
FLUCCS: Using Code and Change Metrics to Improve Fault
Localisation

ABSTRACT

Fault localisation aims to support the debugging activities of human

developers by highlighting the program elements that are suspected

to be responsible for the observed failure. Spectrum Based Fault

Localisation (SBFL), an existing localisation technique that only

relies on the coverage and pass/fail results of executed test cases,

has been widely studied but also criticised for the lack of precision

and limited e�ort reduction. To overcome restrictions of techniques

based purely on coverage, we extend SBFL with code and change

metrics that have been studied in the context of defect prediction,

such as size, age and code churn. Using suspiciousness values from

existing SBFL formulæ and these source code metrics as features,

we apply two learn-to-rank techniques, Genetic Programming (GP)

and linear rank Support Vector Machines (SVMs). We evaluate our

approach with a ten-fold cross validation of method level fault local-

isation, using 210 real world faults from the Defects4J repository.

GP with additional source code metrics ranks the faulty method at

the top for 106 faults, and within the top �ve for 173 faults. �is is

a signi�cant improvement over the state-of-the-art SBFL formulæ,

the best of which can rank 49 and 127 faults at the top and within

the top �ve, respectively.

CCS CONCEPTS

•So�ware and its engineering→Search-based so�ware engi-

neering;

KEYWORDS

Fault Localisation, SBSE, Genetic Programming

ACM Reference format:

. 2016. FLUCCS: Using Code and Change Metrics to Improve Fault Locali-

sation. In Proceedings of ACM Conference, Washington, DC, USA, July 2017

(Conference’17), 11 pages.

DOI: 10.475/123 4

1 INTRODUCTION

As so�ware systems grow larger and more complex, they are beset

with an increasingly large number of faults. While automated test

data generation [11, 12, 25] may reduce the cost of test creation

and eventually lead to easier detection of faults in the System Un-

der Test (SUT), the task of debugging itself is still largely le� to

human developers, taking up to 80% of total so�ware cost for some

projects [35]. Consequently there is an urgent need for automated

support for human debugging. Automated patching [9, 13] has

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Conference’17, Washington, DC, USA

© 2016 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

been proposed as an alternative to human debugging, but it also

requires automated guidance on where in the SUT to modify in

order to remove the observed fault, further adding to the need for

automated debugging support.

Fault localisation is a problem that, given results of testing, asks

to identify the location of the fault in the SUT [36]. A particular

branch of localisation techniques that has been widely studied is

Spectrum Based Fault Localisation (SBFL) [34, 38], which takes

the coverage and pass/fail information of individual test cases and

assigns to each program element in SUT what is called a suspicious-

ness score. �e score of a given program element is expected to be

correlated with likelihood of it containing the fault. �e expected

use case is that the human developer can inspect program elements

following the ranking based on these scores, thereby reaching the

faulty program element faster than when following the original

order given by the source code structure [33].

While SBFL has received much a�ention [2, 6, 16, 22, 37], its

limits have also been pointed out both empirically and theoretically.

Parnin and Orso conducted an empirical human evaluation of the ef-

fectiveness of SBFL techniques and reported that previous claims on

helpfulness did not hold in practice [30]. Furthermore, they pointed

out that the traditional evaluation metric for SBFL, ‘Expense’, is

misleading. Expense measures the wasted e�ort (i.e. number of pro-

gram elements that are ranked above the faulty one) as a percentage

of the size of SUT. While a single digit, or even fractional Expense

value may appear impressive, the accuracy of localisation may still

be impractical if the SUT is su�ciently large. �eoretically, it has

been recently proved that there does not exist a single SBFL risk

evaluation formula that is guaranteed to outperform all others [43],

following analyses on maximality and hierarchy between di�erent

formulæ [2, 29, 38].

�is paper presents FLUCCS (Fault Localisation Using Code and

Change Metrics), a fault localisation technique that learns to rank

program elements based on both existing SBFL techniques and

source code metrics. FLUCCS makes a series of critical design

choices based on �ndings in the literature. Instead of designing a

single formula or a �xed technique, it opts to learn how to rank

from a given training data set. Since there does not exist a single

greatest SBFL formula [43], the best SBFL formula has to be adap-

tively learnt rather than declared. We use Genetic Programming

as the learning mechanism: it not only can deal with non-linear

models, but also has been proven e�ective at learning SBFL for-

mulæ [39, 41]. Instead of learning from raw spectrum data, we use

existing SBFL formulæ as features for learning, as the theoretical

analysis shows that di�erent formulæ are already maximal against

di�erent classes of faults [38]. Finally, and most importantly, we

use a number of source code metrics previously studied for defect

prediction as additional features for learning. �is is to improve

the accuracy of localisation measured by the absolute ranking, fol-

lowing the guidelines by Parnin and Orso [30]. We posit that the

same set of features can be e�ective for both defect prediction and

Conference’17, July 2017, Washington, DC, USA

fault localisation: defect prediction can be interpreted as aiming

to localise faults a priori (i.e. before testing and actual detection),

whereas fault localisation simply does so post hoc.

We empirically evaluate FLUCCS using 210 real world faults from

Defects4J repository [19]. �e method level localisation results

obtained by FLUCCS have been compared to those from existing

SBFL baselines, FLUCCS with di�erent learning mechanism, as

well as FLUCCS without the additional source code metric features.

FLUCCS with Genetic Programming convincingly outperforms

all the other approaches, placing the faulty method at the top of

the ranking for 106 faults out of 210. �e �nal result shows that

source codemetrics that are relatively easy to collect may e�ectively

augment existing SBFL techniques for higher accuracy.

�e technical contribution of this paper can be summarised as

follows:

• We present FLUCCS, a fault localisation technique that

learns to rank program elements using Genetic Program-

ming, existing SBFL techniques, and source code metrics1.

• We empirically evaluate FLUCCS using 210 real world

faults from Defects4J. FLUCCS ranks 50% of the stud-

ied faults at the top, and about 82% of the studied faults

within the top 5 of the ranking.

• We introduce a new way of computing method level SBFL

scores called method level aggregation. Empirical evalua-

tion of this technique applied to existing state-of-the-art

SBFL formulæ shows that formulæ with method level ag-

gregation can rank about 42% more faults at the top.

• We show that simple source code metrics can e�ectively

augment existing SBFL techniques for more accurate locali-

sation, prompting further study of the connection between

defect prediction and fault localisation.

�e rest of the paper is organised as follows: Section 2 formu-

lates fault localisation as a learning to rank problem and introduces

the features FLUCCS uses. Section 3 describes the learning algo-

rithms that we use in the paper. Section 4 presents the set-up for

the empirical evaluation, the results of which are discussed in Sec-

tion 5. Section 6 discusses the potential threats to validity. Section 7

presents the related work and Section 8 concludes.

2 FEATURES USED BY FLUCCS

Figure 1 shows the overall architecture of FLUCCS. FLUCCS ex-

tracts two sets of features from a source code repository. �e �rst is

a set of SBFL scores using di�erent SBFL formulæ: this requires test

execution on source code instrumented for structural coverage. �e

second is a set of code and change metrics: this requires lightweight

static analysis and version mining. In training phase, these features,

along with locations of known faults, are fed into learning algo-

rithms, which produce ranking models that rank the faulty method

as high as possible. In deployment phase, these learnt models take

the features from source code with unknown faults, and produce

rankings of methods according to their likelihood of being faulty.

In this section, we describe the features used by FLUCCS, as well

as how these features are extracted and processed.

1FLUCCS and the data used for the empirical evaluation are made available at h�p:
//Redacted.For.Double.Blind.Review

2.1 SBFL Scores

SBFL formulæ take program spectrum data as input and return

risk scores (also known as suspiciousness scores). For a structural

program element (such as a statement or a method), the spectrum

data consists of four variables that are aggregated from test cover-

age and pass/fail results: (ep , ef ,np ,nf): ep and ef represent the

number of passing and failing test cases that execute the given

structural element, respectively. Similarly, np and nf represent the

number of passing that failing test cases that do not execute the

given structural element. SBFL formulæ tend to assign higher risk

scores to elements wigh higher ef and np values, which suggest

executing those elements tend to result in failing test executions,

while not executing them tend to result in passing test executions.

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a

−1 if nf >0

np otherwise
ER1b ef −

ep
ep+np+1

ER5a ef −
ef

ep+np+1
ER5b

ef
ef +nf +ep+np

ER5c

0 if ef <F

1 otherwise
GP2 2(ef +

√

ep+np)+
√
ep

Ochiai
ef

(ef +nf) (ef +ep)
GP3

√

|e2
f
−√ep |

Jaccard
ef

ef +nf +ep
GP13 ef (1+

1
2ep+ef

)

AMPLE | efF −
ep
P | GP19 ef

√

|ep−ef +F−P |

Hamann
ef +np−ep−nf

P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice
2ef

ef +ep+nf
RusselRao

ef
ep+ef +np+nf

M1
ef +np
nf +ep

SørensenDice
2ef

2ef +ep+nf

M2
ef

ef +np+2nf +2ep
Kulczynski1

ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman
2ef −nf −ep
2ef +nf +ep

SimpleMatching
ef +np

ep+ef +np+nf

Euclid
√

ef +np RogersTanimoto
ef +np

ef +np+2nf +2ep

Wong1 ef Sokal
2ef +2np

2e f +2np+nf +ep

Wong2 ef −ep Anderberg
ef

ef +2ep+2nf

Wong3 ef −h,h=

ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.01(ep−10) if ep>10

Ochiai2
ef np√

(ef +ep) (nf +np) (ef +np) (ep+nf)

Zoltar
ef

ef +ep+nf +
10000nf ep

ef

FLUCCS uses 33 SBFL formulæ to generate score metrics, which

are listed in Table 1 We include both the state-of-the-art human

generated SBFL formulæ and GP evolved SBFL formulæ. Of these,

25 formulæ have been used in combination with each other in

previous work [3, 40], while eleven formulæ have been proven to

be maximal [39].

http://Redacted.For.Double.Blind.Review
http://Redacted.For.Double.Blind.Review

FLUCCS: Using Code and Change Metrics to Improve Fault Localisation Conference’17, July 2017, Washington, DC, USA

Repository SBFL Scores Debugging

Source
CodeSource

CodeSource

Code

Test

Cases

Spectrum Data+
ER1a Ochiai Jaccard...

Code/Change Metrics

Version History

Age Churn Size...

Known

Faults
Known

Faults
Known

Faults

Deployment

Ranking Models

Training

Learning Algorithms

GP SVM

Formulæ Weights

Method

Ranking

Figure 1: Overall Architecture of FLUCCS

2.2 Code and Change Metrics

�ere is a large number of code and change metrics that have

been studied in relation to defect proneness [7, 26–28]. We adopt

some of the widely studied code and change metrics as features to

our learning, expecting that these features will provide additional

guidance towards the faulty program elements. In total, we use 14

code and change metrics.

2.2.1 Age. Age simply measures how long a given program

element has existed in the code base [27]. We calculate the age of a

given statement as the number of consecutive versions from the

faulty version backwards to the latest version containing a modi�-

cation to the statement. Statement level age metric is aggregated

into three di�erent method ages: minimum, maximum, and mean

ages of statements that consist the method. Min and max ages

represent the ages of the youngest and the oldest statement in the

method, whereas the mean age represents the average age of all

statements in the method.

2.2.2 Churn. Churn metric measures the change frequency of a

given program element, and has been shown to be correlated with

the fault density [28]. Churn metric is calculated as the number of

commits that have changed the structural element (such asmethods)

under consideration, divided by the total number of commits made

to the repository up to the faulty version. A method is considered

to be changed if any of its statements is changed.

2.2.3 Complexity Metrics. Code complexity and its impact on

defect proneness has been widely studied [7]. Various types of code

complexity metrics have been suggested in the literature, out of

which we select the following, cheap to measure, metrics:

• Number of formal arguments: this indirectly re�ects the

internal complexity of the given method, as well as the

degree of external coupling.

• Number of local variables: this indirectly measures the

internal complexity.

• Size: this has been used by much of the defect prediction

work in the literature as a surrogate for code complexity [7,

14, 23]. We use both LoC (Lines of Code) and the number

of compiled Java Bytecode instructions.

2.3 Method Level Aggregation of SBFL Scores

Although FLUCCS performs method level localisation, it does not

use method coverage to calculate the SBFL score features. Instead,

we calculate SBFL scores for statements and aggregate them up to

the method level by taking the highest score among those from

statements that consist the method under consideration. While this

adds to the cost of localisation (instrumentation for the statement

coverage is more expensive than one for the method coverage), this

has clear bene�ts.

Consider the code snippet in Figure 2, which is executed with

three test cases: a = 1, 2, 3. Let us also assume that there exist

two other test cases that do not execute this method. In total, there

are �ve test cases: three execute testMe and one of them fails.

Method testMe is covered by three test cases: its spectrum tuple

(ep , ef ,np ,nf) is (2, 1, 2, 0), resulting in Ochiai score of 1√
1(1+2)

=

0.578 and Jaccard score of 1
1+0+2 = 0.333. Method util and its

line 12 share the same spectrum tuple as well as scores, making

it impossible to di�erentiate util and testMe. However, for line 4,

the spectrum tuple (ep , ef ,np ,nf) becomes (0, 1, 4, 0), resulting in

both Ochiai and Jaccard score of 1.0, placing testMe above util .

1 public void testMe(int a){

2 util ();

3 if (a % 3 == 0){

4 ... // faulty code

5 }

6 else{

7 ...

8 }

9 }

10

11 public void util (){

12 ...

13 }

Figure 2: Example code snippet showing the bene�ts of

method level aggregation. Withmethod coverage, testMe and

util share the same SBFL scores; however, if we represent

testMe with the highest SBFL score among those of its con-

stituent statements, it is ranked higher than util.

In general, there are two drawbacks in using method coverage

to calculate SBFL scores. First, methods on a single call chain

can share the same spectrum tuple values, resulting in tied SBFL

Conference’17, July 2017, Washington, DC, USA

scores. Second, if there exist test cases that execute only the non-

faulty parts of an actually faulty method, they will increase the

ep value at the method level. �is is undesirable, because with

most of the practically e�ective SBFL formulæ, higher ep values

tend to decrease the suspiciousness. Our method level aggregation

approach is designed to overcome these two weaknesses.

2.4 Call Graph Propagation

While a newly created fault may be directly commi�ed into a code

repository, a regression fault can be caused at an unchanged loca-

tion, di�erent from the latest change that is, in itself, completely

valid [42]. Changes in method interface or expected semantic be-

haviour can cause such regression faults. Consequently, if a change

metric is an e�ective indicator of fault proneness, we argue that its

impact should be propagated through the dependency graph.

We propagate age and churn metrics through method level call

graph, which is extracted using Apache Bytecode Engineering Li-

brary (BCEL 2). With the basic age metrics, we include three addi-

tional Call Graph Propagated (CGP) versions of age metrics: CGP

min age, CGP max age, and CGP mean age. For a given method,

its CGP min/max age is de�ned recursively as the smallest/largest

value among its own min/max age, and min/max CGP age values of

all its callees; its CGP mean age is the mean of its own mean age as

well as the mean CGP ages of all of its callees. For methods without

callees, their CGP age values are the same as their own age values.

Similarly to the way age metrics are propagated, we include

three additional churn metrics: CGP min churn, CGP max churn,

and CGP mean churn, based on the churn metrics of the method in

consideration plus those of all its callees.

3 LEARNING ALGORITHMS

Learning to rank is a technique that uses machine learning to con-

struct ranking models for an information retrieval system [24]. It

aims to learn how to produce a permutation of unseen lists of items

in some way that is similar to ones that have been provided as

training data. �ere are three di�erent approaches to learning to

rank: pointwise, pairwise, and listwise. Pointwise approaches ap-

proximate learning to rank problems as regression problems for the

ordinal scores in the training data. Pairwise approaches transform

learning to rank problems as classi�cation problems for pairs of

items: by classifying pairs according to their ordinal relationships,

it aims to minimise ordinal inversions. Listwise approaches at-

tempt to produce ranking models that minimise the dissimilarity

to rankings in the training data.

With FLUCCS, the objective for learning is to construct ranking

models that rank faulty program elements as high as possible, based

on features described in Section 2. Fault localisation is a unique

learning to rank problem, as our interest is limited solely to the rank

of the faulty program elements, and not those of the other, non-

faulty ones. �e labels in training data are binary: one for faulty

elements, and zero otherwise. Even with multi-location faults, there

will be signi�cantly more zeros than ones.

In this paper, we evaluate a pointwise and a pairwise approach.

We consider the listwise approach to be inappropriate, because the

rankings in the training data are mostly all tied (i.e. zero for not

2h�ps://commons.apache.org/proper/commons-bcel/

faulty). For the pointwise approach, we choose Genetic Program-

ming; for the pairwise approach, we choose rankSVM [21].

3.1 Genetic Programming

We use GP as a symbolic regression tool to learn the rankingmodels:

it evolves a ranking function that takes features and produce ordinal

scores. Instead of evolving a function that reproduces the original

binary labels (i.e. ‘faulty’ or not ‘faulty’) as closely as possible, our

�tness function is simply the average ranking of the faulty program

element (the one that is ranked highest, if multiple elements are

marked to consist a single fault), calculated from all faults that are

considered for �tness evaluation. GP has been successfully applied

to evolving SBFL formulæ from raw spectrum data [41] and has

the bene�t of being able to generate non-linear ranking models.

3.2 Support Vector Machine

Ranking SVM is a variant of Support Vector Machine [5] algorithm

that performs pairwise learning to rank. We use rankSVM [21], an

implementation of linear ranking SVM. It learns the linear weights

to features that produce ordinal scores with the fewest ordinal

inversions. While being orders of magnitudes faster than GP, linear

ranking SVMs are restricted by the linearity of the ranking model

and the inherent imbalance in fault localisation training data.

4 EXPERIMENTAL SETUP

4.1 Research �estions

We investigate the following research questions to evaluate the

e�ectiveness of FLUCCS.

RQ1. E�ectiveness: How e�ective is FLUCCS at localizing the

studied faults?

We evaluate the e�ectiveness of the GP version of FLUCCS that

uses all features (referred to as GPA herea�er), by computing the

evaluation metrics described in Section 4.4. Due to the stochastic

nature of GP, we evaluate 30 runs of GP and generate 30 ranking

models per training data set: when evaluating these ranking mod-

els with test data sets, we pick models with the best and median

performance. �e best performance model, GPAmin , (i.e. the one

that produces the best �tness out of the 30 runs) represents the best

use case scenario, in which the user of FLUCCS completes multiple

GP runs and picks the best model. �e median performance model,

GPA
med

, is the one that corresponds to the median �tness value from

multiple runs; it is included to show the variance in the models

produced by the GP version of FLUCCS. �ese evaluation results

are then compared with evaluation results of 11 state-of-art SBFL

formulæ, including both human designed and GP evolved ones,

using the same evaluation metrics.

RQ2. Code and Change Metric Contribution: How much do

the code and change metric features contribute to the localisation

of faults?

To con�rm that the code and change metric features contribute

positively to localisation, we evaluate FLUCCS using only SBFL

score features, leaving other se�ings for GP untouched. Resulting

models,GPSmin andGPS
med

, are compared withGPAmin andGPA
med

.

https://commons.apache.org/proper/commons-bcel/

FLUCCS: Using Code and Change Metrics to Improve Fault Localisation Conference’17, July 2017, Washington, DC, USA

RQ3. Method Level Aggregation and Call Graph Propaga-

tion: How much do the method level aggregation and the call

graph propagation contribute to the localisation of faults respec-

tively?

Method level aggregation can be applied to any spectrum-based

technique, whereas the use of call graph propagation is unique to

FLUCCS due to its use of code and change metrics. Consequently,

we evaluate the contribution of the method level aggregation and

the call graph propagation separately. To evaluate the impact of

method level aggregation, we simply compare two sets of SBFL

scores from 11 state-of-art SBFL formulæ, with and without method

level aggregation. �is will evaluate whether method level aggre-

gation can be generally useful to any spectrum-based techniques.

Since these formulæ provide SBFL scores as features for FLUCCS,

we posit that improvements in their scores will result in improve-

ments in FLUCCS as well.

For the evaluation of the call graph propagation, we compare

results of FLUCCS with and without call graph propagation, leaving

all other factors the same. Results with call graph propagation are

named GPCGmin and GPCGmed , using min and median model

from multiple GP runs, respectively.

RQ4. Learning Algorithm: Is GP a suitable approach to learn

the ranking?

To evaluate the e�ectiveness of GP as a learning mechanism,

we compare GPAmin , GP
A
med

, GPSmin , and GP
S
med

to corresponding

versions of FLUCCS that uses rankSVM as the learning mechanism:

SVMA and SVMS .

Table 2: Subject so�ware systems and their faults

Project # Faults Loc # Methods # Test cases

Commons Lang 60 9343–11813 1794–2335 1585–2295

Joda-Time 27 12986–13604 3338–3510 3749–4041

Commons Math 96 4771–42408 897–5905 817–4429

Closure Compiler 27 43809–45151 6884–7187 7514–7911

4.2 Subjects

We use real world faults from Defects4J repository [19] to eval-

uate FLUCCS. Table 2 lists the subject programs. �e version of

Defects4J we use is 0.2.0, which contains 357 faults; we use 210

faults due to issues that prevent us establishing the ground truth

about input features and locations of the real faults. Our �ltering

criteria are:

• Missing Revision IDs: To extract code and change met-

rics, FLUCCS requires the revision id of the faulty version,

so that it can process the original faulty version of SUT in

the context of consecutive commits to establish the ground

truth. We exclude JFreeChart in Defects4J because its re-

vision ids in Defects4J repository do not align with those

in its own repository.

• Scope of Faults: We focus only on the methods that are

parts of the given SUT. If the faulty method does not orig-

inate from the subject, it is considered out of scope. For

example, fault 23 from Commons-Lang in Defects4J has

been excluded as the location of the fault is a method that

overrides another method external to Commons-Lang.

• Limitations of JaCoCo: We use JaCoCo [1] to collect

coverage data. For some faulty methods, we noted that

JaCoCo fails to record coverage when some test cases do

actually execute them and reveal faults. �is is a known

limitation of JaCoCo3. We �lter out a total of 17 faults due

to missing coverage (Commons-Lang:4, Commons-Math:

10, Closure: 3)

From the 210 faulty versions that we study, any method that are

not executed at all has been excluded from analysis, as they cannot

cause any observable failures. Defects4J provides the location of

faults in the form of patches that �x them. Consequently, we take

the methods that are patched as the ground truth for the location

of the fault.

4.3 Con�guration

4.3.1 Genetic Programming. We use DEAP [10], a Python evo-

lutionary computation framework, to implement the GP version of

FLUCCS. FLUCCS uses a tree-based GP with single-point crossover

with rate of 1.0 and subtree mutation with rate of 0.1. �e pop-

ulation contains 40 individuals and is initialised by the ramping

method [31]; the maximum tree depth is 8 and the algorithm stops

a�er 100 generations. As described in Section 3, GP uses the rank of

a known faulty program element as the �tness. Table 3 lists types

of operator nodes used by GP; for terminal nodes, we use variables

corresponding to 47 features described in Section 2 plus a constant

one (1.0).

Table 3: List of GP operators

Operator Node De�nition

gp add(a, b) a + b

gp sub(a, b) a - b

gp mul(a, b) ab

gp div(a, b) 1 if b = 0, a
b
otherwise

gp unarymin(a) −a
gp sqrt(a)

√
|a |

To avoid over��ing of GP, we randomly sample 30 faults from the

training data set, which consists of 189 faults, for �tness evaluation

in each generation in GP. We also adopt elitism, preserving the

best 8 individuals from the parent generation into the generation

of o�spring; these individuals are reevaluated with the new sample

at each generation.

4.3.2 RankSVM. We use version 3.20 of rankSVM, which de-

pends on libSVM [4], with out-of-the-box default parameters. It

uses the deterministic trust region Newton method to minimise the

loss function and has been used to learn ranking models for fault

localisation in the literature [3].

3�e o�cial FAQ (h�p://www.eclemma.org/jacoco/trunk/doc/faq.html) states that, if
the normal sequence of statement execution is disturbed (by, for example, exceptions),
a probe inserted by JaCoCo may not be executed, resulting in a failure to record
coverage of any statements executed between the previous probe and the missed one.

http://www.eclemma.org/jacoco/trunk/doc/faq.html

Conference’17, July 2017, Washington, DC, USA

4.4 Evaluation Metrics

We use three metrics to analyse the performance of GP with new

features following existing work [3, 40]. In particular, the use of

accuracy (acc@n) andwasted e�ort (we f) conforms to the guideline

from Parnin and Orso [30], as these metrics are based on an absolute

count of program elements, rather than percentage values.

4.4.1 Accuracy (acc@n). acc@n counts the number of faults

that have been localised within top n places of the ranking. We

use 1, 3, 5 for number n, and count the number of corresponding

faults per project and also overall. When there are multiple faulty

program elements, we assume the fault is localised if any of them

are ranked within top n places.

4.4.2 Wasted E�ort (we f). we f measures the amount of e�ort

wasted looking at non-faulty program elements. Essentially,we f

can be interpreted as the absolute count version of the traditional

Expense metric.

4.4.3 Mean Average Precision (MAP). MAP is an evaluation met-

ric for ranking, used in Information Retrieval; it is the mean of

the average precision of all faults. First, we de�ne the precision of

localisation at each rank i , P (i):

P (i) =
number of faulty methods in top i ranks

i
(1)

Average precision (AP) for a given ranking is the average preci-

sion for faulty program elements:

AP =

M
∑

i=1

P (i) × isFaulty (i)
number of faulty methods

(2)

Mean Average Precision (MAP) is the mean of AP values com-

puted for a set of faults. We calculate MAP for faults belonging to

the same project.

Table 4: Metric values showing the e�ectiveness of FLUCCS

Technique Project Total acc we f MAP

Faults @1 @3 @5 mean std

GPAmin

Lang 60 34 51 56 1.1833 2.3345 0.6794

Time 27 11 15 19 4.2222 7.2231 0.4060

Math 96 54 72 82 4.2396 16.2075 0.5884

Closure 27 7 15 16 37.5185 98.1821 0.3460

Overall 210 106 153 173 11.7909 45.1638 0.5050

GPA
med

Lang 60 34 49 54 1.3500 2.5088 0.6865

Time 27 10 16 17 19.3704 58.6137 0.4001

Math 96 55 76 82 4.3333 20.8185 0.6401

Closure 27 9 14 17 92.5185 284.0684 0.3768

Overall 210 108 155 170 29.3931 130.4855 0.5259

4.5 Validation

Tomaximize the size of training data set and also to avoid over��ing

of GP, we use ten-fold cross validation. Given the set of 210 faults,

we divides fault data set into ten di�erent sets, each comprises 21

faults. �ese sets are used as test data sets. Each test data set is

paired with remaining faults as matching training data set.

We execute 30 runs of FLUCCS with GP, resulting in 30 di�erent

ranking models. To summarize and compare overall results, eval-

uation metrics of rankings are aggregated per Defects4J project.

Since acc@n is a counting metric (i.e. it is a count of faults for which

a localisation method ranks the fault at the top), we simply count

the number of faults, in a Defects4J project, for which the given

ranking model placed the faulty method at the top. On the other

hand, bothwe f and MAP values can be computed for localisation

of a single fault. �erefore, unlike acc@n,we f and MAP for each

Defects4J project is the average of allwe f and MAP values over

the faults belonging to the same project.

4.6 Tie-breaking

Ranking models generated by both FLUCCS and the eleven baseline

SBFL formulæ produce ordinal scores. However, when converting

these scores into rankings, ties o�en take place. To break these

ties, We use max tie-breaker that ranks all tied elements with the

lowest ranking. We use the rankdata function from scipy.stats,

a Python module for statistical functions as well as probability

distribution, to implement max tie breaker.

5 RESULTS AND ANALYSIS

5.1 RQ1. E�ectiveness

Table 4 shows the performance of FLUCCS measured by using

evaluation metrics described in Section 4.4. For GPAmin , 106 faults

(roughly 50% of all faults studied) are located at the top and 173

faults (82%) are placed within the top �ve. For GPA
med

, 108 faults

(51%) and 170 faults (80%) are placed at the top and within the top

�ve respectively. Although the result ofGPA
med

has a slightly be�er

result than GPAmin for metric acc@1, GPAmin outperforms GPA
med

for metric we f . Recall that the �tness function is the average

ranking of faults in the test data sets; we f directly re�ects the

relative �tness (higher ranking results in lower we f), whereas

acc@1 counts speci�c cases of produced rankings. Consequently,

improvedwe f by GPAmin can still result in worse acc@1.

�e overall MAP values for both GPAmin and GPA
med

are higher

than 0.5. While acc@1 andwe f focus on the method that has the

highest rank, MAP concerns all faulty methods that consist a sin-

gle Defects4J fault, communicating more complete views on the

rankings of constituent methods. �e observed overall MAP values

are higher than those reported in fault localisation literature [3].

�e results suggest that FLUCCS is more e�ective at localising

faults when compared to baseline SBFL formulæ. �e right column

(“Without Method Level Aggregation”) in Table 6 shows the results

from the 11 baseline SBFL formulæ. �e top six best performing

SBFL formulæ are ER1a , ER1b , gp03, gp19, Ochiai, and Jaccard.

Compared to these formulæ,GPAmin places at least 49% and at most

54% more faults at the top (acc@1) than these formulæ. In terms of

we f , GPAmin has 12.8 whilewe f values for these baseline formulæ

are ranged from 103.9 to 731.5. In terms of MAPmetric, MAP values

for all top six formulæ do not exceed 0.5, which GPAmin exceeds:

the values are ranged from 0.4005 to 0.4303.

�e boxplots in Figure 3 present the overall we f results from

eleven baseline SBFL formulæ as well asGPA
med

and GPAmin (the y-

axis is in log scale): FLUCCS outperforms all other baseline formulæ.

FLUCCS: Using Code and Change Metrics to Improve Fault Localisation Conference’17, July 2017, Washington, DC, USA

Table 5: Code and Change Metric Contribution: Metric

values for the results of FLUCCS without using Code and

Change Metrics as features

Technique Project Total acc we f MAP

Faults @1 @3 @5 mean std

GPSmin

Lang 60 29 50 55 1.8000 3.7408 0.6424

Time 27 8 13 19 16.1852 32.2778 0.3234

Math 96 29 62 74 31.8854 202.8204 0.4583

Closure 27 9 15 17 79.4815 306.9720 0.3872

Overall 210 75 140 165 32.3380 143.6969 0.4528

GPS
med

Lang 60 30 51 56 2.0333 5.0232 0.6521

Time 27 8 14 19 131.1481 584.0116 0.3398

Math 96 39 67 79 61.5625 490.5831 0.5267

Closure 27 10 17 18 107.7037 418.6214 0.4379

Overall 210 87 149 172 75.6119 255.4931 0.4891

�is provides an answer for RQ1: FLUCCS can be signi�cantly

more e�ective at ranking faulty methods at the top than existing

SBFL formulæ.

5.2 RQ2. Code and Change Metric Contribution

To investigate the impact of using code and change metrics for

localisation, we compare the results of FLUCCS with and without

code and change metrics to each other, leaving other factors the

same. Table 5 shows results of FLUCCS with only SBFL scores as

features, namedGPSmin andGPS
med

. Compared with Table 4, which

describes results using all features, GPAmin andGPA
med

outperform

GPSmin andGPS
med

respectively by placing 41% and 24% more faults

at the top rank (acc@1). In terms ofwe f ,GPAmin andGPA
med

reduce

wasted e�ort by 61% and 60% respectively; MAP values of both

GPSmin and GPS
med

do not exceed 0.5.

Boxplots in Figure 4 show overallwe f metric values of GPAmin ,

GPA
med

,GPSmin , andGP
S
med

. For all projects except Closure-Compiler,

GPAmin and GPA
med

4 place more faults at the top rank. Answer to

RQ2: code and change metrics can make positive contribution to

the e�ectiveness of fault localisation.

5.3 RQ3. Method Level Aggregation and Call
Graph Propagation

Table 6 shows the impact of using method level aggregation for the

11 baseline SBFL formulæ. Among 11 baseline formulæ, the top

six best performing formulæ are ER1a , ER1b , gp03, gp19, Ochiai,

Jaccard. Method level aggregation can improve acc@1 values of

these formulæ by 40% to 43%. However, for the other 5 formulæ,

which place less than 3% of faults at the top, method level aggre-

gation does not result in any improvement at all. �ese results

indicate that method level aggregation can improve the accuracy of

existing SBFL formulæ in some cases, but it cannot overcome the

inherent limits of given SBFL formulæ. Answer for RQ3: method

level aggregation can augment the accuracy of SBFL formulæ.

Table 7 shows the results of FLUCCS using 6 additional CGP

versions of the changemetric features; the boxplots in Figure 5 show

the distribution ofwe f resulting fromGPAmin ,GP
A
med

,GPCGPmin , and

GPCGP
med

. Using the CGP version of change metric features allows

us to place more faults at the top, but the improvement is not

signi�cant: 2% and 1% additional faults at the top for GPCGmin

and GPCGmed , respectively. �e results also show that there is

li�le improvements in we f and MAP, which show mixed trends.

Answer for RQ3: we �nd only limited supporting evidence for our

assumption about CGP in Section 2.4.

5.4 RQ4. Learning Algorithm

Table 8 presents the results of FLUCCS using linear rankSVM as the

learning algorithm: SVMA and SVMS indicate the results of linear

rankSVM with and without code and change metrics, respectively.

Considering that the linear rankSVM is deterministic and requires

a single run, we compare its results to those from the median

performance GP models: GPA
med

and GPS
med

.

When all features are used, GPA
med

locates 9% more faults at

the top and reduces we f by 73% compare to SVMA. For MAP,

GPA
med

produces an average over 0.5, SVMA reports MAP of 0.4466.

When code and change metrics are excluded, GPS
med

places 13%

more faults at the top and reduceswe f by 45% compared to SVMS .

However MAP values for both GPS
med

and SVMS do not exceed

0.5, at 0.4891 and 0.4298 respectively.

Overall distributions of we f for both GP and linear rankSVM

versions of FLUCCS are shown in boxplots in Figure 6. FLUCCSwith

GP ranks faulty methods higher than FLUCCS with linear rankSVM

for all subject project except for Closure-Compiler. Answer forRQ4:

GP as a learning-to-rank algorithm can outperform linear support

vector machines.

6 THREATS TO VALIDITY

�reats to internal validity includes the extent to which the results

of the empirical evaluation warrants the claims, such as the data

integrity of training and test data we use, as well as the correctness

of the tools. �e spectrum data is collected using one of the most

widely used coverage instrumentation tool, JaCoCo; similarly, both

of the learning techniques used by FLUCCS are existing open source

frameworks [4, 10, 21] that withstood public inspection and have

been used in a variety of applications. We perform our statistical

analysis using GNU R [32].

�reats to external validity includes factors that may a�ect how

well the conclusions generalise. While the fact that Defects4J

provides real world faults from open source projects may at least

partially alleviate the risk of over-generalisation, our conclusions

may be limited by the choice of language (Java), as well as factors

in the studied projects that we failed to take note. �e study is also

limited by the factors that prevented us from establishing accurate

ground truth regarding some faults in Defects4J as mentioned in

Section 4.2.

�reats to construct validity includes how well the measure-

ments we take are actually correlated to what they claim to measure.

�e use of absolute metrics, instead of the percentage based ones,

helps communicating more realistic readings of the e�ort reduction

possible with fault localisation.

7 RELATED WORK

Spectrum Based Fault Localisation has been one of the most widely

studied technique for automated debugging [36]. While one of the

Conference’17, July 2017, Washington, DC, USA

●

●●●●●●●
●
●●●●

●

●

●

●●

●

●

●

●

●● ●●

●●●●●●●
●
●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●●

●●
●

E
R

1a

E
R

1b

E
R

5a

E
R

5b

E
R

5c

gp
02

gp
03

gp
13

gp
19

oc
hi

ai

ja
cc

ar
d

 G
P

m
in

A

 G
P

m
ed

A

1

5

10

50

100

500

1000

Lang

Technique

R
an

k

●

●

●

●

●

● ●●●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

E
R

1a

E
R

1b

E
R

5a

E
R

5b

E
R

5c

gp
02

gp
03

gp
13

gp
19

oc
hi

ai

ja
cc

ar
d

 G
P

m
in

A

 G
P

m
ed

A

1

5

10

50

100

500

1000

Time

Technique

R
an

k
●

●

●

●
●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●

●
●
●
●

●

●●

●

●●

●

●●
●

●

●

●
●

●
●●
●
●
●●

●●●●

●

●

●●

●
●●
●

●

●

●
●

●

●

●

●●

●
●●
●

●

●

●
●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●
●●
●●
●●

●

●

●

●

●
●
●●
●●

●

E
R

1a

E
R

1b

E
R

5a

E
R

5b

E
R

5c

gp
02

gp
03

gp
13

gp
19

oc
hi

ai

ja
cc

ar
d

 G
P

m
in

A

 G
P

m
ed

A

1

5
10

50
100

500
1000

5000

Math

Technique

R
an

k

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●

● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

E
R

1a

E
R

1b

E
R

5a

E
R

5b

E
R

5c

gp
02

gp
03

gp
13

gp
19

oc
hi

ai

ja
cc

ar
d

 G
P

m
in

A

 G
P

m
ed

A

1

5
10

50
100

500
1000

5000

Closure

Technique

R
an

k

Figure 3: Boxplots of we f metric values from the 11 base SBFL formulæ as well as the minimum and the median we f from

FLUCCS (GPAmin and GPA
med

) that uses all the features. FLUCCS outperforms all baseline SBFL formulæ across all subject

projects.

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

 GPmin
A GPmed

A GPmin
S GPmed

S

1

2

5

10

20

Lang

Technique

●
●

●

●

●

●

●●
●

●

●

●

●●

 GPmin
A GPmed

A GPmin
S GPmed

S

1

5
10

50
100

500
1000

Time

Technique

●

●

●

●
●●
●●
●●

●

●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

 GPmin
A GPmed

A GPmin
S GPmed

S

1

5
10

50
100

500
1000

5000

Math

Technique

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 GPmin
A GPmed

A GPmin
S GPmed

S

1

5
10

50
100

500
1000

Closure

Technique

Figure 4: Boxplots of we f metric values from FLUCCS with (GPAmin and GPA
med

) and without (GPSmin and GPS
med

) the code and

change metric features. �e use of code and change metric features does improve thewe f metric values.

earliest technique, Tarantula [17, 18], has been developed as a visual

aid, it had been quickly applied as a ranking technique by which

program elements are ranked according to their likelihood of being

faulty. Many formulæ have been developed [6, 15, 29, 37] in order to

empirically reduce the Expense metric, which measures the wasted

e�ort (see Section 4.4) in percentage of the size of SUT. Later, it

was pointed out that a percentage based evaluation metric can be

unrealistic [30] when the SUT is su�ciently large. Consequently,

recent work have adopted absolute measures, such as the accuracy

(acc@n) or absolute wasted e�ort, for evaluation [3, 40], a trend

which we follow in this paper.

Fault localisation has been approached as a learning problem in

the literature. Yoo applied Genetic Programming to evolve SBFL

formulæ from a set of known faults [41]. While evolving SBFL

formulæ produced previously unknown maximal formulæ [39],

there are also theoretically proven restrictions to what a single

SBFL formula can achieve [43]. Instead of learning a complicated

ranking model from raw spectrum data, FLUCCS takes existing

SBFL scores as features, thereby accelerating the pace of learning.

FLUCCS: Using Code and Change Metrics to Improve Fault Localisation Conference’17, July 2017, Washington, DC, USA

Table 6: Baseline metric values from SBFL formulæ, with and without method level aggregation

Tech Project Total With Method Level Aggregation Without Method Level Aggregation

Faults acc we f MAP acc we f MAP

@1 @3 @5 mean std @1 @3 @5 mean std

ER1a

Lang 60 27 39 43 410.1500 820.5376 0.5483 24 38 40 411.2833 819.1319 0.5102

Time 27 7 11 14 1257.1111 1636.1855 0.5483 6 10 14 1257.4444 1634.3260 0.2450

Math 96 28 54 66 460.5208 1341.5428 0.4079 18 45 52 473.2083 1364.5826 0.3224

Closure 27 7 13 17 794.1852 2145.0155 0.3665 1 4 8 834.5185 2120.9147 0.1396

Overall 210 69 117 140 730.4918 553.9450 0.4005 49 97 114 744.1137 543.0059 0.3043

ER1b

Lang 60 27 43 51 3.3167 6.9534 0.5986 24 41 47 4.8500 10.2515 0.5552

Time 27 7 11 14 100.0370 273.2900 0.2825 6 10 14 134.5556 434.4126 0.2481

Math 96 28 55 68 63.9896 490.0560 0.4309 18 46 53 93.8438 559.6703 0.3431

Closure 27 7 13 17 244.2593 703.8727 0.3667 1 4 8 421.6296 1248.2000 0.1398

Overall 210 69 122 150 102.9006 298.3463 0.4197 49 101 122 163.7197 513.6716 0.3215

ER5a

Lang 60 2 16 25 12.8333 14.7853 0.2259 2 17 26 12.4000 14.4271 0.2313

Time 27 1 1 1 470.8889 598.3875 0.0242 1 1 1 470.5185 598.1112 0.0243

Math 96 3 7 9 120.3021 566.7435 0.1043 3 7 9 162.4896 699.2417 0.1043

Closure 27 0 0 0 1327.0741 1618.9638 0.0030 0 0 0 1293.0000 1614.1084 0.0031

Overall 210 6 24 35 482.7746 668.8536 0.0894 6 25 36 484.6020 661.3180 0.0907

ER5b

Lang 60 2 16 25 12.8333 14.7853 0.2259 2 17 26 12.4000 14.4271 0.2313

Time 27 1 1 1 470.8889 598.3875 0.0242 1 1 1 470.5185 598.1112 0.0243

Math 96 3 7 9 120.3021 566.7435 0.1043 3 7 9 162.4896 699.2417 0.1043

Closure 27 0 0 0 1327.0741 1618.9638 0.0030 0 0 0 1293.0000 1614.1084 0.0031

Overall 210 6 24 35 482.7746 668.8536 0.0894 6 25 36 484.6020 661.3180 0.0907

ER5c

Lang 60 2 16 23 418.4667 816.5019 0.1916 2 17 24 417.7000 815.9973 0.1963

Time 27 1 1 1 1465.6667 1483.1107 0.0232 1 1 1 1464.6667 1482.2877 0.0233

Math 96 3 7 9 494.8438 1330.5444 0.0944 3 7 9 504.9375 1354.3736 0.0944

Closure 27 0 0 0 1540.6667 1908.1414 0.0029 0 0 0 1506.0370 1903.4222 0.0030

Overall 210 6 24 33 979.9109 450.7244 0.0780 6 25 34 973.3353 448.2796 0.0792

gp02

Lang 60 0 0 0 324.8000 204.7810 0.0065 0 0 0 321.7333 204.1228 0.0067

Time 27 0 0 0 830.6667 410.4455 0.0033 0 0 0 829.8519 409.8967 0.0033

Math 96 0 0 0 728.5104 753.5455 0.0059 0 0 0 741.0521 751.5603 0.0057

Closure 27 0 0 0 2534.6667 1400.8204 7e-04 0 0 0 2480.4444 1356.4094 7e-04

Overall 210 0 0 0 1104.6609 523.7267 0.0041 0 0 0 1093.2704 504.0054 0.0041

gp03

Lang 60 0 0 1 984.0667 678.0185 0.0090 0 1 1 1227.8500 748.0572 0.0129

Time 27 0 2 2 1163.8148 1025.0582 0.0395 1 2 2 1310.0370 1156.2839 0.0578

Math 96 0 2 2 1662.9583 1438.4292 0.0083 0 2 2 1805.8542 1461.9089 0.0080

Closure 27 0 0 0 3053.4444 1906.5481 0.0059 0 0 0 3181.5556 2024.2213 0.0014

Overall 210 0 4 5 1716.0711 530.3286 0.0157 1 5 5 1881.3242 537.5675 0.0201

gp13

Lang 60 27 43 51 3.3167 6.9534 0.5829 24 41 47 4.8500 10.2515 0.5551

Time 27 7 11 14 175.0000 644.1596 0.2820 6 10 14 176.3333 643.5138 0.2481

Math 96 28 55 68 83.9479 570.1467 0.4149 18 46 53 129.6042 703.6969 0.3430

Closure 27 7 13 17 559.8148 1805.1642 0.3435 1 4 8 600.5556 1787.1087 0.1397

Overall 210 69 122 150 205.5198 754.7328 0.4058 49 101 122 227.8358 737.3557 0.3215

gp19

Lang 60 27 43 51 3.3167 6.9534 0.5829 24 41 47 4.8500 10.2515 0.5551

Time 27 7 12 15 161.1481 646.1446 0.2974 6 11 15 162.4815 645.5012 0.2630

Math 96 28 55 68 83.9375 570.1475 0.4149 18 46 53 129.5938 703.6982 0.3430

Closure 27 7 13 17 548.6667 1807.1871 0.3439 1 4 8 590.0741 1789.3828 0.1403

Overall 210 69 123 151 199.2672 755.5713 0.4098 49 102 123 221.7498 738.2570 0.3215

ochiai

Lang 60 27 47 52 2.9500 6.5024 0.6054 25 42 48 4.4500 10.0057 0.5577

Time 27 8 11 16 144.1481 643.0917 0.3120 5 10 16 147.2222 642.2084 0.2612

Math 96 29 60 75 82.5729 570.3079 0.4610 19 50 58 129.0521 703.7914 0.3689

Closure 27 7 14 17 547.5556 1807.4845 0.3430 1 4 7 595.0000 1787.9405 0.1365

Overall 210 71 132 160 194.3067 755.9968 0.4303 50 106 129 218.9311 737.8993 0.3311

jaccard

Lang 60 26 46 53 3.0667 6.6505 0.5958 24 42 49 4.5333 10.0805 0.5487

Time 27 8 11 14 147.6667 643.0826 0.3073 5 9 14 151.0000 642.0334 0.2527

Math 96 29 60 74 82.7188 570.2949 0.4597 19 50 57 128.7292 703.8327 0.3673

Closure 27 7 13 16 547.8519 1807.3970 0.3323 1 4 7 596.8889 1787.4509 0.1354

Overall 210 70 130 157 195.3260 755.9088 0.4238 49 105 127 220.2878 737.6613 0.3260

Xuan and Montperrus combined 25 di�erent SBFL formulæ, by

taking a linear weighted sum of formulæ that score above learnt

threshold values [40]. More recently, Le et al. added changes made

to invariants (extracted using Daikon [8]) as an additional feature

to the same set of 25 SBFL formulæ [3], and used linear rankSVM

to learn the ranking model. SBFL has also been augmented by

Information Retrieval based localisation techniques, using the linear

weighted sum approach [20].

While FLUCCS also learns its ranking model from multiple SBFL

formulæ as well as additional features, its use of Genetic Program-

ming as the learningmechanism allows non-linearmodels. It should

Conference’17, July 2017, Washington, DC, USA

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

 GPmin
A GPmed

A GPmin
CGP GPmed

CGP

1

2

5

10

Lang

Technique

●

●

●

●

●

●

●

●

●

●

●

 GPmin
A GPmed

A GPmin
CGP GPmed

CGP

1

5

10

50

100

500

1000

Time

Technique

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

 GPmin
A GPmed

A GPmin
CGP GPmed

CGP

1

2

5

10

20

50

100

200

Math

Technique

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 GPmin
A GPmed

A GPmin
CGP GPmed

CGP

1

5
10

50
100

500
1000

Closure

Technique

Figure 5: Boxplots ofwe f metric values from FLUCCSwith (GPCGPmin andGPCGP
med

) and without (GPAmin andGPA
med

) the Call Graph

Propagation. �e use of CGP versions of features does not have signi�cant impact on the e�ectiveness of FLUCCS.

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

 GPmin
A GPmed

A GPmin
S GPmed

S
 SVMA SVMS

1

2

5

10

20

Lang

Technique

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

 GPmin
A GPmed

A GPmin
S GPmed

S
 SVMA SVMS

1

5
10

50
100

500
1000

Time

Technique

●

●

●

●
●●
●●
●●

●

●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

 GPmin
A GPmed

A GPmin
S GPmed

S
 SVMA SVMS

1

5
10

50
100

500
1000

5000

Math

Technique

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 GPmin
A GPmed

A GPmin
S GPmed

S
 SVMA SVMS

1

5
10

50
100

500
1000

5000

Closure

Technique

Figure 6: Boxplots of we f metric values from FLUCCS using GP (GPA
med

and GPS
med

) and linear rankSVM (SVMA and SVMS).

Overall, results obtained using Genetic Programming tend to be better than those obtained using linear rankSVM.

Table 7: Metric values from FLUCCS with Call Graph Prop-

agation. Compared to the results without CGP in Table 4,

there is little improvement.

Technique Project Total acc we f MAP

Faults @1 @3 @5 mean std

GPCGmin

Lang 60 36 51 54 1.2667 2.1975 0.6784

Time 27 9 15 18 7.8889 21.9027 0.3950

Math 96 54 74 83 2.5000 6.9267 0.6085

Closure 27 9 13 16 37.6296 113.5560 0.3748

Overall 210 108 153 171 12.3213 52.2859 0.5142

GPCGmed

Lang 60 35 51 57 1.1500 2.1512 0.6979

Time 27 9 15 19 36.3704 152.3775 0.3838

Math 96 55 76 84 3.6562 15.2581 0.6239

Closure 27 10 17 18 99.7407 316.1949 0.4304

Overall 210 109 159 178 35.2293 146.5049 0.5340

also be noted that, while invariant change feature is capable of cap-

turing changes in program semantic, its extraction is much more

expensive than the code and change metrics FLUCCS uses. FLUCCS

also bene�ts from the method level aggregation of SBFL scores (de-

scribed in Section 2.3).

8 CONCLUSION

We present FLUCCS, a fault localisation technique which learns

how to rank program element based on existing SBFL formulæ and

code and changemetric. FLUCCS employs existing SBFL formulæ as

features of the learning problem, instead of using raw spectrum data,

reducing the e�ort to learn what is already known. FLUCCS is the

Table 8: Metric values from FLUCCS using linear rankSVM

as learning to rank algorithm. Compared to the results in

Table 4 (GPA
med

) and Table 5 (GPS
med

), results from FLUCCS

with rankSVM are outperformed.

Technique Project Total acc we f MAP

Faults @1 @3 @5 mean std

SVMA

Lang 60 35 47 49 3.2667 7.6482 0.6593

Time 27 7 13 16 132.9630 630.7210 0.2956

Math 96 55 69 79 13.4062 71.4409 0.5911

Closure 27 2 11 16 300.0370 1255.6878 0.2406

Overall 210 99 140 160 112.4182 581.3569 0.4466

SVMS

Lang 60 30 48 55 1.7333 3.2397 0.6432

Time 27 7 11 15 158.8519 634.1114 0.2919

Math 96 35 58 73 78.1250 502.3535 0.4786

Closure 27 5 14 15 311.8148 1035.6120 0.3055

Overall 210 77 131 158 137.6313 425.8163 0.4298

�rst technique to use code and change metrics for fault localisation,

connecting automated debugging to the �eld of defect prediction

for the �rst time.

�e empirical evaluation of FLUCCS, using real world faults and

code history from Defects4J repository, shows that FLUCCS can

be an e�ective fault localisation technique, placing 106 out of 210

faults at the top, and 173 out 210 faults within the top 5 places.

Our research on this paper adopts defect proneness prediction

into fault localisation by extending SBFL with code and change

metrics. Future work will investigate the use of various other

learning algorithms as well as di�erent sets of feature sets.

FLUCCS: Using Code and Change Metrics to Improve Fault Localisation Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] 2016. JaCoCo. h�p://www.eclemma.org/jacoco/. (2016). h�p://www.eclemma.

org/jacoco/
[2] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. 2009. Spectrum-Based Multiple

Fault Localization. In Proceedings of the 24th IEEE/ACM International Conference
on Automated So�ware Engineering (ASE 2009). 88–99.

[3] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A Learning-
to-rank Based Fault LocalizationApproachUsing Likely Invariants. In Proceedings
of the 25th International Symposium on So�ware Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 177–188.

[4] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article 27 (May 2011),
27 pages.

[5] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
Learning 20, 3 (1995), 273–297. h�p://dx.doi.org/10.1007/BF00994018

[6] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight bug
localization with AMPLE. In Proceedings of the sixth international symposium on
Automated analysis-driven debugging (AADEBUG’05). ACM, New York, NY, USA,
99–104.

[7] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive
comparison of bug prediction approaches. In Proceedings of the 7th IEEE Working
Conference on Mining So�ware Repositories (MSR 2010). IEEE, 31–41.

[8] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 21st International Conference on So�ware Engineering
(ICSE-99). ACM Press, NY, 213–225.

[9] Stephanie Forrest, �anhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009.
A Genetic Programming Approach to Automated So�ware Repair. In Proceedings
of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO
’09). ACM, New York, NY, USA, 947–954.

[10] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made
Easy. Journal of Machine Learning Research 13 (July 2012), 2171–2175.

[11] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Trans. So�w. Eng. 39, 2 (Feb. 2013), 276–291.

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In PLDI. 213–223.

[13] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
bugs for $8 Each. In Proceedings of the 34th International Conference on So�ware
Engineering. 3–13.

[14] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2012. Bug Prediction Based on
Fine-grained Module Histories. In Proceedings of the 34th International Conference
on So�ware Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 200–210.

[15] Tom Janssen, Rui Abreu, and Arjan J. C. van Gemund. 2009. Zoltar: A Toolset for
Automatic Fault Localization. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated So�ware Engineering (ASE ’09). IEEE Computer Society,
Washington, DC, USA, 662–664.

[16] James A. Jones andMary JeanHarrold. 2005. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th International
Conference on Automated So�ware Engineering (ASE2005). ACM Press, 273–282.

[17] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on So�ware Engineering. ACM, New York, NY, USA, 467–477.

[18] James A. Jones, Mary Jean Harrold, and John T. Stasko. 2001. Visualization for
Fault Localization. In Proceedings of ICSE Workshop on So�ware Visualization.
71–75.

[19] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on So�ware Testing and Analysis
(ISSTA 2014). ACM, New York, NY, USA, 437–440.

[20] Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. 2015. Information Retrieval
and Spectrum Based Bug Localization: Be�er Together. In Proceedings of the 2015
10th Joint Meeting on Foundations of So�ware Engineering (ESEC/FSE 2015). ACM,
New York, NY, USA, 579–590.

[21] Ching-Pei Lee and Chih-Jen Lin. 2014. Large-scale Linear Ranksvm. Neural
Comput. 26, 4 (April 2014), 781–817.

[22] Hua Jie Lee. 2011. So�ware debugging using program spectra. Ph.D. Dissertation.
University of Melbourne.

[23] Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Peter In. 2011.
Micro Interaction Metrics for Defect Prediction. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of So�ware
Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 311–321.

[24] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[25] Philip McMinn. 2004. Search-based So�ware Test Data Generation: A Survey.
So�ware Testing, Veri�cation and Reliability 14, 2 (June 2004), 105–156.

[26] TimMenzies, ZachMilton, Burak Turhan, Bojan Cukic, Yue Jiang, andAyşe Bener.
2010. Defect prediction from static code features: current results, limitations,
new approaches. Automated So�ware Engineering 17, 4 (2010), 375–407.

[27] R. Moser, W. Pedrycz, and G. Succi. 2008. A comparative analysis of the e�-
ciency of change metrics and static code a�ributes for defect prediction. In 2008
ACM/IEEE 30th International Conference on So�ware Engineering. 181–190.

[28] Nachiappan Nagappan and �omas Ball. 2005. Use of Relative Code Churn
Measures to Predict SystemDefect Density. In Proceedings of the 27th International
Conference on So�ware Engineering (ICSE ’05). ACM, New York, NY, USA, 284–
292.

[29] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based so�ware diagnosis. ACMTransactions on So�ware EngineeringMethodology
20, 3, Article 11 (August 2011), 32 pages.

[30] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 International Sympo-
sium on So�ware Testing and Analysis (ISSTA 2011). ACM, New York, NY, USA,
199–209.

[31] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A
�eld guide to genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk. (With contributions by J.
R. Koza).

[32] R Core Team. 2015. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. h�ps://www.R-project.
org/

[33] M. Renieres and S.P. Reiss. 2003. Fault localization with nearest neighbor queries.
In Proceedings of the 18th International Conference on Automated So�ware Engi-
neering. 30 – 39.

[34] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. �reats to the validity
and value of empirical assessments of the accuracy of coverage-based fault
locators. In Proceedings of the 2013 International Symposium on So�ware Testing
and Analysis (ISSTA 2013). ACM, New York, NY, USA, 314–324.

[35] G. Tassey. 2002. �e economic impacts of inadequate infrastructure for so�ware
testing. Planning Report 02-3.2002. National Institute of Standards and Technol-
ogy.

[36] W. E. Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A Survey
on So�ware Fault Localization. IEEE Transactions on So�ware Engineering 42, 8
(August 2016), 707.

[37] W. Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. E�ective Fault Local-
ization using Code Coverage. In Proceedings of the 31st Annual International
Computer So�ware and Applications Conference - Volume 01 (COMPSAC ’07). IEEE
Computer Society, Washington, DC, USA, 449–456.

[38] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A
�eoretical Analysis of the Risk Evaluation Formulas for Spectrum-based Fault
Localization. ACM Transactions on So�ware Engineering Methodology 22, 4,
Article 31 (October 2013), 40 pages.

[39] Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, Shin Yoo, and Mark Harman.
2013. Provably Optimal and Human-Competitive Results in SBSE for Spectrum
Based Fault Localisation. In Search Based So�ware Engineering, Günther Ruhe and
Yuanyuan Zhang (Eds.). Lecture Notes in Computer Science, Vol. 8084. Springer
Berlin Heidelberg, 224–238.

[40] Jifeng Xuan and M. Monperrus. 2014. Learning to Combine Multiple Ranking
Metrics for Fault Localization. In Proceedings of the IEEE International Conference
on So�ware Maintenance and Evolution (ICSME 2014). 191–200.

[41] Shin Yoo. 2012. Evolving Human Competitive Spectra-Based Fault Localisation
Techniques. In Search Based So�ware Engineering, Gordon Fraser and Jer�eson
Teixeira de Souza (Eds.). Lecture Notes in Computer Science, Vol. 7515. Springer
Berlin Heidelberg, 244–258.

[42] Shin Yoo and Mark Harman. 2012. Regression Testing Minimisation, Selection
and Prioritisation: A Survey. So�ware Testing, Veri�cation, and Reliability 22, 2
(March 2012), 67–120.

[43] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
2014. No Pot of Gold at the End of Program Spectrum Rainbow: Greatest Risk
Evaluation Formula Does Not Exist. Technical Report RN/14/14. University College
London.

http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/
http://dx.doi.org/10.1007/BF00994018
https://www.R-project.org/
https://www.R-project.org/

	Abstract
	1 Introduction
	2 Features used by FLUCCS
	2.1 SBFL Scores
	2.2 Code and Change Metrics
	2.3 Method Level Aggregation of SBFL Scores
	2.4 Call Graph Propagation

	3 Learning Algorithms
	3.1 Genetic Programming
	3.2 Support Vector Machine

	4 Experimental Setup
	4.1 Research Questions
	4.2 Subjects
	4.3 Configuration
	4.4 Evaluation Metrics
	4.5 Validation
	4.6 Tie-breaking

	5 Results and analysis
	5.1 RQ1. Effectiveness
	5.2 RQ2. Code and Change Metric Contribution
	5.3 RQ3. Method Level Aggregation and Call Graph Propagation
	5.4 RQ4. Learning Algorithm

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

