Why Train-and-Select When You Can Use Them All? Ensemble
Model for Fault Localisation

Jeongju Sohn
School of Computing, KAIST
Daejon, Republic of Korea
kasio555@Kkaist.ac.kr

ABSTRACT

Learn-to-rank techniques have been successfully applied to fault
localisation to produce ranking models that place faulty program
elements at or near the top. Genetic Programming has been suc-
cessfully used as a learning mechanism to produce highly effec-
tive ranking models for fault localisation. However, the inherent
stochastic nature of GP forces its users to learn multiple ranking
models and choose the best performing one for the actual use. This
train-and-select approach means that the absolute majority of the
computational resources that go into the evolution of ranking mod-
els are eventually wasted. We introduce Ensemble Model for Fault
Localisation (EMF), which is a learn-to-rank fault localisation tech-
nique that utilises all trained models to improve the accuracy of
localisation even further. EMF ranks program elements using a
lightweight, voting-based ensemble of ranking models. We evalu-
ate EMF using 389 real-world faults in Defects4] benchmark. EMF
can place 30.1% more faults at the top when compared to the best
performing individual model from the train-and-select approach.
We also apply Genetic Algorithm (GA) to construct the best per-
forming ensemble. Compared to naively using all ranking models,
GA generated ensembles can localise further 9.2% more faults at
the top on average.

CCS CONCEPTS

« Software and its engineering — Search-based software en-
gineering;

KEYWORDS

Fault Localisation, SBSE, Fitness Evaluation

ACM Reference Format:

Jeongju Sohn and Shin Yoo. 2019. Why Train-and-Select When You Can
Use Them All? Ensemble Model for Fault Localisation. In Genetic and Evo-
lutionary Computation Conference (GECCO °19), July 13-17, 2019, Prague,
Czech Republic. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3321707.3321873

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO 19, July 13-17, 2019, Prague, Czech Republic

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6111-8/19/07...$15.00
https://doi.org/10.1145/3321707.3321873

Shin Yoo
School of Computing, KAIST
Daejon, Republic of Korea
shin.yoo@kaist.ac.kr

1 INTRODUCTION

The growing complexity of software systems, coupled with increas-
ingly shorter release cycles, means that developers have to debug
more complicated faults in shorter time. Fault localisation has been
widely studied to reduce the burden of debugging: it is a technique
that aims to automatically identify the program elements that are
responsible for the observed failure [37]. A common approach is to
rank program elements according to their relative suspiciousness,
i.e., the relative likelihood of each program element being responsi-
ble for the failure. A wide range of techniques have been studied.
Spectrum Based Fault Localisation (SBFL) uses a risk evaluation
formula to convert program spectrum (the combination of test re-
sults and test coverage) to relative suspiciousness of each program
element [7, 18, 25, 38]. Mutation Based Fault Localisation (MBFL),
on the other hand, utilises mutation analysis to either measure the
similarity between mutants and the observed failure [26], or to
identify potential partial fixes [16, 24].

Recently, a growing body of work has successfully reformulated
fault localisation as a learning problem: instead of manually de-
signing a specific technique, the new approach is to try to learn
the best ranking model that can place the faulty program element
as near as the top, using provided failure data. Various forms of
learning have been tried, including evolving individual risk eval-
uation formule [41, 42], learning the best linear combination of
multiple formulee [39], and learning ranking models that use multi-
ple data sources such as program spectrum, invariant information,
and static code features [1, 31].

Genetic Programming has been successfully applied both to
evolve individual risk evaluation formulee [41, 42]! and to learn
larger ranking models that combine multiple risk evaluation for-
mulee and other features about source code and change history [31].
Due to the inherent stochastic nature of GP, users of these tech-
niques are typically expected to evolve (i.e., learn) multiple formulee
or models and choose the best performing one. We hereafter call
this approach train-and-select. As with many other applications of
evolutionary computation in software engineering, the train-and-
select approach for fault localisation results in a large amount of
wasted fitness evaluation, as the models not selected by the user
are simply discarded.

The motivating question for our work is whether we can utilise
these discarded models, as well as the computational resources
that go into their fitness evaluation, to improve the current train-
and-select approach. We introduce EMF, a voting-based ensemble
technique that uses multiple ranking models to produce a single
final ranking. EMF takes individual ranking models, and aggregates

! The human competitiveness of GP as a way of designing risk evaluation formulz has
been acknowledged by the ACM SIGEVO HUMIES Award Silver Medal in 2017.

https://doi.org/10.1145/3321707.3321873
https://doi.org/10.1145/3321707.3321873
https://doi.org/10.1145/3321707.3321873

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

their results using various voting schemes. The use of stochastic
learn-to-rank models with the train-and-select approach results in
diversity among the ranking models as a natural by-product. We
wish to exploit the diversity among the otherwise discarded models.
While the wasted fitness evaluation observed in GP motivates our
work, EMF is not specific to GP and can take individual ranking
models generated by any other learn-to-rank techniques into its
voter ensemble.

Our empirical evaluation compares the performance of EMF to
the results obtained by individual ranking models used by EMF.
For participating individual ranking models, we implement and
evaluate the state-of-the-art GP based fault localisation technique,
FLUCCS, as well as models generated by Gaussian Process Models
(GPM), and Support Vector Machine (SVM). We evaluate multiple
voting schemes to investigate the most effective way of aggregat-
ing results of participating ranking models. Finally, we investigate
whether we can generate the best ensemble, i.e., whether we can
improve EMF even further by choosing the individual models that
take parts in the ensemble using Genetic Algorithm (GA). All empir-
ical evaluations are performed using the 389 real-world faults from
Defects4] repository [19]. The results show that, when compared
to the best individual ranking model in the whole pool, EMF can
rank 30.1% more faults at the top than the ranking model.

The technical contributions of this paper are as follows:

e We introduce EMF, a new fault localisation technique that
uses voting based ensemble to utilise multiple ranking mod-
els. This allows us to utilise the ranking models that would be
otherwise discarded in the train-and-select approach, which
is commonly adopted by both GP and other stochastic learn-
to-rank techniques.

e We present an empirical study of EMF using the 389 real-
world faults in Defects4]. EMF can place at most 30.1% more
faults at the top, when compared to the chosen ranking
model from the train-and-select approach.

o We further show that Genetic Algorithm (GA) can success-
fully construct the best ensemble out of the available indi-
vidual ranking models. The constructed ensemble can rank
9.2% more faults at the top when compared to the default
EMF model that uses all given individual models.

The rest of paper is organised as follows: Section 2 explains
the overall architecture of EMF and three voting schemes of EMF.
Section 3 describes the ensemble construction method using two
algorithms. Section 4 introduces our research questions. Section 5
presents the set-ups for empirical evaluation, the results of which
are discussed in Section 6. Potential threats to validity are consid-
ered in Section 7. Section 8 presents the related work and Section 9
concludes the paper.

2 EMF: ENSEMBLE MODEL FOR FAULT
LOCALISATION

This section explains how EMF aggregates the results of individual
ranking models using a voting based ensemble.

2.1 Overall architecture of EMF

EMEF takes a set of individual ranking models for fault localisation as
input: EMF itself consists of ranking and voting phase. The ranking

Jeongju Sohn and Shin Yoo

phase is simply when all participating ranking models compute
rankings for the program elements of the System Under Test (SUT).

In the voting phase, each ranking model casts votes for program
elements based on its own ranking. EMF uses plural voting: all
participating ranking models cast votes to all program elements
ranked from 1 to k-th places. The reason for the plural voting
scheme is as follows. The participating models are generated by
learn-to-rank techniques that seek to minimise the average loss,
i.e., to rank faulty program elements in the training datasets as near
the top as possible. The optimisation for the average, coupled with
stochastic nature of some of the learn-to-rank techniques, means
that there is no guarantee that all faults will be ranked at the top.
By adopting plural voting, we wish to increase the probability of
the faulty program element getting at least one vote. We call any
program element that has received at least one vote by participating
ranking models a candidate. In principle, using larger k increases
the probability of having the actual faulty program elements among
the candidates.

2.2 Voting Schemes

The default voting scheme for EMF is that all program elements
ranked up to k-th place by individual ranking models receive one
vote. We call this the basic voting scheme, denoted by Vgasic. EMF
that uses Vgasic is called as EMFg, hereafter. Under Vgasic, each
program element m receives the following final number of votes,
bm, from the pool of all individual ranking models, R = {ry,...,rp}:

1if r; voted for m

bm = 2.y, er v(ri,m), where v(ri,m) =]
! 0 otherwise

We propose two additional voting schemes to deal with one
weakness of the basic scheme, Vgasic, which is that the scheme
is prone to producing ties in the final, aggregated ranking. Ties
are in general harmful to fault localisation, as it forces the user to
examine more program elements when considering the ranking
of program elements. The occurrence of ties with Vgasc is partly
because each individual ranking model gives the equal one vote to
all of its k candidates. A candidate ranked higher by an individual
ranking model should receive more votes than those ranked lower.

The first alternative scheme is Vg, which considers the number
of tied program elements in the ranking produced by the individ-
ual model. In Vg, individual ranking models cast fewer votes to
program elements that are tied. When n program elements are tied
at the same rank, we assume that all n elements are equally likely
to contain the fault, and make the individual ranking model to cast
% vote to each of the tied elements. Similarly, in VRaNk, individual
ranking models cast % vote to a program elements ranked at the
Jj-th place.

Let R = {ry,...,rn} be the pool of all used ranking models:
given a program element m, r;(m) returns the rank of m according
to rj, and tie(r;, m) returns the number of program elements placed
at the same rank as m by r; (including m itself). Under Vtg, the
number of votes m receives, by, is defined as:

VIIE bm = X er tzz)é(r;,nrlr;)

The second alternative scheme, VRank, considers the rank as-
signed by the individual model. Under VgRank, the number of votes

Why Train-and-Select When You Can Use Them All?

m receives, by, is defined as:

VRANK : bm = 2R ”ﬁ’(m")”

V1ie and VRank can be considered as variations of weighted
voting. In weighted voting, each voter has a different weight, or
influence, over the final decision. Vg and Vrank voting scheme
represent the different weights as different amount of votes. Vari-
ations of EMF using Vg and Vrank are called EMFt and EMFg,
respectively.

3 ENSEMBLE CONSTRUCTION USING GA

While the core strategy of EMF is using multiple ranking models
instead of choosing a single best one, it is also possible for EMF to
have too many participating individuals. Suppose there are several
ranking models that vote for the same non-faulty program element.
If the combined votes from these models outnumber the votes the
real faulty element receives, the final rank of the real faulty element
will be sub-optimal. An ideal ensemble is not the one that contains
the largest number of participating individual ranking models, but
the one whose aggregated results place the largest number of real
faulty elements at the top.

To construct better performing ensembles, we apply two widely
studied algorithms: greedy algorithm and Genetic Algorithm. The
goal is to formulate an ensemble that would allow EMF to locate
as many faults near the top as possible. Let E C R be a subset of
ranking models in the pool (i.e., an ensemble), and F be a set of
faults to be localised. An ensemble E is scored using the number
of faults in F that E places within the top n (this is a widely used
evaluation metric for fault localisation, called acc@n: see Section 5.2
for more details). The score function w, for E against F is simply:

wn(E, F) = acc@n(E, F)

We use wp, to make the greedy choice for the ensemble construc-
tion, as well as the fitness function for the GA based ensemble
construction (see Section 5.3).

3.1 EMF with Greedy Algorithm

Greedy algorithm aims to approximate a global optimum by making
the best-at-the-time choice at each decision point greedily. Greedy
algorithm has been studied in context of Next Release Problem [2, 3],
as well as test suite minimisation [32]. We use w, function above to
guide the decisions. Starting with the ranking model that produces
the highest wy, score, the greedy algorithm iteratively extends the
ensemble by examining ranking models in the descending order of
their wp, scores: a new ranking model is added to the ensemble if
and only if w, score of the ensemble increases after addition. The
algorithm is therefore deterministic against a fixed pool of ranking
models and a fixed set of faults, and terminates after considering
all ranking models in the pool.

3.2 EMF with Genetic Algorithm

Genetic Algorithm (GA) has been successfully applied to many
software engineering problems, such as test data generation [11, 33]
and test case prioritisation [8, 23]. When applied to the ensemble
construction, each chromosome in GA represents a single ensemble
and a population of ensembles is maintained during the search. We

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

use wy as the fitness function for the GA: GA evolves ensembles
to have a higher fitness score and returns the ensemble with the
highest fitness value after a predefined number of generations.
Unlike the greedy algorithm, which is a constructive heuristic, GA
is free from premature commitment to a voter (i.e., if a combination
of two or more voters is more successful than having a single voter
that is better than others, it is possible for GA to identify the more
successful combination, while the greedy algorithm simply commits
to the single voter.)

3.3 EMF with Random Construction

Both the greedy algorithm and GA aim to select a subset of ranking
models (an ensemble) from the pool of all models. A random con-
struction method, which randomly decides whether to keep each
ranking model in the ensemble, is used as a baseline.

4 RESEARCH QUESTIONS

This paper poses the following research questions.

RO1. Effectiveness: RQ1 asks whether EMF is more effective at
localising faults than the train-and-select approach that trains mul-
tiple models with the aim of minimising the average loss and sub-
sequently chooses the best performing ranking model. RQ1 is an-
swered by comparing EMF to the ranking models chosen from the
train-and-select approach using the evaluation metrics (see Sec-
tion 5.2).

RQ2. Voting Scheme: RQ2 asks how much impact the different
voting schemes have on the localisation effectiveness. To answer
this, we compare the results of EMFg, EMFT, and EMFR against
each other.

RQ3. Ensemble Construction: RQ3 asks whether an active en-
semble construction can improve the performance of EMF. The
empirical evaluation compares the results from the ensembles con-
structed by the greedy algorithm and the GA to the results gener-
ated by the entire pool of ranking models as well as to the results
of randomly constructed ensembles. We use Vargha-Delaney A;
statistic [34] to inspect whether the performance difference be-
tween the ensemble construction and its baselines holds statistical
significance.

Table 1: Subject software systems and their faults

Project ‘ # Faults Loc # Methods # Test cases
Commons Lang 63 9059-11490 1953-2408 1540-2295
Commons Math 105 4726-41344 1049-6668 817-4429
Joda-Time 26 12732-13270 3628-3802 3749-4041
Closure Compiler 133 30438-50523 4848-8880 2595-8443
Jfreechart 26 41075-51523 6578-8281 1586-2193
Mockito 36 2110-4385 747-1476 695-1399

5 EXPERIMENTAL SETTINGS
5.1 Subjects

The empirical evaluation uses version 1.1.0 of Defects4] [19], a
real-world fault benchmark, to evaluate EMF: this version contains
395 real world Java faults collected from six open source projects.

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

EMF performs method granularity fault localisation on Defects4]
benchmark. Among 395 faults, 389 faults are actually used in the
study: the remaining six faults are excluded due to the following
reasons: exclusion due to failure to compile (one fault), exclusion
due to faults being out of the scope of the project code base (one
fault), and exclusion of the methods that cannot be directly invoked
by JVM instructions such as class initialisation methods (four faults).
We also exclude methods that are not executed by any test cases
from the scope of localisation.

A total of 91 ranking models have been generated as individual
participating models, using FLUCCS [31] with four different learn-
to-rank algorithms: Genetic Programming (GP), 30 with Gaussian
Process Modelling (GPM), and Support Vector Machine (SVM). With
stochastic algorithms (GP, GPM, and RF), we train 30 different rank-
ing models. SVM, on the other hand, is deterministic and produces
a single ranking model. For GP, DEAP [9], a Python evolutionary
computation framework, is used. We use GPy [13] for GPM and
sklearn [4] version 0.19.1 for RF. RankSVM, which depends on
LibSVM [5], is used for SVM. With GP, we evolve a formula with
which we rank program elements, using the average rank of faulty
program elements in the training data as the fitness. With GPM,
RF, and SVM, we perform the ordinal regression by first training
classifiers and subsequently using the probability of each of the
program elements to be faulty to rank them.

5.2 Evaluation metric

We use acc@n and we f* for the analysis of EMF, following existing
work [1, 31, 39]. The use of these metrics follows the guideline sug-
gested by Parnin and Orso [1, 27], describing the actual efforts and
time needed for the the target fault. In EMF, the fault is considered
being localised if it is included in the final output of EMF, which is a
list of candidates sorted in descending order of their obtained votes.
We include the number of localised faults (nfc) as an additional
evaluation metric, for EMF does not guarantee the localisation of
faults.

5.2.1 Accuracy (acc@n). acc@n counts the number of faults
localised within top n elements. For n, we use 1, 3, and 5. If there
are more than one element responsible for the fault, we use the one
ranked the highest to compute acc@n.

5.2.2 Wasted Effort (wef*). The traditional we f metric mea-
sures the amount of effort wasted on inspecting non-faulty ele-
ments; it counts the number of non-faulty elements that developers
have to examine before meeting the faulty one. Similar to acc@n,
when there are multiple faulty elements, we only consider the one
ranked the highest. Because the final result produced by EMF is
a ranking of candidates only, it is possible that the actual faulty
program element is not included in the result. Hence we use we ™,
which is we f measured against the ranking of the candidates.

5.2.3 Number of Faults among Candidates (nfc). wef™ alone
does not reflect whole localisation effectiveness, as EMF may be
entirely missing a fault from its final result of candidate ranking.
To complement we f*, we measure how frequently EMF succeeds
to include the actual faulty elements in its ranking, using nfc. nfc
counts the number of faults that are also candidates.

Jeongju Sohn and Shin Yoo

5.3 Configuration

We use w; for both the greedy and GA-based ensemble construc-
tion, i.e., we seek to construct an ensemble that maximises acc@1.
For all construction algorithms, we use a binary string of length
91 to represent the ensemble. GA-based construction has been im-
plemented using DEAP [9], a Python evolutionary computation
framework, to implement GA. We use the consecutive matingz,
single point crossover with crossover rate of 0.8, and single bit-flip
mutation with mutation rate of 0.2. The population size of GA is
64; when formulating the next generation of population, we choose
the best 64 individuals out of the combined parent and offspring
generations containing 128 individuals. The stopping criterion is
after 50 generations.

5.4 Validation

To avoid overfitting and to make the most of the given training
data, we use ten fold cross validation. We divide the 389 faults into
ten folds as evenly as possible. Subsequently, each fold becomes the
test data when evaluating EMF trained using the remaining nine
folds. The entire process from the training of the individual ranking
models to the final voting of EMF and the ensemble construction is
conducted as a ten fold cross validation.

Due to the stochastic nature of GA and random, we repeat the
ensemble construction 20 times for both algorithms. Evaluation on
these algorithms will be performed on the average of the results
from these 20 repetitions.

6 RESULTS AND ANALYSIS

This section presents the results of our empirical evaluation along
with answers to research questions set in Section 4.

6.1 RQ1. Effectiveness

Table 2 contains both the results of the best ranking model with
the smallest average wef labelled BEST?, and the results of EMF{;
with k = 1,3, 5 to align the ensembles with our choice of evaluation
metric, acc@n with n = 1,3, 5. Fig. 1 presents details about the
number of faults localised at each of the top ten ranks. Overall,
EMFg outperforms the best ranking model at locating faults within
higher ranks regardless of k, placing up to 28 (19.6%) more faults
at the top (EMFE). On the other hand, nfc for EMF]I3 is 308, which
means that 81 faults (20.8% of the total) are missing from the results.
This is because EMF only ranks the candidates, i.e., the program
elements with at least one vote. If no participating ranking model
votes for the root cause of a specific fault, EMF cannot include
it in its ranking. However, we argue that actual faulty program
elements that are not candidates will be equally harder to localise
for individual ranking models, and EMF does not introduce any
additional weakness.

Note that nfc increases as we increase k: nfc for EMFll3 is 308,
but nfc for EMF?5 is 366. A larger k naturally results in more candi-
dates, which in turn increases the probability of the faulty program

2Following a random order in the population, pairs of two consecutive individuals
are selected as parents: this is effectively the varAnd implementation in DEAP (see
https://deap.readthedocs.io/en/master/api/algo.html).

30ut of ten best ranking models selected, nine are GP models, and one is an SVM
model.

https://deap.readthedocs.io/en/master/api/algo.html

Why Train-and-Select When You Can Use Them All?

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

Table 2: Evaluation results of EMF’];, EMF]TC, and EMF{; (k = 1, 3, and 5). Unlike EMFX, for which acc@1 decreases as k increases, all acc@n
values increase along with k for EMF’.; and EMFI]§. EMF%. shows the best performance in acc@1, acc@3, and wef™.

Project BEST VBAsIC VTIE VRANK
(# Faults) acc wef* acc wef* nfe acc wef* nfc acc wef* nfec
@1 @3 @5 | mean std | k| @ @3 @5 | mean std | @1 @3 @5 |mean std | @1 @3 @5 | mean std |
1] 40 55 55| 075 246| 57| 40 53 55| 061 141| 57| 40 55 55| 075 246 | 57
Lang (63) 34 48 53| 243 572 |3 | 34 53 57| 243 864| 63| 30 53 57| 140 291| 63| 40 54 58| 133 314 63
5| 3 56 58| 230 7.98| 63| 40 56 58| 132 3.47| 63| 40 53 58| 122 299 63
1] 45 63 74| 572 1577 | 88| 45 67 78| 320 932| 88| 45 64 75| 3.22 825| 88
Math (105) | 46 61 69| 13.40 4213 | 3| 41 65 75| 889 21.67| 96| 46 66 75| 456 1126 | 96 | 47 66 76| 4.86 1347 | 9%
5| 40 6573|1075 23.78| 99| 46 67 73| 539 1343 | 99| 48 66 76| 6.34 1644 | 99
1] 11 17 19 079 106| 19| 11 17 19| 074 102 19| 11 17 19| 079 1.06| 19
Time (26) 10 16 18| 885 1433 |3| 12 18 19| 622 1432 | 23| 11 18 19| 304 535 23| 11 19 19| 413 863 | 23
50 10 17 20| 7.04 1605| 24| 14 17 20| 379 75| 24| 11 19 20| 471 9.92| 24
1] 4 71 8| 376 1036 | 94| 50 71 79| 257 54| 94| 49 71 80| 3.22 717| 9%
Closure (133) | 28 67 76 | 19.66 63.45 | 3| 52 73 87| 691 1956 | 110 | 53 74 86 | 4.62 1030 | 110 | 50 75 88| 471 1167 | 110
5| 54 78 88| 13.53 3234 | 118 | 57 80 87| 8.64 1976 | 118 | 49 76 90| 9.99 24.46 | 118
1] 18 20 21| 024 068] 21| 18 20 21| 024 068] 21| 18 20 21| 024 068 21
Chart (26) 17 22 24| 127 337|3| 16 22 22| 100 1.98| 25| 17 22 22| 084 162 25| 18 22 22| 112 29| 25
5| 15 23 25| 335 1336| 26| 16 22 25| 1.08 223| 26| 18 22 24| 158 473 26
1] 8 18 21| 58 1099] 20| 9 20 21| 362 58| 20| 8 18 21| 58 1099| 29
Mockito (36) | 8 18 23| 26.64 122.69 | 3| 12 23 26| 10.50 30.74 | 34 | 14 23 26| 538 1147 | 34| 9 22 2| 609 1218 | 34
5| 11 20 241600 5841| 36| 13 21 23| 7.06 1477| 36| 11 22 25| 711 1212 36
1]171 244 270 | 356 1078 | 308 [173 248 273 | 225 6.01| 308 | 171 245 271| 270 6.95 | 308
Total (389) | 143 232 263 | 13.87 57.69 | 3| 167 254 286 | 6.61 19.27 | 351 | 180 256 285 | 3.80 9.28 | 351 [175 258 289 | 4.06 10.79 | 351
5| 166 259 288 | 10.08 29.42 | 366 | 186 263 286 | 5.61 14.43 | 366 | 177 258 293 | 6.41 17.34 | 366
elements being one of the candidates. However, since the Vasic 200 P
. . .) = oasic: mm s
voting scheme assigns one vote to all candidates, regardless of their = s mm RaRK
EEW BASIC S EEE RANK 3
original ranking generated by individual ranking models, the larger = el mm
nfc does not always lead to more faults ranked at the top. With
more candidates, the actual faulty program element may get tied z
with others, or even ranked lower than common mistakes. The 8
results support this suspicion: the total acc@1 is 171 when k = 1, 2
but it decreases to 166 when k = 5. We try to fix this using Vg
and VRANK, the results of which are discussed in Section 6.2.
Answer to RQ1: EMFg outperforms the best individual ranking
model, placing 28 (19.6%) more faults at the top. By using a larger

k value, EMFp overcomes its inherent weakness in n fc¢ while still
excels in placing more faults within higher ranks, compared to the
best ranking model.

6.2 ROQ2. Voting Scheme

Table 2 presents the results of EMF with EMF§ and EMFﬁ with
k = 1,3,5. While there are a few configurations that perform worse
than their counterpart EMFg (e.g., EMF’.IE with k = 3,5 produces
lower acc@5, and EMF% produces lower acc@3), both EMFt and
EMFR improve performance compared to EMFp in most cases; e.g.,
EMF% localises 20 more faults (12.0%) at the top compared to EMF%.
The mean we f* also decreases for both EMF1 and EMFR with all k
values studied.

Another improvement that has been shown in both EMFT and
EMFR is that acc@1 no longer decreases when using a larger k. On
the contrary, EMFt and EMFR rank more faults at the top from
using a larger k: EMF,Sr places 13 (7.5%) more faults at the top than
EMF}F, and EMF% places 6 (3.5%) more faults at the top. Compared
to BEST, the amount of performance improvement EMFt and EMFR
provide is even greater, as they place 43 (30.1%) and 34 (23.8%) more
faults at the top with k = 5, respectively.

rank (n)

Figure 1: BASIC_k, TIE_k, RANK_k, and BEST represent EMF, EMFEX,
EMF{;, and the ranking model selected from the train-and-select ap-
proach using wef as a loss function, respectively. Each bar in the
histogram indicates the number of faults placed at a specific rank
(x axis) from using a specific variation of EMF. The order of EMF’s
variations is BEST, BASIC_k with k = 1, 3, 5, TIE_k with k = 1, 3, 5, and
RANK_k with k = 1, 3, 5. Generally, EMF outperforms BEST, placing
more faults at the top. TIE_k and RANK_k improve the effectiveness
of EMF even further.

While both EMF1 and EMFR produce significant improvement
over EMFg, we note that the difference between these two mod-
els are of a smaller scale. EMFrt tends to place more faults at the
top when compared to EMFg; for example, EMF,Sr puts nine more
faults at the top than EMF;. Even when EMF% and EMF; produce
higher acc@5, their mean we f* values are larger than those of the
corresponding EMFr configurations. Fig. 1 presents an overview
of the impact of Vrg and Vrank. Compared to EMFg, both EMFt
and EMFR put more faults at the top, which is likely due to the fact
that these voting schemes are less prone to generate ties.

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

Answer to RQ2: Both EMFT and EMFg improve the performance

of EMF by localising at most 20 (12.0%) more faults at the top. Com-
pared to the best individual ranking model from the train-and-select
process, EMF% increases acc@1 by 43 (30.1%), highlighting the ben-
efit of EMF over the train-and-select approach. Between EMFt
and EMFR, EMFt ranks more faults at, or near, the top, generally
resulting in larger acc@1 and smaller we f* than EMFg.
Table 3: Evaluation results of EMF# and EMF{; with the ensem-
bles constructed by the greedy algorithm. Compared to Table 2, the
greedy algorithm fails to formulate better performing ensembles
for EMF.lr, EMF}I, and EMF%. For EMF3T, it finds a relatively effective
ensemble that increases acc@1, acc@3, and acc@5.

Project VIIE VRANK
(# Faults) acc wef* nfc acc wef* nfc
k| @ @3 @5 ‘ mean std ‘ @1 @3 @5 ‘ mean std ‘
Lang (63) 1] 41 44 44| 020 081] 45| 41 44 45| 016 056]| 45
& 3| 3 55 57| 121 2.63| 63| 41 50 54| 070 1.47| 57
1] 39 48 51| 081 1.81| 54| 36 46 48| 0.64 1.38| 50
Math (105) 4 ‘ 52 70 78 ‘ 261 5.62 ‘ 92 ‘ 10 62 67 ‘ 283 7.44 ‘ 76
Tmesy 1| 13 15 15[013 03¢] 15| a1 15 15| 027 044 15
me 3| 15 18 19| 138 3.21| 21| 13 19 19| 032 046| 19
Closure(13s) 1| 48 52 53| 030 18| 54147 50 51| 025 105 52
3| 55 76 90| 283 7.38| 104 | 48 63 70| 200 4.25| 81
1] 8 12 14| 079 1.08] 14| 8 12 14| 079 1.08| 14
Chart 26) ‘ 16 22 24 ‘ 1.24 337 ‘ 25 ‘ 0 16 19 ‘ 124 1.60 ‘ 21
) 1] 7 9 13| 236 387] 14| 7 9 12| 243 39| 14
Mockito (6) 5| 11 15 24| 397 s20| 33 ‘ 7 12 18| 352 447 23
Total(3g9) 1| 156 180 190| 063 171|196 [150 176 185| 058 1.6 | 190
3| 188 259 292 | 241 5.69 | 338 | 150 222 247 | 1.99 4.85 | 277
-‘ BEST ‘E RANK:I
@ TE1 @ RANK_ 3
- TIE3 BN RANK S
- TES 3 GA RANK_1
[GATIEL EEE GA RANK 3
150 NN GATIE3 EEE GARANKS,
E GATIE S

count (acc@n)

rank (n)

Figure 2: Each bar in the histogram indicates the number of faults
placed at a specific rank (x axis) from a specific variation of EMF.
Only the results of ensemble construction via GA are presented here.
The order of EMF’s variations in the histogram is BEST, TIE_k with
k = 1,3,5, TIE_k’s with ensemble construction (GA_TIE_k), RANK_k
with k =1, 3, 5, and RANK_k with ensemble construction (GA_RANK_k).
Overall, GA formulates more effective ensembles, pushing up faults
placed at lower ranks to higher ranks.

6.3 RQ3. Ensemble Construction

Table 3 and Table 4 describe the results of ensemble construction
using the greedy algorithm and the genetic algorithm respectively.
Due to the space restriction, the paper only contains the results
with k = 1 and 3: the full results can be found at https://figshare.
com/articles/EMF_pdf/7665467.

Jeongju Sohn and Shin Yoo

Table 4: Evaluation results of EMF; and EMF}]; with the ensembles
constructed by GA. Compare to Table 2, acc@1/3/5 and acc@1/3
increase for EMF].; and EMFﬁ with all k values studied, respectively.

Project VTIE
(# Faults) acc wef* nfc
k @1 @3 @5 ‘ mean std ‘
Lang (63) 1| 4295 5425 547| 054 157 5695
ang 3| 417 5495 573 | 122 291 | 6295
1] 4985 708 770 | 285 9.55| 859
Math (10
ah(109) 5] 516 7165 7855 ‘ 3.7 10.40 ‘ 94.0
! 1] 122 181 189 060 092 | 189
Time (26) 3] 136 189 190 ‘ 158 3.52 ‘ 213
1| se6 7175 797| 220 539 9135
Closure (133) 3 | 555 7705 898 ‘ 3.85 8.93 | 10895
1] 1675 200 206| 038 104 210
Chart (26) 3| 1565 220 236 ‘ 091 1.93 ‘ 25.0
) 1] 106 167 2025| 285 378 268
Mockito30) 5| 1165 198 255 ‘ 386 6.68 ‘ 32.8
1]18895 2516 27115| 1.94 6.03 | 3009
Total (389) 3| 1397 26525 20375 ‘ 3.06 7.94 ‘ 345.0
Project VRaNk
(# Faults) acc wef* nfc
k @1 @3 @5 ‘ mean std ‘
Lang (63) 1] 4285 547 5495| 063 217 | 569
& 3| 4195 548 573 | 133 350 | 630
1| 489 7025 755| 3.05 9.22| 856
Math(105) 5| 4o75 7235 783 ‘ 3.64 9.98 ‘ 93.85
) 1] 1245 1805 186| 054 090 | 187
Time(6) 3] 132 1895 1905 ‘ 1.9 4.95 ‘ 213
1| 547 700 7805| 289 689 | 9145
1 1
Closure (133) 5| 56 7575 854 ‘ 434 1074 | 108.85
1] 1575 1975 2085| 041 088 210
Chart(@6) 5| 1655 220 2365 ‘ 122 331 2495
) 1] 108 160 1955| 425 657 273
Mockito30) 5| 115 1725 2215 ‘ 512 7.94 ‘ 326
1] 18545 24875 2675| 237 6.64 | 300.95
Total
otal (389 5| 15055 26115 28585 ‘ 337 875 ‘ 344,55

From the results, we conclude that the greedy construction
produces mixed results. While the greedy construction improves
acc@1, acc@3, and acc@5 of EMF% respectively by eight (4.4%),
three (1.2%), and seven (2.5%) when compared to using all ranking
models, acc@n results deteriorate in all other cases. We do note
that we f* decreases, but suspect that this is because the ensembles
constructed by greedy are failing to include harder-to-localise faults
in their results, as evidenced by lower nfc values. Since the greedy
algorithm is deterministic, it produces a single ensemble for each
of the six configurations (Vg and VRank, each with k = 1,3,5),
resulting in six ensembles. The sizes of these ensembles range from
1 to 23, the mean being 12.5.

Table 4 presents the results of GA based ensemble construction:
due to stochasticity, all values in Table 4 are the average of 20 rep-
etitions. Compared to the results without ensemble construction
in Table 2, acc@1 and acc@3 of both EMF1 and EMFy increase.
While the improvements in acc@1 and acc@3 have been observed
at both k values (1 and 3), the benefit of applying the ensemble
construction is more noticeable when k = 1, especially in the case
of EMFT: on average, 15.95 (9.2%) more faults are placed at the top
(acc@1) by EMF% when using the ensemble constructed by GA. The

https://figshare.com/articles/EMF_pdf/7665467
https://figshare.com/articles/EMF_pdf/7665467

Why Train-and-Select When You Can Use Them All?

ensemble improves acc@5 of EMF% by 8.75 (3.1%). However, overall,
the differences in acc@5 are relatively small, ranking between 1.85
and 3.5 faults except in the case of EMF%. In general, the advan-
tage of using the GA based ensemble construction becomes less
noticeable as n of acc@n increases. We repeat GA based ensemble
construction 20 times for each of the six configurations (Vrg and
VRaNK, each with k = 1,3, 5), resulting 120 ensembles. The sizes of
these ensembles range from 25 to 44, the mean being 34.4.

We note that the increase of acc@1 for EMF% comes at the cost
of the decrease in n f'c by 8.1. Since constructed ensembles are more
selective (i.e. fewer participating ranking models), they tend to pro-
duce fewer candidates, which results in lower nfc. However, our
expectation with constructed ensembles is to filter out misinformed
voters that may promote non-faulty program elements higher than
the actually faulty one, rather than to localise more faults. The
increase in acc@1 suggests that our motivation for ensemble con-
struction (see Section 3) is justified.

Comparison with the random baseline, presented in Table 6,
further shows that GA is capable of constructing better ensembles.
The ensembles constructed by GA outperforms random ensembles
with respect to both acc@n (n = 1,3,5) and nfc: EMF% ranks
up to 16.65 (9.6%) more faults at the top when using ensembles
constructed by GA.

When compared to results obtained using the entire pool of
ranking models in Table 2, the performance of random ensembles is
comparable to the performance of all ranking modes in both EMFt
and EMFg: the difference in acc@n is at most 6.95 (acc@5 in EMFllz),
and is equal to or smaller than three in two thirds of the cases. We
repeat random ensemble construction 20 times for each of the six
configurations (Vg and Vrank, each with k = 1,3, 5), resulting
120 ensembles. The sizes of these ensembles range from 36 to 52,
the mean being 46.9.

Table 5 presents the effect size of acc@1 measured in A1 statistic.
Here, an effect size larger than 0.5 means the ensemble construction
shows better performance than its baselines, which are either using
all ranking models (all) or random ensemble construction (random).
Since the all configuration and the greedy ensemble construction
are deterministic, we repeat their acc@1 20 times to compute the
A1y statistic. The results show that Aj effect sizes are all signifi-
cantly higher than 0.5 for GA based ensembles, suggesting that the
improvements are statistically significant.

Answer to RQ3: GA can successfully construct ensembles that
improve EMF: GA based ensembles can place, on average, 15.95
(9.2%) and 16.65 (9.6%) more faults at the top than the entire pool
of ranking models and randomly constructed ensembles, respec-
tively. The effect sizes measured by Aj2 statistic show that the the
improvements are statistically significant.

7 THREATS TO VALIDITY

Threats to internal validity concern whether our implementation
and experiments are done correctly. The fault data we used are from
Defects4], which have been widely investigated in many studies [1,
30, 43]. The learn-to-rank algorithms are all based on existing open
source frameworks [5, 9, 13, 17]. For statistical analysis, we use R
version 3.4.4 with package effsize version 0.7.1.

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

Table 5: Comparing performance of EMF with the ensemble con-
struction using either the greedy algorithm or the GA to its base-
lines, EMF without ensemble construction (all) and with random
ensemble construction (random), by measuring effect sizes of acc@1
in A;, statistic. The ensemble construction with GA outperforms
all and random in all cases.

Voting Greedy Algorithm GA

scheme k | vs.all vs.random | vs.all vs.random

i 1| 0.0000 0.0000 1.0000 1.0000
TIE 3| 1.0000 1.0000 | 1.0000 0.9962

v 1]0.0000 00000 | 1.0000 1.0000
RANK 51 0.0000 0.0000 1.0000 1.0000

Table 6: EMF§ and EMF{; with the random construction: acc@n and
nfc show slight decrease when compared to Table 2, which contains
the results of using all ranking models.

Project Vrig
(# Faults) acc wef* nfc
@1 @3 @5 ‘ mean std ‘
Lang (63) 1| 401 530 5445 058 143 | 56.25
& 3| 3765 5305 5695 | 148 4.04 | 627
1] 4565 656 7595 | 2.99 1044 | 847
Math (105) ‘ 42 648 751 ‘ 440 11.85 ‘ 935
! 1] 1095 1695 185| 079 120| 186
Time (26) 3 ‘ 1175 1815 190 ‘ 233 531 ‘ 216
1| 499 7015 77.85| 173 3.71| 87.45
Closure (133) ‘ 5145 7405 86.0 ‘ 335 7.48 ‘ 105.7
1] 180 200 2025 035 1.23| 2095
Chart20) 5 ‘ 166 218 2275 ‘ 0.83 1.6 ‘ 24.85
) 1| 785 1985 2195| 251 3.95| 265
Mockito (36) 5 ‘ 1365 229 261 ‘ 375 743 ‘ 324
1| 17245 24555 26895 | 1.80 6.01 | 294.45
Total (389) 4 ‘ 1753 25475 2859 ‘ 314 8.8 ‘ 340.75
Project VRANK
(# Faults) acc wef* nfc
@1 @3 @5 | mean std |
Lang (63) 1] 3995 5365 5445| 0.62 1.75| 56.25
& 3| 399 534 5705 | 136 335| 627
1] 4495 631 7285 | 3.73 11.35| 847
Math (105) ‘ 49 6495 7455 ‘ 467 13.13 ‘ 935
) 1] 1085 1715 1845| 077 1.14| 186
Time (26) 3 ‘ 108 1895 19.0 ‘ 250 555 ‘ 216
1| 495 701 775 2.04 4.85| 87.45
Closure (133) ‘ 5005 749 87.05 ‘ 348 853 ‘ 105.7
1] 1795 1995 204 | 036 1.27| 2095
Chart 26) 4 ‘ 179 2195 226 ‘ 1.08 2.89 ‘ 24.85
) 1| 775 185 204 | 358 6.15| 265
Mockito (36) 5 ‘ 935 2205 2535 ‘ 430 7.66 ‘ 324
1]17095 24245 264.05 | 2.21 6.86 | 294.45
Total (389) 4 ‘ 1729 2562 2856 ‘ 331 9.02 ‘ 340.75

One inherent limitation of EMF is that it may completely fail
to include some actual faulty program elements in its results. This
is because EMF only includes candidates ranked sufficiently high
by individual ranking models in its result. The nfc results in Sec-
tion 6.3 show that this does happen. However, overall, we argue
that the improvements in the number of correctly localised faults
compensate for this loss.

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

Threats to external validity in EMF include any potential bias in
the selection of subjects, faults, and algorithms used in EMF. While
389 faults from Defects4] are from real-world, these faults are all
written in Java, restricting our claim only to Java faults. EMF uses
four different learning algorithms, GP, GPM, SVM, and RF. While
these algorithms have been investigated in the context of learn-to-
rank techniques [12, 14, 21, 41], other learn-to-rank algorithms may
have different impact on the performance of ensembles. The results
of GA based ensemble construction depend on our choice of GA
configuration and parameters. While we cannot guarantee that our
choice of GA parameters is the optimal one, our main purpose here
is to show that the performance of EMF can be further improved
by ensemble construction via GA, and not to tune the GA to its
optimal performance.x

Threat to construct validity has to do with whether our evalu-
ation are related to the claim that we intend to validate. We use
absolute metrics, such as acc@n and wef, to measure the perfor-
mance of EMF. These metrics are count-based and thought to be
closely correlated to the actual localisation effort required from
human developers [27].

8 RELATED WORK

The core idea behind EMF is closely related to fault localisation as
a learn-to-rank problem, and to various attempts to maximise the
utility of fitness evaluations in SBSE.

8.1 Fault Localisation Techniques

Spectrum Based Fault Localisation (SBFL) has been widely stud-
ied in fault localisation [37]. A variety of SBFL formule, including
Tarantula, have been developed [7, 25, 36]. In addition to man-
ually designed SBFL formulee, Yoo used GP to evolve SBFL for-
mule automatically [41]; the technique was repeated 30 times to
accommodate GP’s inherent stochastic nature. Recently, it has been
proven theoretically that there is no greatest SBFL formula that can
outperform all the others [42]. Reflecting this theoretical insights,
many existing fault localisation works use multiple SBFL formulee.
Xuan and Monperrus suggested a new fault localisation technique
called MULTRIC, which learns how to combine 25 well-known
SBFL formule using RankBoost [39]. Due to the stochastic nature
of RankBoost, MULTRIC has been repeated 30 times. Sohn and Yoo
introduced FLUCCS, a GP-based learn-to-rank fault localisation
technique that uses multiple SBFL formulee as well as code and
change metrics measured from the code under debugging [31]; Sim-
ilar to [39, 41, 42], GP-based FLUCCS was run 30 times to adjust for
its randomness. EMF is highly relevant to existing work that adopts
the train-and-select approach, such as MULTRIC or FLUCCS.

While the current evaluation of EMF focuses on input features
used by FLUCCS (i.e., program spectrum as well as code and change
metrics), other techniques such as Information Retrieval (IR) [22, 37,
40], mutation analysis [16, 26], invariant mining [1], and program
slicing [35] have been applied to fault localisation. Our future work
will consider a wider range of participating ranking models for
EMF.

Jeongju Sohn and Shin Yoo

8.2 Efficient Fitness Evaluations

In many applications of evolutionary computation, the major cost
is the computational cost of the fitness evaluations that are spent
to generate the single final solution. Consequently, there have been
many attempts to reduce this cost. Fitness inheritance tries to assign,
to an offspring, a fitness value that is not computed but inherited
from its parents [6, 28, 29]. Cluster-based fitness evaluation first
clusters individuals into several clusters, and computes fitness for
only representatives of each cluster [20]. Compared to these, the
aim of EMF is not to reduce the number of fitness evaluations, but
to exploit already spent fitness evaluations to a better use.

In search based test data generation, collateral coverage refers to
any structural coverage that has been achieved as a collateral while
trying to cover a specific target. Harman et al., prioritised the order
of source code branches with the hope of maximising the collateral
coverage [15]. EvoSuite, a widely studied test data generation tool
for Java, similarly seeks to actively exploit collateral coverage, so
that it can generate smaller test suites with fewer fitness evalua-
tions [10, 11]. The difference with EMF is that fault localisation does
not have multiple targets (such as branches) that can be achieved as
a collateral. Rather, EMF exploits the diversity that is the by-product
of the stochasticity of learn-to-rank techniques.

9 CONCLUSION

We present EMF, a new fault localisation technique that utilises
ranking models that would have been discarded if the user only
kept the single best performing model. Instead, EMF uses a voting
based ensemble model to utilise all models that are evolved or learnt.
Through multiple voting schemes, EMF exploits the diversity in
multiple models, and improves the accuracy of fault localisation
at no cost. Furthermore, EMF can boost the localisation accuracy
even further by constructing better performing ensembles using
GA. The empirical evaluation of EMF, using 389 real-world faults
from Defects4], shows that it can significantly outperform the best
model chosen from the train-and-select approach. Future work will
consider a wider range of fault localisation techniques to be used
with EMF.

ACKNOWLEDGEMENT

This work was supported by the Next-Generation Information
Computing Development Program through the National Research
Foundation of Korea funded by the Korean government (MSIT)
(2017M3C4A7068179), as well as the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MEST)
(Grant No. NRF- 2016R1C1B1011042).

REFERENCES

[1] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A Learning-
to-rank Based Fault Localization Approach Using Likely Invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 177-188.

[2] AJ. Bagnall, VJ. Rayward-Smith, and LM. Whittley. 2001. The next release
problem. Information and Software Technology 43, 14 (Dec. 2001), 883-890.

[3] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis. 2006. Search Based Ap-
proaches to Component Selection and Prioritization for the Next Release Problem.
In 2006 22nd IEEE International Conference on Software Maintenance. 176-185.
https://doi.org/10.1109/ICSM.2006.56

[4] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,

https://doi.org/10.1109/ICSM.2006.56

Why Train-and-Select When You Can Use Them All?

(5

[9

[10

[11

(13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

=

=

]

]

]
]

]

]

]

]

Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaél
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108-122.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article 27 (May 2011),
27 pages.

Jian-Hung Chen, David E Goldberg, Shinn-Ying Ho, and Kumara Sastry. 2002.
Fitness inheritance in multi-objective optimization. In Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation. Morgan Kaufmann
Publishers Inc., 319-326.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight bug
localization with AMPLE. In Proceedings of the sixth international symposium on
Automated analysis-driven debugging (AADEBUG 05). ACM, New York, NY, USA,
99-104.

Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015.
Empirical Evaluation of Pareto Efficient Multi-objective Regression Test Case
Prioritisation. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 234-245.
Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (July 2012), 2171-2175.

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11). ACM, New York, NY, USA, 416-419. https://doi.org/10.
1145/2025113.2025179

Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Trans. Softw. Eng. 39, 2 (Feb. 2013), 276-291.

Pierre Geurts and Gilles Louppe. 2010. Learning to Rank with Extremely Random-
ized Trees. In Proceedings of the 2010 International Conference on Yahoo! Learning
to Rank Challenge - Volume 14 (YLRC’10). JMLR.org, 49-61.

GPy. since 2012. GPy: A Gaussian process framework in python. http://github.
com/SheffieldML/GPy. (since 2012).

John Guiver and Edward Snelson. 2008. Learning to Rank with SoftRank and
Gaussian Processes. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR °08). ACM,
New York, NY, USA, 259-266.

M. Harman, Sung Gon Kim, K. Lakhotia, P. McMinn, and Shin Yoo. 2010. Optimiz-
ing for the Number of Tests Generated in Search Based Test Data Generation with
an Application to the Oracle Cost Problem. In Proceedings of the 3rd International
Workshop on Search-Based Software Testing (SBST 2010). 182 —191.

Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. 2015. Mutation-Based Fault Localization for Real-
World Multilingual Programs (T). In 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015.
464-475.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001-. SciPy: Open source
scientific tools for Python. (2001-). http://www.scipy.org/ [Online; accessed
<today>].

James A. Jones, Mary Jean Harrold, and John T. Stasko. 2001. Visualization for
Fault Localization. In Proceedings of ICSE Workshop on Software Visualization.
71-75.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). ACM, New York, NY, USA, 437-440.

Hee-Su Kim and Sung-Bae Cho. 2001. An efficient genetic algorithm with less fit-
ness evaluation by clustering. In Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No.01TH8546), Vol. 2. 887-894 vol. 2.

Tzu-Ming Kuo, Ching-Pei Lee, and Chih-Jen Lin. 2014. Large-scale Kernel
RankSVM. In Proceedings of the 2014 SIAM International Conference on Data
Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014. 812-820.

Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. 2015. Information Retrieval
and Spectrum Based Bug Localization: Better Together. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM,
New York, NY, USA, 579-590.

Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search Algorithms for
Regression Test Case Prioritization. IEEE Transactions on Software Engineering

[24

[25

IS
S

[27

[28

[29

'S
=

[31

[32

(33

[34

(36]

(37]

[38

[39

[41

[42

[43

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

33, 4 (2007), 225-237.

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
Mutants: Mutating Faulty Programs for Fault Localization. In Proceedings of the
7th International Conference on Software Testing, Verification and Validation (ICST
2014). 153-162.

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on Software Engineering Methodology
20, 3, Article 11 (August 2011), 32 pages.

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Journal of Software Testing, Verification and Reliability 25, 5-7 (2015),
605-628.

Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis (ISSTA 2011). ACM, New York, NY, USA,
199-209.

Martin Pelikan and Kumara Sastry. 2004. Fitness inheritance in the Bayesian
optimization algorithm. In Genetic and Evolutionary Computation Conference.
Springer, 48-59.

Robert E Smith, Bruce A Dike, and SA Stegmann. 1995. Fitness inheritance
in genetic algorithms. In Proceedings of the 1995 ACM symposium on Applied
computing. ACM, 345-350.

Victor Sobreira, Thomas Durieux, Fernanda Madeiral Delfim, Martin Monperrus,
and Marcelo de Almeida Maia. 2018. Dissection of a Bug Dataset: Anatomy
of 395 Patches from Defects4]. CoRR abs/1801.06393 (2018). arXiv:1801.06393
http://arxiv.org/abs/1801.06393

Jeongju Sohn and Shin Yoo. 2017. FLUCCS: Using Code and Change Metrics
to Improve Fault Localisation. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2017). 273-283.

Sriraman Tallam and Neelam Gupta. 2006. A concept analysis inspired greedy
algorithm for test suite minimization. SIGSOFT Software Engineering Notes 31, 1
(2006), 35-42.

Paolo Tonella. 2004. Evolutionary Testing of Classes. In Proceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’04). ACM, New York, NY, USA, 119-128.

Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
“CL” Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), pp. 101-132.

W. Wen. 2012. Software fault localization based on program slicing spectrum. In
2012 34th International Conference on Software Engineering (ICSE). 1511-1514.
W. E. Wong, V. Debroy, Y. Li, and R. Gao. 2012. Software Fault Localization Using
DStar (D*). In 2012 IEEE Sixth International Conference on Software Security and
Reliability. 21-30. https://doi.org/10.1109/SERE.2012.12

W. E. Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A Survey
on Software Fault Localization. IEEE Transactions on Software Engineering 42, 8
(August 2016), 707.

W. Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. Effective Fault Localization
using Code Coverage. In Proceedings of the 31st Annual International Computer
Software and Applications Conference - Volume 01 (COMPSAC *07). IEEE Computer
Society, Washington, DC, USA, 449-456.

Jifeng Xuan and M. Monperrus. 2014. Learning to Combine Multiple Ranking
Metrics for Fault Localization. In Proceedings of the IEEE International Conference
on Software Maintenance and Evolution (ICSME 2014). 191-200.

Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to Rank Relevant Files for
Bug Reports Using Domain Knowledge. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 689-699. https://doi.org/10.1145/2635868.2635874

Shin Yoo. 2012. Evolving Human Competitive Spectra-Based Fault Localisation
Techniques. In Search Based Software Engineering, Gordon Fraser and Jerffeson
Teixeira de Souza (Eds.). Lecture Notes in Computer Science, Vol. 7515. Springer
Berlin Heidelberg, 244-258.

Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
2017. Human Competitiveness of Genetic Programming in SBFL: Theoretical and
Empirical Analysis. ACM Transactions on Software Engineering and Methodology
26, 1 (July 2017), 4:1-4:30.

Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
Spectrum-based Fault Localization Using PageRank. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2017). ACM, New York, NY, USA, 261-272.

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://www.scipy.org/
http://arxiv.org/abs/1801.06393
http://arxiv.org/abs/1801.06393
https://doi.org/10.1109/SERE.2012.12
https://doi.org/10.1145/2635868.2635874

	Abstract
	1 Introduction
	2 EMF: Ensemble Model for Fault Localisation
	2.1 Overall architecture of EMF
	2.2 Voting Schemes

	3 Ensemble Construction Using GA
	3.1 EMF with Greedy Algorithm
	3.2 EMF with Genetic Algorithm
	3.3 EMF with Random Construction

	4 Research Questions
	5 Experimental Settings
	5.1 Subjects
	5.2 Evaluation metric
	5.3 Configuration
	5.4 Validation

	6 Results and analysis
	6.1 RQ1. Effectiveness
	6.2 RQ2. Voting Scheme
	6.3 RQ3. Ensemble Construction

	7 Threats to Validity
	8 Related work
	8.1 Fault Localisation Techniques
	8.2 Efficient Fitness Evaluations

	9 Conclusion
	References

