
Ask the Mutants: Mutating Faulty Programs for Fault Localization

Seokhyeon Moon, Yunho Kim, Moonzoo Kim
CS Dept. KAIST, South Korea

{seokhyeon.moon, kimyunho}@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

Shin Yoo
CS Dept. University College London, UK

shin.yoo@ucl.ac.uk

Abstract—We present MUSE (MUtation-baSEd fault local-
ization technique), a new fault localization technique based
on mutation analysis. A key idea of MUSE is to identify a
faulty statement by utilizing different characteristics of two
groups of mutants–one that mutates a faulty statement and
the other that mutates a correct statement. We also propose a
new evaluation metric for fault localization techniques based
on information theory, called Locality Information Loss (LIL):
it can measure the aptitude of a localization technique for
automated fault repair systems as well as human debuggers.
The empirical evaluation using 14 faulty versions of the five
real-world programs shows that MUSE localizes a fault after
reviewing 7.4 statements on average, which is about 25 times
more precise than the state-of-the-art SBFL technique Op2.

I. INTRODUCTION

Fault Localization (FL) is an expensive phase in the whole
debugging activity because it usually takes human effort to
understand the complex internal logic of the Program Under
Test (PUT) and reason about the differences between passing
and failing test runs. As a result, automated fault localization
techniques have been widely studied.

One such technique is Spectrum-based Fault Localization
(SBFL). It uses program spectra, i.e. summarized profile of
test suite executions, to rank program statements according
to their predicted risk of containing the fault. A developer,
then, is to inspect PUT following the order of statements in
the given ranking, in the hope that the faulty statement will
be encountered near the top of the ranking [26].

SBFL has received much attention, with a heavy emphasis
on designing new risk evaluation formulas [3, 14, 27, 31],
but also on theoretical analysis of optimality and hierarchy
between formulas [19, 28, 29]. However, it has also been
criticized for their impractical accuracy and the unrealistic
usage model that is the linear inspection of the ranking [22].
This is partly due to the limitations in the spectra data that
SBFL techniques rely on. The program spectrum used by
these techniques is simply a combination of the control
flow of PUT and the results from test cases. Consequently,
all statements in the same basic block share the same
spectrum and, therefore, the same ranking. This often inflates
the number of statements needed to be inspected before
encountering the fault.

This paper presents a novel fault localization technique
called MUSE, MUtation-baSEd fault localization technique,
to overcome this problem. MUSE uses mutation analysis

to uniquely capture the relationship between individual pro-
gram statements and the observed failures. It is free from
the coercion of shared ranking from the block structure. The
basic mutation testing is defined as artificial injection of syn-
tactic faults [1]. However, we focus on what happens when
we mutate an already faulty program and, particularly, the
faulty program statement. Intuitively, since a faulty program
can be repaired by modifying faulty statements, mutating
(i.e., modifying) faulty statements will make more failed
test cases pass than mutating correct statements. In contrast,
mutating correct statements will make more passed test
cases fail than mutating faulty statements. This is because
mutating correct statements introduces new faulty statements
in addition to the existing faulty statements in a PUT. These
two observations form the basis of the design of our new
metric for fault localization (Section II-A).

We also propose a new evaluation metric for fault local-
ization techniques that is not tied to the ranking model. The
traditional evaluation metric in SBFL literature is the Ex-
pense metric, which is the percentage of program statements
the human developer needs to inspect before encountering
the faulty one [18]. However, recent work showed that the
Expense metric failed to account for the performance of
the automated program repair tool that used various SBFL
techniques to locate the fix: techniques proven to rank
the faulty statement higher than others actually performed
poorer when used in conjunction with a repair tool [23].

Our new evaluation metric, LIL (Locality Information
Loss), actually measures the loss of information between
the true locality of the fault and the predicted locality from
a localization technique, using information theory. It can be
applied to any fault localization technique (not just SBFL)
and to describe localization of any number of faults.

Using both the traditional Expense metric and the LIL, we
evaluate MUSE against 14 faulty versions of five real-world
programs. The results show that MUSE is, on average, about
25 times more accurate than Op2 [19], the current state-of-
the-art SBFL technique. In addition, MUSE ranks the faulty
statement at the top of the suspiciousness ranking for seven
out of 14 studied faults, and within the top three for another
three faults. In addition, the newly introduced LIL metric
also shows that MUSE can be highly accurate, as well as
confirming the observation made by Qi et al. [23].

The contribution of this paper is as follows:

• The paper presents a novel fault localization technique
called MUSE: Mutation-based Fault Localization. It
utilizes mutation analysis to significantly improve the
precision of fault localization.

• The paper proposes a new evaluation metric for fault
localization techniques called Locality Information Loss
(LIL) based on information theory. It is flexible enough
to be applied to all types of fault localization techniques
and can be easily applied to multiple faults scenarios.

• The paper presents an empirical evaluation of MUSE
using five non-trivial real world programs. The results
show that MUSE improves upon the best known SBFL
technique by 25 times on average and ranks the faulty
statement within the top 3 suspicious statements for 10
out of 14 subject program versions.

This paper is organized as follows. Section II describes
the mutation-based fault localization technique to precisely
localize a fault. Section III explains the new evaluation
metric LIL based on information theory. Section IV shows
the experiment setup for the empirical evaluation of the
techniques on the subject programs. Section V explains
the experiment results regarding the research questions and
Section VI discusses the results. Section VII presents related
work and Section VIII finally concludes with future work.

II. MUTATION-BASED FAULT LOCALIZATION

A. Intuitions

Consider a faulty program P whose execution with some
test cases results in failures and we propose to mutate P . Let
mf be a mutant of P that mutates the faulty statement, and
mc one that mutates a correct statement. MUSE depends on
the following two conjectures.
Conjecture 1: test cases that used to fail on P are more
likely to pass on mf than on mc.
The first conjecture is based on the observation that mf can
only be one of the following three cases per test suite:

1) Equivalent/dormant mutant (i.e. mutants that syn-
tactically change the program but not semantically), in
which case the faulty statement remains faulty. Tests
that failed on P should still fail on mf .

2) Non-equivalent and faulty: while the new fault may
or may not be identical to the original fault, we expect
tests that have failed on P are still more likely to fail
on mf than to pass.

3) Non-equivalent and not faulty: in which case the
fault is fixed by the mutation (with respect to the test
suite concerned).

Note that mutating the faulty statement is more likely to
cause the tests that failed on P to pass on mf (case 3)
than on mc because a faulty program is usually fixed by
modifying (i.e., mutating) a faulty statement, not a correct
one. Therefore, the number of the failing test cases whose
results change to pass will be larger for mf than for mc.

In contrast, mutating correct statements is not likely to
make more test cases pass. Rather, we expect an opposite
effect, which is as follows:
Conjecture 2: test cases that used to pass on P are more
likely to fail on mc than on mf .
Similarly to the case of mf , the second conjecture is based
on an observation that mc can be one of the following cases
per test suite:

1) Equivalent/dormant mutant, in which case the state-
ment remains correct. Tests that passed with P should
still pass with mc.

2) Non-equivalent mutant: by definition, a non-
equivalent mutation on a correct statement introduces a
fault, which is the original premise of mutation testing.

This second conjecture is based on the observation that a
program is more easily broken by modifying (i.e., mutating)
a correct statement than by modifying a faulty statement
(case 2). Therefore, the number of the passing test cases
whose results change to fail will be greater for mc than mf .

To summarize, mutating a faulty statement is more likely
to cause more tests to pass than the average, whereas
mutating a correct statement is more likely to cause more
tests to fail than the average (the average case considers both
correct and faulty statements). These conjectures provide the
basis for our mutation-based fault localization technique.

B. Suspiciousness Metric of MUSE

Based on the conjectures, we now define the suspicious-
ness metric for MUSE, µ. For a statement s of P , let
fP (s) be the set of tests that covered s and failed on P ,
and pP (s) be the set of tests that covered s and passed
on P . With respect to a fixed set of mutation operators,
let mut(s) = {m1, . . .mk} be the set of all mutants of P
that mutates s with observed changes in test results (we use
only non-dormant mutants since dormant mutants do not
provide useful information to utilize the conjectures). After
each mutation mi ∈ mut(s), let fmi

and pmi
be the set

of failing and passing tests on mi respectively (fP and pP
defined on P similarly). Given a weight α, the metric µ is
defined as follows:

µ(s) =
1

|mut(s)|
∑

m∈mut(s)

(
|fP (s) ∩ pm|
|fP |

− α · |pP (s) ∩ fm|
|pP |

)

(1)
The first term, |fP (s)∩pm|

|fP | , reflects the first conjecture: it
is the proportion of tests that failed on P but now pass
on a mutant m that mutates s over tests that failed on P .
Similarly, the second term, |pP (s)∩fm|

|pP | , reflects the second
conjecture, being the proportion of tests that passed on P
but now fail on a mutant m that mutates s over tests that
passed on P . When averaged over mut(s), they become the
probability of test result change per mutant, from failing to
passing and vice versa respectively.

Coverage of Test Cases (x, y) Jaccard Ochiai Op2

int max;
void setmax(int x, int y){

TC1
(3,1)

TC2
(5,-4)

TC3
(0,-4)

TC4
(0,7)

TC5
(-1,3)

|fP (s)| |pP (s)| Susp. Rank Susp. Rank Susp. Rank

s1: max = -x; //should be ‘max = x;’ • • • • • 2 3 0.40 5 0.63 5 1.25 5
s2: if(max < y){ • • • • • 2 3 0.40 5 0.63 5 1.25 5
s3: max = y; • • • • 2 2 0.50 2 0.71 2 1.50 2
s4: if(x*y<0) • • • • 2 2 0.50 2 0.71 2 1.50 2
s5: print(‘‘diff.sign’’);} • • 1 1 0.33 6 0.50 6 0.75 6
s6: print(max);} • • • • • 2 3 0.40 5 0.63 5 1.25 5

Test Results Fail Fail Pass Pass Pass

Test Result Changes MUSE

Statements Mutants TC1
(3,1)

TC2
(5,-4)

TC3
(0,-4)

TC4
(0,7)

TC5
(-1,3)

|fP (s)
∩
pm|

|pP (s)
∩
fm|

Suspiciousness Rank

s1: max = -x;
m1: max -= x-1; P→F 0 1 0.46 1
m2: max=x; F→P F→P 2 0

s2: if(max < y){
m3: if(!(max<y)){ P→F P→F P→F 0 3 0.09 2
m4: if(max==y){ F→P P→F 1 1

s3: max = y;
m5: max = -y; P→F P→F 0 2 -0.16 5
m6: max = y+1; P→F P→F 0 2

s4: if(x*y<0){
m7:if(!(x*y<0)) P→F P→F 0 2 -0.12 4
m8:if(x/y<0) P→F 0 1

s5: print(‘‘diff.sign’’);}
m9:return; P→F 0 1 -0.08 3
m10:; P→F 0 1

s6: print(max);}
m11:printf(0);} P→F P→F 0 2 -0.20 6
m12:;} P→F P→F P→F 0 3

Figure 1: Example of how MUSE localizes a fault compared with different fault localization techniques

Intuitively, the first term correlates to the probability of s
being the faulty statement (it increases the suspiciousness of
s if mutating s causes failing tests to pass, i.e. increase the
size of fP (s)∩pm), whereas the second term correlates to the
probability of s not being the faulty statement (it decreases
the suspiciousness of s if mutating s causes passing tests to
fail, i.e. increase the size of pP (s) ∩ fm).

Since it is more likely that a passing test case on P will
fail on m than a failing test case on P will pass on m (i.e.,
breaking a program is easier than correcting the program),
we expect the average of the second term to be different from
that of the first term. In order to balance the two terms, we
use the weight α to adjust the average values of the two
terms to be the same. Thus, when we subtract the weighted
second term from the first term as in Equation 1, we get
the baseline of value 0. For a faulty statement, the first term
is likely to be larger and the second term is likely to be
smaller than for a correct statement (we assign minimum
suspiciousness to the statements that do not have a mutant).

To adjust the average of both terms, the value of α should
be calculated as f2p

|mut(P)|·|fP | ·
|mut(P)|·|pP |

p2f . Variable f2p and
p2f denote the number of test result changes from failure to
pass and vice versa between before and after all mutants of
P , the set of which is mut(P). Note that α can be calculated
without a priori knowledge of the faulty statement and we
can use other fault localization techniques if α=0.

C. A Working Example
Figure 1 presents an example of how MUSE localizes

a fault. The PUT is a function called setmax(), which
sets a global variable max (initialized to 0) with y if x <
y, or with x otherwise. Statement s1 contains a fault, as

it should be max=x. Let us assume that we have five test
cases (tc1 to tc5): the coverage of individual test cases are
marked with black bullets (•). TC1 and TC2 fail because
setmax() updates max with the smaller number, y. The
remaining test cases pass. Thus, |fP | = 2 and |pP | = 3.

First, MUSE generates mutants by mutating only one
statement at a time. For the sake of simplicity, here we
assume that MUSE generates only two mutants per state-
ment, resulting in a total of 12 mutants, {m1, . . . ,m12}
(listed under the “Mutants” column of Figure 1). Test cases
change their results after the mutation as noted in the middle
column. For example, TC1, which used to fail, now passes
on the two mutants, m2 and m4.

Based on the changed results of the test cases, MUSE
calculates α as f2p

|mut(P)|·|fP | ·
|mut(P)|·|pP |

p2f = 3
12·2 ·

12·3
19 =

0.24 over 12 mutants (|mut(P)| = 12). Since there are three
changes from failure to pass, f2p = 3 (TC1 and TC2 on m2

and TC1 on m4) while |fP | = 2. Similarly, p2f = 19 (see
the changed results of TC3, TC4, and TC5), while |pP | = 3.

Using α = 0.24, MUSE calculates the suspiciousness of
s1 as 1

2 · {(0/2− 0.24 · 1/3) + (2/2− 0.24 · 0/3)} = 0.46,
where |fP (s1) ∩ pm1 | = 0 and |pP (s1) ∩ fm1 | = 1 for
m1 and |fP (s1) ∩ pm2 | = 2 and |pP (s1) ∩ fm2 | = 0 for
m2. MUSE calculates the suspiciousness scores of the other
five statements as 0.09, -0.16, -0.12, -0.08, and -0.20. The
suspiciousness of the s1 is the highest (i.e., at the top of the
ranking). In contrast, Jaccard [10], Ochiai [20], and Op2 [19]
choose s3 and s4 as the most suspicious statements, while
assigning the fifth rank to the actual faulty statement s1.
The example shows that MUSE can precisely locate certain
faults that the state-of-the-art SBFL techniques cannot.

Program
P

Execution
Test

result
Coverage
analysis

Stmts.
covered by
failing tests

Mutation

m1

mn Exec.

Test
result1

Test
resultn

Calc.
Susp.

Susp.
& Rank

Exec.
Test

suite T

Step 1: selecting target statements to mutate Step 2: testing mutants
Step 3: calculating

suspiciousness

Figure 2: Framework of MUtation-baSEd fault localization technique (MUSE)

D. MUSE Framework

Figure 2 shows the framework of MUtation-baSEd fault
localization technique (MUSE). There are three major
stages: selection of statements to mutate, testing of the
mutants, and calculation of the suspiciousness scores.
Step 1: MUSE receives a target program P and a test
suite T . After executing T on P , MUSE selects the target
statements, i.e. the statements of P that are executed by at
least one failing test case in T . We focus on only these
statements as those not covered by any failing tests, can be
considered not faulty with respect to T .
Step 2: MUSE generates mutant versions of P by mutating
each of the statements selected at Step 1. MUSE may
generate multiple mutants from a single statement since one
statement may contain multiple mutation points [8]. MUSE
tests all generated mutants with T and records the results.
Step 3: MUSE compares the test results of T on P with the
test results of T on all mutants. This produces the weight
α, based on which MUSE calculates the suspiciousness of
the target statements of P .

III. LIL: LOCALITY INFORMATION LOSS

The output of fault localization techniques can be con-
sumed by either human developers or automated program re-
pair techniques. Expense [18] metric measures the portion of
program statements that need to be inspected by developers
until the localization of the fault. It has been widely adopted
as an evaluation metric for FL techniques [13, 19, 31] as well
as a theoretical framework that showed hierarchies between
SBFL techniques [28, 29]. However, the Expense metric has
been criticised for being unrealistic to be used by a human
developer directly [22].

In an attempt to evaluate the precision of SBFL tech-
niques, Qi et al. [23] compared SBFL techniques by mea-
suring the Number of Candidate Patches (NCP) generated
by GenProg [25] automated program repair tool, with the
given localization information.1 Automated program repair
techniques tend to bypass the ranking and directly use the

1Essentially this measures the number of fitness evaluation for the
Genetic Programming part of GenProg; hence the lower the NCP score
is, the more efficient GenProg becomes, and in turn the more effective the
given localization technique is.

suspiciousness scores of each statement as the probability
of mutating the statement (expecting that mutating a highly
suspicious statement is more likely to result in a potential
fix) [6, 25]. An interesting empirical observation by Qi
et al. [23] is that Jaccard [10] produced lower NCP than
Op2 [19], despite having been proven to always produce
a lower ranking for the faulty statement than Op2 [28].
This is due to the actual distribution of the suspiciousness
score: while Op2 produced higher ranking for the faulty
statement than Jaccard, it assigned almost equally high sus-
piciousness scores to some correct statements. On the other
hand, Jaccard assigned much lower suspiciousness scores
to correct statements, despite ranking the faulty statement
slightly lower than Op2.

This illustrates that evaluation and theoretical analysis
based on the linear ranking model is not applicable to
automated program repair techniques. LIL metric can mea-
sure the aptitude of FL techniques for automated repair
techniques as it measures the effectiveness of localization
in terms of information loss rather than the behavioural cost
of inspecting a ranking of statements. LIL metric essentially
captures the essence of the entropy-based formulation of
fault localization [32] in the form of an evaluation metric.

We propose a new evaluation metric that does not suffer
from this discrepancy between two consumption models.
Let S be the set of n statements of the Program Under
Test, {s1, . . . , sn}, sf , (1 ≤ f ≤ n) being the single faulty
statement. Without losing generality, we assume that output
of any fault localization technique τ can be normalized to [0,
1]. Now suppose that there exists an ideal fault localization
technique, L, that can always pinpoint sf as follows:

L(si) =
{

1 (si = sf)
ε (0 < ε� 1, si ∈ S, si 6= sf)

(2)

Note that we can convert outputs of FL techniques that do
not use suspiciousness scores in a similar way: if a technique
τ simply reports a set C of m statements as candidate faulty
statements, we can set τ(si) = 1

m when si ∈ C and τ(si) =
ε when si ∈ S \ C.

We now cast the fault localization problem in a proba-
bilistic framework as in the previous work [32]. Since the
suspiciousness score of a statement is supposed to correlate

to the likelihood of the statement containing the fault, we
convert the suspiciousness score given by an FL technique,
τ : S → [0, 1], into the probability of any member of S
containing the fault, Pτ (s), as follows:

Pτ (si) =
τ(si)∑n
i=1 τ(si)

, (1 ≤ i ≤ n) (3)

This converts suspiciousness scores given by any τ (includ-
ing L) into a probability distribution, Pτ . The metric we
propose is the Kullback-Leibler divergence [16] of Pτ from
PL, denoted as DKL(PL||Pτ): it measures the information
loss that happens when using Pτ instead of PL and is
calculated as follows:

DKL(PL||Pτ) =
∑
i

ln
PL(si)

Pτ (si)
PL(si) (4)

We call this as Locality Information Loss (LIL). Kullback-
Leibler divergence between two given probability distribu-
tion P and Q requires the following: both P and Q should
sum to 1, and Q(si) = 0 implies P (si) = 0. We satisfy the
former by the normalization in Equation 3 and the latter by
always substituting 0 with ε after normalizing τ 2 (because
we cannot guarantee the implication in our application).
When these properties are satisfied, DKL(PL||Pτ) becomes
0 when PL and Pτ are identical. As with the Expense
metric, the lower the LIL value is the more accurate the
FL technique is. Based on Information Theory, LIL has the
following strengths compared to the Expense metric:
• Expressiveness: unlike the Expense metric that only

concerns the actual faulty statement, LIL also reflects
how well the suspiciousness of non-faulty statements
have been supressed by an FL technique. That is, LIL
can be used to explain the results of Qi et al. [23]
quantitatively.

• Flexibility: unlike the Expense metric that only con-
cerns a single faulty statement, LIL can handle multiple
locations of faults. For m faults (or for a fault that
consists of m different locations), the distribution PL
will simply show not one but m spikes, each with 1

m
as height.

• Applicability: Expense metric is tied to FL techniques
that produce rankings, whereas LIL can be applied to
any FL technique. If a technique assigns suspiciousness
scores to statements, it can be converted into Pτ ; if a
technique simply presents one or more statements as
candidate fault location, Pτ can be formulated to have
corresponding peaks.

IV. EXPERIMENTAL SETUP

We have designed the following three research questions
to evaluate the effectiveness of MUSE in terms of the

2ε should be smaller than the smallest normalized non-zero suspicious-
ness score by τ .

Expense metric [18] and the LIL metric (Section III):

RQ1. Foundation: How many test results change from
failure to pass and vice versa between before and after on a
mutant generated by mutating a faulty statement, compared
with a mutant generated by mutating a correct one?

RQ1 is to validate the conjectures in Section II-A, on
which MUSE depends. If these conjectures are valid (i.e.,
more failing test cases become passing after mutating the
faulty statement than a correct one, and more passing test
cases become failing after mutating a correct statement than
the faulty one), we can expect that MUSE will localize a
fault precisely.

RQ2. Precision: How precise is MUSE, compared with
Jaccard, Ochiai, and Op2 in terms of the % of executed
statements examined to localize a first fault?

Precision in terms of the % of program statements to be
examined is the traditional evaluation criteria for fault local-
ization techniques. RQ2 evaluates MUSE with the Expense
metric against the three widely studied SBFL techniques –
Jaccard, Ochiai, and Op2. Op2 [19] is proven to perform
well in Expense metric; Ochiai [20] performs closely to Op2,
while Jaccard [10] shows good performance when used with
automated program repair [23].

RQ3. Information Loss: How precise is MUSE, compared
with Jaccard, Ochiai, and Op2 in terms of the Locality
Information Loss (LIL) metric?

RQ3 evaluates the precision of MUSE with the LIL metric
introduced in Section III against the three SBFL techniques
(Jaccard, Ochiai, and Op2). The smaller the LIL value is,
the more precise the FL technique is.

To answer the research questions, we performed a se-
ries of experiments by applying Jaccard, Ochiai, Op2, and
MUSE to the 14 faulty versions in five real world C
programs. The following subsections describe the details of
the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world
programs including flex version 2.4.7, grep version 2.2,
gzip version 1.1.2, sed version 1.18, and space, all of
which are from the SIR benchmark suite [4].

Table I describes the target programs including their
sizes in Lines of Code, the faulty versions used, and the
numbers of failing and passing test cases for each program
version/fault pair. From the base versions listed above, we
randomly selected three faulty versions from each program
except grep where a failure is detected only in two faulty
versions by the used test suite. grep v3 and space
v19 have multiple faults and the other versions have one
fault per each version. The fault ID of each version is
presented in Table I (For the rest of the paper, we refer to

Table I: Subject programs, their sizes in lines of code (LOC), and
the number of failing and passing test cases

Subjects Ver. Fault Size |fP | |pP | Description

flex
v1 F_HD_1 12,423 2 40 Lexical Analyzer
v7 F_HD_7 12,423 1 41 Generator
v11 F_AA_3 12,423 20 22

grep
v3 F_DG_4 12,653 5 175 Pattern
v11 F_KP_2 12,653 177 22 Matcher

gzip
v2 F_KL_2 6,576 1 211 Compression
v5 F_KP_1 6,576 17 196 Utility
v13 F_KP_9 6,576 3 210

sed
v1 F_AG_2 11,990 42 316 Stream
v3 F_AG_17 11,990 1 357 Editor
v5 F_AG_20 11,990 64 81

space
v19 N/A 9,129 8 145 ADL
v21 N/A 9,126 1 152 Interpreter
v28 N/A 9,126 46 107

these faulty versions with the term version). 3 For flex,
grep, and space, we used the coverage-adequate test
suite provided by the SIR benchmark (flex and grep
has only one coverage adequate test suite. For space, we
randomly chose one coverage adequate test suite out of 1000
coverage-adequate test suites). For gzip and sed, we use
the universe test suite, because the SIR benchmark does not
provide a coverage-adequate test suite for the two programs.
In addition, we excluded the test cases which caused a target
program version to crash (e.g., segmentation fault), since
gcov that we used to measure coverage information cannot
record coverage information for such test cases.

B. Mutation and Fault Localization Setup

We use gcov to measure the statement coverage achieved
by a given test case. Based on the coverage information,
MUSE generates mutants of the PUT, each of which is
obtained by mutating one statement that is covered by at
least one failing test case. We use the Proteum mutation
tool for the C language [17], which implements the mutation
operators defined by Agrawal el al. [8]. To reduce the cost of
the experiments, MUSE generates only one mutant for each
mutation point of a target statement per mutation operator
using the options provided by Proteum. 4

We implemented MUSE, as well as Jaccard, Ochiai, and
Op2, in 6,400 lines of C++ code. All experiments were

3MUSE does not assume that a fault lie in one statement because a partial
fix of a multi-line spanning fault obtained by mutating one statement can
still correct (or partially correct (i.e., make the target program pass with
a subset of failing test cases)) the target program and provide important
information to localize a fault.

4For example, if(x+2>y+1) has one mutation point (>) for ORRN
(mutation operator on relational operator) and two points (2 and 1) for
CCCR (mutation operator for constant to constant replacement) [8]. MUSE
generates only one mutant like if(x+2<y+1) using ORRN and only
if(x+0>y+1) and if(x+2>y+0) using CCCR. The selection of a
mutant to generate using a mutation operator depends on the Proteum
implementation.

Table II: The number of target statements, used mutants, and
dormant mutants (those that do not change any test results) per
subject

Subjects Target Stmt. Used Mutants Dormant Mutants

flex v1 2,243 29,030 7,375
flex v7 2,209 28,575 7,411
flex v11 2,473 30,366 8,532
grep v3 1,364 18,127 10,201
grep v11 1,652 12,029 26,425
gzip v2 129 1,172 835
gzip v5 263 2,054 1,896
gzip v13 143 1,238 887
sed v1 1,694 13,215 4,813
sed v3 887 6,307 2,367
sed v5 1958 23,552 0
space v19 2,124 14,489 4,919
space v21 1,509 9,708 2,790
space v28 2,405 13,946 7,443

Average 1503.8 14557.7 6135.3

performed on 10 machines equipped with Intel i5 3.6Ghz
CPUs and 8GB RAM running 64 bit Debian Linux 6.05.

V. RESULT OF THE EXPERIMENTS

A. Result of the Mutation

Table II shows the number of mutants generated per sub-
ject program version. On average, MUSE generates 20693.0
(=14557.7+6135.3) mutants per version and uses 14557.7
mutants, while discarding 6135.3 dormant mutants, i.e. those
for which none of the test cases change their results, on
average. 5 This translates into an average of 9.7 mutants
per considered target statement. The mutation and the sub-
sequent testing of all mutant versions took 5 hours using
the 10 machines while each of Jaccard, Ochiai, and Op2
took several minutes on one machine. Note that the mutation
task of MUSE can be highly parallelized/distributed on
thousands of machines (for example, utilizing Amazon EC2
cloud computing platform) and MUSE can localize a fault in
several minutes since mutating a statement si is independent
of mutating another statement sj(i 6= j) and testing each
mutant is also independent to each other.

B. Regarding RQ1: Validity of the Conjectures

Table III shows the numbers of the test cases whose
results change on each mutant of the target programs. The
second and the third columns show the average numbers
of failing test cases on P which subsequently pass after
mutating a correct statement (i.e. mc), or a faulty statement
(i.e. mf), respectively. The fifth and the sixth columns show
the average numbers of the passing test cases on P which
subsequently fail on mc and mf respectively. For example,
on average, out of the 17 failing test case of gzip v5,

5sed v5 has no dormant mutant because the fault of sed v5 is
non-deterministic one (i.e., it dynamically allocates an smaller amount of
memory than necessary through malloc()).

Table IV: Precision of Jaccard, Ochiai, Op2, and MUtation-baSEd fault localization technique (MUSE)

Subject % of executed stmts examined Rank of a faulty stmt Locality Information Loss
Program Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE

flex v1 49.48 45.04 32.01 0.04 1,371 1,248 887 1 8.33 7.89 7.68 1.28
flex v7 3.60 3.60 3.60 0.07 100 100 100 2 5.72 6.52 7.45 1.22
flex v11 19.76 19.54 13.51 0.04 547 541 374 1 7.39 7.49 7.40 1.59
grep v3 1.06 1.01 0.71 1.87 21 20 14 37 5.25 5.68 6.21 5.92
grep v11 3.44 3.44 3.44 1.60 58 58 58 27 5.43 6.20 5.46 7.19
gzip v2 2.14 2.14 2.14 0.07 31 31 31 1 5.18 4.62 6.24 1.66
gzip v5 1.83 1.83 1.83 0.07 26 26 26 1 4.45 4.73 5.27 1.88
gzip v13 1.03 1.03 1.03 0.07 15 15 15 1 3.12 3.65 5.71 0.70
sed v1 0.54 0.54 0.54 0.90 12 12 12 20 4.24 5.02 5.80 6.72
sed v3 2.56 2.56 2.56 0.13 57 57 57 3 6.14 5.92 6.40 2.66
sed v5 37.84 37.84 37.15 0.28 814 814 799 6 7.34 7.42 7.34 4.80
space v19 0.03 0.03 0.03 0.06 1 1 1 2 5.27 5.93 6.64 2.15
space v21 0.45 0.45 0.45 0.03 15 15 15 1 4.92 5.96 7.34 0.40
space v28 11.57 10.66 6.89 0.04 329 303 196 1 7.33 7.40 7.24 1.96

Average 9.67 9.27 7.56 0.38 242.64 231.50 184.64 7.43 5.72 6.03 6.58 2.87

Table III: The average numbers of the test cases whose results
change on the mutants

of Failing Tests that # of passing tests that
Subject Pass after Mutating: fail after mutating:
programs Correct Faulty (B)/(A) Correct Faulty (C)/(D) α

Stmts. Stmts. Stmts. Stmts.
(A) (B) (C) (D)

flex v1 0.0002 1.2727 6155.6 15.7270 8.8182 1.8 0.0009
flex v7 0.0002 0.6667 2721.1 16.3644 0.0000 N/A 0.0007
flex v11 0.0026 14.2857 5421.3 5.1064 3.5714 1.4 0.0013
grep v3 0.1299 0.4792 3.7 30.7825 8.0625 3.8 0.1490
grep v11 8.9740 85.8181 9.6 0.1942 0.0000 N/A 5.7939
gzip v2 0.0095 0.5625 59.1 113.3410 1.0000 113.3 0.0322
gzip v5 0.0611 15.1111 247.2 64.7306 0.1111 582.6 0.0227
gzip v13 0.0000 2.7000 N/A 109.2140 0.0000 N/A 0.0141
sed v1 0.0095 0.0000 0.0 189.3610 6.1111 31.0 0.0004
sed v3 0.0040 0.2500 63.0 238.7950 91.5000 2.6 0.0062
sed v5 0.3556 31.8333 89.5 12.6217 12.0690 1.0 0.0365
space v19 0.0105 4.6667 444.5 45.7808 13.1667 3.5 0.0057
space v21 0.0000 0.3333 N/A 65.6796 1.0000 65.7 0.0002
space v28 0.0114 23.0000 2016.5 31.2257 26.5000 1.2 0.0016

Average 0.6835 12.9271 1435.9 67.0660 12.2793 73.4 0.4332

0.0611 and 15.1111 failing test cases on gzip v5 pass on
mc and mf respectively.

Table III provides supporting evidence for the conjectures
of MUSE. The number of the failing test cases on P that
pass on mf is 1435.9 times greater than the number on mc

on average, which supports the first conjecture. Similarly,
the number of the passing test cases on P that fail on mc

is 73.4 times greater than the number on mf on average,
which supports the second conjecture. Based on the results,
we claim that both conjectures are true.

C. Regarding RQ2: Precision of MUSE in terms of the %
of executed statements examined to localize a fault

Table IV presents the precision evaluation of Jaccard,
Ochiai, Op2, and MUSE with the proportion of executed
statements required to be examined before localizing the
fault (i.e. the Expense metric). The most precise results
are marked in bold. Following the ranking produced by

MUSE, one can localize a fault after examining 0.38% of
the executed statements on average. The average precision
of MUSE is 25.68 (=9.67/0.38), 24.61 (=9.27/0.38), and
20.09 (=7.56/0.38) times higher than that of Jaccard, Ochiai,
and Op2, respectively. In addition, MUSE produces the
most precise results for 11 out of the 14 studied faulty
versions. This provides quantitative answer to RQ2: MUSE
can outperform the state-of-the-art SBFL techniques over the
Expense metric.

In response to Parnin and Orso [22], we also report
the absolute rankings produced by MUSE, i.e. the actual
number of statements that need to be inspected before
encountering the faulty statement. MUSE ranks the faulty
statements of the seven faulty versions (flex v1,v11,
gzip v2,v5,v13, and space v21,v28) at the top
and ranks the faulty statement of another three versions
(flex v7, sed v3, and space v19) among the top
three. On average, MUSE ranks the faulty statement among
the top 7.43 places, which is 24.86 (=184.64/7.43) times
more precise than the best performing SBFL technique, Op2.
We believe MUSE is precise enough that its results can be
used by a human developer in practice.

D. Regarding RQ3: Precision of MUSE in terms of the
Locality Information Loss

The Locality Information Loss column of Table IV shows
the precision of Jaccard, Ochiai, Op2, and MUSE in terms
of the LIL metric, calculated with ε = 10−17. The best
results (i.e. the lowest values) are marked in bold. The LIL
metric value of MUSE is 2.87 on average, which is 1.99
(=5.72/2.87), 2.10 (=6.03/2.87), and 2.29 (=6.58/2.87) times
more precise than those of Jaccard, Ochiai, and Op2. In
addition, the LIL metric values of MUSE are the smallest
ones on the eleven out of the 14 subject program versions.

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of suspiciousness for space v21

Executed Statements

N
or

m
al

iz
ed

 S
us

pi
ci

ou
sn

es
s

Op2
Ochiai
Jaccard
MUSE

MUSE
Op2

Ochiai

Jaccard

Figure 3: Normalized suspiciousness scores from space v21 in
descending order

This answers RQ3: MUSE can outperform the state-of-the-
art SBFL techniques over the LIL metric.

One interesting observation is that MUSE produces Ex-
pense and LIL values that correlate relatively well. The
versions whose absolute ranking of faulty statement is
equal to or less than 3, and whose LIL metric is less
than or equal to 2.66, are the following 10 versions:
flex v1,v7,v11, gzip v2,v5,v13, sed v3, and
space v19,v21,v28. For another three versions (grep
v3,v11 and sed v1), both the Expense and LIL metric
values perform worse than the other techniques, although
not significantly.

In contrast, Expense and LIL metric often do not agree
with each other for the SBFL techniques. Consider space
v21: Jaccard, Ochiai, and Op2 produces the same Expense
value of 0.45%. However, their LIL values are all different
(Jaccard: 4.92 < Ochiai: 5.96 < Op2: 7.34). A similar
pattern is observed in other subject versions (flex v7,
grep v11, gzip v2,v5,v13, sed v1,v3, space
v19,v21).

Figure 3 illustrates this phenomenon in more detail. It
plots the normalized suspiciousness scores for each executed
statement of space v21 in a descending order 6. The
circles indicate the location of the faulty statement. While
all techniques assign, to the faulty statement, suspiciousness
values that rank near the top, it is the suspiciousness of
correct statements that differentiates the techniques. When
normalized into [0, 1], MUSE assigns values less than
0.00024 to all correct statements while the SBFL techniques
assign values much higher than 0 (e.g., 4.8% of the ex-
ecuted statements are assigned suspiciousness higher than
0.9 by Op2, while 37.2% are assigned values higher than
0.5). Figure 4 presents the distribution of suspiciousness in
space v21 for individual techniques to make it easier to
observe the differences. This provides supporting evidence
to answer RQ3: MUSE does perform better than the state-

6The normalized suspiciousness of a statement s in an FL technique
τ , norm suspτ (s) is computed as (suspτ (s) −min(τ))/(max(τ) −
min(τ)) where min(τ) and max(τ) is the minimum and maximum
observed suspiciousness for all statements [23].

of-the-art SBFL techniques when evaluated using the LIL
metric. Figure 4 also intuitively illustrates the strength of
the LIL metric over the Expense metric.

This independently confirms the results obtained by Qi et
al. [23]. Our new evaluation metric, LIL, confirms the same
observation as Qi et al. by assigning Jaccard a lower LIL
value of 5.72 than that of Op2, 6.58 (see Section III for
more details).

VI. DISCUSSIONS

A. Why does it work well?

As shown in Section V-C and Section V-D, MUSE demon-
strates superior precision when compared to the state-of-
the-art SBFL techniques. In addition to the finer granularity
of statement level, the improvement is also partly because
MUSE directly evaluates where (partial) fix can (and cannot)
potentially exist instead of predicting the suspiciousness
through program spectrum. In a few cases, MUSE actually
finds a fix, in a sense that it performs a program mutation
that will make all test cases pass (this, in turn, increases the
first term in the metric, raising the rank of the location of the
mutation). However, in other cases, MUSE finds a partial
fix, i.e. a mutation that will make only some of previously
failing test cases pass. While not as strong as the former
case, a partial fix nonetheless captures the chain of control
and data dependencies that are relevant to the failure and
provides a guidance towards the location of the fault.

B. MUSE and Test Suite Balance

One advantage MUSE has over SBFL is that MUSE is
relatively freer from the proportion of passing and failing
test cases in a test suite. In contrast, SBFL techniques benefit
from having a balanced test suite, and have been augmented
by automated test data generation work [5, 12, 15].

MUSE does not require the test suite to have many
passing test cases. To illustrate the point, we purposefully
calculated MUSE metric without any test cases that passed
before mutation (this effectively means that we only use
the first term of the metric). On average, MUSE ranked the
faulty statement within the top 5.09%, which outperforms
SBFL techniques that considered all passing and failing test
cases: MUSE is still 1.90 (=9.67/5.09), 1.82 (=9.27/5.09) and
1.49(=7.56/5.09) times more precise than Jaccard, Ochiai,
and Op2 respectively.

Interestingly, MUSE does not require the test suite to
have many failing test cases. Considering that previous
work [12, 15] focused on producing more failing test cases
to improve the precision, this is an important observation.
We purposefully calculated MUSE metric without any test
cases that failed before mutation: although this translates into
an unlikely use case scenario, it allows us to measure the
differentiating power of the second conjecture in isolation.
When only the second term of the MUSE metric is calcu-
lated (with α=1), MUSE could still rank the faulty statement

Op2 (LIL=7.34)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

S
us

pi
ci

ou
sn

es
s

Ochiai (LIL=5.96)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

S
us

pi
ci

ou
sn

es
s

Jaccard (LIL=4.92)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

S
us

pi
ci

ou
sn

es
s

MUSE (LIL=0.40)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

S
us

pi
ci

ou
sn

es
s

Figure 4: Comparison of distributions of normalized suspiciousness score across executed statements of space v21

Table V: Expense, LIL, and NCP scores on look utx 4.3

FL % of executed Locality Average NCP
Technique stmts examined Information Loss over 100 runs

MUSE 11.25 3.52 25.3
Op2 42.50 3.77 31.0

Ochiai 42.50 3.83 32.2
Jaccard 42.50 3.89 35.5

among the top 14.62% on average, and among the top 2%
for seven out of 14 faulty versions we studied. Intuitively,
SBFL techniques require many failing executions to identify
where a fault is, whereas MUSE is relatively free from this
constraint because it also identifies where a fault is not.

This advantage is due to the fact that MUSE utilizes two
separate conjectures, each of which is based on the number
of failing and passing test cases respectively. Thus, even if a
test suite has almost no failing or passing test cases, MUSE
can localize a fault precisely.

C. LIL Metric and Automated Bug Repair

LIL metric is better at predicting the performance of an
FL technique for automated program repair tools than the
traditional ranking model. The fact that the ranking model
is not suitable has been demonstrated by Qi et al. [23].
We performed a small case study with the GenProg-FL
tool by Qi et al., which is a modification of the original
GenProg tool. We applied Jaccard, Ochiai, Op2, and MUSE,
to GenProg-FL in order to fix look utx 4.3, which is
one of the subject programs recently used by Le Goues
et al. [7]. GenProg-FL [23] measures the NCP (Number
of Candidate Patches generated before a valid patch is
found in the repair process) of each FL technique where
the suspiciousness score of a statement s is used as the
probability to mutate s.

Table V shows the Expense, the LIL and the NCP
scores on look utx 4.3 by MUSE, Op2, Ochiai, and
Jaccard. For the case study, we generated 30 failing and 150
passing test cases randomly and used the same experiment
parameters as in GenProg-FL [23] (we obtained the average
NCP score from 100 runs). Table V demonstrates that the
LIL metric is useful to evaluate the effectiveness of an FL
technique for the automatic repair of look utx 4.3 by
GenProg-FL: the LIL scores (MUSE : 3.52 < Op2 : 3.77 <
Ochiai : 3.83 < Jaccard : 3.89) and the NCP scores
(MUSE : 25.3 < Op2 : 31.0 < Ochiai : 32.2 < Jaccard :
35.5) are in agreement.

A small LIL score of a localization technique indicates
that the technique can be used to perform more efficient
automated program repair. In contrast, the Expense metric
values did not provide any information for the three SBFL
techniques. We plan to perform a further empirical study to
support the claim.

VII. RELATED WORK

The idea of generating diverse program behaviours to
localize a fault more effectively has been utilized by sev-
eral studies. For example, Cleve and Zeller [9] search for
program states that cause the execution to fail by replacing
states of a neighbouring passing execution with those of a
failing one. If a passing execution with the replaced states no
longer passes, relevant statements of the states are suspected
to contain faults. Zhang et al. [34], on the other hand,
change branch predicate outcomes of a failing execution
at runtime to find suspicious branch predicates. A branch
predicate is considered suspicious if the changed branch
outcome makes a failing execution pass. Similarly, Jeffrey et
al. [11] change the value of a variable in a failing execution
with the values with other executions; Chandra et al. [2]
simulate possible value changes of a variable in a failing
execution through symbolic execution. Those techniques are
similar to MUSE in a sense that generating diverse program
behaviours to localize faults. However, they either partially
depend on the conjectures of MUSE (some [2, 11, 34]
in particular depend on the first conjecture of MUSE) or
rely on a different conjecture [9]. Moreover, MUSE does
not require any other infrastructure than a mutation tool,
because it directly changes program source code to utilize
the conjectures (Section IV-B).

Since mutation operators vary significantly in their nature,
mutation-based approaches such as MUSE may not yield
itself to theoretical analysis as naturally as the spectrum-
based ones, for which hierarchy and equivalence relations
have been shown with proofs [28]. In the empirical evalua-
tion, however, MUSE outperformed Op2 SBFL metric [19],
which is known to be the best SBFL technique.

Yoo showed that risk evaluation formulas for SBFL
can be automatically evolved using Genetic Programming
(GP) [31]. Some of the evolved formulas were proven to be
equivalent to the known best metric, Op2 [29]. While MUSE
has been manually designed following human intuition, they
can be evolved by GP in a similar fashion.

Papadakis and Le-Traon have used mutation analysis for
fault localization [21]. However, instead of measuring the
impact of mutation on partial correctness as in MUSE (i.e.
the conjecture 1), Papadakis and Le-Traon depend on the
similarity between mutants in an attempt to detect unknown
faults: variations of existing risk evaluation formulas were
used to identify suspicious mutants. Zhang et al. [33], on
the other hand, use mutation analysis to identify a fault-
inducing commit from a series of developer commits to a
source code repository: their intuition is that a mutation at
the same location as the faulty commit is likely to result in
similar behaviours and results in test cases. Although MUSE
shares a similar intuition, we do not rely on tests to exhibit
similar behaviour: rather, both of MUSE metrics measure
what is the differences introduced by the mutation. Given
the disruptive nature of the program mutation, we believe
MUSE is more robust.

VIII. CONCLUSION AND FUTURE WORK

Based on the conjectures we introduced, MUSE increases
the suspiciousness of potentially faulty statements and de-
creases the suspiciousness of potentially correct statements.
The results of empirical evaluation show that MUSE can
not only significantly outperform the state-of-the-art SBFL
techniques, but also provide a practical fault localization
solution. The paper also presents Locality Information Loss,
a novel evaluation metric for FL techniques based on infor-
mation theory. A case study shows that it can be better at
predicting the performance of an FL technique for automated
program repair. Future work includes in-depth study of
different mutation operators. We also plan to apply MUSE
to larger subjects such as PHP with multiple test suites. In
addition, we will apply the mutation idea to conconlic unit
testing [30] and concurrent coverage-based testing [24].

ACKNOWLEDGEMENTS

This research was supported by the NRF Mid-
career Research Program funded by the MSIP Korea
(2012R1A2A2A01046172), the ERC of Excellence Program
MSIP/NRF of Korea (Grant NRF-2008-0062609), the MSIP
under the ITRC support program (NIPA-2013-H0301-13-
5004), and the EPSRC, UK (grant number EP/I010165/1).
Also, we thank Shin Hong for valuable discussion on MUSE.

REFERENCES

[1] T. A. Budd. Mutation analysis of program test data. PhD thesis, Yale
University, 1980.

[2] S. Chandra, E. Torlak, S. Barman, and R. Bodı́k. Angelic debugging.
In ICSE, 2011.

[3] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight bug localization
with ample. In AADEBUG, 2005.

[4] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact. ESE, 10(4):405–435, 2005.

[5] D. Gopinath, R. Zaeem, and S. Khurshid. Improving the effectiveness
of spectra-based fault localization using specifications. In ASE, 2012.

[6] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In ICSE, 2012.

[7] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A
generic method for automatic software repair. TOSEM, 38(1):54–72,
2012.

[8] H.Agrawal, R.A.DeMillo, B.Hathaway, W.Hsu, W.Hsu, E.W.Krauser,
R.J.Martin, A.P.Mathur, and E.Spafford. Design of mutant operators
for the c programming language. Technical Report SERC-TR-120-P,
Purdue University, 1989.

[9] H.Cleve and A.Zeller. Locating causes of program failures. In ICSE,
2005.

[10] P. Jaccard. Étude comparative de la distribution florale dans une
portion des Alpes et des Jura. Bull. Soc. vaud. Sci. nat, 37:547–579,
1901.

[11] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value
replacement. In ISSTA, 2008.

[12] W. Jin and A. Orso. F3: fault localization for field failures. In ISSTA,
2013.

[13] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE, 2005.

[14] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization for fault
localization. In ICSE, Software Visualization Workshop, 2001.

[15] J.Rößler, G.Fraser, A.Zeller, and A.Orso. Isolating failure causes
through test case generation. In ISSTA, 2012.

[16] S. Kullback and R. A. Leibler. On information and sufficiency. Ann.
Math. Statist., 22(1):79–86, 1951.

[17] J. C. Maldonado, M. E. Delamaro, S. C. Fabbri, A. da Silva Simão,
T. Sugeta, A. M. R. Vincenzi, and P. C. Masiero. Proteum: A family of
tools to support specification and program testing based on mutation.
In Mutation testing for the new century. 2001.

[18] M.Renieres and S.P.Reiss. Fault localization with nearest neighbor
queries. In ASE, 2003.

[19] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-
based software diagnosis. TOSEM, 20(3):11:1–11:32, August 2011.

[20] A. Ochiai. Zoogeographic studies on the soleoid fishes found in Japan
and its neighbouring regions. Bull. Jpn. Soc. Sci. Fish., 22(9):526–
530, 1957.

[21] M. Papadakis and Y. Le-Traon. Using mutants to locate ”unknown”
faults. In ICST, Mutation Workshop, 2012.

[22] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In ISSTA, 2011.

[23] Y. Qi, X. Mao, Y. Lei, and C. Wang. Using automated program
repair for evaluating the effectiveness of fault localization techniques.
In ISSTA, 2013.

[24] S.Hong, J.Ahn, S.Park, M.Kim, and M.J.Harrold. Testing concurrent
programs to achieve high synchronization coverage. In ISSTA, 2012.

[25] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automatically
finding patches using genetic programming. In ICSE, 2009.

[26] E. Wong and V. Debroy. A survey of software fault localization.
Technical Report UTDCS-45-09, University of Texas at Dallas, 2009.

[27] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai. Effective fault localization
using code coverage. In COMPSAC, 2007.

[28] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis
of the risk evaluation formulas for spectrum-based fault localization.
TOSEM, 22(4):31, 2013.

[29] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman. Provably
optimal and human-competitive results in sbse for spectrum based
fault localisation. In SSBSE. 2013.

[30] Y.Kim, Y.Kim, T.Kim, G.Lee, Y.Jang, and M.Kim. Automated unit
testing of large industrial embedded software using concolic testing.
In ASE Experience Track, 2013.

[31] S. Yoo. Evolving human competitive spectra-based fault localisation
techniques. In SSBSE. 2012.

[32] S. Yoo, M. Harman, and D. Clark. Fault localization prioritization:
Comparing information-theoretic and coverage-based approaches.
TOSEM, 22(3):19:1–19:29, July 2013.

[33] L. Zhang, L. Zhang, and S. Khurshid. Injecting mechanical faults to
localize developer faults for evolving software. In OOPSLA, 2013.

[34] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. In ICSE, 2006.

	Introduction
	Mutation-based Fault Localization
	Intuitions
	Suspiciousness Metric of MUSE
	A Working Example
	MUSE Framework

	LIL: Locality Information Loss
	Experimental Setup
	Subject Programs
	Mutation and Fault Localization Setup

	Result of The Experiments
	Result of the Mutation
	Regarding RQ1: Validity of the Conjectures
	Regarding RQ2: Precision of MUSE in terms of the % of executed statements examined to localize a fault
	Regarding RQ3: Precision of MUSE in terms of the Locality Information Loss

	Discussions
	Why does it work well?
	MUSE and Test Suite Balance
	LIL Metric and Automated Bug Repair

	Related Work
	Conclusion and Future Work

