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Abstract—Many works have recently proposed the use of Large
Language Model (LLM) based agents for performing ‘repository
level’ tasks, loosely defined as a set of tasks whose scopes are
greater than a single file. This has led to speculation that the
orchestration of these repository-level tasks could lead to software
engineering agents capable of performing almost independently
of human intervention. However, of the suite of tasks that would
need to be performed by this autonomous software engineering
agent, we argue that one important task is missing, which is to
fulfil project level dependency by installing other repositories. To
investigate the feasibility of this repository level installation task,
we introduce a benchmark of of repository installation tasks
curated from 40 open source Python projects, which includes
a ground truth installation process for each target repository.
Further, we propose INSTALLAMATIC, an agent which aims to
perform and verify the installation of a given repository by
searching for relevant instructions from documentation in the
repository. Empirical experiments reveal that that 55% of the
studied repositories can be automatically installed by our agent
at least one out of ten times. Through further analysis, we identify
the common causes for our agent’s inability to install a repository,
discuss the challenges faced in the design and implementation of
such an agent and consider the implications that such an agent
could have for developers.

Index Terms—LLMs, installation, documentation

I. INTRODUCTION

Large Language Models (LLMs) are statistical language
models, typically based on the Transformer [1] Deep Neural
Network architecture, that are trained on large amounts of data
with the goal of predicting the next token in a sequence of text.
LLMs trained with large corpora have shown emergent capa-
bilities [2], including in-context learning [3], i.e., the ability to
perform tasks for which the models have not been explicitly
trained. In particular, LLMs are capable of software related
tasks when the training corpora include source code [4].

LLMs have been rapidly adopted into software engineer-
ing [5]. Initially, the target applications were of small, local
scopes: synthesizing individual functions [4], mutating inputs
for fuzzing [6], generating a unit test case [7], and generating
single-line patches [8], etc. As increasingly larger models
are being developed and made available [9], more advanced
prompting techniques (such as Chain-of-Thoughts [10], Re-
Act [11],and self-consistency [12]) and LLM-based architec-
tures (such as agent [13] and multi-agent architectures [14],
[15]) have been adopted to perform “repository-level” tasks

[16], [17], which we define in this paper to be tasks that require
reading and/or writing multiple files in a given repository.

We argue that all of these repository level agents almost
exclusively focus on code management tasks, i.e., tasks that
analyse or manipulate the source code of a repository. On the
other hand, developers also frequently deal with environment
management, for which LLM based agents have not been
applied to, to the best of our knowledge.

Thus, to fully understand how LLM based agents could
aid developers in practice, it is imperative to investigate their
ability to perform environment management tasks. To this end,
this paper presents a novel task for LLM-based agents, which
is to install a given code repository, as well as to validate
the installation. Despite it being a common task for many de-
velopers, attempts to automate the installation of open-source
projects have not been made in previous works. Dagenais et
al. [?] found that inadequate deleloper documentation is an
obstacle for new newcomers to a software project. Moreover,
in a survey by Aghajani et al. [18], 68% of developers
asked said that incomplete documentation of the installation,
deployment and release of a project is an important issue,
and 63% claimed that inappropriate installation instructions
were a common issue as well. As such, we believe that a tool
that can be used to attempt automatic installation could lessen
developer frustration and improve productivity.

In order to evaluate LLM-based agents for this task, we cre-
ate a dataset of 40 open source Python repositories to serve as
a benchmark for the performance of environment management
agents. Each repository is assigned a set of tags indicating its
installation method and a ground truth working installation file.
To ensure the safe execution of LLM generated installation
scripts, we also provide an interface for connecting the LLM
agent to a virtual machine in which to safely attempt instal-
lation. We make our research artefact, including this dataset,
publicly available to facilitate the continued evaluation of LLM
based agents: https://github.com/coinse/installamatic.

Using this dataset, we investigate how well an LLM-based
agent can resolve the installation task by creating INSTAL-
LAMATIC, which attempts to automatically install and test
repositories based on their contents. Given a target repository,
the agent makes use of search tools to navigate through its
contents, and inspect files to find information relevant to the

https://github.com/coinse/installamatic


(a) Example of an install-relevant piece of
documentation.

(b) Example of a non install-relevant piece of
documentation. (lightly edited for clarity)

other installing installation readme contributing
Name of relevant document

0

2

4

6

8

10

12

14

16

18

Fr
eq

ue
nc

y

Frequency of Relevant Documentation Names

(c) Frequencies of install-related document
filenames

Fig. 1: Inspection of repository contents

installation or testing process. Once the agent has completed
its documentation gathering, we prompt it to write a Dockerfile
that, when placed inside the target repository, installs any
required dependencies and runs the test suite of the target
repository to confirm the success of the installation.

Our empirical evaluation of INSTALLAMATIC’s ability to
perform the installation task shows that our LLM-based agent
can successfully install 21 out of 40 repositories, achieving
the success rate of 55%. Through further experimentation, we
present lessons for designers of future environment manage-
ment agents, as well as open source project maintainers. For
future development of environment management agents, we
suggest the inclusion of a repair step after an agent’s initial in-
stallation attempt. For maintainers of open source repositories,
we suggest providing code examples of the installation pro-
cess when writing installation instructions in the repository’s
documentation. We also identify several challenges specific
to environment manipulation tasks, such as gathering task-
relevant information from the repository.

The technical contributions of this paper are:

• A dataset of 40 open source Python repositories, designed
to serve as a benchmark for evaluating the effectiveness
of repository-level agents’ understanding of repository
contents and environment management tasks.

• The initial design of a repository-level agent, INSTALLA-
MATIC, capable of searching for and reading documen-
tation, then writing a Dockerfile to install and test the
repository based on the gathered information.

• An outline of the key challenges that future researchers
will likely face when developing a repository-level agent
for documentation.

The remainder of the paper is structured as follows. Sec-
tion II describes the benchmark construction, analysis and
labelling process; Section III provides a breakdown of our
proposed agent, INSTALLAMATIC; Section IV presents the
three research questions we answer, as well as define key
metrics in our analysis; Section V examines the results of
our experiments; Section VI compares our work with related
literature; Section VII discusses the threats to validity; and
Section VIII concludes.

II. DATASET CONSTRUCTION

In order to create a benchmark for the task of automatic
installation, we collect and present a dataset of 40 open source
Python repositories from GitHub and provide the correct
method of installation, as well as the location of any relevant
documentation, for each repository. In cases where no relevant
documentation was found, the appropriate installation method
was identified through inspection of non-documentation files
in the repository and manual attempts to install the repository.

Repositories were sampled using the GitHub API from
several different ranges of stars: 1k-5k, 5k-10k, 10k-20k
and >20k. From each range, the 10 most recently updated
repositories at the time of collection were chosen, meaning that
all repositories in the dataset have been in active development
until at least August of 2024. The dataset contains the commit
ID that corresponds to the time of collection.

We only choose repositories with test suites located in a
test or tests directory, to ensure that we have a consistent
oracle to determine the success of the installation process. We
argue that successful executions of test suites can serve as ob-
jective and automatable evidence for successful installations.
While this decision was necessary to evaluate the capability of
our agent, it does bias our sample towards the repositories with
test suites, an issue that is discussed further in Section V-C.
Table I shows the collected repositories.

Each repository has been manually inspected to produce
three different types of metadata: the aforementioned list of
all install-relevant documents, an exemplar Dockerfile that
successfully installs and tests the repository, and a set of tags
indicating the expected installation and testing methods. The
Dockerfile writing and tag assignment process is described in
more detail in II-B.

A. Documentation Structure of Open Source Python Projects

We define a document to be ‘install-relevant’ if it makes
explicit references to the process of installing the target repos-
itory’s dependencies and executing its test suite. For example,
Figure 1a is an example of install-relevant documentation,
as it clearly shows one of the the commands needed to be
run to set up a development environment. On the other hand,
Figure 1b shows an example of a non install-relevant piece



TABLE I: List of repositories in the dataset

⋆ Name URL ⋆ Name URL
1k

-5
K

icloud-drive-docker https://github.com/mandarons/icloud-drive-docker

10
k-

20
K

yfinance https://github.com/ranaroussi/yfinance
django-stubs https://github.com/typeddjango/django-stubs beets https://github.com/beetbox/beets
pennylane https://github.com/PennyLaneAI/pennylane starlette https://github.com/encode/starlette
X-AnyLabeling https://github.com/CVHub520/X-AnyLabeling datasets https://github.com/huggingface/datasets
opencompass https://github.com/open-compass/opencompass mypy https://github.com/python/mypy
R2R https://github.com/SciPhi-AI/R2R sympy https://github.com/sympy/sympy
Torch-Pruning https://github.com/VainF/Torch-Pruning ydata-profiling https://github.com/ydataai/ydata-profiling
scvi-tools https://github.com/scverse/scvi-tools spotify-downloader https://github.com/spotDL/spotify-downloader
sabnzbd https://github.com/sabnzbd/sabnzbd qlib https://github.com/microsoft/qlib
dlt https://github.com/dlt-hub/dlt scapy https://github.com/secdev/scapy

5k
-1

0K

camel https://github.com/camel-ai/camel

20
K

+

fastapi https://github.com/tiangolo/fastapi
boto3 https://github.com/boto/boto3 black https://github.com/psf/black
cloud-custodian https://github.com/cloud-custodian/cloud-custodian tqdm https://github.com/tqdm/tqdm
aim https://github.com/aimhubio/aim rich https://github.com/Textualize/rich
speechbrain https://github.com/speechbrain/speechbrain open-interpreter https://github.com/OpenInterpreter/open-interpreter
nonebot2 https://github.com/nonebot/nonebot2 core https://github.com/home-assistant/core
moto https://github.com/getmoto/moto sherlock https://github.com/sherlock-project/sherlock
instructor https://github.com/jxnl/instructor spaCy https://github.com/explosion/spaCy
numba https://github.com/numba/numba you-get https://github.com/soimort/you-get
pymc https://github.com/pymc-devs/pymc textual https://github.com/Textualize/textual

of documentation from the README.md file of the FastAPI
repository: this is not install-relevant as it does not affect the
installation process for a developer.

After identifying the install-relevant documents for each
repository, we have found 29 unique file paths leading to
install-relevant documentation, and 18 different names for files
containing install-relevant documentation, ignoring differences
between file type, case sensitivity and the use of ‘-’ and ‘_’.
Figure 1c shows the distribution of documentation file names.
While one may expect the ‘readme’ file of a repository to
contain information relevant to the installation of a repository,
we find that this is often not the case.

Names ‘contributing’ and ‘readme’ are considerably more
common than any other file name: files with these names
contain install-relevant information in 40% and 35% of repos-
itories in the dataset, respectively. After these two, there are
no other file names which are install-relevant and occur more
than three times. Note that the purpose of a ‘contributing’ file
is to instruct developers new to the project how to go about
making contributions to the project. As such, instructions on
dependency management, environment setup and testing are
commonplace in files named ‘contributing’.

It is worth noting that many projects host much of their
documentation on external websites, though occasionally the
source files for these external websites are stored in the
repository itself. In such cases, the documentation will be
often stored inside a docs directory, meaning that it is still
accessible in the repository. However, it is considerably less
visible and consequently harder to find, compared to documen-
tation stored in the repository’s root directory. The diversity
in possible locations for install-relevant documentation shows
that there is no agreed upon structure for documentation of
Python repositories.

B. Methods of Installation and Testing

In addition to identifying the locations of install-relevant
documentation, our dataset contains a Dockerfile that would,

when placed inside of the target repository, install any de-
pendencies, and run the test suite to confirm their successful
installation. During this process, we create a series of coarse-
grained categories for the different types of commands used
during installation. Table II lists the resulting 17 tags.

After assigning appropriate tags to each of the 40 repos-
itories, we are left with 31 unique combinations of tags,
meaning that there are 31 different methods of installing the
dependencies and running the tests of the Python repositories
we sampled. Such a wide variety of installation methods leads
us to consider the use of Large Language Models (LLMs)
as a means of automatic installation; their in-context learning
capability [19] makes them an ideal candidate in tasks like this,
where the expected output (in this case, a working Dockerfile)
can vary considerably, and is highly dependant on the contents
the documentation in the repositories.

III. INSTALLAMATIC: AUTOMATIC INSTALLATION AGENT

This section presents INSTALLAMATIC, an LLM-based
agent that attempts to automatically install a given open
source Python project. INSTALLAMATIC performs its task
in two stages. First, it gathers documentation related to the
installation. Second, it tries to build and repair a Dockerfile4 to
install and test the target repository. This section first explains
how INSTALLAMATIC searches for files relevant to installation
process, and subsequently describes the two stages of its task.

A. Repository Search Process

INSTALLAMATIC needs to search through the contents of
the repository during both the documentation gathering and
the Dockerfile build/repair step, although, its exact goal can
differ in these steps. To this end, we equip INSTALLAMATIC
with a generic method to search through the contents of
the repository, which can be reused in different stages. An
overview of this search method is shown in Figure 2a.
Inspired by previous works finding benefits such as improved

4https://www.docker.com/
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TABLE II: List of Installation Tags

Tag Description Tag Description

requirements Installation of dependencies using
pip install -r requirements.txt. install-other Installation of dependencies through means not listed

above, such as a custom script contained in the repository

requirements-extra Installation of dependencies from additional
requirements files, such as requirements-test.txt. pytest Tests are run using pytest.

pip-extra Requiring the installation of something other
than Poetry or the contents of a requirements file. pytest-extra Additional arguments need to be provided to pytest,

such as specifying the location of the tests or additional flags.

Poetry Installation of dependencies using the Poetry
dependency manger.1 tox Tests are run using Tox.

Poetry-extra
Installation of dependencies using Poetry, with
additional arguments, e.g. poetry install

--no-interaction --with sentry-sdk.
unittest Tests are run using Python’s built in unittest

command.

make-install Installation of dependencies using a makefile,
typically commands such as make install or make init. make-test Tests are run using a makefile with a command such

as make test.

install-self The project itself needs to be installed in the
working environment, e.g. by running pip install -e .

test-other Tests are run some other way, such as a test.py file.

install-pytest The Pytest2 library needs to be installed
manually. bash-extra

Requiring additional bash commands to set up
the repository, such as creating new directories
or granting permissions to certain files.

install-tox The Tox3 library needs to be installed manually.

performance [20] and explainability [21] by emulating human
behaviour, we chose to use an LLM-guided search step over
traditional search methods, such as BM25 [22] or neural
embeddings [23].

We include the contents of the target repository’s root
directory in the prompt at the start of the search process, then
provide several tools that enable the agent to further navigate
through the contents of the repository. The four basic functions
we provide to INSTALLAMATIC for navigation are as follows:

• get directory contents: Given a path to a directory the
agent has already seen, returns the names of all files and
sub-directories within that directory.

• get file contents: Given a path to a file, returns its
contents. If the file is human readable and structured,
such as a .md or a .rst file, then the section headers
are extracted and returned instead.

• inspect header: Given a path to a file and a name of a
section in that file, returns the contents of that section.
This is used to minimize the amount of distracting
contents shown to the agent.

• check presence: Given a filename, checks whether it
exists. This is provided as a sanity check, to prevent the
agent from hallucinating files that are not there.

In addition to these functions that are provided during
search, INSTALLAMATIC can access additional functions that
are available for specific search tasks it is performing. Exam-
ples of these specific tasks will be provided below. All prompts
used in this process are listed in the appendix, available in the
research artifact.

To start the search process, the agent is shown a system
prompt explaining its task and providing the contents of the
target repository’s root directory (Fig. 2a 1 ). The agent then
enters a search loop, starting with being sent a query asking the
agent to plan its next move in natural language, followed by a
second query offering the agent tools with which it will carry

out its plan (Fig. 2a 2 ). This two step approach is designed
both to improve the reasoning ability of the agent, inspired
by previous work on chain of thought reasoning [10], and
to provide a better, more understandable explanation of the
agent’s behaviour when examining the results. After these two
steps, a function is chosen based on the agent’s response, and
executed to return the relevant result to the agent (Fig. 2a 3 ).
Once the result of the function has been sent to the agent,
the prompt to make the agent plan its next move is sent
again (Fig. 2a 4 ). This process is repeated until the agent
deems the search to have ended (Fig. 2a 5 ). Additionally,
the system (Fig. 2a 1 ), follow-up (Fig. 2a 2 )), and function
response prompts (Fig. 2a 3 ), are changed depending on the
specific task the agent is currently performing For example,
the follow-up prompt during the documentation gathering step
will remind the agent to use the provided tool for recording
documentation whenever it identifies a document as install-
relevant. In contrast, when performing a diagnosis of an error
during the dockerfile repair process, the follow-up prompt
will instead remind the agent to stop searching through the
documentation once it has gathered sufficient information to
suggest a fix to the Dockerfile. By adopting this modular
approach, we are able to clearly define different states in which
the agent is operating, which has been shown to aid the agent’s
decision making when given a complex task [24].

B. Documentation Gathering Step

During the first stage, INSTALLAMATIC is tasked with
searching through the repository and identifying any files
that it considers to have information relevant to either the
installation or testing process. In addition to the four basic
functions, the agent is given more tools: submit documenta-
tion, which records a document as being install-relevant, and
finished search, which signals the end of this stage and the
beginning of the next step.
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Fig. 2: Diagrams of INSTALLAMATIC’s processes

C. Dockerfile Build/Repair Step

After documentation gathering step, we task the agent
to summarise the gathered information in natural language.
INSTALLAMATIC is once again given access to the basic
search functions. In this stage, it can only access the files that
it previously selected as being install-relevant. Once it has
finished the search process and used the submit summary
tool to give its summary, it is prompted to write a Dockerfile
to install dependencies and run tests.

Figure 2b illustrates the Dockerfile testing and repair pro-
cess in detail. After a Dockerfile is generated by INSTALLA-
MATIC (Fig. 2b 1 ), it needs to be tested in a safe environment.
Since an installation process may involve unknown code and
may need admin permissions, a degree of risk is involved when
arbitrarily running installation scripts. As such, we choose to
test the agent’s installation process using Dockerfiles running
in virtual machines, thus mitigating the side-effects of running
potentially harmful or disruptive code (Fig. 2b 2 ).

Once the Dockerfile build process has finished, the resulting
logs are analysed. Installation is considered successful if tests
are run, and at least one test passes. Such a result is indicative
of a successful installation as the tests running at all implies
that dependency issues were not encountered during the setup
of the test suite. This is an imprecise measure of build success
as, while requiring all tests to pass could lead to false negatives
as tests could fail due to issues unrelated, such as API keys
not being set, cases where different modules of a project have
different requirements could incorrectly pass, resulting in false
positives. In the case that any tests passed, the process has
finished and the agent has completed its task. If no tests
passed or the installation process failed at an earlier step,
INSTALLAMATIC starts the Dockerfile repair process.

The repair process starts with a new system message includ-
ing both the Dockerfile the agent previously submitted, as well
as the build logs of the failed installation process (Fig. 2b 3 ).
The agent is subsequently instructed to explain what the error
message means, and to identify the cause of the error.

Similarly to the previous steps, the agent is given access to
the basic search functions. However, the agent is no longer
encouraged to inspect only documentation files, but any files
it considers to be relevant to the issue. The messages from the
previous steps are disregarded, meaning this is effectively a
new agent instance, with no knowledge of the previous stages.

This is done to reduce the context length of the messages being
sent to the LLM, which can both improve its performance [25]
and also reduce inference cost.

After providing the explanation why the previous Dockerfile
failed (Fig. 2b 4 ), the agent is instructed to suggest how
this error could be fixed, as well as the repaired Dockerfile
(Fig. 2b 5 ), which is then sent to the local virtual machine
to be tested again. This process is repeated until INSTALLA-
MATIC produces a working Dockerfile, or it reaches a fixed
number of repair attempts, at which point we consider the
attempt to install the repository a failure. Due to the high
time cost of additional repair attempts, we set the maximum
number of repair attempts to two.

IV. EXPERIMENTAL SETUP

A. Research Questions

In the creation and evaluation of this agent, the following
three research questions are posed:

• RQ1: To what extent is our agent able to install
arbitrary Python repositories?
This question analyses our agent’s performance on our
benchmark dataset and aims to determine the circum-
stances under which our agent is and is not able to
automatically install a repository.

• RQ2: What factors affect an LLM agent’s ability to
successfully install a repository?
Understanding what factors could affect an agent’s com-
patibility with a repository could prove invaluable in the
case that the use of LLM agents for repository-level tasks
become widespread. As such, we aim to identify the key
characteristics of repositories that are easier and harder
to automatically install.

• RQ3: What challenges remain in designing agents
for automatic installation and similar repository level
tasks?
To aid future research in the pursuit of using LLM
agents for environment management tasks, we outline the
greatest challenges and limitations we encountered during
the ideation and development of our agent.

B. Metrics

We aim to study the relationship between the quality of
documentations, and the performance of our agent. To estimate
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Fig. 3: Identifying causes of un-installable repositories

the quality of documentations, we propose two measures of
document quality: visibility and informativity.

The visibility of a repository’s documentation intuitively
measures how easy it is to find the install-relevant documents.
For this, we count the total number of files and directories that
need to be traversed to reach all install-relevant documents,
and take its inverse:

visibility =
1

#directories + #files
The informativity of a repository’s documentation is, intu-

itively, a measure of how comprehensive the documentation is
with respect to the actual installation process as defined by our
ground truth Dockerfile. For this, we compute the proportion
of lines of the ground truth Dockerfile that also appear in
install-relevant documentations:

informativity =
|dockerfile

⋂
documentation|

|dockerfile|
Note that these two heuristic measures use the gathered

ground truths; thus, their computation relies on manual in-
spection of the studied repositories. We use these measures in
Section V-A to determine the relationship between the agent’s
success rate and the quality of the documentation, with the
expectation that repositories with poorer quality, as estimated
by these metrics, will be more difficult for the agent to install
and consequently will have a lower average installation rate.

To measure installation performance, we use two other
metrics: the recall from its documentation gathering step, and
the successful installation rate of the Dockerfile generation
step, across repeated runs. The recall is computed as follows:

recall =
|install-relevant retrieved documents|

|install-relevant documents|
Whereas the successful installation rate is simply the pro-

portion of successful installations among the repeated runs.
We apply INSTALLAMATIC to each repository 10 times.

C. Implementation

All experiments have been conducted using the GPT4o-
mini (gpt-4o-mini-2024-07-18) model; the Docker-
files have been built in a virtual machine running Ubuntu

22.04.4 LTS and Docker 27.1.2. All Python scripts in the
artiact were run on Python 3.10.12 and figures’ coefficients
are calculated using the polyfit method of NumPy 2.0.1

V. RESULTS

Here we present the findings from our empirical evaluation
of INSTALLAMATIC.
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Fig. 4: Successful install rate for each repository, with and
without perfect recall of relevant documents (purple bars
represent the overlap between these two metrics).

A. RQ1: To what extent is our agent able to install arbitrary
Python repositories?

1) Installation Success Rate: Figure 4 shows the rates
of successful installations achieved by INSTALLAMATIC for
the studied repositories under two configurations. The first
configuration, standard (blue bars in Figure 4), is the standard
configuration of INSTALLAMATIC including the documenta-
tion gathering step: the agent searches through the reposi-
tory and select any items of documentation it deems to be
install-relevant before attempting to write a Dockerfile. The
second configuration, perfect recall (red bars in Figure 4), is
INSTALLAMATIC without the documentation gathering step:
instead, we provide INSTALLAMATIC with all documents that
we manually confirmed to be install-relevant. The second
configuration is included to isolate the installation success
rate from the visibility of the repository’s documentation.
The seven rightmost repositories do not contain any relevant
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Fig. 5: Evaluating the visibility of a repository’s documentation and its average installation rate

documentation in their repositories and consequently are ex-
cluded from the perfect recall configuration. Of these seven
repositories, only tqdm was successfully built by the agent.

Under standard configuration, INSTALLAMATIC can suc-
cessfully install 21 of 40 tested repositories at least once, with
a 28.8% average successful installation rate across all reposito-
ries. Under the perfect recall configuration, INSTALLAMATIC
can install 18 of 34 tested repositories, with a 34.7% average
installation rate, a roughly 20% increase. Of the 34 repositories
tested in both configurations, 13 are never successfully built.

Note that there are several repositories whose installation
rate is higher in the standard configuration than in perfect
recall configuration. This is likely due to variance in the LLMs
beahaviour (as only 10 attempts were made per repository),
rather than the repository actually being easier to install with
imperfect recall of install-relevant documentation.

2) Causes of Failure: In order to identify the limitations of
the agent’s capabilities, we consider the relationship between
each of the 17 previously defined tags with the installation
success rate of the repository in Figure 3a. Of the tags present
across all 40 repositories, there are only two which the agent is
never successful in installing: poetry-extra and pytest-extra;
example installation processes that include these tags can be
seen in Figures 3b and 3c respectively.

Figure 3b shows the exemplar Dockerfile written for to
install and test the NoneBot2 repository. In this example,
the additional --all-extras argument needs to be added
to the installation command as the repository’s test suite
tests modules with dependencies not installed by poetry
install on its own. Despite this, the --all-extras
tag is not mentioned in the install-relevant documentation,
resulting in the agent not being aware of this problem, even
in the case when the documentation is provided.

Figure 3c shows a Dockerfile for the Qlib repository, and
features the other un-installable tag, pytest-extra. Here, two
additions are made to the standard testing process. First, the
user must run the test suite from within the test directory,
and second, the test suite must be run with the "not slow"
argument. Neither of these additions were mentioned of the
documentation for the repository, although, this is to be
expected of the second requirement. While first of these two

additions is necessary for the test suite to run correctly, the
second addition is due to our testing process, rather than the
nature of the repository itself. In order to prevent Dockerfile
build processes from stalling and never completing, usually
due to connection issues, we enforce a 30 minute time limit on
the build process; any Dockerfile that takes over 30 minutes
to build is interrupted and considered insufficient. As such,
it is common for repositories with larger test suites to be run
with an additional command such as the aforementioned "not
slow" to allow for the testing process to finish in time. While
important to guarantee that our experiments eventually finish,
the requirement for test suites to finish within 30 minutes
nonetheless is a detriment to our agent’s installation rate, as
without it, it could be the case that repositories such as Qlib
could be successfully built.

In both of these cases, the lines or additional arguments
that are required for the installation process to succeed are not
mentioned in the install-relevant documentation. While these
two tags are not present in all un-installable repositories, we
were able to confirm that the presence of these two tags were
the most common reason for failure of these repositories.

Answer to RQ1: INSTALLAMATIC can successfully install
21 out of 40 studied repositories, with the average instal-
lation success rate of 28.8%. Most common reason for
failed installation is that a successful installation process
requires commands or arguments that are not mentioned in
the relevant documentation.

B. RQ2: What factors affect an agent’s ability to successfully
install a repository?

The first factor we consider is that of INSTALLAMATIC’s
own repair step. Figure 6a shows the proportion of successful
installations that occur within each repair step. Only 36.5%
of successful installations (10.5% of all installation attempts)
occurred without the need for any repairs, increasing to 73.9%
after a single repair attempt (21.3% of all attempts). These
results indicate that further repair steps could potentially
increase the installation rate, though this would come at the
cost of increased installation time, as will be discussed in RQ3.

Figure 5a shows the relationship between the average recall
of install-relevant documents and the installation rate of each
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repository. The correlation is positive, confirming our intuition
that the documents we marked as install-relevant do indeed
assist the agent in successfully installing the repository. Fig-
ure 5b shows a strong positive correlation between the average
recall and the visibility of a repository. Consequently, the
correlation between visibility and installation rate is similarly
positive, shown in Figure 5c. This consistency between the re-
lationships of recall and visibility with the agent’s installation
rate leads us to conclude that the structure of a repository’s
documentation does have an effect on the ability of our agent
to install the repository; documentation made of fewer files,
stored within fewer subdirectories, will be more compatible
with LLM-based agents.

The second of our two proposed document quality metrics,
informativity, also correlates with our agent’s ability to install
a repository. Figure 6b shows the correlation between the
informativity score of a repository – the number of lines in
our exemplar Dockerfile that appear in the repository’s install-
relevant documentation – and the average installation rate. In
order to isolate the effect of informativity on the installation
rate, the results shown here are from the experiment in which
all install-relevant documents are given to the agent in place
of the documentation gathering step. Similarly to visibility,
the correlation between informativity and installation rate is
positive, indicating that the agent responds well to documen-
tation that contains lines of code that appear in the necessary
installation steps. However, informativity does not consider
other features of documentation, such as natural language
instructions. Consequently, it is unclear whether instructions
other than lines of code are more or less effective in supporting
the agent’s installation attempts.

Comparing the agent’s installation rate only to our metrics
of document quality - recall, visibility, and informativity-
would neglect the effect that the complexity of a repository’s
installation process has on the performance of the agent.
Unfortunately, the complexity of an installation process is
hard to quantify, and so too is the process of identifying and
mitigating the effect of difficult to install repositories when
evaluating our agent. Instead, here we aim to do a qualitative
estimation of the difficulty of a repository’s installation process
based on the types of tags it has been assigned with. Figure 6c
shows a clear difference in build rate of repositories that are

tagged with extra (pip-extra, requirements-extra, poetry-
extra, pytest-extra or bash-extra) and those that are not. It
can therefore be inferred that, while the agent may be familiar
enough with tools such as pip5, Poetry or PyTest to perform
basic tasks, the inclusion of additional complexity, such as
the need of specific additional flags or installing requirements
from multiple files greatly reduces the agent’s ability to write
a correct Dockerfile to install the repository. We note that
this increased difficulty can be curbed to some extent through
the addition of thorough documentation on the installation
process, as demonstrated by the positive correlation between
informativity and the installation rate observed from those
repositories tagged with extra.

Answer to RQ2: The inclusion of additional complexity
to a repository’s installation process has the greatest impact
on the installation rate, though this effect can be mitigated
through clear documentation structure and the use of code
examples in the installation instructions.

C. RQ3: What challenges remain in designing agents for
automatic installation and similar repository level tasks?

Through the process of creating and evaluating this agent,
we faced four main challenges which limit both the effective-
ness and practical feasibility of our agent.

1) Identifying install-relevant documentation: As reported
in Section II-A, install-relevant documentation can be found in
various locations within a repository. INSTALLAMATIC shows
recall of zero for 11 out of 40 repositories, despite there
being only six repositories in the dataset without any install-
relevant documentation. The lack of consistent structure in
documentations of open source Python repositories affects
the ability of LLM-based agents to identify install-relevant
documents. RQ1 and RQ2 show that the failure to retrieve
install-relevant documents negatively affects the installation
rate of the repository substantially.

An example of how irrelevant information can lead to
incorrect Dockerfile can be found in the ‘Installation’ sec-
tion of the the README.md file of FastAPI, shown in
Figure 7a. The section provides installation instructions for

5https://pypi.org/



(a) Example of documentation that is not rel-
evant to setup of a development environment

(b) Incorrect Dockerfile generated for
FastAPI

(c) Incorrect Dockerfile generated for beets

Fig. 7: Examples of distracting documentation and incorrect Dockerfiles

users intending to use FastAPI to develop their own tools,
rather than those who want to work on the FastAPI code
itself. While it may be clear to a human developer whether this
section is relevant to them, our evaluation of INSTALLAMATIC
shows that LLM-based agents may be susceptible to misun-
derstanding the intention of this document, which is shown
in Figure 7b, where the generated Dockerfile erroneously
follows the instructions of the irrelevant section, rather than
correctly installing the dependencies of the project from the
requirements.txt file. In this case, the installation failed
when trying to run PyTest, as Pytest is not included in
"fastapi[standard]", pydantic or starlette.

2) Writing valid Dockerfiles: INSTALLAMATIC often fails
to write a correct Dockerfile, not because it misunderstands the
installation instructions, but simply because it made mistakes
while writing the Dockerfile itself. Figure 7c gives an example,
i.e., a typo made by INSTALLAMATIC in one of the generated
Dockerfiles for the beets repository. As shown, this typo was
identified and fixed by the agent during the repair step.

While we maintain that attempting to install the repositories
inside a Docker container is necessary to mitigate the effect
of any potentially harmful code, installation and testing in the
manner we instruct the agent to do is not the usual purpose of
Docker, and we suspect that this unfamiliarity with writing
installation scripts in a Dockerfile could lead to additional
mistakes. A previous work [26] has encountered a similar issue
of an LLM agent being prone to low-level mistakes, despite
seeming to have a high level understanding of the given task.

3) Cost: In previous works, repository level techniques that
search through the contents of a repository delegate this search
process to static analysis tools [17] or a non-LLM based search
technique, such as BM25 [15], and then include the search re-
sults in a prompt to the LLM. In order to emulate the behaviour
of a human developer, our search process is controlled by the
LLM itself. This means that the number of tokens used by
the agent is largely unconstrained, resulting in considerably
higher usage than related work. The additional cost can vary
greatly depending on the contents of the target repository;
extensive documentations or ambiguous naming can lead to
the agent searching through more files than necessary, and thus
consuming more tokens [25], [27], [28], resulting in higher
cost. Aside from the financial cost incurred, the time taken by

the agent to attempt an installation of a repository can vary
considerably depending on the size of its dependencies, its
test suite and of the repository itself; an installation attempt
takes 501 seconds on average with INSTALLAMATIC, with
the longest run taking almost 80 minutes over the course of
Dockerfile building attempts.

4) Oracle problem: While we choose to use a repository’s
test suite for the oracle, this is not an ideal solution for various
reasons. It is not a trivial task for any agent to run tests for an
arbitrary project, as Python supports several different methods
of testing. Any agent aiming to run tests for an arbitrary
Python project should first correctly identify the method of test
execution, on top of correct identification of the installation
method, adding an extra layer of complexity to the overall
task. Additionally, it is also possible that a repository does not
contain any test, making it impossible for our current design
of INSTALLAMATIC to attempt installation.

Figure 3a shows that all testing related tags other than
pytest contribute to a lower installation rate. In the case that
these alternative testing methods are the cause of this reduced
installation rate, using an oracle other than running the test
suite would allow us to ignore the effect of these tags, as
the agent’s performance would no longer be dependant on its
ability to run tests.

Answer to RQ3: There are several limitations faced when
using an LLM based agent to automatically install Python
repositories, with the most critical being finding an oracle
that is both generalisable and accurate.

VI. RELATED WORK

A. Repository-Level Tasks

Bairi et al. [16] define an LLM-driven repository-level
coding task as one that requires a series of edits to be made to
the state of a code base until some oracle is satisfied. Previous
works have proposed the use of LLMs to perform tasks that
satisfy this definition of repository-level coding tasks [15],
[29], and are typically evaluated on benchmarks such as SWE-
bench [30]. SWE-bench tasks a language model to edit a
codebase to address a description of an issue. These edits are
then assessed using a test suite, as well as through comparison
with a human written pull request that resolves the issue.



This task of issue resolution posed in SWE-bench is a clear
example of a repository-level coding task as described by Bairi
et al. [16]. However, the definitionof Bairi et al. is rather
narrow, and does not consider other examples of repository-
level software engineering that has been proposed in recent
works. AutoFL [13] is a fault localization technique that makes
use of function calls to search through the repository and find
potentially erroneous lines. It fits our definition of repository-
level task, as it makes use of information across mlutiple files
in a repository, but not that of Bairi et al., as AutoFL is
a debugging technique and does not make any edits. Other
works propose techniques that consider multiple files in a
repository, but are only tasked with generating code for a
single function [17]. In tasks such as this, the scope of the
changes is limited to a single file, but the agent is nonetheless
able to access files across the whole repository.

B. Automated installation

To the best of our knowledge, no previous literature has
addressed the challenge of automatic installation of arbitrary
repositories, although there are some works that have ad-
dressed similar tasks. A recent work by Guerrero, Corcho
and Garjio [31] proposes PlanStep, a methodology to extract
structured installation instructions from README files of
research software projects through the use of LLMs. While this
project is very similar to the initial search step of our proposed
agent, PlanStep’s goal is to identify all possible methods of
installation, rather than performing the installation itself.

Cognition AI’s Devin6 project, which claims to be an
‘AI software engineer’, does seem capable of automatically
installing an open-source repository; Devin has been demon-
strated cloning a repository and installing its dependencies,
given only the GitHub URL of the repository. Unfortunately
Devin is not publicly available at the time of writing, so its
exact capabilities are currently unclear.

C. Documentation analysis with LLMs

In a recent survey [32] on the use of LLMs for software
engineering tasks, while hundreds of papers on LLMs for soft-
ware engineering were identified, none used documentation as
input to perform some task, and only one addressed the task
of evaluating the quality of a code-base’s documentation. Fur-
thermore, the work in question [33] by Khan et al. specifically
focus on detecting API Documentation smells, rather than high
level documentation in a repository, and as such is not relevant
to the technique we propose.

Liang et al. [26] investigates the use of another form of
documentation, empirical software engineering papers, with
the goal of replicating their research methodologies and re-
sults. A key finding of this paper was that, when writing code
to replicate the contents of these papers, the LLM they used
(GPT-4) ”is correct in its high-level structure, but can contain
errors in its lower-level implementation”. While neither the
input nor the output of this task is directly comparable to the

6https://www.cognition.ai/blog/introducing-devin

automatic installation of python repositories, we experienced
a similar problem with the LLM that we use, GPT-4o-mini,
as we discussed in Section V-C2.

VII. THREATS TO VALIDITY

Threats to internal validity are challenges to the findings of
the paper. Due to the stochastic nature of LLMs, the behaviour
and thus performance of our agent can vary between runs.
To mitigate this randomness we repeat our experiments 10
times, and report the average scores over these 10 runs. For
reproducibility, we make both our implementation and the
messages generated in our experiments available for scrutiny.

Threats to extrenal validity concern whether the reported
findings may generalise to other results. The design of our
agent allows for it to be applied to repositories not contained
on our dataset, although the calculation of metrics such as
recall would require additional manual inspection. We also
design our agent to be agnostic to the LLM used to control it,
allowing for experimentation with different models.

Threats to construct validity concerns whether the measure-
ments are actually based on the properties we are interested
in. The quality of installation documentation, as well as their
usability in terms of repository organization, is a highly
abstract property and can be subjective. We aim to define clear
and transparent heuristic measures for these with visibility and
informativity. Other metrics such as recall and installation rate
are both intuitive and straightforward.

VIII. CONCLUSION

This paper studies a novel repository level task for LLM-
based agents, namely automated installation of arbitrary repos-
itories. In order to provide insight into this task, we make
three contributions. First, we created a dataset of 40 open
source Python repositories for evaluating the effectiveness of
repository level agents’ understanding of documentation, as
well as their ability to correctly install a repository. Second,
we present INSTALLAMATIC, an easily adaptable design for
an LLM-based agent that is able to autonomously inspect the
contents of a repository and recover items of documentation
relevant to its task. An empirical evaluation of INSTALLA-
MATIC using our dataset shows that it can install 21 out of
the 40 repositories, as well as a clear correlation between
the structure and content of a repository’s documentation
and the performance of our agent. Finally, we report the
challenges faced when developing an agent for repository-level
agents for documentation,as well as suggestions to overcome
these challenges for future developers. We hope that our
dataset and empirical insights can contribute to future work on
environment management tasks such as automated installation.
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