Assisting Bug Report Assignment Using Automated
Fault Localisation: An Industrial Case Study

Jeongju Sohn* Gabin An* Jingun Hong Dongwon Hwang Shin Yoo
KAIST KAIST SAP Labs SAP Labs KAIST
Daejeon, Korea Daejeon, Korea Seoul, Korea Seoul, Korea Daejeon, Korea
kasio555 @kaist.ac.kr agh94 @kaist.ac.kr jingun.hong@sap.com dong.won.hwang@sap.com shin.yoo@kaist.ac.kr

Abstract—We present a case study of an industry scale appli-
cation of automated fault localisation to SAP HANA?2 database.
When a test breaks in the Continuous Integration (CI) pipeline,
the bug needs to be triaged and assigned to the appropriate
development team. Given the scale and complexity of SAP
HANA2, the assignment itself can be a challenging task. The
current practice depends on the static mapping between test
scripts and software components, as well as human domain
knowledge. We apply automated fault localisation to aid the issue
allocation in the CI pipeline: once a test failure is observed, the
automated fault localisation technique identifies the suspicious
software component using the information from the test failure.
The localisation result can be used by the issue manager to
allocate the incoming test failure issues more efficiently. We have
analysed 137 CI test executions with at least one failing test
script using Spectrum Based Fault Localisation. The results show
that automated fault localisation can identify the faulty software
component for 61 out of 137 studied test failures within top 10
places out of over 200 components. Out of the 61 faults, 36 faults
were not identifiable based on the static mapping between test
script and software components at all.

Index Terms—fault localisation, spectrum based fault localisa-
tion, test suite diagnosability

I. INTRODUCTION

As software systems grow in their size and complexity,
potential faults also become increasingly complex and more
difficult to fix. It has been reported that the debugging cost of
software failures can take up to 80% of the entire development
cost [25]. At the same time, a variety of factors including
huge pressure on shorter time to market, and the decentralised
organisational structure of software development, requires
continuous testing and delivery [5]. Consequently, it is crucial
that any defect is located, analysed, and patched as quickly as
possible.

Fault localisation [29] aims to locate the part of the source
code that is the root cause of an observed failure. Only after
the fault is localised can an appropriate patch be designed,
applied, and tested again. A precise and efficient fault lo-
calisation technique is essential for the productivity of the
debugging pipeline. To address this issue, many automated
fault localisation techniques have been widely developed and
studied to precisely locate the cause of the failure without
human intervention [29]. Some are static, i.e., do not require
any information from actual test execution, and instead use the

*Both authors contributed equally to this work.

similarity between bug reports and source code locations [21],
[13], [26]. Others are based on dynamic analysis, such as test
results and coverage [10], [4], [1], [9], [16], [33], [31], or
mutation analysis [18], [15], [8], [7]. However, while there
have been controlled human experiments of fault localisation
techniques [30], [19], [26], there has been little work on in-
dustrial evaluation of automated fault localisation techniques.
This paper aims to evaluate automated fault localisation
technique in the context of Continuous Integration (CI) and
deployment of a large industrial software system. We focus
on the bug report assignment stage of the CI pipeline of SAP
HANAZ2, a large scale in-memory relational database system.
Currently, each test script in SAP HANAZ2 test suite is pre-
mapped to a component it is supposed to test. When a test
script fails, a QA manager manually assigns the resulting
bug report to a team, after considering the mapping between
test scripts and components. The manual assignment is both
laborious and time consuming. Furthermore, due to the com-
plex inter-dependency between components in SAP HANA?2,
the assignment based on fixed mappings can be inaccurate,
resulting in the report being bounced back and forth between
teams for long time. Such a ping pong session can significantly
increase the time required to patch the bug [3], [12], [34].
We have extracted 137 known test executions that include
at least one failing test script from the test database of SAP
HANAZ2: for each of such failures, we also recover which
component had actually caused the failure, based on the actual
fix commit. Consequently, our ground truth is the actual root
cause of the failures, rather than the reasoning based on the
pre-existing mapping between test scripts and components. We
have applied Spectrum-based Fault Localisation (SBFL) [29],
an automated localisation technique that uses test results
as well as test coverage information, to these known test
executions and evaluated how precisely SBFL techniques can
identify the components responsible for the failure in each
test execution. To aid our analysis, we have also investigated
the diagnostic capability of the SAP HAHA test suite for
fault localisation, studied the correlation between the age of
coverage information and the accuracy of fault localisation,
and finally applied a voting-based aggregation to improve the
accuracy of the localisation. Using coverage information that
are collected weekly, the voting-based aggregation can narrow
down the problematic component within top 10 out of over

200 components for 61 out of 137 studied test executions.
We also discuss future research direction that can improve the
accuracy further.

Below are the main contributions of this paper.

o We present the first industrial scale case study of auto-
mated fault localisation techniques. The evaluation uses
test information from SAP HANA?2 in-memory relational
database, whose code base includes more than 27K
files and over 1,500 test scripts. Our aim is to identify
the faulty component automatically to aid bug report
assignment in the Continuous Integration (CI) pipeline.

o The empirical evaluation shows that simple Spectrum-
based Fault Localisation (SBFL) can successfully narrow
down the number of suspicious component to the maxi-
mum of 10, out of over 200 components, for 33 out of
137 studied test executions.

e We perform the Density, Diversity, and Uniqueness
(DDU) analysis [20] to highlight the limits in the existing
test suite for SAP HANA2. We also present how aggre-
gation mechanisms based on code structure and voting
can elevate automated fault localisation techniques to
software component level.

The rest of the paper is organised as follows. Section II in-
troduces background information about SBFL as well as SAP
HANAZ2? test framework. Section III presents the result of the
initial application of SBFL techniques. Section IV contains the
results of test suite diagnosability evaluation, which provides
further insights into the SBFL results. Section V introduces a
voting-based ensemble approach to cope with the limitations in
test suite composition. Section VI discusses the findings of this
study as well as the future work, and Section VII concludes.

II. BACKGROUND
In this section, we define some basic notation and describe
SBFL based on those notations.
A. Basic Notation

Given a program P, following properties can be defined:

o E = {ej,€9,...,e,} is a set of program components
consist of a program P, e.g., lines or methods,

o T ={t1,ta,....t;} is a set of test cases of P,
e (' is a m X n coverage matrix:
C1,1 C1,2 Cl,n
C2.1 C2.2 C2n mxn
C= =(ci;) €B
Cm,1 Cm,2 Cm,n

, where ¢; ; = 1 if ¢; executes e;, otherwise 0.
e F(t) is a proposition that means a test ¢ fails. If
Jier F(t), the program P is regarded as faulty.

B. Spectrum-based Fault Localisation

Spectrum-based fault localisation (SBFL) is a technique
to find the faulty elements of a program using program
spectrum, which is a summary of test coverage information.

Program spectrum of a program element consists of four
values: (ep,np,er,n7).

Formally, each spectrum value of e; € E can be defined as
follows:

o = {1 <j<mle; =1A=F(t;)}]
2 =[{l <j<mlei; =0A2F(;)}]
. 3_|{1<]<m\c”_1AF()}|

e ngt=[{1<j<mlei; =0AF(t)}]

The main rationale of SBFL is following: “The more fre-
quently covered by failing tests and the less frequently covered
by passing tests, the more suspicious the program element is”.
Researchers have proposed many risk evaluation formula [2],
[11], [17], [28] that concretise this fundamental idea of SBFL
and estimates the suspiciousness of each program element. A
formula takes the spectrum of a program element as input and
returns the suspiciousness score.

Program Elements

e, e e; e; e; €5 e;
(faulty)

t 0 o () 1 o 1 o | PASS
Tests t2 1 o 1 o 1 1 1 FAIL
t3 o] 1 1 o] 0o o] o] FAIL
ep o o o 1 o 1 o
Program np 1 1 1 o0 1 [1
Spectrum er i1 2 o 1 1 1
nf 1 1 o 2 1 1 1
Score Ochiai 0.71 0.71 1.00 0.00 0.71 0.50 0.71
dense 2 2 1 4 2 3 2
min 2 2 1 7 2 6 2
Ranking
average 3.5 35 1 7 35 6 35
max 5 5 1 7 5 6 5

Fig. 1: Example of calculating suspiciousness scores

For example, Ochiai [2], one of the state-of-the-art risk-
evaluation formula, compute the suspiciousness score of a
given program element e by:

e

! ()
Vies +nyp) x (ef +ep)
Figure 1 demonstrates the calculation of Ochiai scores from
the coverage matrix and test results.

Ochiai(ep, np,ef,ny) =

C. Overview of the SAP HANA2 Test Framework

SAP HANAZ2 project consists of several components; each
file belongs to only one component, and each line belongs to
only one file. The test-suite of SAP HANAZ2 is a collection of
more than 1,500 test scripts, and each test script contains from
1 to 20,000 atomic test methods.’Each test script belongs to
one of the components as like a normal file.

Ithe number passing tests that execute a program element

2the number passing tests that do not execute a program element

3the number failing tests that execute a program element

“the number failing tests that do not execute a program element

5In SAP HANA?2, the test script and the test method are called Test Case
and Single Test, respectively.

Localization

Ground-truth

Coverage Test Test Test
Data Result || Result || Result
day o day o day1 day 2
S
SBFL
\—’W g2, ochiai, op2, ...
rank1 | Component File
rank2 | Component F?le File
rank 3 Component File manual ly File

\

comparison

labelled

Fig. 2: Overview of SBFL experiment

SAP HANA?2 test framework runs a daily test for steady
quality assurance, and each daily test usually consists of
executing more than 1,000 test scripts. If some tests fail,
the failure is reported immediately and passed on to the
bug tracking system. If the failure is a previously discovered
one, the same bug label is given. Otherwise, a new label is
created. Each bug is manually assigned to a component that
appears to be responsible for that bug. To aid this assignment
process, there exists a mapping between test scripts and
components they are supposed to test. However, as we show
later in Section III-C, the mapping alone cannot accurately
localise all failing test executions, hence the need for the
manual assignment. Once a bug is resolved, the corresponding
modifications are mapped to the bug as fix commits.

Despite the daily test runs, test coverage is measured only
on weekly basis due to the huge project size. Coverage data
is collected for each test script, not atomic test method, at a
line-granularity level. As a result, we can get m X n line level
coverage matrix C', where m is the number of test scripts, n
is the number of Source Lines of Code (SLOC).

III. FAULT LOCALISATION ON SAP HANA2

To analyse the feasibility of applying SBFL on SAP
HANA2, we design a fault localisation experiment using
reported-and-resolved bugs of SAP HANA2.

A. Experiment Design

Figure 2 describes the overview of our experiment. We
first collect the daily test result that consists of test failure.
If there exist more than one execution for one test, we only
take the last execution. For each daily test, we localise faults
using the recent coverage data ® and SBFL techniques. Since
only weekly coverage data are available, we use the latest
recent coverage data that is six days old at maximum. After
applying an SBFL formula to the coverage data, we obtain the
suspiciousness score for each line. However, since line level
is too fine-grained in this scale of the project, we aggregate

%Based on make_id, which is assigned to each build, not time

the results to file and component level using max aggregation
scheme, which assigns each file with the highest score among
the lines in that file, and, in turn, each component with the
highest score among its files. The final localisation result
is a ranked list of files and components, ordered by their
suspiciousness scores respectively. Note that each belongs to
exactly one component, as mentioned in Section II-C.

To evaluate the localisation results, we collect resolved bugs
that are explicitly linked to fix commits. Assuming that every
file in a fix commit contains the root cause of the test failures,
we call them ground-truth faulty files. Finally, we compare
the localisation results with the ground-truth to assess the
performance of SBFL on the SAP HANA?2 project.

B. Details of Implementation and Evaluation

As an evaluation subject, We collect six coverage data
between 2019/12/08 and 2020/02/02, and also the results of all
test runs executed within the same time period, of which there
are 229. We discarded 91 out of 229 test executions whose fix
commits include no modification of any files or components
existing in the coverage data, e.g., omission faults, as those are
out-of-scope for SBFL. This leaves 138 faulty test executions
for the file level analysis. In the component level, we excluded
one more test execution where the file-component mappings
at the test run and coverage measurement was inconsistent.
This leaves 137 faulty test executions for the component level
analysis.

As a risk evaluation formula, we use Ochiai that is previ-
ously described in Section II-B. The ranks of each file are
calculated using the following three tie-breaking methods:

o min assigns the minimum of the ranks (the highest) to
all the tied values.

o average assigns the average of the ranks to all the tied
values.

e max assigns the maximum of the ranks (the lowest) to
all the tied values.

The example of ranking calculation is presented in Fig. 1. It is
worth noting that the more the tied values there are, the larger

the gap between the ranks with different tie-breaking schemes
become.

To evaluate the localisation results, we use acc@n. For every
test execution in our subject, acc@n measures the number of
test runs where at least one of faulty program elements are
ranked within the top n location at both file and component
level.

FILES

25000

20000

15000
12419.5 —}12576.

10000

5000
3015.0

min average max

(a) Ranking of faulty files

COMPONENTS

150

100

61.0 —1—655

19.0

min average max

(b) Ranking of faulty components

Fig. 3: Ranking of faulty files and components with different
tie-Breaking schemes (showing medians)

C. Results

The results of our experiment are shown in Table I and
Figure 3. We present the ranking of both components and
files.

As shown in the acc@] column of Table I, Ochiai is able
to rank a faulty file at the top for 59 out of 138 test executions
with the min tie-breaker. However, if the max-tie breaker is
used, the number becomes 1, which means that there exists
a large number of tied scores. Also, from the distribution of
ranks of faulty files and components shown in Figure 3, we
can observe that the ranking varies greatly depending on the
tie-breaker. Similar results are observed using other formulz,
Jaccard [2] and Tarantula [11].

At the component level, we can localize 100 out of 137
(79%) of components within the ranking 10 with Ochiai and
min-tie breaker. However, there are also quite large gaps
between results of the different tie-breakers. Since we use
the max-aggregation scheme for the calculation of component
scores, the components would inherit the ties in file level.

The component ranking results of SBFL are complementary
to the mapping between failing tests and their components.

By Test Components By SBFL (top 10)

78, 16, 6

Format: min, average, max

Fig. 4: Comparison between the component mapping and
SBFL within the top 10 places

In Figure 4, the the right circle represents the set of failing
test executions for which Ochiai ranks the ground truth faulty
components within the top ten places, whereas left circle
represents the set of failing test executions for which the
component mapped to the failing tests are actually the ground
truths. The Venn Diagram shows that there are 16 failing test
executions whose root causes cannot be found by using the
mapping between test scripts and components; SBFL suc-
cessfully localise these failures using the average tie-breaker.
Note that the test-component mapping based localisation is
only correct for 58 of the failures constantly: the sets of three
numbers are due to the changes in the SBFL results due to
different tie breakers. The Venn Diagram also shows that the
test-component mapping cannot precisely localise all failures,
as it is only correct for 48 out of 137 faults.

D. Correlation Between the Age of Coverage Information and
Fault Localisation Performance

As explained in Section III-A, fault localisation takes the
latest coverage data as inputs, under the assumption that the
more recent the coverage is, the accurate the localisation result
will be as the used coverage is likely to be closer to the actual
coverage at the time of testing. To validate this assumption,
we investigate the correlation between the age of coverage and
the performance of fault localisation (SBFL) using Spearman
correlation analysis.

Table II presents the coefficients and p-values from this
analysis. There is a weak correlation between coverage age
and localisation accuracy at the file level, but the correlation
becomes both weaker and not statistically significant at the
component level. The correlation is the weakest when the
min tie-breaking scheme is used. We suspect that this is due
to the overestimation made by the min tie-breaking scheme
as it assigns the highest rank to all tied program elements.
Fig. 5 shows the scatterplot of coverage age and localisation
accuracy.

IV. TEST DIAGNOSABILITY ASSESSMENT

The analysis in Section III has shown that there were many
ties in the SBFL results on SAP HANA2, which are usually

TABLE I: Results of fault localisation with Tarantula and Jaccard

Formula | Granularity | Tie-Breaker | Total | acc@l acc@3 acc@5 acc@10
min 138 59 60 62 64
File average 138 1 1 2 3
Ochiai max 138 1 1 1 3
min 137 85 94 97 100
Component average 137 5 16 19 33
max 137 5 11 16 21
min 138 68 68 69 70
File average 138 1 1 1 2
Tarantula max 138 1 1 1 2
min 137 104 105 105 106
Component average 137 1 5 8 21
max 137 1 3 5 8
min 138 56 57 59 61
File average 138 1 1 2 3
max 138 1 1 1 3
Jaccard
min 137 80 86 90 98
Component average 137 4 12 17 32
max 137 4 8 14 20
L] L]
104 104
8 o ° 81 @ (]

. « ° o e o . ° .
SRS O R A N
= onl [4 = o ®e0 o

“1 w.f.'.':nnzghoo- . .=' 44 .Q-F":f .'- 1‘ f ° o’ °
oo —.--‘. l *”M. ' “.h.uv.oo. -.

2 Qoo °] ° o

N L LY .o‘.o.‘$ s ¢ : 2 ’.?l:..o.. L l.l ¢ ¢

0 20 40 60 80 100
rank (%)

(a) Files

Fig. 5:

TABLE II: Results of Spearman correlation analysis between
the coverage ages and the performance

Tie-Breaker | File | Component
| corr pval | corr pval
min 0.1079 0.0001 0.0542 0.2818
max 0.2768 0.0000 | -0.0702 0.1631
average 0.2825 0.0000 0.0339 0.5007

due to the structural characteristics of the test-suite. In general,
to successfully apply SBFL to a project, the coverage matrix
of the test-suite must be suitable for diagnosing faults, i.e.
a test suite should have an ability to effectively locate faults
given a failure. We call this property the diagnosability of the
test-suite. For example, if every test in the test-suite covers
all program elements as the illustrative example in Figure 6,
it will be difficult to isolate the faulty program elements even
though a fault is revealed by the test failure.

Scatter plots of Spearman correlation analysis

0

between coverage age (days) and performance

20

40
rank (%)

(b) Components

60

80 100

e1 e2 e3 eq
t1 ° ° . ° PASS
t2 ° ° . ° FAIL
t3 .) . ° PASS
t4 ° ° . ° PASS

Fig. 6: Example of the coverage matrix with a low diagnosabil-
ity. t; refers to each test case, and e; refers to each program
element. The black circle means that a program element is
coverage by a test.

To analyse the cause of frequent ties, we conduct a diag-
nosability analysis on SAP HANA?2 to determine whether its
test-suite is suitable for applying SBFL. We use DDU [20], a
state-of-the-art test-suite diagnosability metric for SBFL. We
briefly describe the metric in Section IV-A and present the

assessment result in Section IV-C.

A. Introduction of DDU

Perez et al. [20] proposed a metric DDU to quantify a
diagnosability of a test-suite by complementing three adequacy
metrics: Density, Diversity, and Uniqueness. Each has the
following meaning:

o Density ensures that program components are frequently
involved in tests so that the coverage matrix have a
optimal density, 0.5,

o Diversity ensures that tests cover diverse combinations of
components,

o Uniqueness ensures program components are distinguish-
able, i.e., covered by different sets of tests.

A DDU value is then defined as the multiplication of all three
metrics. More details and the formal definition of each metric
can be found in the original work [20].

B. File level Diagnosability Assessment

As mentioned in Section II-C, test coverage C' is measured
at line level. However, due to the enormously large size of
coverage matrix, we deduce file level coverage matrix C7
from C! which is more coarse-grained and relatively small.
Using C/, we approximate the diagnosability of SAP HANA2
test-suite by computing its DDU value. We use a recent
coverage matrix measured on December 22nd, 2019 (make
id = 6248833), where the number of test scripts is 1, 558, and
the number of files is 27, 907.

C. Result and Implication

A assessment result is summarised as follows:

« density = 0.869

o diversity = 0.999 (1, 543 unique tests found among 1, 558
tests)

e uniqueness = 0.199 (5,549 unique coverage spectrum
found among 27,907 files)

e As aresult, DDU = 0.173

At the file level, the test-suite of SAP HANA2 shows a low
DDU score resulting from low uniqueness value. Although
this is an approximated version of original line level coverage
data, the low uniqueness implies that there are many and large
ambiguity groups, the set of program elements coverage by
same test cases, in SAP HANA2 test suite. The files in the
same ambiguity groups may be assigned similar’ suspicious-
ness scores which may harm the performance of SBFL.

Figure 7 shows the size of 10 biggest ambiguity groups
ordered by their sizes (the number of files). Interestingly, the
largest group with size 2, 875 is run by the same 1,444 tests,
92% of all test scripts, and the third largest group with size
868 was run by no tests. Theoretically, when the number of
test is 1,543, the combination of tests by which a program
element can be executed is 2'°43, That means even if we have
far more program elements than test scripts, every program

TNot exactly the same, because scores will be calculated at line level and
then aggregated

Size of the ten biggest ambiguous groups

3575

3500

3000

2500

2000

Group Size

1500

1000

500

0

Fig. 7: The size of ten biggest ambiguity groups

element can be executed by different set of tests. However, in
SAP HANAZ2, a large amount of program files are executed by
the exact same set of test cases. Writing tests that can break
the ambiguity groups or splitting existing test cases would
be helpful for improving the effectiveness of SBFL on SAP
HANA2.

We now focus on ways to improve the component level
localisation accuracy, as the bug report assignment task is di-
rectly coupled to the component level localisation. Additional
analysis in Figure 8 also shows that, although it is difficult to
pinpoint faulty files due to these structural limitations, if we
know exactly which faulty components are faulty, the search
space for faulty files is much less than looking at the entire
project. Figure 8 shows that the distribution of ranking of
faulty files within their components: the ranking of faulty files
are much higher compared to the previous results Fig. 3a.
This suggests that it may be possible to provide file level
localisation for developers, once we achieve sufficiently accu-
rate component level localisation. Therefore, in the following
section, we propose a more effective localisation method for
finding faulty components by breaking ties using voting-based
aggregation.

V. VOTING-BASED AGGREGATION FOR COMPONENT
LEVEL FAULT LOCALISATION

Section III-C shows that SBFL can effectively localise some
faults that can not be found by test-component mappings.
However, the use of the max aggregation scheme results in
too many ties between program elements at both file and
component granularity. To alleviate the tie issue, we adopt
a voting based aggregation scheme. Voting has been used to
improve fault localisation in the context of ensemble learn-
ing [24]. Here, we use voting to replace max aggregation at
the component level. The intuition is that the component that
contains more files that are deemed suspicious is also more
likely to be the root cause of the failing test execution, when
compared to those with fewer suspicious files.

Under the voting based aggregation scheme, each file votes
for the component it belongs to; the more suspicious the
file is, the more votes the file casts. The suspiciousness of
a component is determined by the amount of votes it has

Rank(N)

1600

1400

1200

1000

800

600

400

200

L__71.00 —}86.00

|__19.00 —

0 =

min average max
mean: 89.12 mean: 143.75 mean: 198.38

Rank(%)

10 —_ —_ _

0.8

0.6

0.46

0.4

0.2
—1 012

0.0 — — —

min average max
mean: 0.25 mean: 0.40 mean: 0.55

Fig. 8: Ranking of faulty files in their components (showing medians)

received. As such, the suspiciousness score of a component
can be considered as a summary of the suspiciousness of the
files included in the component. The total vote a component
receives is defined as Equation 2, in which F, denotes the set
of files in a component ¢, and vote(f) denotes the amount of
vote a file f casts:

Fe
NV, = Zvote(f) 2)
f

A. Voting-based Aggregation

The total votes for a component, shown in Equation 2,
depends on how wvote(f) is defined. This section introduces
four variations of vote(f): they differ from each other by the
tie-breaking scheme used at the file level ranking, as well as
extra factors used to compute the amount of votes each file
can cast.

1) Dense Rank Based Voting (Vp): Dense rank based
voting, Vp, uses a dense tie-breaking scheme for the ranking at
the file level, and uses the resulting dense rank to compute the
amount of vote cast by each file. Dense tie breaker ranks files
as tightly as possible, i.e., without any skipped rank between
files. For example, suppose there are files A, B, C, and D,
with suspiciousness scores 0.8, 0.8, 0.6, and 0.6. respectively.
Under the dense tie-breaking scheme, both file A and B are
ranked at one, and file C and D are ranked immediately after
the rank of A and B at rank two. With Vp, the amount of
votes a file cast is inversely correlated to its dense rank; it
does not consider the number of tied elements.

Vo(f) = —— &)

2) Dense Rank Based Tie Aware Voting (Vpnt): VDN 18
a variation of Vp that considers the number of tied elements in
addition to the ranks of files. Since Vp does not consider the
number of tied files, all files tied at the same dense rank will
cast the same amount of vote. Consequently, some components
may receive a large amount of vote not because its constituent
files were ranked higher, but because many of its files were
tied. To alleviate this issue, Vp 7 decreases the amount of
vote a file f can cast in proportion to the number of files tied

with f. Equation 4 shows the details of Vpyr; here, Ny (f)
is the number of files tied to a file f.

1
o drf * Nn’e(f)

3) Minimum Rank Based Voting: Vy;: Vi is similar to Vp
but uses minimum tie breaker to form the file level ranking.
The minimum tie-breaker considers the number of tied files in
its resulting ranking. Let us consider the previous example of
files A, B, C, and D with suspiciousness scores 0.8, 0.8, 0.6,
and 0.6. The dense ranking will be A and B at rank one and
C and D at rank two. In this case, the minimum tie breaker
will skip the rank two and place A and B at rank one, C and
D at rank three. Compared to Vp, Vs penalises files that are
ranked lower by making the divisor larger, as can be seen in
Equation 5 (note that the minimum rank mry is equal to or
lower than the dense rank, dry).

Vonrt(f) “

Varlf) = oo ®

4) Dense Rank Based Suspiciousnesss Aware Voting (Vpg):
Finally, Vpgs extends Vp using the suspiciousness score of
each file, as shown in Equation 6: susp; denotes the raw
suspiciousness score of the file f. The intuition is that, by
reflecting the actual suspiciousness score in the amount of
vote, we will be able to break further ties.

Vps(f) = 22°P1

dry ©

5) Utilising Test-Component Mappings: Results in Sec-
tion II-C suggest that the test-component mapping can be
complementary to SBFL results; Figure 4) shows that the
mapping based localisation can be accurate for a different set
of faults from the set for which SBFL is accurate. To exploit
this, we propose another voting scheme that allow failing
test scripts to vote for the components they are mapped to.
Equation 7 shows how the votes from test scripts can be added
to other voting schemes described earlier: C'y4i1ing denotes the
set of components mapped to failing test scripts, and alpha is
a control parameter that balances two sources of voting:

Fe
NVe=ax [C S Cfailing] + ZUOte(f) @)
7

B. Voting Results

In this section, we evaluate the voting-based aggregation
in terms of factors that may affect the performance and
compare its performance to both SBFL without voting and
test-component mappings.

1) How does voting-based aggregation contribute to the
performance?: Compared to the max aggregation based local-
isation in Section III-C, our voting-based aggregation method
could not only break the tie, but also localise more faults.
Fig. 9e shows the distribution of rankings using Vp with differ-
ent component level tie-breaker. From this figure, we observe
that the type of the tie-breaker has little effect on the final
rankings of Vp. Other voting schemes, i.e., Vpnr, Vas, and
Vbs, have also shown the similar result in breaking the ties.
From these results, we can conclude that our voting schemes
successfully breaks most of the ties between components in
rankings. Hence, we decide to present only the result with the
max tie-breaker, which is the most conservative tie-breaking
scheme, hereafter.

Table IV shows the evaluation results of the voting-based
aggregation in terms of acc@n with the max-tie breaker.
Compared to the initial results with max-aggregation in Ta-
ble I, the voting-based aggregation can localise from 220% to
340% more faults at the top and from 95% to 190% more
faults within the top ten depending on the voting scheme.
Overall, the voting-based aggregation successfully localises
faulty components at the top for up to 16% of all faulty
executions (22 out of 137) and within the top ten for up to
44% of all faulty executions (61 out of 137).

In Section III-C, we have observed that SBFL and the map-
ping between components and test scripts are complementary
to each other. We investigate how the voting-based aggregation
affect this complementary relation. The Venn Diagram in
Fig. 10 shows that there are 36 out 57 failing test executions
whose faulty components cannot be found by the mappings
between test scripts and components but can be localised by
Vp in top ten places. Compared to Fig. 4, with the max-
tie breaker, Vp is able to find 30 more faults that cannot be
localised by test-component mappings.

2) Does using different voting schemes affect the per-
formance?: Among the four voting methods introduced in
Section V-A, Vp achieves the best performance in terms of
acc@1, while Vp 7 is the most effective in terms of acc@10.
As Vpnr 18 a variation of Vpp that takes the number of tied
files, Ny, into account, the use of N;;. decreases the amount
of votes from tied files, e.g., if a file is ranked at the top
(dry = 1) but tied to two other files (N (f) = 3), Vonr(f)
will be % in Vpyr while Vp(f) = 1.

To understand the impact of Ny on acc@l and acc@10
from Vp and Vp nr respectively, let us consider the following
example. Files a1, as, b, c1, and co belong to component A,
A, B, C, and C, respectively. For the sake of clarity, let us
assume that no other files are mapped to components A, B,
and C. Suppose aj, as, b, and ¢, are tied at rank n, followed
by co at rank n + 1. Table III shows the resulting component
level rankings generated by Vp and Vp 7, respectively. The

expressions inside parentheses show the amount of vote each
component receives from files. We show that, the component
level rank of C is always higher than that of A when using
Vonr.

Ranking Files Components (Vp) Component (VpnT)
n a1, a2, boer A (2) C (3 + wi7
n41 2 C(:+7 A(3)

n+2 B (1) B (1)

TABLE III: An example explaining shifts in ranking between
Vp and Vpnr: ties at the file level can either increase or
decrease the ranking at the component level depending on the
choice of voting scheme.

Theorem 1. Given the file level ranking in Table III, the
component level rank of C is always lower than A under Vp,
but always higher than A under Vpyr.

Proof. First, we show that rank of C is always lower than that
of A under Vp, i.e., % > %—5— n%H The amount of vote for C is
reduced to nz(’;ﬂ), whereas the amount for A is nQ(Zﬁ)' Since
n is a rank, n >= 1. Therefore the inequality holds. Second,
we show the opposite, i.e., that the rank of C is always higher
than that rof A under Vpuyr, i€, n%rl + 4 > 2. By rewriting,
we get 4;”;;11) > 43(72121). This holds whenever n > % Since

n is a rank, n >= 1. Therefore, the inequality holds. O

Theorem 1 shows that, depending on the identity of the
actual faulty component, the choice between Vp and Vpyr
can change the ranking of the faulty component in either
direction, resulting in changes in acc@n. This explains the
observed changed between acc@1 and acc@10 in Table IV.
However, overall, results of all voting schemes can outperform
the max aggregation results, even with the worst case which is
Vbs. From these, we conclude that voting-based aggregation
can effectively break ties in components, improving the overall
accuracy of fault localisation. Since Vp shows the best per-
formance in terms of acc@1, we will focus only on the results
with Vp through the following sections.

3) How does the number of files participating in voting
affect the performance?: We assume that some files might
not be suspicious enough to affect the final result. Based
on this assumption, we set a hypothesis that excluding these
less suspicious files will improve the result by eliminating
the noises in data introduced by these files. To validate this
hypothesis, we vary the number of files participating in the
voting N;,, and select these files from the top. For example,
if Niop is five, only the files located within the top five will
participate in the voting.

Fig. 9 describes the impact of using different Ny, val-
ues in the effectiveness of the voting. The gap between
the results of using different tie-breakers gradually decreases
as more and more files participate in the voting. Fig. 9
shows that the median ranking of faulty components becomes
higher alongside Ni,: from 208 with Ny, = 1 to 40 with
Niop = Ny. The voting-based aggregation achieves the best

Ranking of faulty components

Ranking of faulty components

Ranking of faulty components

—| 2080

106.5

13.0 16.0

| 2080

150 —1 1460

107.0 107.5

17.0

Ranking of faulty components

(C) Ntop =5

Ranking of faulty components

23.0

35.0 | 350 1 350

average

(d> Ntop =10

(C) Ntop - Nf

Fig. 9: Violin plots of ranking of faulty components generated by the voting among files ranked within the top Ny @ Niop =

1,3,5,10, Ny, Ny = the number of files. Here, Vp is used

performance when all files participate, which is contradictory
to our hypothesis that eliminating less suspicious files from
voting would improve the localisation results by reducing
noises.

We may find a potential explanation for this result from
the initial experimental results in Section III-C. In Fig. 3,
the median ranking of faulty files is 3,015 with the min tie-
breaker, which means that the ground-truth faulty files might
not be located near the top. Thus, eliminating the low-rank
files may result in excluding the actual faulty files from the
voting. As a result, in SAP HANAZ2, utilising every file in
voting is more effective than eliminating the low-rank files in
terms of breaking the ties and localising faulty components.

By Test Components By SBFL (top 10)

Format: min, average, max

Fig. 10: Comparison between the component mapping and
SBFL with voting Vp within the top 10: Vp located 9 more
faults compared to the baseline. Among 57 faults localised by
Vb, 36 of them are newly localised.

4) How does the test-component mapping affect the per-
formance of the voting-based aggregation?: In Section V-AS5,
we extended NV, in Section 7 to allow failing test scripts to
vote for their mapped component. To evaluate the impact of
utilising the test-component mappings, we compare the local-
isation performance of Vp varying the control parameter c.
Table V presents the localisation results for « = 1, 3,5, 7, 10;
the row with a@ = 0 refers to the baseline without utilising
test-component mappings. By leveraging the test-component
mappings, Vp can localise up to one more fault at the top
(av = 1) and up to five more faults (o = 7) within the top ten.
However, when we compare the Venn-diagram in Fig. 11 to
the one in Fig. 10, the number of faults localised by both
the test-component mapping and the voting-based aggregation
increases from 21 to 25 while the number of faults localised
only by the voting remains almost the same. Along with the
decrease in the number of faults located only by the mapping,
we conclude that the voting-based aggregation successfully
localise new faults by exploiting the test-component mappings.

TABLE IV: Voting results with four different voting schemes:
Vp.VonT.VMm,VDs

Voting Scheme | Total | acc@l acc@3 acc@5 acc@10
Vb 137 22 31 42 57
VbNT 137 17 32 42 61
\%Ys 137 19 31 40 58

Vbs 137 16 27 32 41

By Test Components By SBFL (top 10)

Format: min, average, max

Fig. 11: Comparison between the component mapping and
SBFL with the voting scheme Vp (o = 7) within the top
10: Vp combined with the test-component mappings now can
localise five more faults that only cannot be localised by using
only Vp

TABLE V: Voting results using Vp with test-component
mappings

a | Total | acc@] acc@3 acc@5 acc@10
0 137 22 31 42 57
1 137 23 32 41 60
3 137 22 34 41 61
5 137 22 35 41 61
7 137 22 35 41 62
10 137 22 34 41 60

VI. DISCUSSIONS

A. Improving Test Suites for Better Diagnosability

We suspect that the fundamental issue that currently limits
the accuracy of localisation is the low diagnosability of the
test suite, especially its low uniqueness (see Section IV) in
the coverage matrix. A large number of test scripts tend to
also cover a large number of files in SAP HANAZ2, resulting in
decreased capability to distinguish them. This is partly because
of the way test cases and their execution units are defined for
SAP HANA2. A test script for SAP HANA?2 actually contains
multiple test methods, each of which can be also considered as
an individual test case. Although the CI pipeline executes, and
reports the results of test methods, the coverage is measured
at the test script level, not the test methods level. Thus, the
uniqueness of each test methods is lost when we perform the
fault localisation. For example, let us suppose test methods f,
and f; both belong to the same test case t. If the case f, fails
but f; passes, or vice versa, we consider ¢ fails when applying
SBFL as we do not distinguish f, and f; in the coverage data.

For higher diagnosability, we need to either refine and split
existing test scripts, or execute tests and collect coverage by
smaller units (i.e., test methods). Refinement of test cases
has been studied as test purification [32]: we may consider
permanently splitting test scripts into smaller groups of test
methods, or dynamically executing subsets of existing test

scripts for localisation only. Collecting coverage by smaller
units of execution will require significant change to the exist-
ing CI pipeline infrastructure for SAP HANA?2, which we can
also consider for better localisation.

B. Advanced Fault Localisation Models

While this work adopted Spectrum Based Fault Localisa-
tion for the pilot study, there are more advanced learn-to-
rank approaches for fault localisation that combines multiple
lower level localisation techniques using learn-to-rank machine
learning models [22], [23], [14]. For future work, we will
consider adopting learn-to-rank fault localisation approaches,
while looking for additional features that we can extract from
the CI pipeline and add in order to improve the accuracy
(such as the existing mapping between test scripts and HANA
components, or code and change metrics used by Sohn and
Yoo [22], [23]).

C. Handling Multiple and Residual Faults

Most of the existing fault localisation work makes the single
fault assumption, i.e., there is a single fault to be localised. In
the context of CI pipeline, this is no longer realistic. Even if
we can accurately localise the very first single fault, the second
one may occur while the first fault is not patched, adding noise
to the localisation of the second fault. Existing approaches
towards handling multiple faults are mostly based on clustering
of test cases based on their execution traces [27], [6], but
mostly using benchmarks that are smaller than SAP HANA2
and not in the context of continuous integration. Future work
will consider how to effectively isolate the residual faults from
localisation of newly observed faults in the context of CI
pipeline.

VII. CONCLUSION

We present a case study of automated fault localisation
in the context of bug report assignment in the CI pipeline.
As far as we know, this paper reports the first industrial
scale application and evaluation of fault localisation. Based
on statement level coverage data that are collected weekly, we
compute and aggregate SBFL scores for files and components.
Using 137 test executions that included at least one failing test
script, we compare the result of the SBFL to the ground truth
(i.e., the location of the actual fix commit). With the help of
voting-based aggregation, we can localise the root cause of up
to 22 failures to the exact component, and 61 failures down to
10 components, out of 137 failures studied. The results suggest
that automated fault localisation can effectively aid bug report
assignment in a large industrial CI pipeline.

ACKNOWLEDGMENT

Gabin An, Jeongju Sohn, and Shin Yoo have been supported
by SAP Labs, as well as the Next-Generation Information
Computing Development Program through the National Re-
search Foundation of Korea(NRF) funded by the Ministry of
Science, ICT (2017M3C4A7068179), and National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MEST) (Grant No. NRF-2020R1A2C1013629).

[1]

[3]

[4]

[5]
[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

Rui Abreu, Peter Zoeteweij, and Arjan JC van Gemund. An evaluation
of similarity coefficients for software fault localization. In The proceed-
ings of the 12th Pacific Rim International Symposium on Dependable
Computing, PRDC 2006, pages 39-46. IEEE, 2006.

Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. An evaluation
of similarity coefficients for software fault localization. In 2006
12th Pacific Rim International Symposium on Dependable Computing
(PRDC’06), pages 39-46. IEEE, 2006.

John Anvik. Automating bug report assignment. In Proceedings of the
28th International Conference on Software Engineering, pages 937-940,
2006.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight
bug localization with ample. In Proceedings of the sixth international
symposium on Automated analysis-driven debugging, AADEBUG’05,
pages 99-104, New York, NY, USA, 2005. ACM.

C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. Devops. [EEE
Software, 33(3):94-100, 2016.

Ruizhi Gao and W Eric Wong. Mseeran advanced technique for locating
multiple bugs in parallel. /[EEE Transactions on Software Engineering,
45(3):301-318, 2017.

Shin Hong, Tachoon Kwak, Byeongcheol Lee, Yiru Jeon, Bongsuk
Ko, Yunho Kim, and Moonzoo Kim. Museum: Debugging real-
world multilingual programs using mutation analysis. Information and
Software Technology, 82:80-95, 2017.

Shin Hong, Byeongcheol Lee, Taechoon Kwak, Yiru Jeon, Bongsuk Ko,
Yunho Kim, and Moonzoo Kim. Mutation-based fault localization for
real-world multilingual programs (T). In 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015, pages 464475, 2015.

Tom Janssen, Rui Abreu, and Arjan J. C. van Gemund. Zoltar: A toolset
for automatic fault localization. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE *09,
pages 662—664, Washington, DC, USA, 2009. IEEE Computer Society.
James A. Jones and Mary Jean Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique. In Proceedings of
the 20th International Conference on Automated Software Engineering
(ASE2005), pages 273-282. ACM Press, 2005.

James A Jones and Mary Jean Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering, pages 273-282, 2005.

Dongwon Kang, Jinhwan Jung, and Doo-Hwan Bae. Constraint-based
human resource allocation in software projects. Software: Practice and
Experience, 41(5):551-577, 2011.

Tien-Duy B. Le, Ferdian Thung, and David Lo. Predicting effectiveness
of ir-based bug localization techniques. In 25th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2014, Naples,
Italy, November 3-6, 2014, pages 335-345, 2014.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2019, pages 169-180, New York,
NY, USA, 2019. Association for Computing Machinery.

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the
mutants: Mutating faulty programs for fault localization. In Proceedings
of the 7th International Conference on Software Testing, Verification and
Validation, ICST 2014, pages 153-162, 2014.

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model
for spectra-based software diagnosis. ACM Transactions on Software
Engineering Methodology, 20(3):11:1-11:32, August 2011.

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model
for spectra-based software diagnosis. ACM Transactions on software
engineering and methodology (TOSEM), 20(3):1-32, 2011.

Mike Papadakis and Yves Le Traon. Metallaxis-fl: mutation-based fault
localization. Softw. Test., Verif. Reliab., 25(5-7):605-628, 2015.

Chris Parnin and Alessandro Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA 2011, pages 199-
209, New York, NY, USA, 2011. ACM.

Alexandre Perez, Rui Abreu, and Arie van Deursen. A test-suite
diagnosability metric for spectrum-based fault localization approaches.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE), pages 654-664. IEEE, 2017.

Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry.
Improving bug localization using structured information retrieval. In
Automated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, pages 345-355. IEEE, 2013.

Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics
to improve fault localisation. In Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA 2017, pages 273—
283, 2017.

Jeongju Sohn and Shin Yoo. Empirical evaluation of fault localisation
using code and change metrics. [EEE Transactions on Software
Engineering, pages 1-1, 2019.

Jeongju Sohn and Shin Yoo. Why train-and-select when you can use
them all? Ensemble model for fault localisation. In Proceedings of the
Annual Conference on Genetic and Evolutionary Computation, GECCO
2019, pages 1408-1416, 2019.

G. Tassey. The economic impacts of inadequate infrastructure for
software testing. Planning Report 02-3.2002, National Institute of
Standards and Technology, 2002.

Qiangian Wang, Chris Parnin, and Alessandro Orso. Evaluating the
usefulness of ir-based fault localization techniques. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis,
ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015, pages 1-11, 2015.
Yabin Wang, Ruizhi Gao, Zhenyu Chen, W Eric Wong, and Bin Luo.
Was: A weighted attribute-based strategy for cluster test selection.
Journal of Systems and Software, 98:44-58, 2014.

W. E. Wong, V. Debroy, R. Gao, and Y. Li. The dstar method for
effective software fault localization. IEEE Transactions on Reliability,
63(1):290-308, 2014.

W. E. Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A
survey on software fault localization. IEEE Transactions on Software
Engineering, 42(8):707, August 2016.

X. Xia, L. Bao, D. Lo, and S. Li. “Automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016,
pages 267-278, Oct 2016.

Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu.
A theoretical analysis of the risk evaluation formulas for spectrum-
based fault localization. ACM Transactions on Software Engineering
Methodology, 22(4):31:1-31:40, October 2013.

Jifeng Xuan and Martin Monperrus. Test case purification for improving
fault localization. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pages 52—63,
2014.

Shin Yoo. Evolving human competitive spectra-based fault localisation
techniques. In Gordon Fraser and Jerffeson Teixeira de Souza, editors,
Search Based Software Engineering, volume 7515 of Lecture Notes in
Computer Science, pages 244-258. Springer Berlin Heidelberg, 2012.
Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E Hassan. An
empirical study on factors impacting bug fixing time. In 2012 19th
Working Conference on Reverse Engineering, pages 225-234. IEEE,
2012.

