponds to
pairwise ranking. Similarly, the LGBMRanker in LightGBM
(v4.3.0) uses LambdaRank [40] as its default objective, which
also aligns with pairwise ranking. The RandomForestClassifier
model in scikit-learn (v1.2.2) uses Gini impurity as its
default criterion for node splitting. While primarily designed
for classification tasks, it can be adapted for ranking in a
pointwise approach by utilizing the probability values assigned

to each test case.

D. Data Sampling

As shown in prior work [15], a significant drawback of RL
(particularly the pairwise ranking model) is the high execution
cost associated with training. To mitigate this, we also evaluate
the efficacy of the RL model using a sampled dataset to reduce
costs. For sampling, we employ a simple random sampling
method, aiming to balance the number of passed and failed test
cases. Specifically, we randomly select S test cases from both
the set of passed test cases (Sp) and the set of failed test cases
(Sf), where the number of samples, S, is determined by the
smaller of the two sets: S = min(|Sp|, |Sf |). This approach
helps us maintain an equal representation of both outcomes in
our training data, which we believe may contribute to more
efficient model training.

E. Baseline Approaches

We set our baselines by sorting test cases based on the
four most important features from the SL model: Lexical
Similarity, Test Coverage of Modified Code, Max Execution
Time (90 days), and Max Execution Time (30 days). We sort test
cases in descending order based on these features, assuming
higher values might indicate higher failure probability (see
Section III-B). In addition, we also implement a Comprehensive
approach, which starts sorting with the most important feature,
and breaks ties with the next important features until tests are
not tied or no features are left to break ties. These non-ML
baselines only rely on sorting, though guided by the SL model
for feature selection, relies on simple sorting for test case
prioritization, making it easily interpretable.

F. Metrics for Evaluation

To assess the TCP performance of each configuration, we
employ the Average Percentage of Faults Detected (APFD) [20]
metric, which is the most widely used evaluation metric for
TCP [13]. In addition, we use two general ranking evaluation
metrics, Mean Average Precision (MAP) and Mean Reciprocal
Rank (MRR), as supplementary metrics.

• Average Percentage of Faults Detected (APFD): This
metric measures the effectiveness of a test case ordering
in detecting faults at the earliest. It is calculated using the
formula [13]:

APFD = 1−
∑m

i=1 TFi

nm
+

1

2n

where m is the total number of faults (test failures) that
can be detected by the test suite, n is the total number
of test cases, and TFi is the rank of the first test case
that reveals the ith fault. A higher APFD value indicates
that faults are detected earlier, which is desirable. When
reporting the APFD, we average the APFD scores across
all failing testing cycles in our test data.

• Mean Average Precision (MAP): MAP is the mean of
the Average Precision (AP) of the failing test cases. The
AP for a single cycle is defined as the average of the

525

precisions at the points in the ranking where a failing test
is found.

• Mean Reciprocal Rank (MRR): MRR is the mean of the
reciprocal ranks of the first failing test in the context of
TCP. Unlike APFD and MAP, MRR is more focused on
the rank of the first fault detected, rather than the overall
fault detection rate.

• Training time (min.): For RL, we recorded the training
time for each run during training, as it can be updated in
real-time. For SL, which uses a pre-collected, fixed dataset
and doesn’t update in real-time, we simulated real-time
updates by training in batches up to the run we wanted to
test. For example, to test run k, we trained on runs 1 to
k-1 and measured the total training time. This approach
allowed for a fair comparison between the two methods.

• Prediction time (min.): we measured for both RL and SL
models by testing on a single run. We recorded the time
it took for the model to return an output (ranking) given
a set of test cases from the specific run.

IV. RESULTS

This section presents the results of our experiments, which
were conducted on an Apple M2 Pro chip with 8 cores, and
16GB memory.

A. Performance of RL algorithms

Table I summarizes the average performance and cost across
three key metrics (APFD, MAP, and MRR) for all studied
configurations. For brevity, we hereafter use [Ranking Model
Abbreviation]-[RL Algorithm] format to denote a configuration.
For example, “PA-A2C” means that the configuration uses the
pairwise ranking model and the A2C as the RL algorithm.
Models trained on sampled datasets are marked with a †.

1) RL-based Configurations: Among RL-based TCP tech-
niques, pairwise ranking models consistently achieve the
highest APFD as shown in Table I. PA-A2C shows the best
performance among the RL techniques, followed closely by
PA-DQN. The dominance of pairwise ranking models, which
is in line with the results reported by Bagherzadeh et al. [15],
likely stems from the smaller observation space for RL, as well
as the step-wise sorting action that explicitly swaps positions
of the tests. On the other hand, pointwise and listwise ranking
models tend to perform worse than the pairwise ranking model.
To highlight the performance difference, we have computed
the Common Language Effect Size (CLES) [41] between the
best (PA-A2C) and the worst (PO-PPO) configurations, which
is 0.912. It means that a randomly chosen ordering from the
best group has a 91.2% probability of having a higher APFD
than one randomly chosen from the worst group.

Regarding the training time, several configurations (LI-
DQN, PO-TRPO, and PO-PPO) appear to be efficient, with
LI-DQN being the most efficient. PA-A2C had the longest
training time, with some of the pairwise configurations with
discrete action space algorithms (DQN, PPO, and TRPO) also
being slow due to the quadratic complexity of the underlying
bubble sort algorithm. Based on these results, we found that

the LI-DQN and PO-TRPO configurations were efficient in
terms of training time for future online learning in the CI
environment. However, these configurations showed lower
APFD performance. Additionally, we identified the potential
for improving the pairwise configuration by using a sorting
algorithm with a time complexity of nlogn, such as merge
sort. Based on these findings, we cannot definitively conclude
which configuration is superior.

In terms of prediction time, configurations with pointwise
ranking models are the most efficient. Welch’s ANOVA [42],
confirmed by Games-Howell post-hoc test [43] with the
significance level of α = 0.052, suggests that PO-A2C, PO-
PPO, and PO-TRPO are the most efficient for prediction,
requiring negligible times (worst case: 0.28 seconds). In
contrast, LI-PPO has the worst prediction time, which is likely
due to the model repeatedly selecting dummy test cases inserted
to keep the size of the observation space consistent across
multiple test cycles under incremental learning, combined with
the larger observation space of listwise ranking models.

2) Ranking Models: As discussed earlier, the pairwise
model outperforms the pointwise and listwise models in
terms of ranking accuracy (APFD). We have further analyzed
whether this trend applies across different RL algorithms. For
each of the three RL algorithms that can be applied to all
three ranking models (i.e., A2C, PPO, and TRPO), we have
performed Welch’s ANOVA between ranking models, followed
by the Games-Howell post-hoc test if the means are not equal.
Below, > indicates statistically significant differences, whereas
= denotes differences that are not statistically significant
(p > 0.05).

• A2C: PA > LI = PO
• PPO: LI = PA > PO
• TRPO: PA = LI > PO
The tests reveal statistically significant differences in three

RL algorithms, with pairwise models showing better perfor-
mance than pointwise and listwise models. Also, regardless
of the specific RL algorithm (A2C, PPO, and TRPO), pair-
wise models consistently outperform pointwise and listwise
approaches. Listwise approaches likely suffer from a higher
dimensional observation space, requiring more training data
compared to pairwise and pointwise methods, as also pointed
out by existing work [15]. Additionally, pairwise approaches
excel at capturing relative relationships between test cases
by considering them in pairs and performing swaps, whereas
pointwise approaches focus on one individual test at a time.

3) RL Algorithms: To assess which RL algorithm performs
best in terms of APFD across, we performed Welch’s ANOVA
and Games-Howell post-hoc tests again on the three ranking

2Given that one-way ANOVA assumes homogeneity of variances (ho-
moscedasticity) across groups, we assess this assumption using Bartlett’s
test [44]. A statistically significant result (p < 0.001) indicates heterogeneity
of variance, supporting the alternative hypothesis of Bartlett’s test: at least one
group variance is different. Therefore, we employ Welch’s ANOVA, which
does not require the assumption of equal variances. When Welch’s ANOVA
result is significant (p < 0.05), we conduct the Games-Howell post-hoc test,
which is appropriate when the assumption of equal variances is violated, to
determine whether the difference in performance is statistically significant.

526

TABLE I
ACCURACY, TRAINING TIME, PREDICTION TIME (AVERAGE)

Config. APFD MAP MRR Training
time (min.)

Prediction
time (min.)

PO-A2C 0.441 0.017 0.031 0.146 0.001
PO-DDPG 0.466 0.017 0.020 1.565 0.001
PO-PPO 0.310 0.012 0.011 0.138 0.001
PO-SAC 0.390 0.022 0.037 2.401 0.002
PO-TD3 0.451 0.024 0.044 1.550 0.002
PO-TRPO 0.357 0.013 0.015 0.092 0.001
PA-A2C 0.750 0.058 0.080 8.706 0.586
PA-DQN 0.523 0.030 0.047 6.399 0.400
PA-PPO 0.462 0.016 0.021 8.272 0.591
PA-TRPO 0.466 0.017 0.025 5.500 0.611
LI-A2C 0.468 0.018 0.020 0.569 0.089
LI-DQN 0.455 0.017 0.023 0.036 0.324
LI-PPO 0.466 0.017 0.020 0.665 6.961
LI-TRPO 0.465 0.017 0.022 0.615 0.038
PO-A2C† 0.471 0.014 0.017 0.058 0.001
PO-DDPG† 0.467 0.017 0.033 0.635 0.001
PO-PPO† 0.473 0.015 0.018 0.062 0.001
PO-SAC† 0.513 0.018 0.028 1.241 0.001
PO-TD3† 0.475 0.016 0.024 0.644 0.001
PO-TRPO† 0.482 0.015 0.017 0.040 0.001
PA-A2C† 0.541 0.033 0.055 0.065 0.589
PA-DQN† 0.537 0.050 0.080 0.040 0.401
PA-PPO† 0.493 0.030 0.048 0.067 0.589
PA-TRPO† 0.653 0.063 0.098 0.046 0.594
LI-A2C† 0.465 0.015 0.020 0.271 3.844
LI-DQN† 0.480 0.017 0.027 0.217 0.520
LI-PPO† 0.469 0.014 0.017 0.345 4.868
LI-TRPO† 0.480 0.018 0.034 0.294 0.772
CatBoost 0.808 0.090 0.128 1.679 1.368e-05
LightGBM 0.815 0.097 0.133 0.016 1.851e-05
XGBoost 0.801 0.083 0.118 0.018 1.270e-05
RandomForest 0.459 0.014 0.018 0.640 1.041e-04
Lexical Similarity 0.515 0.075 0.109 - -
Test Coverage of Modified Code 0.705 0.142 0.198 - -
Max Execution Time (90 days) 0.743 0.044 0.070 - -
Max Execution Time (30 days) 0.747 0.049 0.080 - -
Comprehensive 0.580 0.086 0.120 - -

Note: Models with † were trained on undersampled dataset.

527

0.0 0.2 0.4 0.6 0.8 1.0
APFD

PO-A2C
PO-DDPG

PO-PPO
PO-SAC
PO-TD3

PO-TRPO
PA-A2C

PA-DQN
PA-PPO

PA-TRPO
LI-A2C

LI-DQN
LI-PPO

LI-TRPO
PO-A2C†

PO-DDPG†
PO-PPO†
PO-SAC†
PO-TD3†

PO-TRPO†
PA-A2C†

PA-DQN†
PA-PPO†

PA-TRPO†
LI-A2C†

LI-DQN†
LI-PPO†

LI-TRPO†
CatBoost

LightGBM
XGBoost

RandomForest
Lexical Similarity

Test Coverage of Modified Code
Max Execution Time (90 days)
Max Execution Time (30 days)

Comprehensive

Fig. 2. Comparison of APFD values

528

models (pointwise, pairwise, and listwise) and compared the
RL algorithms. The results indicated no significant differences
in performance between RL algorithms for both the pointwise
and listwise ranking models. However, for the pairwise rank-
ing model, we observed statistically significant performance
variations between RL algorithms:

• PA: A2C > DQN = TRPO = PPO

We performed the same analysis to compare the training
time, and observed statistically significant variations across all
ranking models.

• PO: SAC > DDPG = TD3 > A2C > PPO > TRPO
• PA: A2C > PPO > DQN > TRPO
• LI: PPO > TRPO > A2C > DQN

Finally, we also performed a similar analysis on prediction
time. The results show a significant difference in prediction
time across all ranking models.

• PO: SAC > TD3 > DDPG > TRPO = PPO = A2C
• PA: TRPO > A2C = PPO > DQN
• LI: PPO > A2C > TRPO > DQN

Our findings consistently demonstrate the superiority of
pairwise models in terms of APFD over pointwise and listwise
ranking models. While pairwise configurations may not exhibit
the absolute fastest training times, we argue that their accuracy
gains outweigh this trade-off. Notably, PA-A2C emerges as the
most effective configuration.

4) Data Sampling: As shown in our results and in previous
work [15], one major issue with RL compared to SL is that
it takes a very long time to train. Therefore, as discussed in
Section III-D, we also conducted the same experiments using a
balanced dataset. We believed that utilizing a sampled dataset
could be both more efficient and effective if it produced similar
results to those obtained from the full dataset.

In our experiments with the sampled dataset, similar to the
full dataset, the pairwise ranking model consistently achieves
the highest APFD, as indicated in Table I. Among the RL
models, PA-TRPO† demonstrates the highest ranking accuracy,
with PA-A2C† and PA-DQN† following. As seen in the findings
of Bagherzadeh et al. [15]. [15] and our initial experiment,
the superior performance of the pairwise ranking model is
likely due to its approach of considering the ranking between
two test cases simultaneously. Conversely, the pointwise and
listwise ranking models tend to underperform compared to the
pairwise ranking model. To further highlight the performance
disparities, we calculated the Common Language Effect Size
(CLES) between the best configuration (PA-TRPO†) and the
worst configuration (PO-PPO†), which is 0.705. This indicates
that PA-TRPO† outperformed in 70% of the test cycles.

In terms of training time, the configurations PA-DQN†, PO-
TRPO†, and PA-TRPO† demonstrated notable efficiency, with
PA-DQN† being the fastest. Conversely, PO-SAC† required the
longest training duration, and some configurations involving
continuous action space algorithms (DDPG, TD3, SAC) were
also relatively slow. Based on these observations, we suggest
using PA-DQN†, PO-TRPO†, and PA-TRPO† (all under 2.75

seconds) for future online learning applications in the CI
environment.

Pointwise ranking models are the most efficient in terms of
prediction time. Using Welch’s ANOVA and the Games-Howell
post-hoc test, we found that the PO-A2C†, PO-PPO†, and PO-
TRPO† models have the fastest prediction times, taking at most
0.09 seconds. LI-PPO† showed the slowest prediction time,
attributable to its frequent selection of dummy test cases and
large observation space inherent to listwise ranking approaches.

As mentioned previously, the pairwise model exhibits higher
APFD compared to the pointwise and listwise models. To
determine if this pattern holds for various RL algorithms, we
conducted an additional analysis. Specifically, we applied each
of the three RL algorithms (A2C, PPO, and TRPO) to all three
ranking models. Subsequently, we performed again Welch’s
ANOVA to compare the models, followed by the Games-Howell
post-hoc test.

• A2C: PA > PO = LI
• PPO: PA = PO = LI
• TRPO: PA > PO = LI
The experiments reveal significant APFD differences be-

tween ranking models in A2C and TRPO, with pairwise
models outperforming pointwise and listwise models. Across
all tested RL algorithms (A2C, PPO, and TRPO), pairwise
models consistently deliver superior results compared to their
pointwise and listwise counterparts. Listwise approaches likely
struggle due to their higher dimensional observation space as
we mentioned before. Moreover, pairwise considers relative
relationships, while pointwise considers each one at a time,
just as we did in our experiment on the whole dataset.

We also performed Welch’s ANOVA test to compare the
performance of different RL algorithms for each ranking
model, pointwise, pairwise, and listwise. The results showed
no significant performance differences between the ranking
algorithms for the pointwise and listwise ranking models, but
the pairwise ranking model revealed significant differences
between the algorithms. Specifically, PA-TRPO† stands out as
the most effective configuration.

• PA: TRPO > A2C = DQN > PPO
We also performed the same analysis to compare the

training time, and found no significant difference between
RL algorithms across different ranking models.

Finally, we analyzed prediction times. The results show a
significant difference across all ranking models.

• PO: SAC > TD3 > DDPG > TRPO = PPO = A2C
• PA: TRPO > A2C = PPO > DQN
• LI: PPO > A2C > TRPO > DQN
Our results collectively show that pairwise models outper-

form pointwise and listwise models in terms of APFD for both
sampled and full datasets. While the highest APFD score is
achieved by the best model (PA-A2C) using the full dataset,
the average APFD across various configurations is higher with
the sampled dataset than with the full dataset. Moreover, as
shown in Figure 3, utilizing the sampled dataset significantly
reduces the training time of pairwise models; its maximum

529

PA-A2C PA-DQN PA-PPO PA-TRPO
4×100

5×100

6×100

7×100

8×100

9×100
Tr

ai
ni

ng
tim

e
(m

in
.)

PA-A2C† PA-DQN† PA-PPO† PA-TRPO†

10−4

10−3

10−2

10−1

100

101

Fig. 3. Training time for pairwise configurations across different datasets

0 100 200 300 400 500 600

Test Cycles

0.4

0.5

0.6

0.7

0.8

0.9

A
PF

D

PA-TRPO† (APFD)
LightGBM (APFD)
PA-TRPO† (Training time (min.))
LightGBM (Training time (min.))

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

Ti
m

e
(m

in
.)

Moving Average of APFD/Training Time

Fig. 4. 30-cycle moving average of APFD and Training Time for PA-TRPO†

and LightGBM

training time remains below 0.1 minutes, excluding outliers,
whereas the worst-case training time exceeds 9 minutes when
using the full dataset. Therefore, we conclude that using the
sampled dataset for the pairwise model could be a promising
approach in our scenario, as it shows comparable or better
performance while significantly reducing training time.

B. Performance of SL Algorithms

Table I also contains the evaluation metrics from the tree-
based ensemble models with RL approaches. LightGBM not
only emerges as the top performer among the ensemble models,
but also outperforms all RL-based TCP techniques. Notably,
boosting algorithms (CatBoost, LightGBM, and XGBoost)
consistently outperform the bagging algorithm, Random Forest.
Further, both its training and prediction time are significantly
shorter than RL-based TCP techniques. Figure 4 shows the
30-cycle moving average of APFD and training time reported
by PA-TRPO†, the best-performing RL-based TCP with the
sampled dataset, and the LightGBM, the best-performing SL-
based TCP. Due to the increasing training data, the training

TABLE II
WELCH’S T-TEST RESULTS AND COMMON LANGUAGE EFFECT SIZE

BETWEEN ML-MODELS AND BASELINES.

Baseline Model p-val CLES

Lexical PA-A2C 0.000 0.738
Similarity LightGBM 0.000 0.801

Test Coverage PA-A2C 0.028 0.509
of Modified Code LightGBM 0.000 0.598

Max Execution PA-A2C 0.692 0.533
Time (90 days) LightGBM 0.000 0.645

Max Execution PA-A2C 0.876 0.528
Time (30 days) LightGBM 0.000 0.642

Comprehensive PA-A2C 0.000 0.678
LightGBM 0.000 0.750

time of LightGBM also increases but overall it remains very
low. PA-TRPO†, on the other hand, shows high peaks due to
random sampling used by our incremental learning setting.

In terms of MRR, LightGBM has an MRR of 0.133, meaning
that it would produce the first failure after executing eight
test cases on average (1/0.133 ≊ 7.52). This is three fewer
than PA-TRPO, whose MRR is 0.098: it means that PA-TRPO
produces the first failure after executing 11 test cases on average
(1/0.098 ≊ 10.2). Based on these results, we conclude that,
in the context of SAP HANA, retraining SL-based (especially
boosting) models from scratch is both more effective and
efficient than RL-based techniques.

C. Comparison with Baselines

In Table I, we found that the baselines generally performed
similarly to the RL models but worse than the SL models in
terms of APFD. To validate these findings, we additionally

530

report Welch’s t-test and the Common Language Effect Size
(CLES) for comparing the best-performing RL and SL models
(PA-A2C and LightGBM, respectively) against the Baselines
using the APFD metric.

Table II demonstrates that PA-A2C significantly outper-
formed when test cases were ordered by lexical similarity,
test coverage of modified code, and a combined approach that
considers four key features from the SL model. Specifically,
the CLES values were 0.738, 0.509, and 0.678, indicating that
PA-A2C outperformed the two baselines in 74%, 51%, and 68%
of test cycles, respectively. However, certain baselines showed
comparable average APFD scores to PA-A2C: Max Execution
Time (90 days) at 0.743 and Max Execution Time (30 days) at
0.747. A Welch’s t-test found no significant difference between
these scores, suggesting that it is inconclusive whether the
baseline or the RL model performs better overall. The statistical
analysis results further reveal that the SL model, LightGBM,
significantly outperformed all baselines, achieving a CLES
between 0.598 and 0.801, indicating that it was more effective
than all baselines in at least 60% of the cycles. It’s worth
noting that the baseline achieved by sorting Test Coverage of
Modified Code outperformed LightGBM in terms of the MRR,
but here we consider APFD as the primary measure of ranking
accuracy in this analysis. Consequently, we can conclude that
LightGBM, as an SL-based model, demonstrates the highest
ranking accuracy.

V. THREATS TO VALIDITY

Our evaluation dataset consists of eight months of testing
data from SAP HANA, representing the longest available period
for data collection at the time of our study. While this duration
covers a diverse range of testing scenarios, a longer observation
period could potentially reveal additional patterns and provide
deeper insights into the effectiveness of TCP strategies.

Due to the high computational demands of RL training, we
conducted our ML model training and evaluation on an Apple
M2 Pro system rather than SAP’s server infrastructure, where
actual CI testing is performed. While our comparative analysis
remains valid, the absolute training and prediction times may
not directly reflect those in a production environment.

Our feature engineering approach did not explicitly account
for flaky test behavior. Although final test verdicts in the actual
testing environment were adjusted by aggregating outcomes
across multiple executions, the failure rate and transition rate
metrics used in our study treated all failures uniformly, which
may have led to inflated values for tests affected by flakiness.

The choice of evaluation metrics for TCP can vary based
on the specific goals of the testing process. To ensure a
comprehensive assessment, we reported effectiveness results
using multiple metrics. However, our statistical analyses and
performance evaluation primarily focused on APFD, which is
widely recognized for assessing TCP effectiveness.

VI. CONCLUSION

We report an evaluation of both Reinforcement Learning (RL)
and Supervised Learning (SL) based Test Case Prioritization

(TCP) techniques on real-world failure data collected from
testing of SAP HANA. Our objective is to evaluate and
compare the performance, as well as the cost, of these machine
learning-based TCP techniques that can adapt to dynamic
environments in the context of Continuous Integration for
large-scale industrial projects.

Our evaluation considers three ranking models for learning-
to-rank machine learning models, combined with seven RL
algorithms, yielding 14 configurations on two datasets, totaling
28 configurations. Additionally, we evaluated four SL learning-
to-rank models and five non-ML-based baselines, resulting
in a total of 37 configurations. Our evaluation dataset is test
execution history collected over a period of eight months,
consisting of 647 test cycles.

The results indicate that, among the RL models, PA-A2C
achieved the highest performance but required considerable
training time, while PA-TRPO with a sampled dataset offered a
balanced trade-off between performance and training efficiency.
Furthermore, we also found that the best-performing RL model
demonstrated comparable or even superior performance to non-
ML baselines. However, the SL model LightGBM consistently
outperformed both RL models and baselines in terms of
effectiveness and efficiency, even with complete retraining
at each test cycle. While RL supports incremental learning, it
demands substantial training time and still underperforms in
accuracy compared to SL, even when using data sampling
(which reduces training time but yields limited accuracy
improvements). This suggests that, even in our large-scale
industrial setting, fully retraining an SL model for each
cycle proves to be a more effective and efficient approach,
while providing superior TCP performance and cost efficiency
compared to RL.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and
Reliability, vol. 22, no. 2, p. 67–120, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1002/stvr.430

[2] I. Bouzenia and M. Pradel, “Resource usage and optimization
opportunities in workflows of github actions,” in Proceedings
of the IEEE/ACM 46th International Conference on Software
Engineering, ser. ICSE ’24. ACM, Feb. 2024. [Online]. Available:
http://dx.doi.org/10.1145/3597503.3623303

[3] T. Bach, A. Andrzejak, C. Seo, C. Bierstedt et al., “Testing very large
database management systems: The case of sap hana,” Datenbank-
Spektrum, Nov. 2022.

[4] S. Kraft and C. Heer, “Cloud-native continuous integration system for
large enterprise software projects,” Apr. 2023, cI/CD Industry Workshop
(CCIW).

[5] Y. Lou, J. Chen, L. Zhang, and D. Hao, A Survey on Regression
Test-Case Prioritization. Elsevier, 2019, p. 1–46. [Online]. Available:
http://dx.doi.org/10.1016/bs.adcom.2018.10.001

[6] J.-M. Kim and A. Porter, “A history-based test prioritization technique for
regression testing in resource constrained environments,” in Proceedings
of the 24th international conference on Software engineering -
ICSE ’02, ser. ICSE ’02. ACM Press, 2002. [Online]. Available:
http://dx.doi.org/10.1145/581339.581357

[7] B. Busjaeger and T. Xie, “Learning for test prioritization: an
industrial case study,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE’16. ACM, Nov. 2016. [Online]. Available:
http://dx.doi.org/10.1145/2950290.2983954

531

[8] S. Yoo, R. Nilsson, and M. Harman, “Faster fault finding at google using
multi objective regression test optimisation,” in 8th European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’11), Szeged, Hungary,
vol. 102, 2011.

[9] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. SIGSOFT/FSE’14. ACM, Nov.
2014. [Online]. Available: http://dx.doi.org/10.1145/2635868.2635910

[10] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in
development environment,” ACM SIGSOFT Software Engineering
Notes, vol. 27, no. 4, p. 97–106, Jul. 2002. [Online]. Available:
http://dx.doi.org/10.1145/566171.566187

[11] R. Carlson, H. Do, and A. Denton, “A clustering approach to improving
test case prioritization: An industrial case study,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM). IEEE, Sep.
2011. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2011.6080805

[12] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev, “Crane:
Failure prediction, change analysis and test prioritization in practice
– experiences from windows,” in 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation. IEEE,
Mar. 2011. [Online]. Available: http://dx.doi.org/10.1109/ICST.2011.24

[13] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection
and prioritization using machine learning: a systematic literature review,”
Empirical Software Engineering, vol. 27, no. 2, p. 29, 2022.

[14] Y. Zhao, D. Hao, and L. Zhang, “Revisiting machine learning
based test case prioritization for continuous integration,” in 2023
IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, Oct. 2023. [Online]. Available: http:
//dx.doi.org/10.1109/ICSME58846.2023.00032

[15] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement learning
for test case prioritization,” IEEE Transactions on Software Engineering,
vol. 48, no. 8, p. 2836–2856, Aug. 2022. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2021.3070549

[16] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” Advances in
neural information processing systems, vol. 31, 2018.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[18] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[19] T. K. Ho, “Random decision forests,” in Proceedings of 3rd
International Conference on Document Analysis and Recognition, ser.
ICDAR-95. IEEE Comput. Soc. Press, 1995. [Online]. Available:
http://dx.doi.org/10.1109/ICDAR.1995.598994

[20] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on Software
Engineering, vol. 27, no. 10, p. 929–948, 2001. [Online]. Available:
http://dx.doi.org/10.1109/32.962562

[21] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in
development environment,” in Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, 2002, pp.
97–106.

[22] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations
and Trends® in Information Retrieval, vol. 3, no. 3, p. 225–331, 2007.
[Online]. Available: http://dx.doi.org/10.1561/1500000016

[23] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and
S. Russo, “Learning-to-rank vs ranking-to-learn: strategies for
regression testing in continuous integration,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
ser. ICSE ’20. ACM, Jun. 2020. [Online]. Available: http:
//dx.doi.org/10.1145/3377811.3380369

[24] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and L. C. Briand,
“Scalable and accurate test case prioritization in continuous integration
contexts,” IEEE Transactions on Software Engineering, vol. 49, no. 4, p.
1615–1639, Apr. 2023. [Online]. Available: http://dx.doi.org/10.1109/
TSE.2022.3184842

[25] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and
L. Zhang, “Optimizing test prioritization via test distribution analysis,”

in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE ’18. ACM, Oct. 2018. [Online].
Available: http://dx.doi.org/10.1145/3236024.3236053

[26] A. Beszedes, T. Gergely, L. Schrettner, J. Jasz, L. Lango, and
T. Gyimothy, “Code coverage-based regression test selection and
prioritization in webkit,” in 2012 28th IEEE International Conference on
Software Maintenance (ICSM). IEEE, Sep. 2012. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2012.6405252

[27] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically
evaluating readily available information for regression test optimization
in continuous integration,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA ’21. ACM, Jul. 2021. [Online]. Available: http:
//dx.doi.org/10.1145/3460319.3464834

[28] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. IEEE, May 2015. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.47

[29] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[31] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[35] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in International conference on machine
learning. PMLR, 2018, pp. 1587–1596.

[36] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[37] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn:
Machine learning in python,” the Journal of machine Learning research,
vol. 12, pp. 2825–2830, 2011.

[39] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, “Adapting boosting
for information retrieval measures,” Information Retrieval, vol. 13, pp.
254–270, 2010.

[40] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth cost
functions,” Advances in neural information processing systems, vol. 19,
2006.

[41] K. O. McGraw and S. P. Wong, “A common language effect size statistic.”
Psychological bulletin, vol. 111, no. 2, p. 361, 1992.

[42] B. L. Welch, “The generalization of ‘student’s’problem when several
different population varlances are involved,” Biometrika, vol. 34, no. 1-2,
pp. 28–35, 1947.

[43] P. A. Games and J. F. Howell, “Pairwise multiple comparison procedures
with unequal n’s and/or variances: a monte carlo study,” Journal of
Educational Statistics, vol. 1, no. 2, pp. 113–125, 1976.

[44] M. S. Bartlett, “Properties of sufficiency and statistical tests,” Proceedings
of the Royal Society of London. Series A-Mathematical and Physical
Sciences, vol. 160, no. 901, pp. 268–282, 1937.

532

