
0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Theoretical and Empirical Study of
Diversity-aware Mutation Adequacy Criterion

Donghwan Shin, Student Member, IEEE, Shin Yoo, and Doo-Hwan Bae, Member, IEEE

Abstract—Diversity has been widely studied in software testing as a guidance towards effective sampling of test inputs in the vast
space of possible program behaviors. However, diversity has received relatively little attention in mutation testing. The traditional
mutation adequacy criterion is a one-dimensional measure of the total number of killed mutants. We propose a novel, diversity-aware
mutation adequacy criterion called distinguishing mutation adequacy criterion, which is fully satisfied when each of the considered
mutants can be identified by the set of tests that kill it, thereby encouraging inclusion of more diverse range of tests. This paper
presents the formal definition of the distinguishing mutation adequacy and its score. Subsequently, an empirical study investigates the
relationship among distinguishing mutation score, fault detection capability, and test suite size. The results show that the distinguishing
mutation adequacy criterion detects 1.33 times more unseen faults than the traditional mutation adequacy criterion, at the cost of a
1.56 times increase in test suite size, for adequate test suites that fully satisfies the criteria. The results show a better picture for
inadequate test suites; on average, 8.63 times more unseen faults are detected at the cost of a 3.14 times increase in test suite size.

Index Terms—Mutation testing, test adequacy criteria, diversity

F

1 INTRODUCTION

ONE fundamental limitation of software testing is the
fact that, to validate the behavior of the Program

Under Test (PUT), we can only ever sample a very small
number of test inputs out of the vast input space. Almost
all existing testing techniques are, at some level, attempts
to answer the following question: how does one sample a
finite number of test inputs to cover as wide a range of program
behaviors as possible?

The concept of diversity has received much attention
while answering the above question. For example, Adaptive
Random Testing (ART) [1] seeks to increase the diversity
of randomly sampled test inputs by choosing an input
that is as different from those already sampled as possible.
Clustering-based test selection and prioritization [2], [3]
assumes that a diverse set of test inputs would explore and
validate a wider range of program behaviors. Diversity in
test output has been studied as a test adequacy criterion
for black box testing of web applications [4]. Information
theoretic measures of diversity have also been studied as
test selection criteria [5], [6].

In contrast, improving the test effectiveness based on the
diversity has received little attention in mutation testing; the
emphasis has been instead on the reduction of mutation test-
ing cost. As classified by Jia and Harman [7], a good many
studies attempt to reduce the cost by mutant sampling [8],
[9], selective mutation [10], higher order mutation [11], [12],
mutant clustering [13], [14], and mutant subsumption [15],
[16], [17]. However, the foundation of mutation testing (i.e.,
mutation adequacy criterion) remains essentially the same as it
was when first proposed in the 1970s [18]. The mutation ad-
equacy criterion is a testing criterion that estimates the real

• D. Shin, S. Yoo, and DH. Bae are with the School of Computing, KAIST,
Daejeon, Republic of Korea.
E-mail: donghwan@se.kaist.ac.kr, shin.yoo@kaist.ac.kr, bae@se.kaist.ac.kr

Manuscript received 10 Aug. 2016.

fault detection capability of a test suite by the simple count
of the number of artificially generated faulty programs (i.e.,
mutants) distinguished (i.e., killed) from its original program.
Despite its potential correlation between the diversity of
mutants and the real fault detection capability, the mutation-
adequate test suite does not fully exploit the diversity.
Suppose a pathological case in which a single test can kill all
generated mutants. The traditional mutation adequacy crite-
rion simply determines the single test as adequate, although
the single test does not consider the diversity of the mutants.
If we had a richer mutation adequacy criterion, it would
be possible to have more powerful mutation-adequate test
suites using the same set of mutants. Such a case calls for a
richer mutation adequacy criterion.

To tackle this problem, a novel mutation adequacy crite-
rion called the distinguishing mutation adequacy criterion was
proposed in our previous paper [19]. At the core of the new
criterion lies the idea that mutants can be “distinguished”
from each other by the set of tests that kill them. Our
mutation adequacy criterion aims not only to kill, but also
to distinguish as many mutants as possible, leading to a
more diverse set of tests based on the same set of mutants.
The empirical results on real faults showed that test suites
adequate to the distinguishing mutation adequacy criterion
can increase the fault detection rate by up to 76.8 percentage
points in comparison to the traditional mutation adequate
criterion [19]. However, since we considered only 100% ad-
equate test suites for the mutation adequacy criteria, the re-
lationship between the percentage of the mutation adequacy
(i.e., mutation score) and the fault detection effectiveness was
not fully investigated.

In this paper, we significantly extend our previous work
in a manner that is both theoretical and empirical. Theoret-
ically, to capture the diversity of mutants in terms of a set
of tests, we establish a firm definition of the mutant distin-
guishment as the foundation of the distinguishing mutation

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 2

adequacy criterion. We also define a novel mutation score
for the distinguishing mutation adequacy criterion called
distinguishing mutation score, which measures the percentage
of mutants distinguished by a given test suite. Empirically,
we provide a comprehensive investigation of the relation-
ships among mutation scores, fault detection effectiveness,
and test suite sizes for the traditional and distinguishing
mutation adequacy criterion. Further, we measure the cor-
relation between the two different mutation scores and real
fault detection.

The technical contributions of this paper are as follows:

• This paper formally describes the distinguishing mu-
tation adequacy criterion in comparison to the tradi-
tional mutation adequacy criterion based on theoret-
ical considerations of the mutant distinguishment.

• This paper introduces a novel mutation adequacy
score called the distinguishing mutation score that ex-
tends the distinguishing mutation adequacy crite-
rion. This score represents how large a percentage
of mutants are distinguished by a given set of tests.

• The relationships between mutation scores, fault
detection effectiveness, and test suite sizes for the
traditional and distinguishing mutation adequacy
are empirically investigated using real-world faults
in the Defects4J database [20]. The results show
that, on average for all adequate and inadequate
test suites, the distinguishing mutation adequacy
criterion statistically increases the real fault detection
effectiveness for 74.8% of all faults in comparison to
the traditional mutation adequacy criterion. In terms
of effect size, the distinguishing adequacy is 8.26
times more effective than the traditional adequacy,
whereas it requires 3.07 times more tests.

• The correlation between the mutation scores (both
traditional mutation score and distinguishing muta-
tion score) and the fault detection is investigated. The
results show that the distinguishing mutation score is
statistically more correlated with the fault detection
than is the traditional mutation score (p-value=2.00e-
12), and the Â12 effect size is 0.652.

The rest of the paper is organized as follows. Section 2
presents a formal definition of the existing mutation ad-
equacy criterion. Section 3 introduces the distinguishing
mutants adequacy criterion and the distinguishing mutation
score using the same formal notations. Section 4 describes
the design of our empirical evaluation, the results of which
are presented and analyzed in Section 5. Section 6 discusses
related work, and Section 7 concludes.

2 BACKGROUND

Mutation testing is a well-known technique for improving
the ability of test suites to detect real faults using mutants
(i.e., artificially generated faults). Many mutants are auto-
matically generated from the Program Under Test (PUT)
as an original program using a set of mutation operators
(i.e., predefined rules for changes). A mutant is killed by
a test when the mutant and the original program show
different behaviors for the test. A test suite is assessed by
the mutation adequacy criterion, which counts the number of

killed mutants. If all mutants are killed by a test suite, the
test suite is called mutation-adequate. It is widely known that
mutation-adequate test suites are effective at detecting real
faults [21], [22], [23], [24].

2.1 Theoretical Framework for Mutation Testing

To formally represent the notion of mutation adequacy crite-
ria considered in this paper, we summarize the essential el-
ements of the theoretical framework for the mutation-based
testing methods. Detailed descriptions for the framework
are presented in our previous work [25].

Let P be a set of programs that includes the program
under test. In mutation testing, there are three essential
programs in P : an original program po ∈ P , a mutant m
in a set of mutants M ⊂ P generated from po, and a correct
program ps ∈ P that represents the true requirements1

about po. Let T be a set of all tests. For a test t ∈ T , if the
behaviors of po and ps are different, it is said that t detects
a fault in po. Similarly, if the behaviors of po and m are
different for t, it is said that t kills m. Note that the notion of
behavioral difference is an abstract concept. It is formalized
by a testing factor, called a test differentiator, which is defined
as follows:

Definition 1 (Test differentiator).
A test differentiator d : T × P × P → {0, 1} is a function
such that

d(t, px, py) =


1 (true), if the behaviors of px and

py are different for t
0 (false), otherwise

for a test t ∈ T and programs px, py ∈ P .

By definition, a test differentiator concisely represents
whether the behaviors of px ∈ P and py ∈ P are different
for t ∈ T . In other words, a test differentiator encapsulates
the two abstract concepts: the behavior and the difference.
To keep things general, we consider a set of test differen-
tiators D that includes all possible test differentiators for
P . However, it is easy to think a specific test differentia-
tor whenever needed. Regarding the behavior, Morell [26]
stated that the behavior may include any of the test exe-
cution results, for example its output, its internal variables,
its execution time, or its space consumption. The specific
type of behaviors to be observed can be defined as the
observability of a test differentiator. For example, in order to
observe only the external results of programs, a test differ-
entiator that observes the external results can be considered.
Similarly, the specific definition of the difference can be
decided in context. For example, in order to distinguish 1/3
and 0.333, a mathematically strict test differentiator can be
considered.

A test differentiator, or simply a differentiator, can for-
mally describe the notion of differences in mutation testing.

1. While ps is not a real program, this is not a serious assumption,
because we only require the behavior of ps for a given set of tests. In
practice, a human may play the role of ps, acting as a human oracle.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 3

For example, when a test t detects a fault in a program po, it
is clearly formalized as follows2:

d(t, po, ps) 6= 0.

On the other hand, when t kills a mutant m, it is also clearly
formalized as follows:

d(t, po,m) 6= 0.

Note that po, ps, and m are general entities, and largely sep-
arated from any specifics such as programming languages
or mutation methods.

In addition to a differentiator that formalizes the differ-
ence of two programs for a single test, it will be helpful to
consider whether the two programs are different for a set of
tests. A d-vector is defined to represent such difference of the
programs as follows:
Definition 2 (d-vector).

A d-vector d : Tn×P ×P → {0, 1}n is an n-dimensional
vector, such that

d(TS, px, py) = 〈d(t1, px, py), ..., d(tn, px, py)〉

for all TS = {t1, · · · , tn} ⊆ Tn, d ∈ D, and px, py ∈ P .

In other words, a differentiator d returns a Boolean value
(i.e., 0 or 1) from a single test, whereas a d-vector d returns
n-dimensional Boolean vector from n tests. For example,
when a test suite TS detects a fault in a program po, a d-
vector clearly represents it as follows:

d(TS, po, ps) 6= 0

where 0 implies the zero vector (i.e., all components equal
to zero). Similarly, when TS kills a mutant m, a d-vector
also formalizes it as follows:

d(TS, po,m) 6= 0.

In other words, m is killed by TS when its d-vector is
not equal to the zero vector. This theoretical framework
with concise representations provides the foundation of the
theoretical considerations throughout the remainder of this
paper.

2.2 Mutation Adequacy Criterion and Mutation Score
Since mutation testing was first proposed in the 1970s [18],
it has been widely studied in the aspects of both theory and
practice, and the mutation adequacy criterion has played a
key role in the studies of mutation testing. Using a differ-
entiator, the mutation adequacy criterion can be clearly and
concisely formalized as follows:

∀m ∈M,d(TS, po,m) 6= 0. (1)

This means that a test suite TS is mutation-adequate if all
mutants m ∈ M are killed by at least one test t ∈ TS.
In other words, if the d-vectors of all mutants for TS are
non-zero, the TS is mutation-adequate. To be precise, some
of the mutants may not be killed by any test, and their d-
vectors are equal to zero for all tests. Such mutants are called

2. In experiments, when the correct version of a program for a fault
is known in advance, the correct version can be used as po. In this
case, the corresponding faulty version should be used as ps so that the
difference between po and ps implies the fault.

equivalent mutants. While this concept is not within the main
scope of this paper, we will partially discuss equivalent
mutants in Section 3.6. For now, however, we focus on non-
equivalent mutants. In the rest of this paper, we refer to (1)
as the traditional mutation adequacy criterion, in contrast to
the diversity-aware mutation adequacy criterion defined in
Section 3.4.

Equation (1) is general enough for use in various muta-
tion testing approaches. For example, there is a spectrum of
mutation approaches from a strong mutation [18] to a weak
mutation [27]. This spectrum depends on the observability
of d. If d observes the external execution results of a mutant
to decide whether the mutant is killed or not, it is a strong
mutation analysis. On the other hand, if d observes the
internal states of a mutant to decide whether the mutant
is killed or not, it is a weak mutation analysis.

Meanwhile, the percentage of killed mutants is used to
quantitatively measure the quality of a test suite. This is
called the mutation score, or simply the mScore, and can be
formalized as follows:

mScore(TS,M, po) =
|{m ∈M |d(TS, po,m) 6= 0}|

|M |
(2)

In other words, the number of mutants killed by TS over all
mutants implies the quantitative adequacy of TS in terms
of fault detection capability. Thanks to both theoretical and
empirical studies that have stated that the fault detection
effectiveness of a test suite can be reasonably measured by a
mutation score [21], [24], [28], [29], the mutation score is very
widely used as an alternative measure of real fault detection
in various testing studies [30], [31].

3 DIVERSITY-AWARE MUTATION ADEQUACY

In this section, we first consider the limitations of the tradi-
tional mutation adequacy, and describe the notion of mutant
distinguishment to make room for improvement behind the
limitation. We also provide a spatial interpretation to aid in
understanding of the mutant distinguishment. Based on the
formal definition of the mutant distinguishment, we define
the diversity-aware mutation adequacy criterion and the
diversity-aware mutation score. We discuss an important
issue in the distinguishing mutation adequacy criterion at
the end.

3.1 Limitations of Traditional Mutation Adequacy
To find room for improvement in the traditional mutation
adequacy criterion, we provide a working example in Fig.
1. Let us assume that we have four different mutants and
three different tests. Each of the values represents whether
a test kills a mutant. For example, d(t1, po,m1) is 1, which
means that t1 kills m1. For TS = {t1, t2, t3}, the d-vector d
for m1 is d(TS, po,m1) = 〈1, 0, 0〉.

In the working example, a test suite TS1 = {t1} is ade-
quate to the traditional mutation adequacy criterion because
all four mutants are killed by t1. However, all the mutants
are not distinguished from each other in terms of the kill
results for the adequate test suite TS1. We remind the reader
that all mutants by default exhibit different changes to each
other, whereas such diversity of mutants does not contribute
to the assessment of the quality of a test suite. This is

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 4

Fig. 1. Working example for demonstrating the limitation of the traditional
mutation adequacy criterion. The table represents whether a test kills a
mutant. For example, d(t1, po,m1) is 1 which means that t1 kills m1.

because the traditional mutation adequacy criterion simply
counts the number of killed mutants without considering
the diversity of those mutants. In other words, we already
have diverse mutants, but the diversity has been wasted in
assessing the quality of a test suite. If an adequacy criterion
can utilize the diversity of mutants to assess the quality of
test suites, the test suites adequate to the criterion will be
more effective at detecting faults than other test suites that
are adequate to only the simple criterion, which does not
consider the diversity. We hypothesize that a more diverse
set of tests will show higher fault detection effectiveness,
and here we find room for improvement in the diversity of
tests by using the diversity of mutants.

The limitation of the traditional mutation score lies in a
similar area. In the working example, the three test suites
TS1 = {t1}, TS2 = {t1, t2}, and TS3 = {t1, t2, t3} are
clearly different, whereas their traditional mutation scores
are all equal to 1 (i.e., 100% of mutants are killed by each of
the test suites). This calls for a new mutation score capable
of measuring the diversity of mutants in terms of a test suite.

3.2 Mutant Distinguishment

To consider the diversity of mutants in a mutation adequacy
criterion, we should define how mutants are distinguished
by a test. This is the notion of mutant distinguishment. For
two mutants mx and my generated from po and a test t, we
can consider the two different formal descriptions for the
mutant distinguishment, as follows:

d(t,mx,my) 6= 0, (3)

d(t, po,mx) 6= d(t, po,my). (4)

This means that the mutant distinguishment can be defined
in two different ways: based on direct mutant behaviors for
the test, as shown in (3), or based on their kill results for the
test, as shown in (4).

Interestingly, there is a nice mathematical relationship
between the two descriptions as follows:

d(t, po,mx) 6= d(t, po,my) =⇒ d(t,mx,my) 6= 0. (5)

This means that (3) always holds whenever (4) holds. In
other words, if two mutants are distinguished by a test
based on their kill results, then the behaviors of the two
mutants for the test must be different. The proof is simple: if
one of the two mutants mx and my is killed by a test t, then
another mutant must not be killed by t when (4) holds. This
implies that the two mutants have different behavior for t.
However, (3) does not guarantee (4). For example, if each
of mx, my , and po has different behaviors from the others

for t, then (3) holds, whereas (4) does not hold because
d(t,mx,my) 6= 0 but d(t, po,mx) = d(t, po,my) = 1.

The mathematical relationship between (3) and (4)
clearly shows that (4) is a stronger formal description of the
notion of mutant distinguishment than (3). We now formally
define the mutant distinguishment with respect to a single test
as follows:
Definition 3 (Mutant distinguishment by a test).

Two mutants mx and my generated from po are distin-
guished by a test t if and only if the following condition
holds:

d(t, po,mx) 6= d(t, po,my)

for a differentiator d.

By definition, two mutants are distinguished by a test when
the two mutants’ kill results are different for the test. In
the working example, the four mutants are undistinguished
from each other by t1 because d(t1, po,mi) = 1 for all
i ∈ {1, · · · , 4}. Using t2, m1 and m3 are distinguished,
and m1 and m4 are distinguished, but m1 and m2 are
not distinguished. Using t3, m1 and m2 are distinguished,
and m1 and m4 are distinguished, but m1 and m3 are not
distinguished.

In terms of a set of tests, we extend the concept of
the mutant distinguishment with the aid of a d-vector, as
follows:
Definition 4 (Mutant distinguishment by a set of tests).

Two mutants mx and my generated from po are distin-
guished by a set of tests TS if and only if the following
condition holds:

d(TS, po,mx) 6= d(TS, po,my)

for a d-vector d based on a differentiator d.

This means that two mutants are distinguished by a set of
tests when the mutants’ d-vectors (i.e., kill patterns) are
different for the set of tests. In other words, two mutants
are distinguished by a set of tests if there is at least one test
that distinguishes the two mutants. In the working example,
if we consider a test suite TS2 = {t1, t2}, m1 and m3

are distinguished, and m1 and m4 are distinguished, but
m1 and m2 are not distinguished. Using another test suite
TS3 = {t1, t2, t3}, all of the four mutants are distinguished
from each other.

We also note that Ammann et al. [16] recently discussed
the notion of undistinguished mutants. They stated that if
two mutants are killed by precisely the same set of tests,
the mutants are undistinguished, even if the mutants may
involve different syntactic changes to an original program.
This concept is consistent with our definition of the mutant
distinguishment. However, there was no attempt to consider
the diversity of mutants based on this concept.

3.3 Spatial Interpretation of Mutant Distinguishment
To make the concept of the mutant distinguishment clearer,
we provide a spatial interpretation of the mutant distin-
guishment based on the theoretical framework of mutation-
based testing [25].

The basic idea is simple: an n-dimensional vector can
represent the position of a point in a n-dimensional space. In

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 5

Fig. 2. Positions of mutants for each test suite in the working example.
More positions (and their mutants) are distinguished as more tests are
added.

the same way, the d-vector d(TS, po,m) of a mutant m for
a test suite TS can be regarded as representing the position
of m in a multidimensional space composed of TS (i.e., the
dimensions) and po (i.e., the origin). Considering the space,
we can locate mutants at certain positions represented by
their d-vectors. In the working example, the space is com-
posed of the three tests (t1, t2, t3) with po at the origin. In
that space, m1 is at the point (1,0,0), m2 is at (1,0,1), m3 is at
(1,1,0), and m4 is at (1,1,1).

Fig. 2 shows the positions of mutants depending on their
test suites corresponding to the working example. In Fig. 2-
(a), the four mutants m1 through m4 are distinguished from
po by t1. As more tests are added to the test suite, the
dimensions of the space are extended, and the positions
are distinguished. Fig. 2-(c) shows that the four mutants’
positions are distinguished by TS3.

We should note that the spatial interpretation of the
mutant distinguishment is related to the mutant subsump-
tion graph introduced by Kurtz et al. [32]. For example,
Fig. 2-(c) shows the 3-dimensional space that represents
the possible positions of mutants for TS = {t1, t2, t3}
and po. If we remove all positions (i.e., nodes) that do not
have any mutants, the remaining graph is equivalent to the
mutant subsumption graph. This is because the notion of
the mutant distinguishment is closely related to the notion
of the mutant subsumption. For more details, please refer to
our previous work for a theoretical framework on mutation-
based testing [25].

3.4 Distinguishing Mutation Adequacy Criterion

We now define a new mutation adequacy criterion called
the distinguishing mutation adequacy criterion, as follows:
Definition 5 (Distinguishing mutation adequacy criterion).

For a set of mutants M generated from an original
program po, a test suite TS is distinguishing mutation-
adequate when the following condition holds:

∀mx,my ∈M ′,d(TS, po,mx) 6= d(TS, po,my)

where mx 6= my and M ′ =M ∪ {po}.

In other words, a test suite TS is distinguishing mutation-
adequate if all possible pair of different mutants mx and
my in M ′ are distinguished by TS. In the working ex-
ample, TS3 = {t1, t2, t3} distinguishes all mutants in
M ′ = {po,m1, · · · ,m4} because all mutants have unique
d-vectors for TS3. For the sake of simplicity, we let the

d-criterion hereafter refer to the distinguishing mutation
adequacy criterion (i.e., diversity-aware) and, similarly, the
k-criterion to refer to the traditional mutation adequacy
criterion (i.e., kill-only).

It is important to appreciate the role of po ∈ M ′ in
Definition 5. Considering my = po, the d-criterion can be
simplified as follows:

∀mx ∈M,d(TS, po,mx) 6= d(TS, po, po). (6)

Since it is trivial that d(TS, po, po) = 0, (6) is exactly the
same as (1) (i.e., the k-criterion). This means that the d-
criterion subsumes the k-criterion. In other words, if a test
suite is adequate to the distinguishing mutation adequacy
criterion, the test suite is guaranteed to be adequate to the
traditional mutation adequacy criterion. This subsumption
relationship is especially important because it is closely
related to the fault detection effectiveness. Zhu [33] proved
that the subsumption relationship guarantees a better fault
detection effectiveness when the testing adequacy criteria
are used to guide the generation of test suites, not used
to generate the test data. For example, it is common that
a tester generates tests one by one and adds them to a
test suite until a certain testing criterion is satisfied. In this
testing scenario, the d-criterion adequate test suites are more
effective at detecting faults than the k-criterion adequate test
suites.

The difference between the k-criterion and the d-criterion
is clearly shown by the difference between Fig. 2-(a) and
Fig. 2-(c). As shown in Fig. 2-(a), the k-criterion only distin-
guishes between the original program (i.e., po) and the gen-
erated mutants (i.e., m1, · · · ,m4) and does not distinguish
among the generated mutants. On the other hand, Fig. 2-(c)
shows that the d-criterion not only distinguishes the original
program and the generated mutants but also distinguishes
among the generated mutants.

3.5 Distinguishing Mutation Score

As explained in Section 2.2, the mutation score is used to
measure the quality of a test suite based on the k-criterion.
Similarly, we can define another mutation score called the
distinguishing mutation score, or simply the dScore, based on
the d-criterion. Briefly speaking, the mScore implies how
many mutants are killed by a test suite, whereas the dScore
implies how many mutants are distinguished by a test suite.
In terms of d-vectors, the mScore considers the number
of non-zero d-vectors for a test suite, whereas the dScore
considers the number of unique d-vectors for a test suite.

We remind the reader that two mutants are distin-
guished by a set of tests when the d-vectors of the mutants
are different for the set of tests. In other words, distin-
guished mutants have unique d-vectors, whereas undistin-
guished mutants (i.e., mutants that are not distinguished
from each other) have the same d-vector. Thus, the number
of unique d-vectors is equal to the number of distinguished
mutants. Using the number of unique d-vectors, we define
the distinguishing mutation score as follows:

Definition 6 (Distinguishing mutation score).
For a test suite TS, the distinguishing mutation score, or

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 6

Fig. 3. mScore and dScore for each test suite corresponding to the
working example. According to the mScore, all the test suites are equal.
However, their dScores are different.

the dScore, using a set of mutants M generated from an
original program po is

dScore(TS,M, po) =
|{d(TS, po,m) |m ∈M ′}|

|M ′|

where M ′ =M ∪ {po}.

In other words, the dScore is the number of unique d-
vectors given by a test suite over the maximum number of
unique d-vectors when all mutants are distinguished from
each other. Again, some of mutants may not be distinguish-
able by any test, and we now focus on the distinguishable
mutants. We will discuss the universally indistinguishable
mutants in Section 3.6.

On the other hand, a unique d-vector implies a set of
undistinguished mutants (i.e., a set of mutants that are not
distinguished from each other), because all mutants that
are not distinguished from each other have the same d-
vector. Thus, the number of unique d-vectors is equal to
the number of sets of undistinguished mutants. This means
that the dScore represents the number of mutant sets left
undistinguished by a given test suite over the maximum
number of undistinguished mutant sets (i.e., M ′ when all
sets of undistinguished mutants are singleton).

In the working example, the mScore and the dScore are
measured for each test suite as shown in Fig. 3. At first, all
mutants are killed by TS1 = {t1} so that the mScore = 4/4
= 1.0. At the same time, TS1 separates the undistinguished
mutant sets into two: one for the live mutants and the
other for the killed mutants. The number of undistinguished
mutant sets (or the number of unique d-vectors) is 2 and
the dScore = 2/5 = 0.4. After t2 is added, the mScore
of TS2 = {t1, t2} does not change, whereas the dScore
changes because the newly added test t2 distinguishes m1

and m2 (and m3 and m4). The number of undistinguished
mutant sets by TS2 is 3 which means dScore = 3/5 =
0.6. By adding t3 to the test suite, all the five mutants are
distinguished, each mutant has a unique d-vector, all sets
of undistinguished mutants are singleton, and the dScore
becomes 5/5 = 1.

The difference between the mScore and the dScore is
clearly shown in Fig. 2-(a) and Fig. 2-(c). Based on the spatial
interpretation, it is very intuitive that the mScore implies
how many mutants are distinguished from the original
program, whereas the dScore implies how many mutants
are distinguished to each other.

3.6 Universally Indistinguishable Mutants

In mutation testing, it may be the case that a mutant and an
original program are syntactically different but semantically

equivalent, so that there is no test to kill the mutant. For-
mally, there is a mutant me ∈M generated from an original
program po such that

d(T, po,me) = 0 (7)

for all tests T . The mutant me is called an equivalent mutant.
Unfortunately, whether a mutant is equivalent or not is un-
decidable [34]. However, many researchers have attempted
to tackle this problem with practical approximation [35],
[36], [37].

Under the d-criterion, it may be the case that two mu-
tants are syntactically different but semantically equivalent,
so that there is no test to distinguish the mutants. In other
words, there are two mutants mx,my ∈M ′ such that

d(T, po,mx) = d(T, po,my). (8)

We say that mx and my are universally indistinguishable
mutants. Similar to the case of equivalent mutant detection,
deciding whether two mutants are universally indistin-
guishable or not is clearly undecidable. While attempts to
solve this problem are not within the scope of this paper,
we want to show how this problem is closely related to the
traditional equivalent mutant detection problem.

When a mutant is equivalent, the mutant and its origi-
nal program are universally indistinguishable. The proof is
quite simple. Since po is in M ′, we can set my = po in (8).
This leads to d(T, po,my) = d(T, po, po) = 0, so that (8)
becomes equal to (7). This shows that both the equivalent
mutant detection (i.e., whether a mutant is equivalent to its
original program or not) and the universally indistinguish-
able mutants detection (i.e., whether two mutants are uni-
versally indistinguishable or not) are a problem of the equiv-
alence between the two programs for all tests. To be precise,
at most |M | equivalency problems (i.e., per mutant) should
be answered for the equivalent mutant detection, whereas
at most |M | × (|M | + 1)/2 equivalency problems (i.e., per
pair of mutants) should be answered for the universally
indistinguishable mutants detection. Practically, this may be
a huge burden for testing engineers when they have to solve
the equivalency problems manually. However, meaningful
results to solve the equivalency problem automatically are
being researched [35], [36], [37], and we believe that this area
will develop further in the future.

We should note that the notion of duplicated mutants pro-
posed in [36] is similar to that of universally indistinguish-
able mutants. Two mutants are duplicated when they are not
equivalent to the original program but equivalent to each
other. The key difference between the notion of duplicated
mutants and universally indistinguishable mutants comes
from the sets of mutants they consider: the extended mutant
set M ′ = M ∪ {po} is considered in universally indis-
tinguishable mutants, whereas only the generated mutants
m ∈ M is considered in duplicated mutants. To be precise,
the set of universally indistinguishable mutants is the union
of the set of duplicated mutants and the set of equivalent
mutants. In other words, by adapting M ′ instead of M ,
not only equivalent mutants but also duplicated mutants
can be considered together in the notion of universally
indistinguishable mutants.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 7

3.7 Effort compared to Traditional Mutation Adequacy
The most critical effort required by the mutation approaches
is that needed to relieve the equivalency problems, which
have already been discussed in Section 3.6. This section
discusses the additional effort required to use the d-criterion
in comparison to the effort required to use the k-criterion.

Given a test suite TS and a set of mutants M gen-
erated from an original program po, the k-criterion eval-
uates whether there exists a test t ∈ TS that kills a
mutant m ∈ M . Formally, the k-criterion evaluates ∃t ∈
TS, d(t, po,m) 6= 0 for each mutant m ∈ M . On the other
hand, the d-criterion evaluates whether there exists a test
t ∈ TS that distinguishes a pair of mutants mx,my ∈ M ′
where M ′ = M ∪ {po}. Formally, the d-criterion evaluates
∃t ∈ TS, d(t, po,mx) 6= d(t, po,my) for each pair of mutants
mx,my ∈M ′.

Note that both criteria require the same information:
whether t kills m or not (i.e., d(t, po,m) is 1 or 0) for all
t ∈ T and m ∈ M . The only difference is the evalua-
tions: the k-criterion requires at most |M | evaluations of
∃t ∈ TS, d(t, po,m) 6= 0 per m ∈ M , whereas the d-
criterion requires at most |M | × (|M |+ 1)/2 evaluations of
∃t ∈ TS, d(t, po,mx) 6= d(t, po,my) per pair mx,my ∈M ′.

Since each evaluation of the mutant distinguishment in
the d-criterion is a simple comparison of the kill results of
a pair of mutants, the time to evaluate the mutant distin-
guishment is negligible compared to the time to obtain the
kill results. For example, in test suite selection, generating
a d-criterion adequate test suite from 6,956 tests with 1,924
mutants using a greedy algorithm requires 0.186 seconds,
whereas obtaining the kill results for the mutants and tests
requires 6,307 seconds [19]. As a result, if the kill results
of all mutants for every test are given, the additional effort
required to use the d-criterion in comparison to use the k-
criterion is not a big deal.

We note that satisfying the d-criterion may be consid-
erably expensive than the k-criterion in practice, because
the d-criterion requires the execution of every test on every
mutant, while the k-criterion only requires one test that kills
each mutant. A number of sound run-time optimization
techniques for test execution and test generation based on
the k-criterion [38], [39] are not directly applicable for the
d-criterion. However, studies on reducing the execution cost
of tests on mutants, such as parallelization [40] and split-
steam [41], will help make the d-criterion more practical.

4 EXPERIMENTAL DESCRIPTION

4.1 Research Questions
In the experiments, we investigate the following four main
research questions:

• RQ1: How does the fault detection effectiveness of
each mutation adequacy criterion vary according to
score?

• RQ2: How does the test suite size of each mutation
adequacy criterion vary according to score?

• RQ3: Which mutation score is more correlated with
real fault detection?

• RQ4: Does the test pool affect the fault detection
effectiveness of each mutation adequacy criterion?

RQ1 focuses on the fault detection effectiveness of the
mutation adequacy criteria in achieving given levels of
score. We not only investigate the relationship between the
score and the fault detection for each mutation adequacy
criterion, but also compare the fault detection effectiveness
among the mutation adequacy criteria.

RQ2 deals with the test suite size for achieving the
given score levels of the mutation adequacy criteria. Since
the d-criterion is stronger than the k-criterion, it is likely
that d-criterion will require more tests than the k-criterion.
We compare the sizes of the d-suites (i.e., the d-criterion
adequate test suites) and the k-suites (i.e., the k-criterion
adequate test suites) according to the adequacy score.

RQ3 considers correlations between the mutation ade-
quacy score and real fault detection. Whereas the mScore
is widely accepted as a good metric to compare the fault
detection effectiveness of arbitrary test suites, it may be
the case that the dScore is more correlated to real fault
detection effectiveness. We compare the correlation between
the dScore and the real fault detection and the correlation
between the mScore and the real fault detection.

RQ4 addresses the effect of test pools in the evaluation.
As we generate adequate test suites from a large test pool,
the type of the test pool may distort the analysis results. For
example, the difference in the fault detection effectiveness
between the d-criterion and the k-criterion may significantly
vary when a large random test pool is utilized, whereas
the difference may not significantly vary when a coverage-
directed specific test pool is utilized. We perform the same
experiments using different test pools and observe whether
the analysis results vary with the different test pools.

To answer the above questions, we design the experi-
ment as illustrated in Fig. 4. We use developer-fixed and
manually-verified faults of the real applications in the
database of Defects4J [20] (v1.1.0). For each fault, we
use a large number of developer-written tests given by
Defects4J as the test pool. The test pool is used to execute
many mutants generated by the mutation analysis tool
Major [42] (v1.3.0); the kill information that records the
mutants killed by each test of the test pool is constructed.
We then generate test suites adequate to a certain ade-
quacy criterion with a specific score level (interval) for RQ1,
RQ2, and RQ4. For RQ3, we generate purely random test
suites. For RQ4, with the aid of Randoop [43] (v3.0.6) and
EvoSuite [44] (v0.2.0), we additionally generate a large
number of automatically-generated tests as a different type
of test pool and repeat the main experiments. Meanwhile,
thanks to the fact that Defects4J provides both faulty and
fixed versions of programs for each fault, it is possible to
measure whether each of the generated test suites detects
the fault or not. In the following subsections, we explain
each part of our experiment in more detail.

4.2 Subject Faults

We conduct our experiments on real applications pro-
vided by Defects4J. There are 357 developer-fixed and
manually-verified real faults and corresponding fixes from
five Java applications (JFreeChart, Closure compiler, Com-
mons Math, Joda-Time, and Commons Lang). For each fault,
the faulty version and the corresponding fixed version of the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 8

Fig. 4. Experimental setup: overview

fault are given. The difference between the faulty and fixed
version of a fault does not include unrelated changes such
as refactorings. Since each fault is given as an independent
fault-fix pair of program versions, we treat each fault as
a separate subject program. Hereafter, we use the terms
“fault” and “faulty program” interchangeably.

We exclude 5 out of 357 faults because they are not
able to produce mutation analysis results within a prac-
tical time limit (i.e., one hour per test). As a result, 352
faulty programs remain. Table 1 summarizes the 352 faulty
programs for each application. Detailed information for
each subject fault is available from our webpage at http:
//se.kaist.ac.kr/donghwan/downloads. From here on, P
refers the set of 352 subject faulty programs and p ∈ P
refers to one of the faulty programs.

4.3 Test Pools

In order to compare two test adequacy criteria for a given
program, it is necessary to carry out a statistical comparison
of the fault detection capabilities of a large number of in-
dependent test suites generated using each of the adequacy
criteria [45]. To achieve this goal, we need to prepare a test
pool for each faulty program and generate many test suites
by selecting tests from the test pool with the aid of the
adequacy criteria. Fortunately, Defects4J provides plenty
of relevant developer-written tests that touch the modified
classes between the faulty version and the fixed version for
each fault. We use the relevant developer-written tests as a
large test pool for each fault. In Table 1, the column Dev.
tests (sum) shows the sum of the number of developer-
written tests (i.e., the size of the test pool) for each fault. For
example, there are total 72,005 tests for the 27 Time faults.
A total of 553,477 tests are used as the test pools for the 352
studied faults.

On the other hand, for RQ4, which attempts to ad-
dress the effect of different types of test pools, we need
the tests other than the developer-written tests. To ob-
tain automatically-generated tests, we consider two widely
studied automatic test generation tools, Randoop [43] and
EvoSuite [44]. Randoop is used to generate a large number

of random tests, whereas EvoSuite is used to generate a set
of tests with the objective of maximizing branch coverage.
For each fault, we run both of the tools with the 300 seconds
time budget, and limit the maximum number of generated
tests to 2,000 for Randoop. Since automatic test generation
tools may generate problematic tests that can cause compile
errors, runtime errors, and sporadically fails [20], [46], we
automatically removed those tests using the script given in
Defects4J.

Fig. 5 visualizes the distributions of sizes (i.e., number
of tests), code coverage ratios, and mutation scores of all
the studied test pools. Statement coverage over the classes
modified by the fault fix is computed by Cobertura3; the
mutation score over the all mutants generated from the
same classes is computed by Major [42]. Note that the set
of subject faults for each test pool varies, because not all
of the 352 studied faults in P are detected by the EvoSuite
pool, nor are they all detected by the Randoop pool. Let
PE ⊆ P and PR ⊆ P refers the set of subject faults for the
EvoSuite pool and the Randoop pool, respectively. Then,
|PE | = 85 and |PR| = 58. Thus, Fig. 5 shows not only
the characteristics of the test pools but also that of the
subject faulty programs. For example, the high mutation
scores of the EvoSuite test pools are not just because of
the characteristics of the test pools but mainly because of
the characteristics of the 85 faulty programs.

4.4 Mutation Analysis

We use the Major [42] mutation analysis tool to gener-
ate and executing all mutants for the test pool for each
fault. By default, Major provides a set of commonly used
sufficient mutation operators [17], [47] including the AOR
(Arithmetic Operator Replacement), LOR (Logical Operator
Replacement), COR (Conditional Operator Replacement),
ROR (Relational Operator Replacement), ORU (Operator
Replacement Unary), STD (STatement Deletion), and LVR
(Literal Value Replacement). We applied all of the mutation
operators to generate as many mutants as possible. Since the

3. http://cobertura.github.io/cobertura (v2.0.3)

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 1
Summary for subject faults, developer-written tests, all generated mutants, killed mutants, and distinguished mutants by the test pool

Application Faults Dev. tests (sum) All mutants (sum) Killed mutants (sum) Distinguished mutants (sum)

Chart 25 5,806 21,611 8,614 1,462
Closure 133 443,596 109,727 82,676 34,685
Lang 65 11,409 81,524 63,551 5,467
Math 106 20,661 101,978 73,931 14,591
Time 27 72,005 19,996 13,665 3,838

Total 352 553,477 334,836 242,437 60,043

0

2000

4000

6000

8000

Dev
(352)

Randoop
(58)

Si
ze

 (n
um

be
r o

f t
es

ts
)

EvoSuite
(85)

(a) Size

0

25

50

75

100

St
at

em
en

t c
ov

er
ag

e
(%

)

Dev
(352)

Randoop
(58)

EvoSuite
(85)

(b) Statement coverage

0

25

50

75

100

M
ut

at
io

n
sc

or
e

(%
)

Dev
(352)

Randoop
(58)

EvoSuite
(85)

(c) Mutation score

Fig. 5. Distribution of sizes, code coverage ratios, and mutation scores of different test pools. Note that the number of subject faults for each test
pool varies (i.e., Dev = 352, EvoSuite = 85, Randoop = 58), and the graphs show not only the characteristics of the test pools but also that of the
subject faults.

use of sufficient mutation operators may affect the experi-
mental results, we will discuss this issue in Section 5.5.

In Table 1, the columns All mutants, Killed mutants, and
Distinguished mutants represent the mutation-related infor-
mation. The number of mutants killed and distinguished by
the test pool are the maximum number of kill-able and dis-
tinguishable mutants in the test suite selection, respectively.
For example, for the 25 Chart faults, 8,614 mutants and 1,462
mutants among 21,611 mutants are killed and distinguished
by the test pool, respectively.

4.5 Test Suite Generation
For each fault, we generate a large number of test suites
from the test pool for various experiments. Depending
on the use of mutation adequacy criteria, we classify our
experiments into two types. The first one is called controlled
experiments, which means that mutation scores are con-
trolled to generate many mutation adequate test suites with
various score levels. The second one is called uncontrolled
experiments, which means that test suites are randomly
generated without any control, and the mutation scores of
the random test suites are measured after the generation.
The controlled experiments are for RQ1, RQ2, and RQ4,
whereas the uncontrolled experiments are for RQ3.

4.5.1 Controlled Test Suite Generation
In the controlled experiments, we aim to generate evenly
distributed test suites achieving various mutation score
levels in a balanced manner. We control the score s in a

range of 0.05 to 1.0 in steps of 0.05. In other words, there
are 20 score intervals, greater than or equal to s and less
than s+0.5, for each s ∈ {0.05, 0.1, · · · , 0.95, 1.0}. From here
on, let c-suite(s) refer to the c-criterion adequate test suite
whose score is between s and s+0.05, where c ∈ {d, k}.
For each score interval, we generate 1,000 independent test
suites for both the d-criterion and the k-criterion. In other
words, we generate 1,000 c-suites(s) for all c ∈ {d, k} and
s ∈ {0.05, · · · , 1.0}.

To generate mutation-adequate test suites achieving var-
ious score levels, we use the simple greedy algorithm pro-
vided by Andrews et al. [21]. This algorithm is designed to
simulate the behavior of a human tester who will add a new
test that improves the score to achieve a higher score level.
For the given values of c and s, the algorithm iteratively and
randomly selects a test t from the test pool. The selected t
is added to the c-suite(s) only if t improves the score of
the c-suite(s). The algorithm halts when the score of the c-
suite(s) is between s and s+0.05. If the score of the c-suite(s)
goes over the interval, then the algorithm repeats from the
beginning.

In addition to d-suites(s) and k-suites(s), to investigate
the influence of test suite size, we also consider size-
controlled test suites whose size are the same as the size
of d-suite(s). We first consider an r-suite(s), a random
test suite with the same size as a d-suite(s), to investigate
whether the effectiveness of the d-suite(s) is simply due
to its size. Second, we attempt to control the size of a k-
suite(s) to investigate whether the effectiveness difference

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 10

between the d-suite(s) and the k-suite(s) is simply due to
their size difference. One easy way to control the size of a
k-suite(s) is to add random tests so that the test suite have
the same size as a d-suite(s). However, adding random tests
to a k-suite(s) to increase its size may introduce a bias and
underestimate the effectiveness of the larger test suite, since
random test selection performs poorly in general. As a more
conservative way to control the size of a k-suite(s), we apply
stacking [48]: given the size of a d-suite(s), we generate and
stack k-suites(s) until the number of tests of their union
reaches the size of the d-suite(s). Note that the score of an
r-suite(s) and a ks-suite(s) is not necessarily between s and
s+0.05.

In summary, for a given score level s, we investigate the
following score-controlled test suites:

• d-suite(s): the d-criterion adequate test suite whose
score is between s and s+0.05.

• k-suite(s): the k-criterion adequate test suite whose
score is between s and s+0.05.

• ks-suite(s): stacked k-suite(s) whose size is the same
as the d-suite(s).

• r-suite(s): random test suite whose size is the same
as the d-suite(s).

We attempt to generate 1,000 c-suites(s) for each criterion
c ∈ {d, k, ks, r}, score level s ∈ {0.05, · · · , 1.0}, and faulty
program p ∈ P , which leads to a total of 1,000 × 4 × 20 ×
352 = 28,160,000 controlled test suites. However, for certain
values of c, s and p, it is almost impossible to generate a
c-suite(s) because some mutants are always killed together
so that the mutation score is not discretized into as many
as 20 intervals. We skip the generation of a c-suite(s) for p
if the generation process fails over 100 times in a row. As a
result, we generate 24,488,000 test suites for the controlled
experiments.

4.5.2 Uncontrolled Test Suite Generation
In the uncontrolled experiments, test suite generation is rel-
atively simple: we generate 1,000 uncontrolled random test
suites, or simply ur-suites, for each faulty program. Since
we have the 352 faulty programs, we generate 1,000 × 352 =
352,000 ur-suites for the uncontrolled experiments in total.

For each ur-suite, to investigate the correlation between
the mutation scores and the fault detection, we measure the
mScore, the dScore, and the fault detection (i.e., whether
the test suite detects the fault or not). Section 4.6.3 provides
details on how to investigate the correlations.

4.6 Variables and Measures
For each RQ, there are different independent and dependent
variables and measures.

4.6.1 RQ1: Fault Detection Effectiveness
We define the fault detection effectiveness of an adequacy
criterion as the probability that a test suite selected to be
adequate to the criterion will detect a fault [49]. We measure
the fault detection effectiveness of a criterion c achieving
a score level s for a fault p as the proportion of the fault-
detecting test suites among 1,000 c-suites(s) for p, or simply
rate(c, s, p), in RQ1. For example, let x be the number of

fault-detecting test suites among 1,000 c-suites(s) for a faulty
program p. Then rate(c, s, p) = x/1000 implies the fault
detection effectiveness of c that achieves s for p. To measure
the effectiveness of c with s for p, we observe whether a
c-suite(s) detects the fault or not for all c and s for each
p. In other words, c and s are the independent variables,
whereas the fault detection (i.e., either true or false) of each
c-suite(s) for p is the dependent variable.

To compare the fault detection effectiveness of the d-
criterion and the k-criterion using statistical methods, we
follow the guideline provided by Arcuri and Briand [50].
Since our dependent variable (i.e., real fault detection) is
dichotomous, we choose the non-parametric proportion test
and Risk Ratio (RR)4 for the statistical methods. For each s
and p, we first measure the p-value of the non-parametric
proportion test to investigate whether the fault detection
effectiveness of the d-suites(s) is statistically greater (or less)
than that of the k-suites(s). Since the alternative hypotheses
are directional (i.e., greater than or less than), we perform
one side proportion tests for each alternative hypothesis.
Further, to describe the effect size of the difference, we
measure RR which represents how many times the number
of fault-detecting d-suites(s) is greater than the number of
fault-detecting k-suites(s). To prevent the denominator from
becoming zero, the RR value is calculated with the following
formula:

RR(s, p) =
detects(d, s, p) + 0.5

detects(k, s, p) + 0.5

where detects(c, s, p) refers to the number of fault-detecting
test suites among the 1,000 c-suites(s) for a fault p.

4.6.2 RQ2: Test Suite Size

In RQ2, we define the size of c-suites(s) as the average
number of tests in each of 1,000 c-suites(s) for each p. We
observe the number of tests in each c-suite(s) for all c, s, and
p. In other words, for each p, c and s are the independent
variables, whereas the number of tests in each c-suite(s)
for p is the dependent variable. Since the sizes of the ks-
suites(s) and r-suites(s) are by definition equal to the size of
corresponding d-suites(s), we only consider d-suites(s) and
k-suites(s) in RQ2.

We measure the relative size of d-suites(s) over k-
suites(s) for all s and p to investigate how many times
the size of the d-suites(s) is greater than the size of the k-
suites(s).

4.6.3 RQ3: Correlation with Real Fault Detection

In RQ3, we observe the mScore, the dScore, and the fault
detection of a ur-suite for each p. In other words, for each p,
there is no independent variable, whereas the mScore, the
dScore, and the fault detection are the dependent variables.

We measure two correlations among the three dependent
variables: (1) the correlation between the mScore and the
fault detection and (2) the correlation between the dScore
and the fault detection. Since the fault detection is dichoto-
mous, we use the rank-biserial correlation coefficient to
measure the correlations.

4. We adapt risk ratio instead of odds ratio because it is more intuitive
to interpret in our experimental setting.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 11

4.6.4 RQ4: Impact of Test Pools

As explained in Section 4.3, we additionally investigate
the impact of test pools considering two different types
of automatically-generated tests: random tests generated by
Randoop and branch coverage maximizing tests generated
by EvoSuite. For each test pool, we do the same exper-
iments with RQ1. We observe whether a c-suite(s) detects
the real fault or not for all c and s for each p. In other words,
c and s are the independent variables, whereas the real fault
detection (i.e., either true or false) of each c-suite(s) for p is
the dependent variable. We then compare the results from
each test pool.

5 ANALYSIS RESULTS

5.1 RQ1: Fault detection effectiveness

5.1.1 RQ1-1: Relationship between Fault Detection Effec-
tiveness and Mutation Scores

One of our main objectives is to investigate the fault detec-
tion effectiveness of the mutation adequacy criteria (i.e., the
k-criterion and the d-criterion) for various score levels. Fig. 6
summarizes the relationships between the fault detection
effectiveness and the score level for each adequacy crite-
rion. Each point represents the fault detection effectiveness
rate(c, s, p) for a criterion c ∈ {d, k, ks, r}, a score interval
s ∈ {0.05, · · · , 1.0}, and a faulty program p ∈ P . Each
box-plot represents the distribution of rate(c, s, p) over p
for given values of c and s.

For the d-criterion, rate(d, s, p) increases with increasing
s up to 1 for all p. This means that achieving a higher dScore
tends to lead to the detection of more real faults for all score
levels. This tendency is very important when we generate
test suites using the d-criterion. Since the fault detection
effectiveness of the d-criterion monotonically increases with
increasing score levels, achieving a higher dScore is prefer-
able in terms of fault detection. Of course, testing efforts
also increase with increasing score levels. We will discuss
the testing efforts in Section 5.2.

For the k-criterion, rate(k, s, p) also increases with in-
creasing s up to 1 for all p similar to the d-criterion. How-
ever, it is worthwhile to consider the correlation between the
score level and the fault detection rate. In comparison to the
kScore, the dScore achieves more linear correlation with
the fault detection rate. Fig. 6 suggests that, particularly for
the inadequate test suites, the d-criterion is better correlated
with the fault detection effectiveness than the k-criterion.
The fact that the d-criterion shows more linear correlation
is encouraging, as it allows more intuitive interpretation of
the dScore of inadequate test suites with respect to the fault
detection effectiveness.

While the fault detection effectiveness of both the
d- and k-criteria increase along with the corresponding
mutation scores, the dScore shows more linear correla-
tion with the fault detection effectiveness.

5.1.2 RQ1-2: Comparison between the d-criterion and the
k-criterion

To compare the fault detection effectiveness of the mutation
adequacy criteria, we summarize the average fault detection
effectiveness rate(c, s, p) of each criterion c for each score
interval s in Fig. 7. For example, as an average for the 352
faulty programs p, rate(d, 1.0, p) is 0.943, rate(k, 1.0, p) is
0.877, rate(ks, 1.0, p) is 0.902, and rate(r, 1.0, p) is 0.355.
Overall, Fig. 7 clearly shows that the d-criterion outperforms
the other criteria for all score levels.

Fig. 7 shows again that the d-criterion is better correlated
with the fault detection rate in comparison to the k-criterion.
Interestingly, a similar phenomenon appears in the ks-
criterion. Recall that a ks-suite has the same size as a d-suite.
This implies that the improvement of the fault detection ef-
fectiveness of the d-criterion in comparison to the k-criterion
is largely related to test suite size. However, on average for
all s and p, rate(d, s, p) is 5.73 percentage points higher than
rate(ks, s, p). This signifies that the improvement is not just
because of the size effect. Also, it is encouraging that the
d-criterion is parametric-free in contrast to the ks-criterion;
the d-criterion does not require a predefined test suite size.

For deeper investigations into the d-criterion and the
k-criterion, we narrow our focus from the average of all
faults to each fault. For each fault, we perform a non-
parametric proportion test to analyze whether the fault de-
tection effectiveness of the d-criterion is statistically greater
(or less) than that of the k-criterion. Specifically, we perform
two independent one side proportion tests for each value
of s and p: one to determine whether rate(d, s, p) is sta-
tistically greater than rate(k, s, p), the other to determine
whether rate(d, s, p) is statistically less than rate(k, s, p).
In other words, the null hypothesis is H0 : rate(d, s, p) =
rate(k, s, p) for both proportion tests, while the alter-
native hypotheses for each proportion test are H1,GT :
rate(d, s, p) > rate(k, s, p) and H1,LT : rate(d, s, p) <
rate(k, s, p), respectively. The Bonferroni correction [50] is
applied to reduce the probability of Type 1 errors, so that
both proportion tests use α = 0.05/1000 = 0.00005 where
N = 1000. Based on the two proportion tests, all the 352
faults are classified into three types: GT, LT, and EQ. If
rate(d, s, p) is statistically greater (or less) than rate(k, s, p),
then the fault is classified as GT (or LT) type. If the fault is
of neither GT nor LT type, the fault is classified as EQ type.

Fig. 8 summarizes the distribution of fault types for each
score interval. For example, for the adequate test suites
(i.e., s = 1.0), 15.1% of the subject faults show a statistical
increase in their fault detection effectiveness when using
the d-criterion in comparison to the k-criterion, whereas the
remaining 84.9% show no statistical difference. On average
for all score levels, 74.8% are GT type, 21.6% are EQ type,
and only 3.6% are LT type. Note that there are no LT type
faults when s = 1.0. This means that the d-criterion is
always better than or equal to the k-criterion in terms of fault
detection effectiveness when each of the adequacy criteria is
fully satisfied. This is intuitive considering the subsumption
relationship between the d-criterion and the k-criterion, as
explained in Section 3.4.

Then why does the fault detection effectiveness of EQ
type faults not increase with the d-criterion in comparison
to the k-criterion, even when s = 1.0? There are 299 EQ
type faults (i.e., 84.9% of all the studied faults) when s =
1.0. Among the 299 faults, 286 faults are “maximized” by

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 12

d-criterion k-criterion ks-criterion r-criterion

1.0
0.00

0.25

0.50

0.75

1.00

Score interval

Fa
ul

t d
et

ec
tio

n
ra

te

0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.00.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.00.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.00.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 6. Relationships between fault detection and score for each criterion

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.25 0.50 0.75 1.00
Score interval

A
ve

ra
ge

 fa
ul

t d
ete

cti
on

 ra
te

d-criterion

k-criterion
ks-criterion

r-criterion

Fig. 7. Comparison of fault detection effectiveness among the criteria

the k-criterion (i.e., rate(k, 1.0, p) = 1 or the dScore of k-
suite(1.0) is 1), 10 faults are more likely to be detected by
the d-criterion than by the k-criterion but not statistically
significant; the remaining 3 faults are detected by neither the
d-criterion nor the k-criterion, because there are no mutants
killed by the fault-detecting tests for the 3 faults.

In addition to the statistical significance of the difference
of the fault detection effectiveness between the d-criterion
and the k-criterion, we analyze the effect size of the differ-
ence. We measure the Risk Ratio (RR) values that represent
the ratio of rate(d, s, p) over rate(k, s, p) for each s and p.
Fig. 9 summarizes the results. Each point represents the log-
arithm of RR for a fault p in a given score interval s. Since the
maximum RR value reaches 200, we use a logarithmic scale.
Each box-plot represents the distribution of the logarithm
of RR for all p ∈ P for a given s. Table 2 summarizes the
minimum, average, and maximum RR value for each score
interval. For example, for all score intervals, the average RR
is 8.26, which means that the fault detection effectiveness
of the d-criterion is 8.26 times higher than that of the k-
criterion.

The maximum RR is very large especially for the inad-

equate test suites (i.e., s ≤ 0.9). These large RR values are
due to cases in which the k-criterion almost fails to detect
a fault, whereas the d-criterion detects the fault very well.
On average, the RR values for the inadequate test suites are
particularly large, which means that the d-criterion provides
considerable improvements for the inadequate test suites in
comparison to the k-criterion. On the other hand, for the
adequate test suites (i.e., s = 1.0), the minimum RR is 1.00,
which means that the d-criterion is at least as effective as the
k-criterion. The average RR value for s = 1.0 is 1.33, which
means that the d-criterion is 1.33 times more effective than
the k-criterion for the adequate test suites. The maximum
RR value for s = 1.0 is 14.29, which means that the d-
criterion is at most 14.29 times more effective than the k-
criterion for the adequate test suites.

For more information, we summarize the comparison re-
sults between the d-criterion and the ks-criterion in Table 3.
Similar to Table 2, it provides the minimum, average, and
maximum RR value for each score interval. Overall, the RR
values in Table 3 (i.e., compared to the ks-criterion) are simi-
lar to the values in Table 2 (i.e., compared to the k-criterion),
while the values are slightly smaller than when compared
to the k-criterion. For example, for all score intervals, the
average RR value of the d-criterion over the ks-criterion
is 6.89, whereas that of the d-criterion over the k-criterion
is 8.26. This is intuitive in that the size of the ks-suites
is increased to be equal to the d-suites in comparison to
the k-suites. Further, the results shows that the fault detec-
tion effectiveness of the diversity-aware mutation adequacy
criterion is superior to the traditional mutation adequacy
criterion, even when the test suite size is considered.

On average for all score intervals, the d-criterion
increases the fault detection effectiveness in a statisti-
cally significant manner for 74.8% of all subject faults
in comparison to the k-criterion, and the effectiveness
increases 8.26 times.

5.2 RQ2: Test Suite Size
As explained in Section 4.6, we measure the relative sizes of
the d-suites(s) over the k-suites(s) for each s and p. Fig. 10

TRANSACTIONS ON SOFTWARE ENGINEERING 13

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
GT 46.6% 59.1% 65.8% 72.1% 77.4% 81.0% 81.5% 86.8% 88.0% 84.0% 86.4% 85.5% 86.0% 85.1% 87.0% 83.1% 80.8% 74.8% 69.5% 15.1%
EQ 49.4% 39.0% 27.6% 22.6% 18.5% 14.6% 13.1% 10.2% 8.0% 13.2% 11.1% 10.4% 9.3% 12.3% 9.9% 13.8% 15.8% 21.6% 26.8% 84.9%
LT 4.0% 1.9% 6.5% 5.2% 4.0% 4.4% 5.4% 3.0% 4.0% 2.8% 2.5% 4.1% 4.7% 2.5% 3.1% 3.1% 3.4% 3.6% 3.7% 0.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Fa

ul
t d

is
tri

bu
tio

n

Fig. 8. Types of faults depending on the difference of fault detection effectiveness between the d-criterion and the k-criterion

0

0.05
Score interval

lo
g 10

(R
R

)

1

2

-1

-2

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Fig. 9. Risk Ratio (RR) effect sizes for fault detection effectiveness of the d-criterion over the k-criterion for each score interval

summarizes the size ratios of each score interval. Each box-
plot represents the relative sizes for all subject faults for
a given score interval. Table 4 summarizes the minimum,
average, and maximum size ratios for each score interval.
For example, on average for all score intervals, the size ratio
is 3.07, which means that the d-suites are 3.07 times larger
than the k-suites on average.

For all score intervals, the d-suite requires 3.07 times
more tests than the k-suite on average. The large relative
size means that the number of required tests to achieve the
same score level may largely vary between the d-criterion
and the k-criterion. This is because the mutants generated
from the faulty programs are easy to kill (i.e., distinguish
from the original program) but hard to distinguish (i.e.,
distinguish among mutants). The average size ratio is 1.56
for the adequate test suites (i.e., s = 1), which means that the
d-criterion requires 1.56 times more tests than the k-criterion
for the adequate test suites.

On average for all score intervals, the d-criterion
requires 3.07 times more tests than the k-criterion.

5.3 RQ3: Correlation with Fault Detection

Section 5.1 shows that the d-criterion is more effective at
detecting faults than is the k-criterion for all score intervals;
however, the question remains which score between the dis-
tinguishing mutation score (i.e., dScore) and the traditional
mutation score (i.e., mScore) is more correlated with real
fault detection.

Fig. 11 summarizes the rank-biserial correlation coeffi-
cients between fault detection and the mutation scores (i.e.,
dScore andmScore, respectively). Each point represents the
rank-biserial correlation coefficient between fault detection
and each of the scores for a fault. On average, the coeffi-
cients for the dScore and the mScore are 0.780 and 0.718,
respectively. This means that fault detection is slightly more
correlated with the distinguishing mutation score than with
the traditional mutation score.

To measure the statistical significance, we apply the
Mann-Whitney U-test to the coefficients. The p-value is
2.00e-12, which means that the correlation coefficient be-
tween the d-criterion and fault detection is statistically
different from the correlation between the k-criterion and
fault detection. We also measure the Vargha and Delaney’s
Â12 statistic following the guidelines [50]. The Â12 is 0.652,
which means that the correlation between fault detection

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 14

0

5

10

15

20

25

Score interval

Si
ze

 ra
tio

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Fig. 10. Relative size of d-suites over k-suites for each score interval

TABLE 2
Effect size for each score interval (compared to the k-criterion)

Score Effect size (RR)
interval minimum average maximum

0.05 0.08 8.57 131.20
0.10 0.13 9.82 104.00
0.15 0.33 10.33 115.60
0.20 0.19 12.46 188.40
0.25 0.19 12.03 190.40
0.30 0.38 12.54 196.60
0.35 0.16 11.47 201.00
0.40 0.00 13.64 196.60
0.45 0.11 10.63 198.80
0.50 0.12 12.77 201.00
0.55 0.17 10.93 165.20
0.60 0.45 9.13 168.60
0.65 0.01 5.44 177.40
0.70 0.55 6.31 201.00
0.75 0.50 4.87 201.00
0.80 0.03 3.86 201.00
0.85 0.02 4.51 201.00
0.90 0.01 3.16 169.80
0.95 0.78 1.50 13.11
1.00 1.00 1.33 14.29

All 0.00 8.26 201.00

and the dScore is higher than the correlation between fault
detection and the mScore with the probability of 0.652.

The dScore is statistically more correlated to real
fault detection than the mScore (Mann-Whitney U-test,
p-value=2.00e-12). The Â12 is 0.652.

5.4 RQ4: Impact on Test Pool

Based on the two different test pools (i.e., the EvoSuite
pool and the Randoop pool), we repeat the experiments to
investigate the difference of the fault detection effectiveness
between the d-criterion and the k-criterion. Table 5 summa-

TABLE 3
Effect size for each score interval (compared to the ks-criterion)

Score Effect size (RR)
interval minimum average maximum

0.05 0.08 8.51 131.20
0.10 0.12 9.07 104.00
0.15 0.21 9.20 115.60
0.20 0.19 11.11 188.40
0.25 0.11 10.15 190.40
0.30 0.24 10.82 196.60
0.35 0.16 9.48 201.00
0.40 0.00 11.59 196.60
0.45 0.11 8.71 198.80
0.50 0.12 10.95 201.00
0.55 0.17 9.59 165.20
0.60 0.45 7.62 168.60
0.65 0.01 3.81 177.40
0.70 0.43 4.88 201.00
0.75 0.38 3.78 201.00
0.80 0.01 2.83 201.00
0.85 0.02 3.72 201.00
0.90 0.01 2.63 169.80
0.95 0.59 1.15 5.40
1.00 0.58 1.11 5.49

All 0.00 6.89 201.00

rizes the types of faults and the effect size (RR) as analyzed
in Section 5.1.2.

In Table 5, the overall patterns are similar between the
EvoSuite pool and the Randoop pool. For both test pools,
the percentage of GT type faults are much higher than the
percentage of LT type faults. These results shows that, in
comparison to satisfying the k-criterion, satisfying the d-
criterion is beneficial to increase the fault detection effective-
ness regardless of the test pool types. For both test pools, the
d-criterion adequate test suites (i.e., s = 1.0) has no LT type
faults.

We have not found a significant correlation between the
characteristics of the test pool (e.g., test pool size, code
coverage ratios, and number of fault-detecting tests) and the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 4
Size ratio for each score interval

Score Size ratio
interval minimum average maximum

0.05 0.28 3.28 11.34
0.10 0.46 4.06 16.67
0.15 0.58 4.30 24.55
0.20 0.63 4.20 18.99
0.25 0.74 3.99 15.34
0.30 0.88 3.82 12.34
0.35 0.77 3.63 12.31
0.40 0.90 3.48 13.29
0.45 0.67 3.37 14.00
0.50 0.93 3.19 14.09
0.55 0.94 3.10 14.67
0.60 0.87 2.99 15.34
0.65 1.01 2.87 13.41
0.70 1.03 2.68 13.50
0.75 1.01 2.53 10.30
0.80 1.08 2.33 11.24
0.85 0.97 2.14 12.51
0.90 1.03 1.99 9.78
0.95 1.02 1.78 5.64
1.00 1.00 1.56 4.50

All 0.28 3.07 24.55

0.00

0.25

0.50

0.75

1.00

R
an

k-
bi

se
ria

l c
or

re
la

tio
n

co
ef

fic
ie

nt

mScore and
fault detection

dScore and
fault detection

Fig. 11. Rank-biserial correlation coefficients for each mutation ade-
quacy criteria

effectiveness improvement of the d-criterion in comparison
to the k-criterion.

Regardless of test pool types, in comparison to
satisfying the k-criterion, satisfying the d-criterion is
beneficial to increase the fault detection effectiveness.

5.5 Threats to Validity

Since any experiment is subject to threats to validity, care-
ful identification of the threats is important in empirical

evaluations. In this subsection, we consider three types of
threats to the validity of our experiments: external, internal,
and construct threat.

One threat to external validity comes from the rep-
resentativeness of the subject applications (i.e., five real
world applications written in Java) and their faults (i.e., 352
developer-fixed and manually-verified real faults). Whereas
this threat can only be properly addressed by further em-
pirical studies, we have tried to use a non-trivial number of
real faults collected in the defect4j repository.

Our results are also dependent on the test pools, in-
cluding developer-written tests given by Defects4J and
test pools generated by Randoop and EvoSuite. To reduce
this threat, we partially confirmed that the results of the
real fault detection did not significantly vary depending
on the types of test pools in RQ4. Further, the formal
subsumption relationship between the d-criterion and the
k-criterion guarantees that satisfying the d-criterion never
decreases the fault detection effectiveness in comparison to
satisfying the k-criterion in test suite selection.

The mutation operators we have used are another threat
to external validity. There are many other mutation opera-
tors that are applicable in Java. For example, if more various
mutants are generated by a richer set of mutation operators,
then the gap between the d-criterion and the k-criterion
will be bigger in terms of both real fault detection and test
suite size. However, a set of sufficient mutation operators is
widely accepted as the baseline. To give a fair comparison
between the d-criterion and the k-criterion, we have tried to
use the sufficient mutation operators by default.

In terms of threats to internal validity, our experi-
ments rely on several tools such as Major, EvoSuite, and
Randoop. To confirm the correctness of the tools, we have
tried our best to follow up on and resolve up-to-date issues
from the tool web pages. On the other hand, we developed
several scripts specifically for our experiments (e.g., test
suite generation), which could increase threats to internal
validity. To reduce such threats, we validated the scripts by
testing them on simple programs and mutants several times
and confirmed their correctness.

The fault detection effectiveness of a test adequacy cri-
terion may vary depending on the testing scenarios. For
example, a test adequacy criterion may be used not for
test suite selection but test data generation (e.g., Counter-
exampled based test generation [51], [52] and search-based
test generation [23], [39], [53]). Further information about
the testing scenarios and their impact on the fault detection
capability is well-described in Zhu et al. [33]. We have a
plan to develop a test generation method to satisfy the d-
criterion.

For the mutation scores, mScore and dScore, equivalent
mutants and universally indistinguishable mutants must be
removed. As controlled experiments, similar to the work
of Andrews et al. [21], the mutants that are not killed and
distinguished by the test pools are deemed to be equiva-
lent and universally indistinguishable, respectively. In other
words, we use the test pools to approximate the equivalent
mutants and the universally indistinguishable mutants. This
may limit the number of subject mutants and affect our
results. However, the set of non-equivalent mutants and
the set of distinguishable mutants are identical for any test

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 5
Fault types and effect sizes for the fault detection effectiveness for each test pool

Score EvoSuite pool Randoop pool
interval GT LT EQ RR (avg) GT LT EQ RR (avg)

0.05 60.7% 8.2% 31.1% 10.64 64.4% 2.2% 33.3% 21.79
0.10 80.0% 6.2% 13.8% 15.69 78.0% 4.0% 18.0% 21.24
0.15 86.8% 1.5% 11.8% 20.03 72.0% 2.0% 26.0% 18.27
0.20 87.5% 8.3% 4.2% 13.81 75.5% 1.9% 22.6% 14.93
0.25 86.8% 5.3% 7.9% 16.12 76.9% 3.8% 19.2% 8.08
0.30 91.8% 0.0% 8.2% 13.65 82.0% 0.0% 18.0% 11.09
0.35 89.7% 4.4% 5.9% 9.52 84.0% 2.0% 14.0% 7.51
0.40 85.3% 4.0% 10.7% 8.40 80.8% 0.0% 19.2% 11.62
0.45 89.2% 4.1% 6.8% 8.50 82.7% 0.0% 17.3% 7.84
0.50 87.0% 3.9% 9.1% 7.58 83.3% 1.9% 14.8% 3.50
0.55 89.5% 1.3% 9.2% 9.83 77.4% 1.9% 20.8% 3.72
0.60 86.5% 5.4% 8.1% 6.12 71.7% 1.9% 26.4% 3.24
0.65 87.2% 1.3% 11.5% 6.76 73.1% 0.0% 26.9% 3.04
0.70 90.5% 0.0% 9.5% 1.93 66.7% 0.0% 33.3% 2.39
0.75 90.8% 2.6% 6.6% 4.42 66.7% 0.0% 33.3% 2.01
0.80 84.4% 3.9% 11.7% 1.71 61.5% 0.0% 38.5% 1.66
0.85 78.9% 1.3% 19.7% 4.35 52.8% 0.0% 47.2% 2.46
0.90 80.3% 0.0% 19.7% 4.08 51.9% 0.0% 48.1% 1.32
0.95 68.1% 0.0% 31.9% 1.35 39.6% 2.1% 58.3% 1.16
1.00 20.0% 0.0% 80.0% 1.22 22.4% 0.0% 77.6% 1.19

Average 81.0% 3.1% 15.9% 8.29 68.2% 1.2% 30.6% 7.40

suites used in a comparison for each fault. Further studies
are needed as it may depend on the selection of the studied
program.

To allow reproducibility of the results presented in
this paper, all the test pools generated by EvoSuite and
Randoop, the mutants generated by Major, and the imple-
mentation of the distinguishing mutation adequacy criterion
are freely available from our webpage at http://se.kaist.ac.
kr/donghwan/downloads.

6 RELATED WORK

To the best our knowledge, this is the first study to attempt
to improve the real fault detection capability of mutation
adequacy criteria by considering the diversity of mutants.
However, all mutation testing studies are, at some level,
related to this paper because the mutation adequacy cri-
terion is the essence of mutation testing. In this section,
we first focus on mutation studies related to the mutant
distinguishment, which is the foundation of the d-criterion.

As mentioned before, Ammann et al. [16] defined the
notion of mutant distinguishment in terms of mutant set
minimization, whereas their main focus was redundant
mutants (i.e., those that do not contribute to the quality
of a test suite), defined by the dynamic subsumption relation
between mutants. If a mutantmx is killed by at least one test
in a set of tests TS, and another mutant my is always killed
whenever mx is killed, then mx dynamically subsumes my

with respect to TS. They asserted that a mutant set Mmin is
minimal with respect to TS when there are no dynamically
subsumed mutants inMmin. In the working example shown
in Fig. 1, m1 dynamically subsumes m2, m3, and m4 with
respect to TS = {t1, t2, t3}, so thatMmin = {m1}. Note that

the dynamically subsumed mutants are “redundant” only in
terms of the k-criterion, which does not cater for the diver-
sity of mutants. In the d-criterion, all mutants are “valuable”
in terms of the diversity of mutants, except the universally
indistinguishable mutants described in Section 3.6. In the
working example, all four mutants are distinguished by
TS; they are not redundant in terms of the d-criterion. This
observation signifies that redundant mutants and inflated
mutation scores are mainly due to the k-criterion, and the
d-criterion clearly resolves these problems. In general, many
mutants can be removed by mutant subsumptions to yield a
smaller mutant set in terms of the k-criterion as shown, for
example, by Just and Schweiggert [17], whereas more tests
can be added to yield a stronger test suite in terms of the
d-criterion as shown in this paper.

Prior to the study of Ammann et al. [16], Kinits et
al. [54] defined that two mutants are disjoint if the test
sets that kill them are likely to be disjoint. Whereas the
notion of distinguished mutants and disjoint mutants are
similar, the definition of disjoint mutants is not as precise as
the definition of distinguished mutants. Meanwhile, Kurtz
et al. [32] extended the study of Ammann et al. [16] by
defining three different types of subsumption graphs (i.e.,
true, dynamic, and static subsumption graphs), as discussed
in Section 3.3. All of these studies are based on mutant
subsumption, which attempts to remove redundant mutants
in terms of the traditional kill-only mutation adequacy. On
the other hand, we define a novel diversity-aware mutation
adequacy to improve the fault detection effectiveness of
mutation testing.

Just et al. [55] attempted to avoid executing a test t
for as many t-equivalent (i.e., test-equivalent) mutants as
possible. For a test t, a mutant m is t-equivalent if t cannot

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 17

detect the difference between m and its original program
po. Using our formal framework, the t-equivalent mutant
is represented as d(t, po,m) = 0. They also partitioned
mutants into equivalence classes using the intermediate
results of the mutants for each t. It is equivalent to make
every mutant in such an equivalence class indistinguishable
by t. Similarly, Ma and Kim [14] proposed an approach
for executing fewer mutants by clustering mutants. They
defined that a mutant mx is c-overlapped (i.e., conditionally
overlapped) to another mutant my for a test t if mx and my

return the same output for t. Using our formal framework,
the c-overlapped mutants mx and my for t are represented
as d(t,mx,my) 6= 1, which is the dual of (3) discussed in
Section 3.2. While our approach utilizes the diversity of
mutants as opposed to reducing the redundancy of mutants,
the equivalency problem is important in the distinguishing
mutation adequacy criterion, as discussed in Section 3.6.
In this regard, both studies may help to efficiently find
distinguishable mutants.

There are several studies that have attempted to improve
the effectiveness of interest by increasing its diversity. Chen
at el. [1] proposed Adaptive Random Testing (ART) to
maximize the diversity of tests by selecting the test input
that is the farthest away from the tests already executed so
far. Recently, Patric and Jia explored the trade-off between
diversification (i.e., select a wide range of tests to increase
the change of finding new faults) and intensification (i.e., se-
lect tests similar to those previously shown to be successful)
in ART [56]. Their results showed that the intensification is
the most effective strategy for numerical programs, whereas
the diversification seems to be more effective for programs
with composite inputs.

The notion of diversity is also explored in fault local-
ization (i.e., identifying possible locations of faults in the
program under test) by Baudry et al. [57]. They defined the
concept of a Dynamic Basic Block (DBB), which is the set of
statements that is covered by the same set of tests. Larger
DBB implies lower accuracy of fault localization since all
statements in the DBB are as suspicious as the faulty state-
ment. Their experiments showed that optimizing a test suite
to distinguish statements in a DBB can improve the fault
localization accuracy. This is similar to our work in terms
of improving the performance of interest by considering its
diversity.

7 CONCLUSION

This paper introduces a novel diversity-aware mutation ad-
equacy criterion called the distinguishing mutation adequacy
criterion and a corresponding mutation score called the
distinguishing mutation score based on the formal definition
of the mutant distinguishment. The new adequacy aims to
use the diversity of mutants to encourage the diversity of
adequate tests. Based on the formal definitions of the new
adequacy, it is proved that the distinguishing mutation ade-
quacy criterion subsumes the traditional kill-only mutation
adequacy criterion. This subsume relation provides theo-
retical evidence that the distinguishing mutation adequacy
criterion is more effective at detecting faults than is the
traditional mutation adequacy criterion.

We also provide an empirical evaluation of the mutation
adequacy criteria in terms of their fault detection effec-
tiveness, test suite sizes, and various score levels. We use
352 real faults to study real world applications. The results
show that, on average for all score levels, the distinguishing
mutation adequacy criterion statistically increases the fault
detection effectiveness for 74.8% of all faults in comparison
to the traditional mutation adequacy criterion; the distin-
guishing adequacy is 8.26 times more effective than the
traditional adequacy. On the other hand, the distinguishing
mutation adequacy criterion requires 3.07 times more tests
than does the traditional mutation adequacy criterion. In
terms of mutation scores, while both distinguishing and
traditional mutation score are correlated with real fault
detection, the distinguishing mutation score is statistically
more correlated to real fault detection than the traditional
mutation score.

While the expensive cost is a long-standing problem
in mutation testing, we should not overlook the fault de-
tection effectiveness. Among various ways of improving
the effectiveness, investigations into a stronger mutation
adequacy criterion is promising because it is general enough
and applicable to all mutation-based testing methods. To
balance between improving the effectiveness and reducing
the cost of mutation testing, one potential direction for
future work is an investigation of the trade-off between
reduced cost and improved fault detection capability when
various mutation reduction methods are applied along with
the distinguishing mutation adequacy criterion. A proper
cost-benefit analysis of using the diversity-aware mutation
adequacy criterion instead of the traditional mutation ade-
quacy criterion is also needed.

There are many avenues for potential applications. Con-
sidering that a mutation adequacy criterion is the essence
of mutation-based testing, the distinguishing mutation ade-
quacy criterion is applicable for addressing various testing
problems such as test data generation and test case pri-
oritization. In particular, we have extended the studies of
Fraser and Arcuri [39], [58] to generate whole test suites
that satisfies the distinguishing mutation adequacy criterion
while keeping the total size as small as possible. Our pre-
liminary results showed that the test suites generated by
the distinguishing mutation adequacy criterion have similar
sizes and better fault detection capabilities in comparison
to the test suites generated by the traditional mutation
adequacy criterion. We plan to continue our research on
test data generation. We hope the distinguishing mutation
adequacy criterion can be utilized in both theoretical and
empirical studies in the future.

REFERENCES

[1] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,”
in Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making. Springer, 2004, pp. 320–329.

[2] D. Leon, A. Podgurski, and W. Dickinson, “Visualizing similarity
between program executions,” in Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE), 2005, pp.
310–321.

[3] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test
cases to achieve effective and scalable prioritisation incorporating
expert knowledge,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), 2009, pp. 201–212.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 18

[4] N. Alshahwan and M. Harman, “Coverage and fault detection of
the output-uniqueness test selection criteria,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2014, pp.
181–192.

[5] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for
cognitively diverse tests: Towards universal test diversity met-
rics,” in Proceedings of the International Conference on Software Testing
Verification and Validation Workshop (ICSTW), 2008, pp. 178–186.

[6] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter:
Quantifying the diversity of sets of test cases,” in Proceedings
of the International Conference on Software Testing, Verification and
Validation (ICST), to appear.

[7] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE Transactions on Software Engineer-
ing (TSE), vol. 37, no. 5, pp. 649–678, 2011.

[8] A. T. Acree Jr, “On mutation,” Ph.D. thesis, 1980.
[9] T. A. Budd, “Mutation analysis of program test data,” Ph.D. thesis,

1980.
[10] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An

experimental determination of sufficient mutant operators,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 5, no. 2, pp. 99–118, 1996.

[11] Y. Jia and M. Harman, “Higher order mutation testing,” Informa-
tion and Software Technology (IST), vol. 51, no. 10, pp. 1379–1393,
2009.

[12] P. Reales Mateo, M. Polo Usaola, and J. L. Fernandez Aleman,
“Validating second-order mutation at system level,” Software En-
gineering, IEEE Transactions on, vol. 39, no. 4, pp. 570–587, 2013.

[13] S. Hussain, “Mutation clustering,” MS. Thesis, 2008.
[14] Y.-S. Ma and S.-W. Kim, “Mutation testing cost reduction by

clustering overlapped mutants,” Journal of Systems and Software,
2016.

[15] G. Kaminski, P. Ammann, and J. Offutt, “Improving logic-based
testing,” Journal of Systems and Software, vol. 86, no. 8, pp. 2002–
2012, 2013.

[16] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoret-
ical minimal sets of mutants,” in Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST),
2014, pp. 21–30.

[17] R. Just and F. Schweiggert, “Higher accuracy and lower run
time: efficient mutation analysis using non-redundant mutation
operators,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 490–507, 2015.

[18] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[19] D. Shin, S. Yoo, and D.-H. Bae, “Diversity-aware mutation ad-
equacy criterion for improving fault detection capability,” in Pro-
ceedings of the International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2016, pp. 122–131.

[20] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), 2014, pp. 437–440.

[21] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage
criteria,” IEEE Transactions on Software Engineering (TSE), vol. 32,
no. 8, pp. 608–624, 2006.

[22] N. Li, U. Praphamontripong, and J. Offutt, “An experimental
comparison of four unit test criteria: Mutation, edge-pair, all-
uses and prime path coverage,” in Proceedings of the International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2009, pp. 220–229.

[23] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order
mutation-based test data generation,” in Proceedings of the sym-
posium and the European Conference on Foundations of Software Engi-
neering (ESEC/FSE), 2011, pp. 212–222.

[24] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in software
testing?” in Proceedings of the International Symposium on Founda-
tions of Software Engineering (FSE), 2014, pp. 654–665.

[25] D. Shin and D.-H. Bae, “A theoretical framework for understand-
ing mutation-based testing methods,” in Proceedings of the Inter-
national Conference on Software Testing, Verification and Validation
(ICST), 2016, pp. 299–308.

[26] L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering (TSE), vol. 16, no. 8, pp. 844–857, 1990.

[27] M. Woodward and K. Halewood, “From weak to strong, dead or
alive? an analysis of some mutation testing issues,” in Proceedings
of the International Conference on Software Testing, Verification, and
Analysis Workshop (ICSTW), 1988, pp. 152–158.

[28] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
“Theoretical and empirical studies on using program mutation to
test the functional correctness of programs,” in Proceedings of the
symposium on Principles of Programming Languages (POPL), 1980,
pp. 220–233.

[29] A. J. Offutt, “Investigations of the software testing coupling ef-
fect,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 1, no. 1, pp. 5–20, 1992.

[30] H. Do and G. Rothermel, “On the use of mutation faults in
empirical assessments of test case prioritization techniques,” IEEE
Transactions on Software Engineering, vol. 32, no. 9, pp. 733–752,
2006.

[31] D. Shin, E. Jee, and D.-H. Bae, “Comprehensive analysis of fbd
test coverage criteria using mutants,” Software & Systems Modeling,
vol. 15, no. 3, pp. 631–645, 2016.

[32] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng,
“Mutant subsumption graphs,” in Proceedings of the International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2014, pp. 176–185.

[33] H. Zhu, “A formal analysis of the subsume relation between
software test adequacy criteria,” IEEE Transactions on Software
Engineering (TSE), vol. 22, no. 4, pp. 248–255, 1996.

[34] T. A. Budd and D. Angluin, “Two notions of correctness and their
relation to testing,” Acta Informatica, vol. 18, no. 1, pp. 31–45, 1982.

[35] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, “Overcom-
ing the equivalent mutant problem: A systematic literature review
and a comparative experiment of second order mutation,” IEEE
Transactions on Software Engineering (TSE), vol. 40, no. 1, pp. 23–42,
2014.

[36] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial com-
piler equivalence: A large scale empirical study of a simple, fast
and effective equivalent mutant detection technique,” in Proceed-
ings of the International Conference on Software Engineering (ICSE),
2015, pp. 936–946.

[37] M. Kintis and N. Malevris, “Medic: A static analysis framework
for equivalent mutant identification,” Information and Software
Technology, vol. 68, pp. 1–17, 2015.

[38] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using non-
redundant mutation operators and test suite prioritization to
achieve efficient and scalable mutation analysis,” in Proceedings of
the 23rd International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2012, pp. 11–20.

[39] G. Fraser and A. Arcuri, “Achieving scalable mutation-based
generation of whole test suites,” Empirical Software Engineering,
vol. 20, no. 3, pp. 783–812, 2015.

[40] P. R. Mateo and M. P. Usaola, “Parallel mutation testing,” Software
Testing, Verification and Reliability, vol. 23, no. 4, pp. 315–350, 2013.

[41] S. Tokumoto, H. Yoshida, K. Sakamoto, and S. Honiden, “Muvm:
Higher order mutation analysis virtual machine for c,” in Proceed-
ings of the International Conference onSoftware Testing, Verification and
Validation (ICST). IEEE, 2016, pp. 320–329.

[42] R. Just, “The Major mutation framework: Efficient and scalable
mutation analysis for Java,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), 2014, pp. 433–
436.

[43] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random
testing for Java,” in Proceedings of the Companion to the Object-
oriented programming systems and applications (OOPSLA), 2007, pp.
815–816.

[44] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite genera-
tion for object-oriented software,” in Proceedings of the Symposium
and the European Conference on Foundations of Software Engineering
(ESEC/FSE), 2011, pp. 416–419.

[45] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the effectiveness of dataflow-and controlflow-based test ade-
quacy criteria,” in Proceedings of the 16th international conference on
Software engineering. IEEE Computer Society Press, 1994, pp. 191–
200.

[46] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
an empirical study of effectiveness and challenges,” in Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2015, pp. 201–211.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2732347, IEEE
Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 19

[47] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient
mutation operators for measuring test effectiveness,” in Proceed-
ings of the International Conference on Software Engineering (ICSE),
2008, pp. 351–360.

[48] M. Harder, J. Mellen, and M. D. Ernst, “Improving test suites
via operational abstraction,” in Proceedings of the 25th international
conference on Software engineering. IEEE Computer Society, 2003,
pp. 60–71.

[49] P. G. Frankl and S. N. Weiss, “An experimental comparison of
the effectiveness of branch testing and data flow testing,” IEEE
Transactions on Software Engineering (TSE), vol. 19, no. 8, pp. 774–
787, 1993.

[50] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Software Testing, Verification and Reliability (STVR), vol. 24, no. 3,
pp. 219–250, 2014.

[51] A. Gargantini and C. Heitmeyer, “Using model checking to gen-
erate tests from requirements specifications,” in Proceeding of the
European Software Engineering Conference Held Jointly with the Sym-
posium on the Foundations of Software Engineering (ESEC/FSE), 1999,
pp. 146–162.

[52] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in OSDI, vol. 8, 2008, pp. 209–224.

[53] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–156,
2004.

[54] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation
testing alternatives: A collateral experiment,” in Proceedings of the
17th Asia Pacific Software Engineering Conference (APSEC). IEEE,
2010, pp. 300–309.

[55] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis
by propagating and partitioning infected execution states,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014, pp. 315–326.

[56] M. Patrick and Y. Jia, “KD-ART: Should we intensify or diversify
tests to kill mutants?” Information and Software Technology, 2016.

[57] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites
for efficient fault localization,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2006, pp. 82–91.

[58] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Transactions on Software Engineering, vol. 39, no. 2, pp. 276–291,
2013.

