
1

Empirical Evaluation of Fault Localisation Using
Code and Change Metrics

Jeongju Sohn and Shin Yoo

Abstract—Fault localisation aims to reduce the debugging efforts of human developers by highlighting the program elements that are
suspected to be the root cause of the observed failure. Spectrum Based Fault Localisation (SBFL), a coverage based approach, has
been widely studied in many researches as a promising localisation technique. Recently, however, it has been proven that SBFL
techniques have reached the limit of further improvement. To overcome the limitation, we extend SBFL with code and change metrics
that have been mainly studied in defect prediction, such as size, age, and churn. FLUCCS, our fault learn-to-rank localisation
technique, employs both existing SBFL formulæ and these metrics as input. We investigate the effect of employing code and change
metrics for fault localisation using four different learn-to-rank techniques: Genetic Programming, Gaussian Process Modelling, Support
Vector Machine, and Random Forest. We evaluate the performance of FLUCCS with 386 real world faults collected from Defects4J
repository. The results show that FLUCCS with code and change metrics places 144 faults at the top and 304 faults within the top ten.
This is a significant improvement over the state-of-art SBFL formulæ, which can locate 65 and 212 faults at the top and within the top
ten, respectively. We also investigate the feasibility of cross-project transfer learning of fault localisation. The results show that, while
there exist project-specific properties that can be exploited for better localisation per project, ranking models learnt from one project
can be applied to others without significant loss of effectiveness.

Index Terms—Fault Localisation, SBSE, Genetic Programming
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1 INTRODUCTION

As the scale of software systems grows more and more,
the number of faults in them has increased dramatically,
burdening human developers with a tremendous amount
of time and effort demanded to debug them. Automated
test generation [1], [2], [3] aims to relieve the burdens of
debugging by reducing the cost of test generation. How-
ever, even with this approach, a large part of debugging
is still left to human developers, taking up to 80% of total
software cost [4]. Consequently, there is an urgent need to
further automate the debugging process. Automated Pro-
gram Repair (APR) [5], [6] has been proposed to reduce the
debugging cost by generating patches for the detected faults
automatically. Nevertheless, APR techniques still require
the information regarding the location of faults in order
to focus their effort in the large search space for patches.
Fault Localisation is an act of identifying the locations of
the faults. Manual inspection of all program elements is
a tedious and time-consuming task [7]. Spectrum Based
Fault Localisation (SBFL) is a branch of fault localisation
techniques that has received much attention due to its ef-
fectiveness and simplicity [8], [9]. SBFL takes both coverage
and pass/fail information of individual test cases, and uses
a risk evaluation formula to compute the likelihood of each
program element being responsible for the observed failure.
The likelihood is often referred to as the suspiciousness
score: the higher the score is, the more likely the program
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element is to be responsible for the observed failure. SBFL
uses these scores to rank program elements in descending
order. The expected use case is that, by examining program
elements following the ranking order, human developers
will discover the faulty element faster than when following
the order dictated by the program structure [10].

SBFL has been in the spotlight for quite some time [11],
[12], [13], [14], [15]. Recently, however, limitations of SBFL
have been pointed out both empirically and theoretically.
Parnin and Orso conducted empirical human evaluation of
SBFL in practice. Their evaluations showed that the claimed
helpfulness of the formulæ does not hold in practice [16]. In
particular, Parnin and Orso pointed out the inadequacy of
the Expense metric as an evaluation of the effectiveness of
the formulæ. Expense measures the amount of effort wasted
on inspecting non-faulty program elements, i.e., the number
of examined non-faulty ones, before encountering the very
first faulty one, in percentage. Since it is a percentage, it
fails to accurately measure the effort as it does not reflect
the size of the System Under Test (SUT). For example,
a single digit value for Expense may appear impressive.
However, when applied to a large projects with millions of
program elements, even 1% Expense is practically useless.
To overcome the ambiguity of the Expense metric, Parnin
and Orso recommended the use absolute ranking, which
directly reflects the actual amount of efforts required from
the human developers. Theoretically, the hierarchy between
different formulæ, as well as the maximality of some for-
mulæ, have been proven [8]: a formula is maximal if it
is guaranteed to be better or at least equivalent to other
formulæ against arbitrary faults and test suites.

Recently, multiple techniques that use multiple existing
SBFL formulæ instead of a single one have been pro-
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posed [17], [18]. This approach seeks to overcome the lim-
itation of a single SBFL formula by combining multiple
formulæ to rank program elements. Moreover, a technique
to explore other distinctive patterns of faults other than
coverage, such as difference in program invariants, has been
suggested [18]. A subsequent proof showing that there is no
single SBFL formula that can dominate all the other for-
mulæ [19] strengthen the justification for this new research
direction.

FLUCCS is a learn-to-rank fault localisation technique
based on Genetic Programming (GP), designed to address
the known limitations of SBFL [20]. Instead of manually de-
signing formulæ, FLUCCS learns to rank program elements
according to their likelihood of being the root cause of the
observed failure using Genetic Programming as the default
learning mechanism. To overcome the theoretical limitations
of pure SBFL approaches, FLUCCS uses multiple SBFL
formula scores as input while learning to rank program
elements. Moreover, FLUCCS also uses code and change
metrics, such as age, complexity, and churn. This is based
on the insight that there exists a large overlap between
Defect Prediction (DP) and Fault Localisation (FL): DP is
essentially trying to locate yet-to-happen faults, whereas FL
seeks to locate faults a posteriori. To overcome the practical
limitations, FLUCCS introduces method level aggregation
to improve the accuracy of method level fault localisation,
and use absolute ranking based evaluation.

We empirically evaluate FLUCCS with 386 real world
faults collected from Defects4J repository [21]. Method
level localisation results from FLUCCS have been compared
against existing state-of-the-art SBFL techniques. To assess
the contributions made by the use of the code and change
metrics, we compare the results of FLUCCS with code and
change metrics to the results of FLUCCS without them,
using multiple learn-to-rank algorithms. Out of 386 faults,
FLUCCS with the code and change metrics places 144 faults
at the top, significantly outperforming the state-of-the-art
SBFL formulæ. Comparison between the results of FLUCCS
with and without code and change metrics indicates that a
large portion of improvement made by FLUCCS originates
from the use of these metrics, regardless of the learning
algorithm used.

The technical contributions of this paper are follows:

• We present FLUCCS, a fault localisation technique
that learns to rank program elements using Genetic
Programming. FLUCCS uses existing SBFL formulæ
as well as code and change metrics as input 1. The
results show that code and change metrics, tradition-
ally studied in the context of defect prediction, can
effectively complement existing SBFL techniques for
more accurate localisation.

• We empirically evaluate FLUCCS using 386 real
world faults from Defects4J. FLUCCS ranks 37%
of the studied faults at the top, and about 79% of the
studied faults within the top ten of the ranking.

• We introduce a new way of computing method
level SBFL scores called Method Level Aggregation.
Empirical evaluation of this technique applied to

1. FLUCCS and the data used for the empirical evaluation are made
available at https://bitbucket.org/teamcoinse/fluccs.

existing state-of-the-art SBFL formulæ shows that
formulæ with Method Level Aggregation can rank
about 50% more faults at the top.

This paper is an extension of our conference paper [20]
that introduced FLUCCS. It has been extended with the
following contributions:

• We have increased the number of studied faults from
210 to 386, by incorporating the faults that have
been newly added in the version 1.2.0 of Defects4J
benchmark [21].

• We have added two more learn-to-rank algorithms,
Gaussian Process and Random Forest, in addition to
the algorithms studied in the original conference pa-
per, Genetic Programming and linear Support Vector
Machine.

• We have performed a quantitative analysis of the
relative feature for SBFL scores as well as code and
change metrics, using Random Forest and Support
Vector Machine.

• We have conducted both the cross-project learning
and gradual cross-project learning, to evaluate the
generalisability of our learn-to-rank approach. With
gradual cross-project learning, we start training our
learn-to-rank models with faults from other projects,
but gradually replace them with faults from the
project of interest, reflecting a real world adoption
scenario.

The rest of the paper is organized as follows: Section 2
formulates fault localisation as the learning to rank problem
and introduces the features used in FLUCCS. Section 3
describes the learning algorithms that we use in the paper.
Section 4 presents the set-up for the empirical evaluation,
the results of which are discussed in Section 5. Section 7
discusses the potential threats to validity. Section 8 presents
the related work and Section 9 concludes.

2 FEATURES FOR LEARNING-TO-RANK FAULT LO-
CALISATION

Fig. 1 shows the overall architecture of FLUCCS. FLUCCS
extracts two sets of features from a source code repository.
The first is a set of SBFL scores using different SBFL for-
mulæ: this requires test execution on source code instru-
mented for structural coverage. The second is a set of code
and change metrics: this requires lightweight static analysis
and version mining. In the training phase, these features,
along with locations of known faults, are fed into learning
algorithms, which produce ranking models that rank the
faulty method as high as possible. In the deployment phase,
these learnt models take the features from source code
with unknown faults, and produce rankings of methods
according to their likelihood of being faulty. In this section,
we describe the features used by FLUCCS, as well as how
these features are extracted and processed.

2.1 SBFL Scores
SBFL formulæ take program spectrum data as input and
return risk scores (also known as suspiciousness scores).
For a structural program element (such as a statement or a

https://bitbucket.org/teamcoinse/fluccs
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Fig. 1: Overall Architecture of FLUCCS

method), the spectrum data consists of four variables that
are aggregated from test coverage and pass/fail results:
(ep, ef , np, nf ); ep and ef represent the number of pass-
ing and failing test cases that execute the given structural
element, respectively. Similarly, np and nf represent the
number of passing and failing test cases that do not execute
the given structural element. SBFL formulæ tend to assign
higher risk scores to elements with higher ef and np values,
which suggest executing those elements tend to result in
failing test executions, while not executing them tend to
result in passing test executions.

TABLE 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
{
−1 if nf > 0

np otherwise
ER1b ef −

ep
ep+np+1

ER5a ef −
ef

ep+np+1
ER5b

ef
ef+nf+ep+np

ER5c
{
0 if ef < F

1 otherwise
GP2 2(ef +

√
np) +

√
ep

Ochiai ef√
(ef+nf )(ef+ep)

GP3

√
|e2

f
− √ep|

Jaccard ef
ef+nf+ep

GP13 ef (1 + 1
2ep+ef

)

AMPLE | ef
F
− ep

P
| GP19 ef

√
|ep − ef + nf − np|

Hamann ef+np−ep−nf

P+F
Tarantula

ef
ef+nf

ef
ef+nf

+
ep

ep+np

Dice 2ef
ef+ep+nf

RusselRao ef
ep+ef+np+nf

M1 ef+np

nf+ep
SørensenDice 2ef

2ef+ep+nf

M2 ef
ef+np+2nf+2ep

Kulczynski1 ef
nf+ep

Hamming ef + np Kulczynski2 1
2
(

ef
ef+nf

+
ef

ef+ep
)

Goodman 2ef−nf−ep
2ef+nf+ep

SimpleMatching ef+np

ep+ef+np+nf

Euclid
√

ef + np RogersTanimoto ef+np

ef+np+2nf+2ep

Wong1 ef Sokal 2ef+2np

2ef+2np+nf+ep

Wong2 ef − ep Anderberg ef
ef+2ep+2nf

Wong3 ef − h, h =


ep if ep ≤ 2

2 + 0.1(ep − 2) if 2 < ep ≤ 10

2.8 + 0.001(ep − 10) if ep > 10

Ochiai2 efnp√
(ef+ep)(nf+np)(ef+nf )(ep+np)

Zoltar ef

ef+ep+nf+
10000nfep

ef

FLUCCS uses 33 SBFL formulæ to generate score met-
rics, which are listed in Table 1 We include both the state-
of-the-art human generated SBFL formulæ and GP evolved
SBFL formulæ. Of these, 25 formulæ have been used in
combination with each other in previous work [17], [18],
while eleven formulæ have been proven to be maximal [22].

2.2 Code and Change Metrics
Many code and change metrics have been studied in relation
to defect proneness [23], [24], [25], [26]. We expect these
features to provide additional guidance towards the faulty
program elements, and have adopted three categories of

code and change metrics as features of our learning-to-rank
approach: age, churn, and complexity. In total, FLUCCS uses
the following six metrics, in their normalised form.

2.2.1 Age
Age simply measures how long a given program element
has existed in the code base [24]. We consider two methods
in two consecutive version to be the same method if their
signatures match. Based on this definition of method iden-
tity, we define two types of method age:

• min age: the number of commits between the faulty
version and the last commit that modified any part
of the method under consideration.

• max age: the number of commits between the faulty
version and the first commit that introduced the
signature of the method under consideration.

Both age metrics aim to measure how mature the method
under consideration is. The min age is related to recent
changes made to how the method operates, represented by
the statements in the method body, whereas the max age
relates to what the method is supposed to do, which is
represented by its method signature [27], [28].

2.2.2 Churn
Churn metric measures how frequently a given program
element has been modified; it has been shown to be corre-
lated with the fault density [23]. Churn metric is calculated
as the number of commits that have changed the structural
element (such as methods) under consideration, divided by
the total number of commits made to the repository up to
the version where the structural element first appeared. A
method is considered to be changed if any of its statements
is changed.

2.2.3 Complexity Metrics
Code complexity and its impact on defect proneness has
been widely studied [25]. Various types of code complexity
metrics have been suggested in the literature, out of which
we select the following, cheap to measure, metrics:

• Number of formal arguments: this indirectly reflects
the internal complexity of the given method, as well
as, the degree of external coupling.

• Number of local variables: this indirectly reflects the
internal complexity.

• Size: this has been used by much of the defect pre-
diction work in the literature as a surrogate for code
complexity [25], [29], [30]. We use both LoC (Lines
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of Code) and the number of compiled Java Bytecode
instructions.

We do acknowledge that code complexity is difficult
concept to measure: we deliberately chose metrics that can
be simply and directly measured from the source code.
Future study will investigate more sophisticated complexity
metrics.

2.3 Method Level Aggregation of SBFL Scores

Although FLUCCS performs method level localisation, it
does not use method coverage to calculate the SBFL score
features. Instead, we calculate SBFL scores for statements
and aggregate them up to the method level by taking the
highest score among those from statements that consist the
method under consideration. While this adds to the cost of
localisation (instrumentation for the statement coverage is
more expensive than one for the method coverage), this has
clear benefits.

Consider the code snippet in Fig. 2, which is executed
with three test cases: a = 1, 2, 3. Let us also assume that
there exist two other test cases that do not execute this
method. In total, there are five test cases: three execute
testMe and one of them fails.

Method testMe is covered by three test cases: its spec-
trum tuple (ep, ef , np, nf ) is (2, 1, 2, 0), resulting in Ochiai
score of 1√

1(1+2)
= 0.578 and Jaccard score of 1

1+0+2 =

0.333. The method util and its line 12 share the same
spectrum as well as scores, making it impossible to differ-
entiate util and testMe. However, for line 4, the spectrum
(ep, ef , np, nf ) becomes (0, 1, 4, 0), resulting in both Ochiai
and Jaccard score of 1.0, placing testMe above util .

1 public void testMe(int a){
2 util();
3 if (a % 3 == 0){
4 ... // faulty code
5 }
6 else{
7 ...
8 }
9 }

10

11 public void util(){
12 ...
13 }

Fig. 2: Example code snippet showing the benefits of Method Level
Aggregation. With method coverage, testMe and util share the same
SBFL scores; however, if we represent testMe with the highest SBFL
score among those of its constituent statements, it is ranked higher
than util .

In general, there are two drawbacks in using method
coverage to calculate SBFL scores. First, methods on a sin-
gle call chain can share the same spectrum tuple values,
resulting in tied SBFL scores. Second, if there exist test cases
that execute only the non-faulty parts of an actually faulty
method, they will increase the ep value at the method level.
This is undesirable, because with most of the practically ef-
fective SBFL formulæ, higher ep values tend to decrease the
suspiciousness. Our Method Level Aggregation approach is
designed to overcome these two weaknesses.

3 LEARNING ALGORITHMS

Learning to rank is a technique that uses machine learning
to construct ranking models for an information retrieval sys-
tem [31]. It intends to learn how to produce a permutation
of unseen lists of items in some way that is similar to ones
that have been provided as training data. Learning-to-rank
approaches can be categorized by their input representation
and loss function: pointwise, pairwise, and listwise [31].

Pointwise approaches approximate learning to rank
problems as regression problems for the ordinal scores in
the training data. Pairwise approaches transform learning
to rank problems as classification problems for pairs of
items: by classifying pairs according to their ordinal rela-
tionships, they aim to minimise ordinal inversions. Listwise
approaches attempt to produce ranking models that min-
imise the dissimilarity to rankings in the training data.

With FLUCCS, the objective for learning is to construct
ranking models that rank faulty program elements as high
as possible, based on features described in Section 2. Fault
localisation is a unique learning to rank problem, as our
interest is limited solely to the rank of the faulty program
elements, and not those of the others, non-faulty ones. The
labels in training data are binary: one for faulty elements,
and zero otherwise. Even with multi-location faults, there
will be significantly more zeros than ones.

In this paper, we evaluate pointwise and pairwise ap-
proaches. We consider the listwise approach to be inappro-
priate, because the ideal rankings in the training data are
mostly all tied (i.e. zero for not faulty ones). For the point-
wise approach, we choose Genetic Programming, which
is the default learning mechanism of FLUCCS, Gaussian
Process Modelling, and Random Forest. For the pairwise
approach, we choose linear rankSVM.

3.1 Genetic Programming

We use Genetic Programming (GP) as a symbolic regression
tool to learn the ranking models: it evolves a ranking func-
tion that takes features and produces ordinal scores. Instead
of evolving a function that reproduces the original binary
labels (i.e. ‘faulty’ or not ‘faulty’) as closely as possible, our
fitness function is simply the average ranking of the faulty
program element (the one that is ranked highest, if multiple
elements are marked to consist a single fault), calculated
from all faults that are considered for fitness evaluation.
GP has been successfully applied to evolving SBFL formulæ
from raw spectrum data [32] and has the benefit of being
able to generate non-linear ranking models.

3.2 Gaussian Process Modelling

Gaussian Process Modelling (GPM) is a collection of random
variables, any finite number of which have a joint Gaussian
distribution [33]. Let x ∈ IRd represents a set of d random
variables, and f be a function that maps x ∈ IRd to
y ∈ IR. GPM assumes that, for any finite number of x,
{x1, x2, ..., xn}, and the corresponding random variable set,
{f(x1), f(x2), ..., f(xn)}, respectively have joint Gaussian
distributions. This allows us to learn f by learning the joint
distributions that minimises the differences between f(xi)
and yi where 1 ≤ i ≤ n. In the context of FLUCCS, each data
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point in the training data is a feature vector (x) of a method,
containing nF features used by FLUCCS. GPM performs
logistic regression on pairs of a feature vector (xi ∈ IRnF

)
and the corresponding label (yi) in the training data: yi is
the label that denotes whether the corresponding method is
faulty or not.

For an unseen data point, x′, its predicted label, y′,
will be computed based on the similarity of x′ to previous
data points via a covariance function defined over them:
FLUCCS uses radial basis function for the covariance. We
treat the estimated label value, f(x′), as the likelihood of the
corresponding method being faulty: the closer to 1.0 f(x) is,
the more likely the method is to be faulty. Finally, methods
are ranked based on their f(x′) values.

3.3 Support Vector Machine

Ranking SVM is a variant of Support Vector Machine [34]
algorithm that performs pairwise learning to rank. The
performance of Ranking SVM varies with the choice of a
kernel type. Commonly used types for the kernel are linear,
polynomial, and radial basis function. Among those kernel
types, we choose linear due to the computational burden
of using polynomial and radial basis function; unlike other
kernel types whose time required for learning increases
dramatically with the large-scale data, linear kernel allows
users to generate ranking models in reasonable time.

FLUCCS uses linear ranking SVM intending to learn
linear coefficients to input features that collectively produce
the fewest ordinal inversions. We assign an arbitrary rank
of 1 to all faulty methods and 0 to all non-faulty methods.
We subsequently rank them based on their distance to
the separating hyper-plane in descending order: the farther
away a method is from the hyperplane, the more suspicious
it is. While being orders of magnitudes faster than GP, linear
ranking SVM is restricted by the linearity of the ranking
model and the inherent imbalance in fault localisation train-
ing data. From this point, we will call linear ranking SVM
simply as SVM.

3.4 Random Forest

Random Forest (RF) [35] is an ensemble learning method
that aims to overcome the problem of over-fitting to the
training data, which is one of the major weaknesses of
decision trees. Bootstrap aggregating or bagging is used
in RF with an additional layer of randomness [35], [36].
It randomly samples multiple sub-training datasets with
replacement and builds a single decision tree for each of
them. For test data, outcomes of these decision trees are ag-
gregated, e.g. averaging the decision values, for prediction.

FLUCCS uses Random Forest to perform regression on
methods, using feature vectors as independent variables
and the given labels, faulty (1) or non-faulty (0), as the
dependent variable. Each single tree is a single, independent
regression model: for final prediction, outcomes of all trees
are aggregated using average. Similar to GPM, we treat the
aggregated label estimation, i.e., the averaged output of RF,
as our suspiciousness score, and use it to rank the methods.

4 EXPERIMENTAL SETUP

4.1 Research Questions

We investigate the following research questions to evaluate
the effectiveness of FLUCCS.

RQ1. Effectiveness: How effective is FLUCCS at localizing
the studied faults?

We evaluate the effectiveness of the GP version of
FLUCCS that uses all features (referred to as GPA here-
after), by computing the evaluation metrics described in
Section 4.4. Due to the stochastic nature of GP, we evaluate
30 GP runs and generate 30 ranking models per training
dataset; we choose models with the best and the median GP
fitness values for evaluation. The best performance model,
GPA

min, (i.e. the one that produces the best fitness out of the
30 runs) represents the best use case scenario, in which the
user of FLUCCS completes multiple GP runs and picks the
best model. The median performance model, GPA

med, is the
one that corresponds to the median fitness from multiple
runs; it is included to show the variance in the models
produced by the GP version of FLUCCS. These evaluation
results are then compared with the results of 11 state-of-
art SBFL formulæ, including both human designed and GP
evolved ones, using the same evaluation metrics.

RQ2. Code and Change Metric Contribution: How much
do the code and change metrics contribute to the fault
localisation?

To confirm that the code and change metric features
contribute positively to localisation, we evaluate FLUCCS
using only SBFL score features, leaving other settings for
GP untouched. Resulting models, GPS

min and GPS
med, are

compared with GPA
min and GPA

med.

RQ3. Method Level Aggregation: How much does the
Method Level Aggregation contribute to the localisation of
faults?

Method Level Aggregation can be applied to any metric
as long as the metric’s values can be computed at the state-
ment level and the definition of the metric at method level
does not fundamentally differ from the one at statement
level. In this paper, we apply Method Level Aggregation
to spectrum-based metrics, SBFL scores.

To evaluate the impact of Method Level Aggregation
on SBFL scores, we simply compare two sets of SBFL
scores from 11 state-of-art SBFL formulæ, with and with-
out Method Level Aggregation. This will evaluate whether
Method Level Aggregation can be generally useful to any
spectrum-based techniques. Since these formulæ provide
SBFL scores as features for FLUCCS, we posit that improve-
ments in their scores will result in improvements in FLUCCS
as well.

RQ4. Algorithm Dependency: Does the choice of learning
algorithm affect the effectiveness of FLUCCS?

First two research questions, RQ1 and RQ2, investigate
the effectiveness of FLUCCS, using GP as a learning algo-
rithm. To further generalise our claim that the use of code
and change metrics will aid SBFL by finding and exploiting
previously unknown traits of faults, we inspect three other
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well-known machine learning algorithms in the place of GP:
GPM, SVM, and RF.

We evaluate the effectiveness of these substitute al-
gorithms by comparing their answers to RQ1 and RQ2
with each other. Corresponding versions of GPA

min, GPA
med,

GPS
min, and GPS

med for GPM, RF, and SVM are referred
as (GPMA

min, GPMA
med, GPMS

min, GPMS
med), (SVMA,

SVMS) and (RFA
min, RFA

med, RFS
min, RFS

med) hereafter.

RQ5. Existence of project-specific traits that are effective
for fault localisation: Does each project have any unique
traits that might affect the effectiveness of fault localisation?

Performance of trained models heavily depends on
whether these models are able to catch features or traits that
can differentiate faulty ones from the others. As the purpose
of each software differs, some projects might have unique
traits of faults that are specific to them. Suppose, there is
a project that does not allow to use certain TimeZone data
and is failed whenever this TimeZone has been used. For
this project, detecting the use of this specific TimeZone will
be crucial in localisation of faults. For other projects where
use of specific TimeZone does not matter, this detection has
no use.

To find out whether there is any project-specific traits
and whether their influence holds statistical significance, we
compare the performance of FLUCCS with three different
configurations of the training dataset: mixed, other, and self .

• mixed: this setting does not distinguish where the
faults come from; it randomly divides the entire
dataset into ten folds for cross-validation.

• other: for each project, we use a training dataset
consisting of faults from one of the other projects,
and a test dataset consisting of its own faults. We
denote a training dataset consisting of faults from
the project P as otherP .

• self : every project has its own training and test
dataset, consisting only of its own faults. These faults
are divided into five folds: we use four folds as the
training data, and the remaining one as the test data.

The self and other configurations are used to confirm
the existence of project-specific traits and their influence
on the effectiveness. mixed, the default setting used by
FLUCCS, has been included as the baseline. Vargha-Delaney
A12 statistic and Mann-Whitney U-test are used for statistic
analysis.

RQ6. Gradual Cross-Project Training: When should we
transit from cross-project to self configuration?

While there may exist project-specific traits that can be
best exploited by the self configuration, it may not always
be a feasible option, for example when the target project is
in the early stage of development: there simply may not be
a sufficient number of faults to learn from. Consequently,
until a sufficient number of own faults are collected, cross-
project learning using faults from other projects may be the
only feasible option. Under this use case scenario, the critical
question now is when to switch to self configuration.

To answer this question, we perform gradual cross-
project learning. Let us define others to be the set of faults
collected from other, non-self projects. For gradual cross-
project learning, we vary the ratio between others and self

datapoints, by increasingly replacing others datapoints with
self datapoints. Initially, the training dataset consists of as
many others datapoints as the size of four self folds: we
evaluate the ranking model trained with this dataset using
one self fold. Subsequently, we replace one fold of others
datapoints in the training dataset with a self fold, and
continue to evaluate the ranking model trained with the
updated dataset that contains more self datapoints, until we
eventually replace all others datapoints with self datapoints.
We observe how this transition from others to self affects the
performance of the trained model. The intermediate mix-
tures of training datasets are denoted by graduali/4, in which
i is the number of others folds in the dataset (e.g., gradual3/4
contains three parts others and one part self datapoints).

RQ7. Feature Importance: Which features contribute the
most to ranking models?

FLUCCS uses 40 features, 33 from SBFL score met-
rics and seven from code and change metrics. To identify
which features are useful in FLUCCS, we analyse feature
importance for FLUCCS using Random Forest, which is
one of the standard filtering technique for feature selection.
The relative feature importance can be estimated from the
average reduction of variance when splitting decision tree
nodes based on a specific feature. We report the top ten
most important features using self configurations (i.e., for
each project) as well as the mixed configuration (i.e., for all
studied project combined).

Furthermore, we directly measure how each of the top
ten features affects the performance of the corresponding
models. We randomly permutate the values of each of the
top features, one at a time, and observe the differences in
model performance. We assume that that, the more impor-
tant a feature is, the more severely the performance of the
model will be affected when the values for that feature are
permutated.

TABLE 2: Subject software systems and their faults

Project # Faults Loc # Methods # Test cases

Commons Lang 63 9059–11490 1953–2408 1540–2295
Commons Math 105 4726–41344 1049–6668 817–4429
Joda-Time 26 12732–13270 3628–3802 3749–4041
Closure Compiler 131 30438–50523 4848–8880 2595–8443
Jfreechart 25 41075–51523 6578–8281 1586–2193
Mockito 36 2110–4385 747–1476 695–1399

4.2 Subjects

We use real world faults from Defects4J repository [21]
to evaluate FLUCCS. Table 2 lists the subject programs.
Our previous work used version 0.2.0 of Defects4J; we
now use version 1.1.0, which contains an additional project,
Mockito. A few issues in the previous version of FLUCCS
have been addressed to increase the number of faults
studied. We have changed the coverage measurement tool
from JaCoCo [37] to Cobertura [38]. This allowed us to
cover faults that have been excluded in the previous work2.

2. Jacoco misses some statements when the normal sequence of
statements is disturbed, resulting a inserted probe to be remained not
executed. The official FAQ (http://www.eclemma.org/jacoco/trunk/
doc/faq.html)

http://www.eclemma.org/jacoco/trunk/doc/faq.html
http://www.eclemma.org/jacoco/trunk/doc/faq.html
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Remaining faults of Closure, which have been excluded in
previous version of FLUCCS, are now added. Faults of
Chart, which we failed to handle due to the revision id
problem3, are included by migrating to git from svn using
git-svn. Finally, we incorporate 36 faults from Mockito that
have been newly introduced in version 1.1.0.

In total, among 395 faults available in Defects4J, we
use 386 faults, excluding 9 faults. This exclusion is due to
some issues that prevent us establishing the ground truth
about input features and locations of the real faults. Our
filtering criteria are:

• Scope of Faults: We focus only on the methods that
are parts of the given system under testing (SUT).
If the faulty method does not originate from the
subject, it is considered out of scope. For example,
fault 23 from Commons-Lang in Defects4J has
been excluded as the fault lies on a method that over-
rides another method external to Commons-Lang.
(Lang:1)

• Restrictions on targeted methods: FLUCCS per-
forms method-level fault localisation. We only target
methods that can be invoked directly by JVM instruc-
tions; this restriction leads FLUCCS to be unable to
handle faults on class initialisation methods. (Lang:1,
Math:1, Time:1, Mockito:1)

• Compilation Failures: Instead of working on code-
base that Defects4J provides, FLUCCS works di-
rectly on the codebase where an actual fault was
made. While compiling these versions of codebase
using compiling tools of Defects4J, some of them
were failed, preventing FLUCCS from further pro-
cess such as coverage metric computation. (Chart:1,
Mockito:1)

• Missed partially covered branch: FLUCCS consid-
ers a given method to be covered if hits attribute
in xml coverage report is larger than zero. As hits
for a branch element remains zero despite the fact
that some of its conditions are covered, methods
where only these branch are executed will be re-
garded as uncovered. Combining with the exclusion
of uncovered methods, some of faults are excluded.
(Closure:1)

• Missed class name: FLUCCS parses results of git
diff between fixed and faulty version of codebase to
set the ground truth: the id of faulty method. During
parsing process, FLUCCS missed one faulty method
with nested structure of class name in attempt to
avoid ambiguous class name, integer, assigned for
the instance. (Closure:1)

From the 386 faulty versions that we study, any methods
that are not executed at all by test cases have been excluded
from analysis, as they cannot cause any observable failures.
Defects4J provides the location of faults in the form of
patches that fix them. Consequently, we take the methods
that are patched as the ground truth for the location of the
fault.

3. revision ids provided by Defects4J are not available in the
codebase provided by Defects4J: the revision ids are for svn and
the codebase are maintained by git.

4.3 Configuration

4.3.1 Genetic Programming (GP)

We use DEAP [39], a Python evolutionary computation
framework, to implement the GP version of FLUCCS. We
use a tree-based GP with single-point crossover with rate
of 1.0 and subtree mutation with rate of 0.1. The pop-
ulation contains 40 individuals and is initialized by the
ramping method [40]; the maximum tree depth is eight and
the algorithm stops after 100 generations. As described in
Section 3, GP uses the ranks of known faulty methods as
the fitness. Table 3 lists GP operators used by FLUCCS;
for terminal nodes, we use variables corresponding to 40
features described in Section 2 plus a constant 1.0.

TABLE 3: List of GP operators

Operator Node Definition

gp_add(a, b) a + b
gp_sub(a, b) a - b
gp_mul(a, b) ab
gp_div(a, b) 1 if b = 0, a

b
otherwise

gp_unarymin(a) −a
gp_sqrt(a)

√
|a|

To avoid overfitting of GP, we randomly sample 30
faults for fitness evaluation per generation if the training set
contains more than 30 faults: the training dataset of mixed
configuration consists of 347-351 faults and only randomly
sampled 30 faults are used. If no more than 30 faults
compose the training dataset, we use all of them. We also
adopt elitism, preserving the best 8 individuals from the
parent generation into the generation of offspring.

4.3.2 Gaussian Process Modelling (GPM)

Due to the limited scalability of Gaussian process (N3 scal-
ing for training with N number of training data points), we
use Sparse Gaussian Process [41]. Sparse Gaussian Process
parametrises the covariance of Gaussian Process regression
model by the locations of M (M << N ) pseudo-input
points, which are learnt by a gradient based optimisation.
Additionally, we employ Gaussian Process for batch data to
further reduce the computational burden [42], [43]. We use
GPy [44], a Gaussian Process framework from the Sheffield
machine learning group, to implement the GPM version of
FLUCCS. We perform hyper-parameter optimisation to the
number of pseudo-inputs (M ) and the number of maximum
iteration (itermax), using hyperopt [45]. The batch size has
been manually tuned to 3,000.

We optimise M and itermax as follows. Since M can be
a value between 1 and the number of data points in the
training data (N ), and itermax can be any integer greater
than 1, we firstly reduce the sample space of M and itermax.
Using a single fold from our ten-fold cross-validation, we
manually narrow down M to the range between 10 and 50,
and itermax between 10 and 300. Table 4 shows the results
of the manual investigation. Within this reduced ranges,
we subsequently perform hyper-parameter optimisation to
derive 140 for M and 18 for itermax.

We select Broyden-Fletcher-Goldfarb-Shanno algorithm
(BFGS), an iterative function used to solve unconstrained
non-linear optimisation problems, as the optimiser, and the
radial basis function as the covariance function.
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With GP, the fitness is computed from the aggregated
ranks of faulty methods in faulty programs. However, each
rank is computed independently, considering only a single
fault. In contrast, GPM learns from multiple faults simulta-
neously. GPM receives the entire training dataset as a pair
of a single feature matrix of size [the number of data points]
by [the number of features], and a matching array of labels.
Here, each data point corresponds to a single method, which
can be from any faulty program in the training dataset. As a
result, GPM can learn from the differences between feature
vectors from different faulty programs.

TABLE 4: Variance of performance over the number of pseudo-input
points and the maximum number of iterations. M indicates the number
of pseudo-input points and itermax indicates the number of max
iterations.

itermax

M 10 25 50 100 300
acc@1,3 acc@1,3 acc@1,3 acc@1,3 acc@1,3

5 1, 5 9, 19 12, 20 1, 5, 10, 20
10 7, 13 11, 23 10, 20 12, 21 12, 23
30 10, 21 10, 19 13, 22 11, 22 12, 22
50 10, 21 12, 20 13, 21 12, 22 11, 22
75 10, 19 14, 23 12, 22 12, 22 11, 22
100 11, 20 12, 22 12, 22 12, 22 11, 22

4.3.3 Support Vector Machine (SVM)
We use version 2.11 of large-scale rankSVM [46], which
depends on libSVM [47] for linear ranking SVM, with out-
of-the-box default parameters. We choose rankSVM because
of its support on linear ranking SVM for large scale data.
rankSVM uses L2-regularized L2-loss kernel in default, and
has been used to learn ranking models for fault localisation
in the literature [18]. SVM takes the entire training dataset
as a single matrix, without discriminating feature vector
entries from different faulty programs, similarly to GPM.

4.3.4 Random Forest (RF)
We use RandomForestRegressor from version 0.19.1 of
sklearn [48] using the default setting in sklearn; e.g., the
number of individual trees is ten and Mean Squared Error
(MSE), which aims to minimise variance in final leaves,
is used to measure the quality of splits. Like GPM and
SVM, RF also takes a single matrix of feature vectors and
a corresponding labels without using sampling.

4.4 Evaluation Metrics
We use three metrics to analyse the performance of GP with
new features following existing work [17], [18]. In particular,
the use of accuracy (acc@n) and wasted effort (wef ) conforms
to the guideline from Parnin and Orso [16], as these metrics
are based on an absolute count of program elements, rather
than percentage values.

4.4.1 Accuracy (acc@n)
acc@n counts the number of faults that have been localised
within top n places of the ranking. We use 1, 3, 5, and 10 for
number n, and count the number of corresponding faults
per project and also overall. When there are multiple faulty
program elements, we assume the fault is localised if any of
them are ranked within top n places.

4.4.2 Wasted Effort (wef)
wef measures the amount of effort wasted looking at non-
faulty program elements. Essentially, wef can be interpreted
as the absolute count version of the traditional Expense
metric. Similar with acc@n, we only use the highest rank
of faulty program element when there are multiple of them.

4.4.3 Mean Average Precision (MAP)
MAP is an evaluation metric for ranking, used in Informa-
tion Retrieval; it is the mean of the average precision of all
faults. First, we define the precision of localisation at each
rank i, P (i):

P (i) =
number of faulty methods in top i ranks

i
(1)

Average precision (AP) for a given ranking is the average
precision for faulty program elements:

AP =
M∑
i=1

P (i)× isFaulty(i)

number of faulty methods
(2)

Unlike acc@n and wef, AP caters for the existence of
multiple faulty program elements. Mean Average Precision
(MAP) is the mean of AP values computed for a set of faults.
We calculate MAP for faults from the same project.

4.5 Validation
To maximise the size of training dataset and also to avoid
overfitting of GP, we use ten-fold cross validation for RQ1
to RQ4. Given the set of 386 faults, we divide fault data
into ten folds, each comprises approximately 39 faults; RQ5
requires a different approach, as the number of available
faults can be too small to perform a ten-fold cross validation
for the self configuration with some projects (for example,
Time has only 26 faults and would yield validation sets
composed of only a couple of faults). Consequently, for the
self configuration, we use five-fold cross validation instead.
For the cross-project configuration, we simply use faults of
one project as a validation set and all faults from others as a
training set.

We iterate FLUCCS with GP 30 times, resulting in 30
different ranking models. The same goes for GPM and
RF. SVM is deterministic algorithm and therefore, does
not require repetition. To summarise and compare overall
results, evaluation metrics of rankings are aggregated per
Defects4J project. Since acc@n is a counting metric, we
simply count the number of faults, in a Defects4J project,
for which the given ranking model placed the faulty method
at the top. On the other hand, both wef and MAP values
can be computed for localisation of a single fault. Therefore,
unlike acc@n, wef and MAP for each Defects4J project
is the average of all wef and MAP values over the faults
belonging to the same project.

4.6 Tie-breaking
Ranking models generated by both FLUCCS and the eleven
baseline SBFL formulæ produce ordinal scores. However,
when converting these scores into rankings, ties often take
place. To break these ties, We use max tie-breaker that
ranks all tied elements with the lowest ranking. We use the
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rankdata function from scipy.stats, a Python module
for statistical functions as well as probability distribution, to
implement max tie breaker.

TABLE 5: Metric values showing the effectiveness of FLUCCS

Technique Project Total acc wef MAP
Faults @1 @3 @5 @10 mean std

GPA
min

Lang 63 30 43 47 57 3.10 5.98 0.5654
Math 105 49 63 69 78 21.69 123.75 0.4673
Time 26 10 14 17 20 8.62 13.57 0.4075
Closure 131 32 65 76 93 20.38 64.19 0.3469
Chart 25 14 20 22 24 1.52 2.90 0.5654
Mockito 36 9 18 23 32 5.36 9.71 0.3499
Overall 386 144 223 254 304 14.50 75.25 0.4338

GPA
med

Lang 63 31 46 50 58 2.33 3.80 0.6025
Math 105 47 64 71 79 57.66 481.00 0.4707
Time 26 9 14 16 19 134.38 636.50 0.4063
Closure 131 35 64 80 97 29.98 100.81 0.3665
Chart 25 15 21 24 24 1.16 2.34 0.6108
Mockito 36 10 18 22 31 7.97 20.30 0.3523
Overall 386 147 227 263 308 36.13 308.00 0.4507

5 RESULTS AND ANALYSIS

5.1 RQ1. Effectiveness

Table 5 shows the performance of FLUCCS measured by us-
ing evaluation metrics described in Section 4.4. For GPA

min,
144 faults (roughly 37% of all faults studied) are located at
the top and 304 faults (79%) are placed within the top ten.
For GPA

med, 147 faults (38%) and 308 faults (80%) are placed
at the top and within the top ten respectively. Although
the result of GPA

med has a slightly better result than GPA
min

for metric acc@n, GPA
min outperforms GPA

med for metric wef,
which is used as the fitness function of FLUCCS. Recall that
the fitness function is the average ranking of faults in the
test datasets; wef directly reflects the relative fitness (higher
ranking results in lower wef ), whereas acc@n counts specific
cases of produced rankings. Consequently, improved wef by
GPA

min can still result in worse acc@1.
The overall MAP values for both GPA

min and GPA
med are

less than 0.5. While acc@n and wef focus on the method
that has the highest rank, MAP concerns all faulty methods
that consist a single Defects4J fault, communicating more
complete views on the rankings of constituent methods. The
observed overall MAP values are higher than those reported
in fault localisation literature [18].

The results suggest that FLUCCS is more effective at
localizing faults when compared to baseline SBFL formulæ.
The right column (“Without Method Level Aggregation”) in
Tables 7 and 8 shows the results from the 11 baseline SBFL
formulæ. The top six best performing SBFL formulæ are
ER1a, ER1b, gp13, gp19, Ochiai, and Jaccard. Compared
to these formulæ, GPA

min places at least 31% and at most
47% more faults at the top (acc@1).In terms of average wef,
GPA

min has 14.5 while the average wef for these baseline
formulæ ranges from 47.5 to 1094.0. MAP values for all top
six formulæ do not exceed 0.4, which GPA

min exceeds: the
values are ranged from 0.31396 to 0.37622.

The violinplots in Fig. 3 present the overall values of
wef from eleven baseline SBFL formulæ as well as GPA

med

and GPA
min they−axisisinlogscale: FLUCCS outperforms

all other baseline formulæ. This provides an answer for
Answer to RQ1: FLUCCS outperforms the existing SBFL

formulæ by locating at least 31% and at most 47% more
faults without any wasted effort.

TABLE 6: Code and Change Metric Contribution: Metric values for the
results of FLUCCS without using Code and Change Metrics as features

Technique Project Total acc wef MAP
Faults @1 @3 @5 @10 mean std

GPS
min

Lang 63 26 38 44 48 3.70 5.01 0.5064
Math 105 24 49 55 62 29.44 82.56 0.3203
Time 26 8 12 18 20 69.06 299.25 0.3411
Closure 131 35 61 77 95 19.94 64.88 0.3628
Chart 25 11 17 20 21 3.28 5.56 0.5322
Mockito 36 13 20 23 30 8.95 18.75 0.3823
Overall 386 117 197 237 276 21.08 98.06 0.3860

GPS
med

Lang 63 28 40 45 46 3.76 5.32 0.5322
Math 105 27 48 57 62 73.06 480.50 0.3364
Time 26 7 12 14 18 139.00 636.00 0.3015
Closure 131 34 64 78 99 26.67 88.44 0.3582
Chart 25 11 18 23 23 2.24 4.46 0.5313
Mockito 36 13 20 22 28 9.50 22.78 0.3940
Overall 386 120 202 239 276 39.94 306.75 0.3914

5.2 RQ2. Code and Change Metric Contribution

To investigate the impact of using code and change met-
rics for localisation, we compare the results of FLUCCS
with and without code and change metrics to each other,
leaving other factors the same. Table 6 shows results of
FLUCCS with only SBFL scores as features, named GPS

min

and GPS
med. Compared to Table 5, which describes results

using all features, GPA
min and GPA

med excel GPS
min and

GPS
med respectively by placing 23% and 22.5% more faults

at the first place (acc@1). In terms of wef, GPA
min reduces

the average by 45% while GPA
med saves 10.5% in terms of

average;MAP values of both GPS
min and GPS

med are less
than 0.4. Violinplots in Fig. 4 show overall wef metric values
of GPA

min, GPA
med, GPS

min, and GPS
med. For all projects

except Closure-Compiler and Mockito, GPA
min and GPA

med

place more faults at the top rank.
Answer to RQ2: Code and change metrics improve the

effectiveness of fault localisation, allowing to localise at least
22% more faults correctly and reduce wef at least 10.5% and
at most 45%.

5.3 RQ3. Method Level Aggregation

Tables 7 and 8 shows the impact of using Method Level
Aggregation for the 11 baseline SBFL formulæ. Among 11
baseline formulæ, the top six best performing formulæ are
ER1a, ER1b, gp03, gp19, Ochiai, Jaccard. Method Level
Aggregation can improve acc@1 values of these formulæ
by 50% to 68%. For other five formulæ, which place less
than 3% of faults at the top, only marginal benefits are
achieved; underlying performance of these formulæ does
not change: poorly performed formulæ remain as they are.
These results imply that Method Level Aggregation can
improve the accuracy of existing SBFL formulæ in some
cases, but it cannot overcome the inherent limits of given
SBFL formulæ. Therefore, this technique can be only used
as an additional tool for fault localisation.

Answer for RQ3: Some SBFL formulæ can benefit from
using Method Level Aggregation, localizing 50% to 68%
more faults, however, their fundamental shortcoming, per-
formance barrier originated from the formulæ themselves,
cannot be overcome by Method Level Aggregation alone.

5.4 RQ4. Algorithm Dependency

To inspect the effect of learning algorithm over the effec-
tiveness of FLUCCS, we revisit RQ1 and RQ2 for three new
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Fig. 3: Violinplots of wef values from the 11 base SBFL formulæ as well as the minimum and the median wef from FLUCCS (GPA
min and GPA

med)
that uses all the features. FLUCCS outperforms all baseline SBFL formulæ across all subjects.

algorithms: GPM, SVM, and RF. Table 9 and violinplots in
Fig. 5 present the results of them.

Let us first consider the effectiveness of localisation.
Compared to the baseline results from SBFL formulæ in
Tables 7 and 8, GPM and RF place 40% and 24.5% more
faults at the top respectively, while SVM locates 10% more
faults at the top. Considering the observed acc@1 values,
we contribute the increased wef observed in GPM and
RF results to missed faults being ranked lower, thereby
increasing the average wef. MAP for all three algorithms
exceeds 0.4 while MAP for the baseline remains below 0.4.
The benefit of code and change metrics is also clearly shown
in Table 9: the left half, containing the results without code
and coverage metric, shows lower acc@n and MAP as well
as higher wef in general.

A closer look at the results reveals that relative perfor-
mance of algorithms differs depending on the evaluation
metric. For acc@1, GPM performs the best (GPMmed: 156),
followed by GP (GPmed: 147), RF (RFmed: 134), and SVM
(121). In contrast, when evaluated using the mean wef, the
order is SVM (24.641), GP (GPmed: 36.125), GPM (GPMmed:
258.5), and RF (RFmed: 1125.0), placing the worst performer
by acc@1, SVM, at the top. Violinplots in Fig. 5 further ex-
plain this phenomena: despite the high number of localised
methods near the top of rankings, violinplots of GPM and
RF tend to be longer and thicker at the bottom than other
algorithms, suggesting missed faulty methods being ranked
relatively lower.

We conjecture that these mixed results are due to the
types of learn-to-rank algorithms: pointwise or pairwise.

Fault localisation through GPM and RF are both pointwise
approaches, as both focus on classifying each point’s label
correctly; GPM tries to reduce the variance of each point’s
predicted output, ordinal score, to the true label and RF
attempts to minimise the homogeneity of the final leaves,
where the state of a data point, 0 or 1, is determined based
on the proximity of its ordinal score to each state value:
to the closer one. On the other hand, SVM (or ranking
SVM) is a pairwise approach, which aims to restore ordinal
associations between data points; here, ordinal association
between data points represents the relative likelihood to be
faulty. It uses Kendall’s tau to define its loss term [46]. Both
Kendall’s tau and wef take into account of ordinal relations,
explaining SVM’s preference on wef. GP uses average wef as
fitness, which describes why average wef is smaller than any
other methods for GP (GPmin) even though it is a pointwise
approach.

Answer to RQ4: All three algorithms outperform the
baseline, locating 10% to 40% more faults, and share uni-
versal benefits of employing code and change metrics. The
comparison between four algorithms implies that depend-
ing on different aspect of accuracy, certain type of learning
algorithm can be more fitting.

5.5 RQ5. Existence of project-specific traits that are
effective for fault localisation

To analyse the results of the cross-project learning, we train
seven different models using mixed, otherlang , othermath,
othertime, otherclosure, otherchart, and othermockito: one of the
other models, otherP , can double as self for project P . For all
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Fig. 4: Violinplots of wef values from FLUCCS with (GPA
min and GPA

med) and without (GPS
min and GPS

med) the code and change metric features.
x-axis denotes whether code and change metrics have been used: with (W CCMS) or without (WO CCMS) code and change metrics. The use
of code and change metric features does improve the wef values.

pairs between seven models, we perform Mann-Whitney U -
test and measure Vargha-Delaney A12 effect size to compare
the wef values of the pair: the wef values are computed
from ranking models with the best fitness such as GPA

min.
Table 10 and Table 11 present the summaries of A12 statistic
and U test results respectively.

The number of comparisons made is different for each
pair of configurations. For example, between mixed and
self , 24 comparisons exist: mixed against six different self
configurations, multiplied by four learn-to-rank algorithms.
We denote this as ntotal. Table 10 and Table 11 show, out
of ntotal, how many times the configuration corresponding
to the row was better than the other corresponding to the
column. For A12 statistic, we consider the row configuration
to be better than the column configuration if the effect size
is greater than 0.5. For Mann-Whitney U -test, we consider
the row configuration to be better than the column config-
uration if we can reject the null hypothesis, which is that
the column configuration produces lower wef than the row
configuration. The significance level is 0.05.

In general, self and mixed configurations tend to perform
better than the other configurations. In terms of A12 statis-
tic, self outperforms other configurations at least 16 out of
20 comparisons. The mixed configuration shows a similar
pattern, also outperforming other configurations at least 16
times. Between self and mixed, self outperforms mixed con-
figuration 16 times out of 24 comparisons. Table 11 shows
that there is only one case of self outperforming mixed with

statistical significance. In other cases where both self and
mixed are concerned, the differences in their performances
are not statistically significant. Both self and mixed, however,
outperform other configurations with statistical significance.

Table 12 and Table 13 show the detailed results of
A12 statistic and U -test for Time and Closure, respectively4.
In both projects, self and mixed generally outperform other
configurations, although in some cases such as othermockito

with SVM, other succeeds to outperform self and mixed. Nev-
ertheless, none of the other configurations outperforms self
and mixed with statistical significance (U -test). Furthermore,
while A12 statistic shows that there exists a performance
difference between self and mixed, the p-values of U -test
show that the differences are not statistically significant.
Fig. 6 visualises the distributions of wef using different
configurations.

Answer to RQ5: While the results of A12 suggest that
self configuration outperforms mixed, the difference between
their performance does not hold any statistical significance,
which is shown by U -test. Based on this, we argue that,
although there exist project-specific traits that may improve
the localisation performance, it is possible to learn general
ranking models that are as effective as the one that exploits
the project-specific traits.

4. Results for other projects have been left out due to space restric-
tions: see https://coinse.kaist.ac.kr/projects/fluccs/journal extension
for full results.

https://coinse.kaist.ac.kr/projects/fluccs/journal_extension
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TABLE 7: Baseline metric values from SBFL formulæ, with and without Method Level Aggregation

Tech Project Total With Method Level Aggregation Without Method Level Aggregation
Faults acc wef MAP acc wef MAP

@1 @3 @5 @10 mean std @1 @3 @5 @10 mean std

ER1a

Lang 63 24 30 33 34 726.50 894.50 0.4114 18 27 28 32 728.00 893.50 0.3489
Math 105 19 37 44 49 2,146.00 2,218.00 0.2421 12 28 36 45 2,146.00 2,218.00 0.1897
Time 26 0 0 0 0 3,370.00 46.47 0.0004 0 0 0 0 3,370.00 46.47 0.0004
Closure 131 38 66 84 94 231.00 1,015.50 0.3833 16 31 45 60 264.75 1,020.50 0.2079
Chart 25 11 17 18 20 548.50 1,259.00 0.4480 7 13 14 20 711.00 1,623.00 0.2932
Mockito 36 6 8 12 16 545.00 583.50 0.2356 5 9 10 13 552.50 577.00 0.1912
Overall 386 98 158 191 213 1,094.00 1,711.00 0.3140 58 108 133 170 1,117.00 1,722.00 0.2159

ER1b

Lang 63 25 34 37 38 5.57 7.09 0.4761 19 31 32 36 7.00 9.27 0.4143
Math 105 20 41 49 55 77.69 450.75 0.2800 13 31 40 51 85.44 440.75 0.2252
Time 26 7 11 13 15 126.75 394.25 0.2974 6 10 11 13 118.88 348.50 0.2460
Closure 131 27 44 57 69 44.34 122.38 0.2844 13 24 34 48 78.00 194.88 0.1713
Chart 25 11 17 18 20 23.84 76.38 0.4729 7 13 14 20 36.97 113.75 0.3149
Mockito 36 8 10 14 21 47.38 73.88 0.2908 7 11 12 17 64.13 107.75 0.2456
Overall 386 98 157 188 218 51.59 269.50 0.3281 65 120 143 185 67.25 277.00 0.2468

ER5a

Lang 63 6 19 23 26 12.51 12.36 0.2411 6 19 23 26 12.51 12.36 0.2411
Math 105 3 8 10 16 140.62 480.75 0.0776 3 8 10 16 140.62 480.75 0.0776
Time 26 1 1 1 1 458.50 590.50 0.0237 1 1 1 1 458.50 590.50 0.0237
Closure 131 0 0 0 0 601.00 368.25 0.0043 0 0 0 0 601.00 368.25 0.0043
Chart 25 1 2 3 9 57.91 87.38 0.1229 1 2 3 6 77.19 125.50 0.1027
Mockito 36 0 0 0 1 166.62 205.75 0.0162 0 0 0 1 166.62 205.75 0.0162
Overall 386 11 30 37 53 294.50 441.75 0.0730 11 30 37 50 295.75 441.75 0.0717

ER5b

Lang 63 6 19 23 26 12.51 12.36 0.2411 6 19 23 26 12.51 12.36 0.2411
Math 105 3 8 10 16 140.62 480.75 0.0776 3 8 10 16 140.62 480.75 0.0776
Time 26 1 1 1 1 458.50 590.50 0.0237 1 1 1 1 458.50 590.50 0.0237
Closure 131 0 0 0 0 601.00 368.25 0.0043 0 0 0 0 601.00 368.25 0.0043
Chart 25 1 2 3 9 57.91 87.38 0.1229 1 2 3 6 77.19 125.50 0.1027
Mockito 36 0 0 0 1 166.62 205.75 0.0162 0 0 0 1 166.62 205.75 0.0162
Overall 386 11 30 37 53 294.50 441.75 0.0730 11 30 37 50 295.75 441.75 0.0717

ER5c

Lang 63 5 17 19 22 732.50 890.00 0.1859 5 17 19 22 732.50 890.00 0.1859
Math 105 2 7 9 14 2,158.00 2,206.00 0.0614 2 7 9 14 2,158.00 2,206.00 0.0614
Time 26 0 0 0 0 3,370.00 46.47 0.0004 0 0 0 0 3,370.00 46.47 0.0004
Closure 131 0 0 0 0 785.50 971.00 0.0037 0 0 0 0 785.50 971.00 0.0037
Chart 25 1 2 3 9 581.50 1,246.00 0.1036 1 2 3 6 750.00 1,608.00 0.0865
Mockito 36 0 0 0 0 599.00 535.50 0.0102 0 0 0 0 599.00 535.50 0.0102
Overall 386 8 26 31 45 1,294.00 1,616.00 0.0560 8 26 31 42 1,305.00 1,632.00 0.0549

gp02

Lang 63 1 1 1 2 284.25 200.25 0.0236 1 1 1 2 284.25 200.25 0.0236
Math 105 0 0 0 0 717.50 705.00 0.0051 0 0 0 0 717.50 705.00 0.0051
Time 26 0 0 0 0 878.00 372.25 0.0016 0 0 0 0 878.00 372.25 0.0016
Closure 131 0 0 0 0 1,700.00 1,014.00 0.0011 0 0 0 0 1,700.00 1,014.00 0.0011
Chart 25 0 0 0 0 688.00 487.75 0.0056 0 0 0 0 923.00 658.50 0.0043
Mockito 36 0 0 0 0 269.75 172.38 0.0095 0 0 0 0 269.75 172.38 0.0095
Overall 386 1 1 1 2 947.50 918.50 0.0069 1 1 1 2 962.50 923.00 0.0069

gp03

Lang 63 2 2 3 3 932.00 688.50 0.0309 2 3 3 3 1,174.00 757.50 0.0336
Math 105 0 2 2 2 1,663.00 1,381.00 0.0080 0 2 2 2 1,777.00 1,404.00 0.0077
Time 26 0 2 2 2 1,181.00 925.50 0.0402 1 2 2 2 1,339.00 1,066.00 0.0593
Closure 131 0 1 2 3 2,128.00 1,614.00 0.0083 0 1 1 1 2,286.00 1,737.00 0.0063
Chart 25 3 3 3 3 1,504.00 1,284.00 0.0711 1 2 2 3 2,031.00 1,718.00 0.0246
Mockito 36 2 2 2 4 356.25 293.50 0.0511 1 1 1 2 372.00 299.75 0.0412
Overall 386 7 12 14 17 1,537.00 1,405.00 0.0221 5 11 11 13 1,707.00 1,508.00 0.0191

5.6 RQ6. Gradual Cross-Project Training
Table 14 and Table 15 present the results of gradual

cross-project learning on Time and Closure, respectively.
Boxplots in Fig. 7 visualise the overall distribution of wef
values. We further show the details of how wef values are
distributed with scatter-plots of wef values5. In Time, the self
configuration tends to produce better ranking models. Both
acc@n and wef values improve as more Time faults replace
the faults from the other projects in the training data; the
boxplots of Time in Fig. 7 show patterns of decreasing wef
with all learning algorithms.

The results of Closure, however, shows a pattern that
is different from what we have observed from Time. While
using more self faults improves the performance, training
with both others and self faults can also produce the best
ranking models (see Table 15 and Fig. 7). We posit that,
by including the others faults, the diversity in training data
increases, which in turn lowers the risk of overfitting and
results in better performance against unseen faults.

Answer to RQ6: When there are not enough historical
faults in the SUT to learn from, developers can start learning
from faults of the other projects, preferably more than one

5. Full results for all six projects are available from https://coinse.
kaist.ac.kr/projects/fluccs/journal extension.

project, and gradually augment the training data with the
own faults from the SUT. The results also show that a certain
level of diversity in training data, owed to faults from other
projects, can help avoiding overfitting.

5.7 RQ7. Feature Importance

Table 16 presents the top ten features obtained by RF
based analysis. It shows the normalised average reduction
in variance due to split by each feature. Table 17 shows the
direct impact of these top ten features on the effectiveness
of a given ranking model in percentage decrease for Math
and Time6. The effectiveness of ranking models are evalu-
ated using acc@1,3,5. The value x in each cell denotes x%
decrease in acc@1,3,5 when the input values for the feature
corresponding to that row have been randomly permutated
among datapoints: negative values means increases in per-
formance.

We note that the majority of code and change metrics are
among the top ten, whereas only a relatively small number
of SBFL scores feature in the top ten. We suspect that some
of the SBFL scores exhibit multicollinearity, i.e., they are

6. For full results, please refer to our website: https://coinse.kaist.ac.
kr/projects/fluccs/journal extension

https://coinse.kaist.ac.kr/projects/fluccs/journal_extension
https://coinse.kaist.ac.kr/projects/fluccs/journal_extension
https://coinse.kaist.ac.kr/projects/fluccs/journal_extension
https://coinse.kaist.ac.kr/projects/fluccs/journal_extension
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TABLE 8: Baseline metric values from SBFL formulæ, with and without Method Level Aggregation

Tech Project Total With Method Level Aggregation Without Method Level Aggregation
Faults acc wef MAP acc wef MAP

@1 @3 @5 @10 mean std @1 @3 @5 @10 mean std

gp13

Lang 63 25 34 37 38 5.57 7.09 0.4761 19 31 32 36 7.00 9.27 0.4143
Math 105 20 41 49 55 80.63 480.25 0.2798 13 31 40 51 89.38 480.50 0.2251
Time 26 7 11 13 15 176.00 635.50 0.2974 6 10 11 13 177.50 635.50 0.2460
Closure 131 27 44 57 69 44.34 122.38 0.2844 13 24 34 48 78.19 196.38 0.1713
Chart 25 11 17 18 20 23.84 76.38 0.4727 7 13 14 20 36.97 113.75 0.3145
Mockito 36 8 10 14 21 75.75 214.88 0.2903 7 11 12 17 84.38 214.75 0.2450
Overall 386 98 157 188 218 58.34 318.50 0.3281 65 120 143 185 74.19 331.50 0.2467

gp19

Lang 63 25 34 37 38 5.57 7.09 0.4761 19 31 32 36 7.00 9.27 0.4143
Math 105 20 41 49 55 80.38 480.25 0.2800 13 31 40 51 89.13 480.50 0.2252
Time 26 7 12 14 18 161.25 638.00 0.3208 6 11 12 16 162.75 638.00 0.2698
Closure 131 31 48 67 80 40.22 126.31 0.3167 13 27 39 54 74.06 197.62 0.1814
Chart 25 11 17 18 20 23.84 76.38 0.4727 7 13 14 20 36.97 113.75 0.3145
Mockito 36 11 13 18 22 60.28 212.75 0.3525 8 12 15 18 68.94 213.12 0.2795
Overall 386 105 165 203 233 54.44 318.75 0.3464 66 125 152 195 70.31 331.50 0.2551

ochiai

Lang 63 25 39 42 45 4.54 5.98 0.5015 24 34 35 40 6.19 8.73 0.4622
Math 105 20 41 49 56 75.44 480.25 0.2871 13 30 39 49 86.56 480.25 0.2234
Time 26 8 11 15 19 144.00 635.50 0.3298 5 10 13 17 147.62 635.00 0.2627
Closure 131 33 64 81 92 36.13 116.25 0.3540 13 28 43 58 74.13 192.50 0.1881
Chart 25 12 17 20 22 2.68 4.57 0.5425 7 13 14 20 8.12 15.98 0.3565
Mockito 36 12 17 20 24 43.84 211.00 0.3584 9 13 15 19 59.78 212.88 0.2710
Overall 386 110 189 227 258 47.50 316.25 0.3709 71 128 159 203 65.75 328.75 0.2661

jaccard

Lang 63 24 46 50 52 3.46 5.70 0.5288 19 39 41 50 5.19 8.59 0.4519
Math 105 20 43 51 56 75.25 480.25 0.2896 13 31 40 50 86.25 480.25 0.2231
Time 26 8 11 14 18 147.12 635.50 0.3281 5 9 12 17 150.75 634.50 0.2573
Closure 131 32 64 81 92 40.06 125.56 0.3499 11 25 40 58 80.63 199.00 0.1787
Chart 25 12 17 20 22 2.68 4.57 0.5425 7 13 14 19 8.60 17.20 0.3562
Mockito 36 12 16 21 24 45.28 211.00 0.3770 9 12 16 18 60.50 211.88 0.2861
Overall 386 108 197 237 264 48.94 317.50 0.3762 64 129 163 212 68.00 330.25 0.2622

TABLE 9: Metric values from FLUCCS using other learning algorithms - GPM, SVM, and RF.

Tech Project Total With Code and Change metrics Without Code and Change metrics
Faults acc wef MAP acc wef MAP

@1 @3 @5 @10 mean std @1 @3 @5 @10 mean std

GPMmin

Lang 63 41 52 57 59 62.19 315.00 0.7202 40 53 59 59 2.21 6.83 0.7026
Math 105 37 54 59 65 213.00 962.50 0.3889 25 44 52 57 46.00 169.12 0.3091
Time 26 9 16 19 20 126.31 584.50 0.4141 6 10 14 18 173.00 652.50 0.3057
Closure 131 47 73 84 95 155.62 715.00 0.4209 43 72 83 97 65.00 231.62 0.4036
Chart 25 16 22 23 24 136.62 666.50 0.6314 13 18 21 22 5.24 15.70 0.5845
Mockito 36 6 19 25 28 36.66 181.12 0.3240 8 16 19 23 28.56 79.69 0.3196
Overall 386 156 236 267 291 141.62 707.00 0.4651 135 213 248 276 49.59 238.62 0.4241

GPMmed

Lang 63 41 53 58 59 125.00 479.25 0.7212 40 52 59 59 9.05 54.88 0.6890
Math 105 38 52 58 66 299.50 1,105.00 0.3853 25 44 52 57 123.06 670.00 0.3069
Time 26 10 15 19 20 132.25 525.50 0.4089 5 9 14 18 458.25 1,089.00 0.2988
Closure 131 48 71 82 96 398.50 1,309.00 0.4163 42 70 83 100 303.25 1,186.00 0.4004
Chart 25 15 22 23 24 136.38 664.50 0.6148 13 18 20 22 6.64 21.58 0.5742
Mockito 36 8 22 24 29 40.34 205.25 0.3555 9 16 21 24 79.56 239.12 0.3240
Overall 386 160 235 264 294 258.50 1,009.50 0.4644 134 209 249 280 176.50 839.00 0.4194

SVM

Lang 63 34 48 52 60 2.38 5.16 0.6494 25 38 50 59 2.95 4.79 0.5269
Math 105 31 46 49 56 27.41 49.94 0.3386 21 43 49 56 34.78 113.56 0.3003
Time 26 10 17 19 19 16.27 35.97 0.4302 8 13 16 19 84.38 377.25 0.3464
Closure 131 27 64 76 94 36.66 123.94 0.3320 38 60 76 91 42.00 154.38 0.3718
Chart 25 11 21 21 23 2.08 3.53 0.5005 10 17 19 22 3.92 6.91 0.4981
Mockito 36 8 21 23 27 33.59 124.62 0.3237 11 18 21 25 35.78 134.25 0.3333
Overall 386 121 217 240 279 24.64 87.25 0.4023 113 189 231 272 33.47 152.50 0.3806

RFmin

Lang 63 40 50 53 58 60.75 323.25 0.6685 37 52 54 58 101.56 448.75 0.6509
Math 105 35 58 65 75 844.00 1,724.00 0.3789 28 50 61 64 1,087.00 1,888.00 0.3311
Time 26 9 13 16 19 389.50 1,057.00 0.3987 7 11 15 17 772.50 1,399.00 0.3225
Closure 131 41 64 73 89 1,269.00 2,392.00 0.3601 38 53 64 80 1,453.00 2,510.00 0.3345
Chart 25 10 17 19 20 139.00 666.00 0.4260 12 17 20 21 289.00 957.50 0.4507
Mockito 36 7 10 13 21 166.50 386.75 0.2366 11 15 18 24 192.88 427.50 0.2629
Overall 386 142 212 239 282 721.00 1,766.00 0.4109 133 198 232 264 894.00 1,907.00 0.3853

RFmed

Lang 63 35 47 51 56 92.94 407.50 0.6240 36 48 49 54 182.00 556.50 0.6284
Math 105 33 54 59 63 1,380.00 2,026.00 0.3433 25 46 51 55 1,421.00 2,037.00 0.2783
Time 26 8 15 19 19 511.50 1,190.00 0.3906 6 10 13 15 1,033.00 1,535.00 0.2800
Closure 131 40 57 64 74 1,986.00 2,768.00 0.3355 33 48 59 67 2,019.00 2,764.00 0.2971
Chart 25 9 16 19 21 139.75 666.00 0.4348 13 19 21 22 315.50 900.50 0.4834
Mockito 36 9 14 15 20 187.12 396.50 0.2446 10 14 15 21 321.75 485.25 0.2492
Overall 386 134 203 227 253 1,125.00 2,120.00 0.3862 123 185 208 234 1,221.00 2,130.00 0.3525

correlated with each other. Since they are all designed to
rank the faulty statement higher, and computed from the
same test and coverage results, it is not unnatural that there
exists some correlation between them. Once RF chooses
one of the SBFL scores for a split, the chance of other
SBFL scores contributing significantly to subsequent splits
may be small. In contrast, code and change metrics do not
resemble each other as much as SBFL scores do, as they are
computed from multiple data sources: change metrics from
the code development history and complexity metrics from
the source code itself.

Complexity metric b length and loc appear to be impor-
tant consistently across all six projects. These metrics are
also present in the top ten features of the model trained
using mixed configuration. Looking at Table 17, acc@1
decreases by 27% and by 24% when values of b length and
loc are randomly shuffled among datapoints for the mixed
configuration. This suggests that b length and loc may be
particularly useful features for fault localisation.

Although six projects have common important features,
the change metrics, particularly churn and min age, have
more influence on Time than on other projects. In Time,
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Fig. 5: Violinplots of wef values from FLUCCS using GP (GPA
min, GPS

min, GPA
med, GPS

med) and three other learning algorithms: GPM (GPMA
min,

GPMS
min, GPMA

med, GPMS
med), SVM (SVMA, SVMS ), RF (RFA

min, RFS
min, RFA

med, RFS
med). Overall, results of GP and GPM tend to be

better than those of SVM and RF

TABLE 10: The effect sizes of Vargha-Delaney A12 statistic between
the pairs of training data configurations. nwin(ntied)/ntotal in a cell
located at (row i, column j) implies the row i configuration outperforms
and ties with the column j configuration nwin and ntied times out of
ntotal comparisons, respectively.

mixed self other other other other other other
lang math time closure chart mockito

mixed – 7(1)/24 16(0)/20 17(0)/20 19(0)/20 16(0)/20 20(0)/20 16(0)/20
self 16(1)/24 – 17(0)/20 18(0)/20 20(0)/20 16(0)/20 18(0)/20 17(0)/20
otherlang 4(0)/20 3(0)/20 – 9(0)/16 12(0)/16 9(0)/16 7(0)/16 10(0)/16
othermath 3(0)/20 2(0)/20 7(0)/16 – 13(0)/16 7(0)/16 6(0)/16 7(0)/16
othertime 1(0)/20 0(0)/20 4(0)/16 3(0)/16 – 2(0)/16 3(0)/16 3(0)/16
otherclosure 4(0)/20 4(0)/20 7(0)/16 9(0)/16 14(0)/16 – 8(0)/16 11(0)/16
otherchart 0(0)/20 2(0)/20 9(0)/16 10(0)/16 13(0)/16 8(0)/16 – 8(0)/16
othermockito 4(0)/20 3(0)/20 6(0)/16 9(0)/16 13(0)/16 5(0)/16 8(0)/16 –

random permutation of churn and min age decreases acc@1
by 36% and 67% respectively. In mixed, however, the permu-
tation of these metrics decreases acc@1 only by 2% and 3%
respectively. To explain this, we have investigated the distri-
bution of change metrics per project, which is shown in Ta-
ble 18. Time has the largest churn and the smallest min age;
the methods of Time are the most frequently changed, but
relatively young, when compared to other projects. Based on
this, we conjecture that, for projects going through intensive
period of frequent changes, code and change metrics can

TABLE 11: The p-values of Mann-Whitney U−test between the pairs of
training data configurations. nreject/ntotal in a cell located at (row i,
column j) implies the null-hypothesis of row i configuration producing
lower wef values than column j configuration is rejected nreject times
out of ntotal.

mixed self other other other other other other
lang math time closure chart mockito

mixed – 0/24 5/20 8/20 14/20 4/20 3/20 5/20
self 1/24 – 11/20 12/20 16/20 8/20 7/20 8/20
otherlang 0/20 0/20 – 2/16 8/16 1/16 0/16 2/16
othermath 0/20 0/20 1/16 – 8/16 0/16 1/16 4/16
othertime 0/20 0/20 1/16 1/16 – 0/16 0/16 0/16
otherclosure 0/20 1/20 2/16 3/16 9/16 – 0/16 1/16
otherchart 0/20 0/20 3/16 6/16 10/16 0/16 – 4/16
othermockito 0/20 0/20 3/16 4/16 9/16 1/16 1/16 –

become important features for fault localisation. This seems
to confirm the existing results in defect prediction, which
suggests that higher code churn is a good indicator of defect
proneness [23].

Answer to RQ7: The results of feature importance anal-
ysis suggest that some of the SBFL scores may be redundant
features due to multicollinearity, whereas the majority of
code and change metrics are important features. Among the
code and change metrics, b length and loc have significant
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Fig. 6: Violin plots of wef metric values from min model of four different learning algorithms: GP , GPM , SVM , and RF . The color of the plots
differentiates the configuration that has been used for generating ranking models.

TABLE 12: Effect sizes of Vargha-Delaney A12 statistic and p-values of Mann-Whitney U-test on wef values for T ime dataset. Training
configurations on row i and column j are compared.

Tech Config Vargha-Delaney A12 statistic Mann-Whitney U -test
mixed self otherlang otherclosure othermockito otherchart othermath mixed self otherlang otherclosure othermockito otherchart othermath

GP

mixed 0.5 0.4128 0.6289 0.5420 0.5400 0.5488 0.5923 0.0 0.8711 0.0533 0.2979 0.3066 0.2686 0.1235
self 0.5874 0.5 0.7095 0.6318 0.6196 0.6304 0.6821 0.1290 0.0 0.0040 0.0470 0.0623 0.0476 0.0108
otherlang 0.3713 0.2908 0.5 0.4082 0.4082 0.4253 0.4497 0.9468 0.9961 0.0 0.8735 0.8740 0.8247 0.7339
otherclosure 0.4578 0.3684 0.5918 0.5 0.5024 0.5156 0.5708 0.7021 0.9531 0.1263 0.0 0.4890 0.4229 0.1880
othermockito 0.4600 0.3801 0.5918 0.4978 0.5 0.5112 0.5693 0.6934 0.9375 0.1261 0.5112 0.0 0.4446 0.1927
otherchart 0.4512 0.3699 0.5747 0.4844 0.4890 0.5 0.5444 0.7314 0.9521 0.1754 0.5771 0.5557 0.0 0.2900
othermath 0.4075 0.3181 0.5503 0.4290 0.4304 0.4556 0.5 0.8765 0.9893 0.2659 0.8120 0.8071 0.7100 0.0

GPM

mixed 0.5 0.4851 0.5259 0.5503 0.5254 0.6108 0.5830 0.0 0.5752 0.3713 0.2627 0.3750 0.0809 0.1487
self 0.5146 0.5 0.5332 0.5576 0.5347 0.6167 0.5801 0.4248 0.0 0.3347 0.2310 0.3281 0.0682 0.1553
otherlang 0.4741 0.4668 0.5 0.5259 0.5015 0.5649 0.5576 0.6289 0.6650 0.0 0.3718 0.4924 0.2057 0.2338
otherclosure 0.4497 0.4424 0.4741 0.5 0.4771 0.5400 0.5269 0.7373 0.7690 0.6284 0.0 0.6138 0.3079 0.3691
othermockito 0.4749 0.4653 0.4985 0.5229 0.5 0.5620 0.5488 0.6250 0.6719 0.5073 0.3862 0.0 0.2168 0.2698
otherchart 0.3892 0.3831 0.4348 0.4600 0.4380 0.5 0.4482 0.9189 0.9316 0.7944 0.6924 0.7832 0.0 0.7417
othermath 0.4172 0.4202 0.4424 0.4734 0.4512 0.5518 0.5 0.8511 0.8447 0.7661 0.6309 0.7305 0.2583 0.0

SVM

mixed 0.5 0.4927 0.7568 0.6206 0.4705 0.5659 0.8003 0.0 0.5381 0.0007 0.0633 0.6504 0.2013 0.0001
self 0.5073 0.5 0.7539 0.6094 0.4763 0.5630 0.7773 0.4619 0.0 0.0007 0.0815 0.6230 0.2103 0.0003
otherlang 0.2433 0.2463 0.5 0.3921 0.2404 0.2737 0.4614 0.9995 0.9990 0.0 0.9102 0.9995 0.9976 0.6831
otherclosure 0.3794 0.3906 0.6079 0.5 0.3684 0.4246 0.6138 0.9365 0.9185 0.0897 0.0 0.9551 0.8291 0.0789
othermockito 0.5298 0.5234 0.7598 0.6318 0.5 0.5820 0.7944 0.3499 0.3772 0.0005 0.0451 0.0 0.1437 0.0001
otherchart 0.4341 0.4370 0.7266 0.5757 0.4180 0.5 0.7417 0.7988 0.7896 0.0024 0.1709 0.8564 0.0 0.0013
othermath 0.1997 0.2227 0.5386 0.3860 0.2056 0.2581 0.5 1.0000 0.9995 0.3169 0.9209 1.0000 0.9985 0.0

RF

mixed 0.5 0.5161 0.5518 0.6089 0.6294 0.5723 0.5068 0.0 0.4175 0.2556 0.0854 0.0523 0.1804 0.4663
self 0.4836 0.5 0.5332 0.5708 0.5601 0.5557 0.4883 0.5825 0.0 0.3342 0.1829 0.2245 0.2399 0.5605
otherlang 0.4482 0.4668 0.5 0.5430 0.5376 0.5132 0.4475 0.7446 0.6660 0.0 0.2939 0.3179 0.4331 0.7485
otherclosure 0.3914 0.4290 0.4570 0.5 0.4941 0.4690 0.3972 0.9146 0.8174 0.7061 0.0 0.5293 0.6519 0.9033
othermockito 0.3706 0.4402 0.4622 0.5059 0.5 0.4785 0.3899 0.9478 0.7754 0.6821 0.4705 0.0 0.6055 0.9170
otherchart 0.4275 0.4446 0.4866 0.5312 0.5215 0.5 0.4275 0.8193 0.7603 0.5669 0.3481 0.3943 0.0 0.8203
othermath 0.4934 0.5117 0.5527 0.6030 0.6104 0.5723 0.5 0.5337 0.4395 0.2517 0.0969 0.0831 0.1797 0.0

impact on model performance compared to other features.
The result also seem to confirm the existing findings that
suggest frequent changes may lead to defect proneness.

6 DISCUSSION

6.1 Selection of the learning algorithm of FLUCCS

Section 5.4 shows the discrepancies between evaluation
metrics observed from a single algorithm: e.g., SVM per-
forms the worst according to acc@1, but performs the best
according to wef. Section 5.4 subsequently attributed these
discrepancies to the different modes that learn-to-rank algo-
rithms operate: pointwise and pairwise. This section focuses
on the more practical question of which algorithm to use
for each of the two common use cases of fault localisation:
human developers debugging a fault, and an Automatic
Program Repair (APR) technique generating a patch.

The two evaluation metrics we used, acc@n and wef,
directly measure the effort required to localise a given
fault: acc@n approximates the probability of locating a fault
from inspecting the top n elements, and the mean wef
shows the average number of non-faulty program elements
to examine before encountering the first faulty one. The
primary difference between these two metrics is whether

outliers matter (wef ) or not (acc@n). Outliers, i.e., faults that
FLUCCS completely fails to localise, can increase the mean
wef significantly but will not affect acc@n as long as they are
placed outside the first n places.

If developers have a limited debugging budget and do
not necessarily want to locate all faults, it is better to be
guided by acc@n, as algorithms with higher acc@n are likely
to lead the developers to more faults within limited time.
In contrast, if developers can afford time to debug all faults,
they should focus on wef, as wef measures the total effort
required to localise all faults considered. Based on the results
in Table 5 and Table 9, for developers with a limited amount
of resource and allowed to miss a fault, GP (acc@1 = 147)
and GPM (acc@1 = 160) would be the ideal choice. On the
contrary, if developers have more spared resource, and want
to localise all faults, either SVM (wef = 24.64) or GP (wef =
36.13) could be the answer.

It has been shown that fault localisation techniques that
produce a higher ranking for the faulty problem element
are not always the best choice for APR techniques [49]. APR
techniques do not necessarily benefit from high rankings,
as they tend to use the suspiciousness scores as a weight
for program mutation. Consequently, for APR techniques,
assigning lower scores to non-faulty program elements is
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TABLE 13: Effect sizes of Vargha-Delaney A12 statistic and p-values of Mann-Whitney U-test on wef values for Closure dataset. Training
configurations on row i and column j are compared.

Tech Config Vargha-Delaney A12 statistic Mann-Whitney U -test
mixed self otherlang othermockito otherchart othermath othertime mixed self otherlang othermockito otherchart othermath othertime

GP

mixed 0.5 0.4827 0.5493 0.4897 0.5166 0.6440 0.5093 0.0 0.6875 0.0831 0.6147 0.3196 0.0000 0.3953
self 0.5171 0.5 0.5664 0.5068 0.5337 0.6597 0.5264 0.3127 0.0 0.0304 0.4250 0.1698 3.695e-06 0.2285
otherlang 0.4509 0.4336 0.5 0.4404 0.4690 0.6025 0.4617 0.9170 0.9697 0.0 0.9536 0.8091 0.0020 0.8594
othermockito 0.5103 0.4934 0.5596 0.5 0.5259 0.6509 0.5205 0.3853 0.5752 0.0462 0.0 0.2307 0.0000 0.2803
otherchart 0.4834 0.4663 0.5312 0.4739 0.5 0.6240 0.4941 0.6807 0.8301 0.1909 0.7690 0.0 0.0003 0.5669
othermath 0.3560 0.3403 0.3975 0.3491 0.3762 0.5 0.3665 1.0000 1.0000 0.9980 1.0000 0.9995 0.0 1.0000
othertime 0.4905 0.4736 0.5381 0.4795 0.5059 0.6333 0.5 0.6050 0.7715 0.1406 0.7197 0.4331 0.0001 0.0

GPM

mixed 0.5 0.4866 0.5459 0.5405 0.5396 0.5508 0.6167 0.0 0.6504 0.0941 0.1249 0.1301 0.0740 0.0005
self 0.5132 0.5 0.5591 0.5518 0.5537 0.5654 0.6274 0.3499 0.0 0.0452 0.0704 0.0625 0.0306 0.0001
otherlang 0.4541 0.4412 0.5 0.4915 0.4858 0.5020 0.5630 0.9058 0.9546 0.0 0.5967 0.6562 0.4773 0.0374
othermockito 0.4597 0.4485 0.5088 0.5 0.5024 0.5083 0.5825 0.8750 0.9297 0.4033 0.0 0.4719 0.4084 0.0099
otherchart 0.4607 0.4465 0.5142 0.4976 0.5 0.5146 0.5762 0.8696 0.9375 0.3438 0.5278 0.0 0.3386 0.0153
othermath 0.4492 0.4343 0.4980 0.4919 0.4854 0.5 0.5679 0.9258 0.9692 0.5229 0.5913 0.6616 0.0 0.0278
othertime 0.3833 0.3723 0.4373 0.4175 0.4236 0.4321 0.5 0.9995 1.0000 0.9624 0.9902 0.9849 0.9722 0.0

SVM

mixed 0.5 0.5044 0.8218 0.4656 0.5747 0.7075 0.6733 0.0 0.4519 0.0 0.8345 0.0172 0.0 5.364e-07
self 0.4956 0.5 0.8037 0.4587 0.5669 0.7070 0.6650 0.5479 0.0 0.0 0.8789 0.0297 0.0 1.729e-06
otherlang 0.1781 0.1965 0.5 0.1976 0.3342 0.2798 0.3823 1.0000 1.0000 0.0 1.0000 1.0000 1.0000 0.9995
othermockito 0.5342 0.5415 0.8022 0.5 0.5879 0.7212 0.6826 0.1654 0.1210 0.0 0.0 0.0063 0.0 1.192e-07
otherchart 0.4250 0.4331 0.6660 0.4121 0.5 0.5620 0.5718 0.9829 0.9702 1.669e-06 0.9937 0.0 0.0405 0.0219
othermath 0.2925 0.2932 0.7202 0.2791 0.4377 0.5 0.5259 1.0000 1.0000 0.0 1.0000 0.9595 0.0 0.2323
othertime 0.3264 0.3350 0.6177 0.3174 0.4282 0.4739 0.5 1.0000 1.0000 0.0005 1.0000 0.9780 0.7676 0.0

RF

mixed 0.5 0.5024 0.5742 0.6914 0.5317 0.6064 0.6846 0.0 0.4717 0.0179 5.960e-08 0.1847 0.0014 1.192e-07
self 0.4976 0.5 0.5605 0.6650 0.5273 0.5913 0.6611 0.5283 0.0 0.0439 1.788e-06 0.2177 0.0051 3.040e-06
otherlang 0.4258 0.4397 0.5 0.6255 0.4651 0.5176 0.6040 0.9819 0.9561 0.0 0.0002 0.8369 0.3120 0.0018
othermockito 0.3083 0.3352 0.3745 0.5 0.3491 0.3628 0.4695 1.0000 1.0000 1.0000 0.0 1.0000 1.0000 0.8042
otherchart 0.4683 0.4724 0.5347 0.6509 0.5 0.5645 0.6470 0.8154 0.7822 0.1631 0.0000 0.0 0.0347 0.0000
othermath 0.3936 0.4087 0.4824 0.6372 0.4353 0.5 0.6128 0.9985 0.9946 0.6880 0.0001 0.9653 0.0 0.0008
othertime 0.3157 0.3391 0.3960 0.5308 0.3530 0.3872 0.5 1.0000 1.0000 0.9980 0.1959 1.0000 0.9990 0.0

TABLE 14: Time (6): The results of gradual cross-project learning on
Time. The performance of the trained model improves as more faults
from Time are included in training data. The total number of faults in
test data is 6, which is approximately one fifth of the total number of
faults in Time (26).

Algorithm Train acc wef MAP
data Conf @1 @3 @5 ≥ 6 mean std

GP

gradual4/4 1 4 4 2 2.83 3.18 0.43
gradual3/4 1 3 6 0 2.33 1.49 0.39
gradual2/4 1 4 6 0 1.83 1.34 0.41
gradual1/4 2 3 5 1 2.33 2.05 0.39
self 1 5 6 0 1.67 1.25 0.37

GPM

gradual4/4 1 2 3 3 1,348.83 1,516.43 0.26
gradual3/4 0 2 4 2 9.33 14.24 0.26
gradual2/4 0 3 5 1 5.33 7.54 0.33
gradual1/4 1 4 5 1 2.67 2.56 0.39
self 2 4 6 0 1.50 1.26 0.44

SVM

gradual4/4 1 1 1 5 14.00 11.69 0.23
gradual3/4 1 2 5 1 3.17 2.27 0.36
gradual2/4 1 2 5 1 3.00 2.24 0.37
gradual1/4 2 4 5 1 61.50 135.29 0.49
self 4 5 5 1 3.17 6.23 0.63

RF

gradual4/4 0 2 2 4 570.33 1,251.64 0.15
gradual3/4 0 1 2 4 1,141.00 1,597.83 0.09
gradual2/4 1 3 4 2 1,125.67 1,589.81 0.29
gradual1/4 0 3 3 3 565.83 1,253.62 0.17
self 2 3 3 3 1,125.67 1,589.82 0.43

as important as assigning higher scores to faulty program
elements. However, this property is captured neither by
acc@n nor wef.

We instead use Locality Information Loss (LIL), an eval-
uation metric for fault localisation based on information
theory [50]. LIL regards the distribution of suspiciousness
scores as a probability distribution (P), and computes the
cross-entropy between the ideal distribution (L) obtained
from the ground-truth of fault location, and the distribu-
tion computed from given scores, using Kullback-Leibler
divergence. Kullback-Leibler divergence of 0 means that
two distributions are identical. Consequently, a learning
algorithm with a smaller LIL is likely to be more suitable
for APR techniques than others, as it will guide APR tech-
niques to modify the actually faulty program element more
frequently.

TABLE 15: Closure (27): The results of gradual cross-project learning
on Closure. For Closure, learning more from its own faults does not
always result in better performance. The total number of faults in test
data is 27, which is approximately one fifth of the total number of faults
in Closure (131).

Algorithm Train acc wef MAP
data Conf @1 @3 @5 ≥ 6 mean std

GP

gradual4/4 9 14 17 10 30.74 87.64 0.36
gradual3/4 9 14 16 11 28.67 79.47 0.35
gradual2/4 9 14 16 11 31.15 95.36 0.35
gradual1/4 9 14 19 8 14.26 26.02 0.36
self 9 15 17 10 18.11 34.03 0.36

GPM

gradual4/4 7 12 13 14 1,742.81 2,585.02 0.25
gradual3/4 11 16 18 9 839.37 1,974.15 0.38
gradual2/4 11 16 18 9 740.30 1,699.99 0.40
gradual1/4 11 15 18 9 406.07 1,224.17 0.41
self 11 16 18 9 199.81 899.56 0.41

SVM

gradual4/4 5 9 14 13 51.70 115.43 0.24
gradual3/4 5 11 15 12 54.81 166.86 0.26
gradual2/4 6 12 15 12 57.41 185.67 0.29
gradual1/4 9 12 16 11 34.41 112.47 0.33
self 7 12 15 12 38.70 84.75 0.30

RF

gradual4/4 5 10 10 17 1,578.26 2,654.20 0.21
gradual3/4 6 10 12 15 2,164.63 2,831.59 0.24
gradual2/4 10 13 13 14 2,010.48 2,838.96 0.31
gradual1/4 8 11 13 14 2,620.96 2,936.84 0.26
self 7 10 11 16 2,644.89 2,959.05 0.23

Fig. 8 presents the overall distribution of LIL scores
produced by different learning algorithms for faults in six
projects, as well as all faults. It shows that LIL scores of GPM
and SVM have much smaller variances than those of GP
and RF, despite having higher median values. This implies
that GPM and SVM will perform more consistently for APR
techniques, when compared to the other two algorithms
whose performance may vary significantly depending on
the fault being localised. For an unseen arbitrary fault, the
results suggest that GPM and SVM are better choices of
algorithms to perform fault localisation for APR techniques.

6.2 The Influence of Code and Change Metrics
In Section 5.2 and Section 5.4, we concluded that using
code and change metrics improve the effectiveness of fault
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TABLE 16: RF with top 10 features: Each cell contains a feature impor-
tance value for the feature. Among the 40 features used in FLUCCS, the
table shows only the feature importance values of the top ten features.

Feature Lang Math Time Closure Chart Mockito mixed

ochiai - - - - - - -
jaccard - - - - - - -
gp13 - - - - - - -
wong1 - - - - - - -
wong2 - - - - - - -
wong3 - - - - - - -
tarantula 0.26 0.03 0.12 - 0.08 0.08 -
ample - - - - - - -
RussellRao - - - - - - -
SorensenDice - - - - - - -
Kulczynski1 - - - - - - -
SimpleMatching - - - - - - -
M1 - - - - - - -
RogersTanimoto - - - - - - -
Hamming - - - - - - -
Ochiai2 - - - - 0.04 0.03 -
Hamann - - - - - - -
dice - - - - - - -
Kulczynski2 - - - - - - -
Sokal - - - - - - -
M2 - - 0.04 - - - -
Goodman - - - - - - -
Euclid - - - - - - -
Anderberg - - - - - - -
Zoltar - - - 0.05 - - -
ER1a 0.03 0.09 - 0.08 - - 0.09
ER1b 0.03 - 0.06 - 0.05 - -
ER5a - - - - - - -
ER5b - - - - - - -
ER5c - - - - - - -
gp02 0.05 0.05 0.03 0.06 0.04 - 0.05
gp03 0.05 0.04 - 0.05 0.06 0.03 0.05
gp19 - - 0.05 - - 0.04 -

churn 0.05 0.06 0.08 0.06 - 0.10 0.06
max age - 0.03 - 0.05 0.03 0.11 0.04
min age 0.03 0.06 0.10 0.05 0.04 0.14 0.06
num args - - - - - - 0.03
num vars 0.05 0.07 0.04 0.08 0.05 0.04 0.07
b length 0.11 0.11 0.08 0.07 0.12 0.05 0.09
loc 0.05 0.11 0.07 0.05 0.05 0.03 0.05

TABLE 17: Performance differences caused by the random permutation
of each feature in the top ten for RF: each value in the cell shows the
percentage decrease by the permutation of the feature.

Math Time mixed
Feature acc@1 acc@3 acc@5 acc@1 acc@3 acc@5 acc@1 acc@3 acc@5

tarantula 46.90 44.93 41.56 57.46 23.02 25.64 - - -
M2 - - - 21.05 16.15 18.23
ER1a 13.43 8.19 4.82 - - - 41.09 22.58 17.91
ER1b - - - 2.19 4.81 6.84 - - -
gp02 0.61 6.70 6.23 7.89 3.44 6.27 24.19 13.73 10.13
gp03 4.17 4.35 3.27 - - - 1.91 1.37 1.19
gp19 - - - 18.86 25.77 27.92 - - -
churn 1.53 4.41 3.37 35.96 37.46 38.75 2.45 3.00 2.27
max age 2.44 1.09 1.01 - - - 0.19 0.29 0.09
min age 3.66 7.78 6.43 66.67 59.11 54.42 2.76 2.89 1.91
num args - - - - - - 1.74 1.60 0.87
num vars 23.09 19.63 13.37 −1.75 0.69 0.85 16.18 12.93 11.89
b length 29.30 20.84 17.64 7.89 4.12 3.42 27.43 21.39 18.21
loc 31.74 29.71 26.48 14.47 10.31 10.54 23.59 22.39 19.58

TABLE 18: Distribution of churn and min age metrics: the largest mean
and median values of churn and the smallest mean and median values
of min age are written in bold. Compared to the other projects, change
are the most frequent in Time

Project churn (0.0 – 1.0) min age (1 – )
min max mean std median min max mean std median

Lang 0.00 1.00 0.02 0.04 0.01 1 1684 96.18 111.26 56.00
Math 0.00 1.00 0.01 0.03 0.01 1 4625 202.60 224.04 131.00
Time 0.00 1.00 0.03 0.02 0.03 1 227 57.17 61.60 39.00
Closure 0.00 1.00 0.02 0.03 0.01 1 2396 168.15 221.38 88.00
Chart 0.00 1.00 0.01 0.02 0.01 1 911 187.59 199.45 137.00
Mockito 0.00 1.00 0.03 0.04 0.01 1 1476 269.54 282.03 167.00
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Fig. 7: Boxplots and scatterplots(blue) of wef values from gradual cross-
project learning with four learning algorithms on Time and Closure.
The size of a datapoint in the scatterplots is proportional to the number
of data points having the same value. In Time, the performance of
a trained model gradually improves as more of its own faults are
included in training data, while in Closure, learning from its own faults
does not always improve the localisation performance.

localisation. Nevertheless, there are cases for which employ-
ing code and change metrics leads to worse performance
especially in terms of acc@1.

Compared to other projects, the benefit of using code
and change metrics is unclear on Mockito. In Mockito,
acc@1 values decrease whenever code and change metrics
are used. However, acc@n values with n > 1 increases,
for example, acc@3 increases from 16 to 22 at GPMmed

when adding code and change metrics, with all algorithms
except RF for which omitting code and change metrics often
leads to better performance for Mockito. Overall, the results
suggest that using code and change metrics may reduce the
number of faults ranked at the top, but can increase the
number of faults located near the top.

To explain why code and change metrics are less effec-
tive against Mockito, we check whether the feature values
of faulty program elements differ from those of non-faulty
program elements per project. We first test the normality of
the code and change metrics using Shapiro-Wilk test, failing
to confirm normal distribution in all seven code and change
metrics FLUCCS uses. Consequently, we choose Mann-
Whitney U-test to test whether the distributions code and
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Fig. 8: Overall Distribution of LIL: GPM and SVM have smaller vari-
ances compared to GP and SVM

change metric feature values are different between faulty
and non-faulty program elements. The null hypothesis is
that they are from the same distribution.

Table 19 shows the result of the U-test. U-test on a
metric loc fails to reject the null-hypothesis on Mockito: the
p-value for loc is 0.55. On the contrary, the null-hypothesis
is rejected on the other five projects for loc. Since the loc
has been identified as one of the most important features in
Section 5.7, we conjecture that the use of code and change
metrics is less effective against faults of Mockito because
loc, a feature that works well for the other projects, does
not contribute to the classification of faulty and non-faulty
program elements.

TABLE 19: p-values of Mann-Whitney U-test between code and change
metrics of non-faulty and faulty program elements.

Feature Lang Math Time Closure Chart Mockito
pval pval pval pval pval pval

churn 0.00 0.00 0.00 0.00 0.00 0.00
max age 0.00 0.00 0.84 0.12 0.00 0.02
min age 0.03 0.00 0.00 0.00 0.00 0.00
num args 0.00 0.08 0.00 0.00 0.00 0.01
num vars 0.00 0.00 0.01 0.00 0.00 0.00
b length 0.00 0.00 0.00 0.00 0.00 0.00
loc 0.00 0.00 0.00 0.00 0.00 0.55

7 THREATS TO VALIDITY

Internal validity concerns the degree to which the results
of empirical evaluations warrants the claims; data integrity
of training and test data and the correctness of tools are
included here. We use Cobertura, a widely used coverage
tool, to collect the spectrum data; Four learning technique
used by FLUCCS are from open source frameworks [39],
[44], [46], [47], [51] that withstood public inspection and
have been applied in various purpose. We use scipy [51],
a python-based open source software, for our statistical
analysis. For the implementation of both age and churn met-
ric, we identify methods by their signature. While tracking
changes in method signature might be necessary to obtain
a complete change history of a method, we limit our im-
plementation of FLUCCS to follow only the changes in the

body of a method: we consider any method whose signature
has changed as a completely different one, since method
signature is often used to describe semantic behaviour of
the method [27].

External validity are about factors related to the gener-
ality of the conclusions. Despite the use of faults from open
source projects, provided by Defects4J, our conclusions
might be restricted to the programming language (Java)
used in these subjects, as well as some unknown factors that
we missed to contemplate. In addition, the study is limited
by the factors that prevented as stated in Section 4.2, the
study is limited by the factors that prevented us from setting
accurate ground truth for some faults. We plan to handle
these factors in future.

Threats to construct validity includes the correlation
between what we actually measured and what they claim to
measure. The use of absolute metrics provides more realistic
readings of reduction in effort with fault localisation.

8 RELATED WORK

Spectrum Based Fault Localisation has been accepted as the
one of the most widely studied technique [7]. Tarantula [52],
[53], one of the earliest technique, has been originally de-
veloped as a visual aid for debugging, however, it had
been quickly applied as a ranking technique that orders
program elements based on their likelihood of being faulty.
At the early stage of SBFL, most of the formulæ have been
developed to reduce the Expense metric, which measures
the wasted effort (see Section 4.4) in percentage of the size
of SUT. Later, the weakness of Expense metric, becoming
unrealistic when the size of SUT is sufficiently large, has
been pointed out [16]. Absolute metrics, such as acc@n
or absolute wasted effort, have been suggested to replace
percentage-based metrics and most of recent works have
embraced these absolute measures [17], [18]; this paper also
follows this trend.

Fault localisation has been approached as a learning
problem in the literature. Yoo applied Genetic Programming
to evolve SBFL formulæ from a set of known faults [32].
While evolving SBFL formulæ produced previously un-
known maximal formulæ [22], there are also theoretically
proven restrictions to what a single SBFL formula can
achieve [54]. Instead of learning a complicated ranking
model from raw spectrum data, FLUCCS takes existing
SBFL scores as features, thereby accelerating the pace of
learning.

More recently, to overcome the limitation of a single
formula, various approaches have been suggested. Xuan
and Montperrus combined 25 different SBFL formulæ, by
taking a linear weighted sum of formulæ that score above
learnt threshold values [17]. Le et al. included changes made
to invariants (extracted using Daikon [55]) as an additional
feature to the same set of 25 SBFL formulæ [18]; linear
rankSVM has been used in learning ranking models. SBFL
has also been augmented by Information Retrieval based
localisation techniques, using the linear weighted sum ap-
proach [56]. Zhang et al. pointed out that both program
source code entities and test should be differentiated: PRFL,
a suggested technique, leverages pagerank algorithm to dis-
tinguish test and recompute the spectrum information based
on the contribution of respective test [57].
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Some of these approaches combine fault localisation
with another domain. Papadakis and Traon approached
fault localisation with mutation analysis. The basic intuition
behind this approach is that when two elements show same
behavior on a same test, they are likely to be related. From
this, the technique links mutants killed by failed tests to the
real faults and deems places from which these mutants have
been originated suspicious [58]. Mutation based fault locali-
sation are further expanded to leverage call graph informa-
tion to inference sub-graphs related to faults [59]. Maammar
et al. tackled a fault localisation problem as a frequent
itemset mining problem, finding patterns that satisfying a
set of constraints modelling the most suspicious elements;
Constraint Programming is used in this approach [60].

While these approaches beat traditional SBFL formulæ
with ease and revealed a variety of new aspects of faults
to contemplate, most of them are still confined to dynamic
data or test execution data, leaving static side of faults barely
touched. Although some of them used information extracted
from call-graph analysis, concerning static side of the faults
in some degree, this information is mainly used to com-
plement dynamic data; they did not approach static data
on same importance with dynamic one, only using them
to enhance features of dynamic data. FLUCCS is not biased
toward either type of data, placing both of them on an equal
standing: both static and dynamic data are simply used as
features. As a results, FLUCCS could overcome some of
inherent limitations of dynamic data, e.g. dependency on
quality of test suite, without any fundamental change in
the general approach of learn-to-rank in fault localisation.
FLUCCS also benefits from the method level aggregation of
SBFL scores (described in Section 2.3).

9 CONCLUSION

We presented FLUCCS, a fault localisation technique that
learns how to rank program element based on existing SBFL
formulæ and code and change metric. FLUCCS employs
existing SBFL formulæ as features of the learning problem,
instead of using raw spectrum data, reducing the effort to
learn what is already known. FLUCCS is the first technique
to use code and change metrics for fault localisation, con-
necting automated debugging to the field of defect predic-
tion for the first time.

The empirical evaluation of FLUCCS, using real world
faults and code history from Defects4J repository, shows
that FLUCCS can be an effective fault localisation technique,
placing 144 out of 386 faults at the top, and 304 out 386
faults within the top ten places. Universal improvement of
using code and change metrics are present in the results of
all four learning algorithm of FLUCCS, further supporting
the generality of our claim on leveraging code and change
metrics in fault localisation. From the results of cross-project
learning, we find out potential improvement by leveraging
project-specific features, but, also the applicability of learnt
models to unseen projects without loosing much accuracy.

Future works will regard using FLUCCS on other large-
scale projects and going deeper into the details of the
correlation between the similarity of projects and the trans-
ferability of learnt models.
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