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ABSTRACT
Testing of Deep Learning (DL) models is difficult due to the lack
of automated test oracle and the high cost of human labelling. Dif-
ferential testing has been used as a surrogate oracle, but there is
no systematic guide on how to choose the reference model to use
for differential testing. We propose a novel differential testing ap-
proach based on subspecialized models, i.e., models that are trained
on sliced training data only (hence specialized for the slice). A pre-
liminary evaluation of our approach with an CNN-based EMNIST
image classifier shows that it can achieve higher error detection
rate with selected inputs compared to using more advanced ResNet
and LeNet as the reference model for differential testing. Our ap-
proach also outperforms 𝑁 -version testing, i.e., the use of the same
DL model architecture trained separately but using the same data.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Deep Learning (DL) systems are increasingly being adopted in real-
world applications, thanks to their surprising accuracies [2, 3, 9].
However, despite the widespread adoption, testing of DL systems
remains a challenge due to fundamental differences between DL
systems and traditional software. A recent survey on testing of
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machine learning systems [11] reports that one of the major tech-
nical challenges is the test oracle problem [1]. Since DL models are
inherently stochastic and perform cognitive tasks such as image
recognition or natural language understanding, we cannot easily
write sound and complete automated oracles and must depend on
human labelling. This, in turn, also means that we cannot know
which input is capable of revealing incorrect behaviour of Model
Under Test (MUT) until labelling is complete.

Differential testing is one way to handle the test oracle problem
of DL systems [5]. Intuitively, it aims to find an input that causes
multiple implementations of the same requirement to disagree with
each other by producing different outputs: such an input means that
at least some of the implementations may be incorrect. The high
cost of human labelling (which serves as test oracles for DL systems)
makes differential testing a particularly appealing candidate for
testing DL systems. The seminal work of Pei et al. [10], DeepXplore,
uses differential testing to identify inputs that are more likely to
reveal problematic behaviour in DL systems. Similarly, DLFuzz [6]
uses differential testing to guide fuzzing of DL systems.

Differential testing relies on the availability of a reference model,
i.e., an additional model that is developed for the same purpose,
but different from the MUT. The effectiveness of differential testing
directly depends on both the quality of the reference model that
are cross-referenced and the degree it differs from the MUT. If the
reference model has poor performance, disagreements raised by
it may not be an accurate indicator of undesirable behaviour; if it
is not sufficiently different from MUT, they may rarely disagree.
Despite the importance of this problem, there is little guidance
on how to construct the reference model when using differential
testing as a test oracle for DL systems.

This paper proposes a new differential testing method that can
select inputs that can reveal erroneous behaviour of DNN MUT. In-
tuitively, instead of training a completely different reference model
on the entire training data, we slice the training data of MUT into
multiple subsets based, and train subspecialized models indepen-
dently for each subset: each of the subspecialized models shares
the same model architecture as MUT, but is trained on a subset of
its training data. When testing MUT, we can use the correspond-
ing subspecialized model as the reference model for differential
testing, i.e., raise an alarm when MUT disagrees with the subspe-
cialized model. A preliminary empirical evaluation of the proposed
approach using EMNIST [4] dataset shows that the subspecialized
differential testing can achieve almost double the error detection
rate when compared to traditional differential testing approaches
that use other advanced DL models.
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Figure 1: Overview of our approach

2 METHODOLOGY
This section first describes the required properties of test input
that can reveal errors in the context of differential testing of DL
systems, and subsequently presents our proposed approach that
uses subspecialized model instances.

2.1 Test Data Selection for DL Differential Testing
Figure 2 illustrates an input space, denoted by the set of all inputs, 𝐼 ,
for a given MUT,𝑀 . The set 𝐼 consists of 𝐼𝑇 and 𝐼𝐹 , which contains
inputs handled correctly and incorrectly by𝑀 , respectively. Since
the output of 𝑀 is either correct or not, 𝐼𝑇 is equal to (𝐼𝐹 )c, the
complement set of 𝐼𝐹 .
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Figure 2: Classification of test inputs for DL diffential testing

The basic premise of the DL differential testing is that, if the same
test input leads to different test results between𝑀 and its reference
model,𝑀 ′, at least one of these models is behaving incorrectly. Let
𝐼𝑆 be the set of inputs whose results by𝑀 and𝑀 ′ are different from
each other. As can be seen from Figure 2, 𝐼𝑆 can include inputs from
both 𝐼𝑇 and 𝐼𝐹 . Since our aim is to select more inputs from 𝐼𝐹 for
the purpose of testing 𝑀 , we would prefer a larger 𝐼𝑆 ∩ 𝐼𝐹 (since
inputs in the intersection are effective), and a smaller 𝐼𝑆 − 𝐼𝐹 (since
inputs in the difference do not reveal any erroneous behaviour).

2.2 Proposed Method
We posit that the following two issues need to be considered when
applying differential testing to DL systems.
Data Perspective Issue. The capabilities of a DL model largely
depend on the composition of the train data: similar, well-designed
models may not exhibit significant differences in their inference
results, if they are trained on the same data, which in turn results
in reduced effectiveness for differential testing (i.e., smaller 𝐼𝑆 as
well as smaller 𝐼𝑆 ∩ 𝐼𝐹 ).

Model Perspective Issue. Differential testing may not be effective
if a low-quality model is used. However, it may not always be
possible to find an additional model. In extreme cases, the MUT
may be the only model that is available, making it burdensome to
implement reference models for differential testing.

Our method is proposed to handle these two issues. It creates
and cross-references with subspecialized model instances of MUT,
without having to other similar model implementations and ver-
sions. Figure 1 shows the overview of our approach. We essentially
partition the training data into two or more subcategories, and then
generate independently trained model instances for each subcat-
egory. Note that these subspecialized reference model instances
share the same model architecture as the original MUT: they are
just trained using different subsets of the original training data. In-
tuitively, we would like to use subspecialized model instances that
are capable of doing smaller subtasks of MUT particularly better,
rather than being performing well in general.

Let us consider the Extended MNIST (EMNIST) [4] dataset as
an example: as an extension of the well-known MNIST dataset,
EMNIST includes not only handwritten digits but also alphabet
letters. Consequently, one possible partitioning would be to cate-
gorize the training data into digits and alphabets. For digit inputs,
we can compare the output of MUT with the output of digit-only
subspecialized model instance, and for alphabet inputs with that of
alphabet-only subspecialized model instance.

Figure 3 illustrates how to select test inputs by cross-referencing
two subspecialized model instances.
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Sub data  (Category A) Sub data (Category B)

Subspecialized model 
for category A

Model Under Test
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Selected test inputs
(Category A and B)

Discarded test inputs
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Figure 3: Test input selection process
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Table 1: Analysis of 14,382 EMNIST test inputs for 5 differential testing approaches

Run 1 2 3 4 5 6 7 8 9 10 Average

MyNet-ResNet

Valid (No Effect) 280 307 358 272 266 359 291 365 231 263 299.2
Effective 491 487 554 480 509 499 468 438 526 507 495.9
Missed 615 641 601 628 623 646 638 649 645 638 632.4
Ignored (No Effect) 12,996 12,947 12,869 13,002 12,984 12,878 12,985 12,930 12,980 12,974 12,954.5

MyNet-LeNet

Valid (No Effect) 322 325 352 358 337 315 354 381 293 331 336.8
Effective 459 466 512 434 491 474 453 437 503 468 469.7
Missed 647 662 643 674 641 671 653 650 668 677 658.6
Ignored (No Effect) 12,954 12,929 12,875 12,916 12,913 12,922 12,922 12,914 12,918 12,906 12,916.9

2 Versions

Valid (No Effect) 330 323 306 354 340 290 283 351 299 305 318.1
Effective 423 406 465 436 446 434 410 372 438 453 428.3
Missed 683 722 690 672 686 711 696 715 733 692 700.0
Ignored (No Effect) 12,946 12,931 12,921 12,920 12,910 12,947 12,993 12,944 12,912 12,932 12,935.6

3 Versions

Valid (No Effect) 150 113 119 136 134 116 109 146 102 96 122.1
Effective 301 274 322 290 324 324 269 268 325 304 300.1
Missed 805 854 833 818 808 821 837 819 846 841 828.2
Ignored (No Effect) 13,126 13,141 13,108 13,138 13,116 13,121 13,167 13,149 13,109 13,141 13,131.6

Our Approach

Valid (No Effect) 148 180 154 139 186 148 153 171 163 141 158.3
Effective 964 972 1,010 962 985 984 944 940 1,010 983 975.4
Missed 142 156 145 146 147 161 162 147 161 162 152.9
Ignored (No Effect) 13,128 13,074 13,073 13,135 13,064 13,089 13,123 13,124 13,048 13,096 13,095.4

3 EXPERIMENT
We present a preliminary evaluation of our proposed method using
the EMNIST benchmark [4] and three DL models (two well-known
model architectures, and one developed by us).

3.1 Experimental Setup
3.1.1 Dataset. We split the EMNIST [4] dataset into two subcate-
gories: digits and capital letters: we exclude lower case alphabets
since their numbers in the training data were insufficient as well as
not uniform. Only the ByClass type in the EMNIST dataset provides
case-sensitive letter data, so the experiment uses that type.

To avoid data imbalance across classes, we sample up to 2,800
train data and 400 test data per class. As a result, a total of 99,862
training data and 14,382 test data were used for the 36 classes (10
digits and 26 capital letters) in the EMNIST ByClass dataset.

3.1.2 DL Models. We implemented a simple Convolutional Neural
Network, called MyNet, and used it as the MUT. Its architecture is
shown below in abbreviated pseudocode.
def createMyNetModel(n_classes):

in_tensor = Input(shape=my_input_shape)
x = Convolution2D(4,activation='relu',...)(in_tensor)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Convolution2D(12,activation='relu',...)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten(name='flatten')(x)
x = Dense(units=64, activation='relu')(x)
x = Dense(n_classes)(x)
x = Activation('softmax')(x)
model = Model(input_tensor,x)
return model

To compare our subspecialization approach with traditional dif-
ferential testing, we additionally use two widely studied DL models,
ResNet [7] and LeNet [8]. Out of 14,382 EMNIST test images, the
trained MUT instances of ResNet, LeNet, and MyNet misclassify
1,025 (7.1%), 1,106 (7.7%), and 1,128 (7.8%), respectively. We can con-
sider these as the upper bound of the number of misclassifications

to be found from these instances. All trainings have been performed
with batch size of 16, maximum epoch of 100, and an early stopping
criterion based on verification loss.

3.2 Experimental Result
We compare our approach with two existing differential testing
techniques. The first approach uses ResNet and LeNet as sepa-
rate reference DL models. The second approach is an 𝑁 -version
approach, for which we train multiple instances of MyNet and com-
pare the original instance of MUT to the additional instances. We
set 𝑁 to be 2 and 3: when 𝑁 = 3, we take the majority output as
the correct classification.

Table 1 contains the number of inputs in each partition intro-
duced in Figure 2. We repeat the differential testing of the test
images ten times to cater for the randomness, and report the results
from all runs as well as the average.

3.2.1 The Error Detection Capability (RQ1). Recall that our MUT
instance of MyNet misclassifies 1,128 test images (see Section 3.1.2).
The stacked horizontal bar chart in Figure 4 shows the average size
of the effective input set, |𝐼𝑆 ∩ 𝐼𝐹 |, as well as the average size of
the non-effective (i.e., valid) input set, |𝐼𝑆 − 𝐼𝐹 |, for each differential
testing approach. The numbers right to the bars show the number
of inputs that produced different classification results, i.e., |𝐼𝑆 |.
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Figure 4: Analysis of test inputs selected with 5 methods
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We note that our subspecialized model approach produces the
highest |𝐼𝑆 |, which is actually greater than 1,128 (i.e., the number
of actual misclassifications). All other approaches produce signif-
icantly fewer disagreement from differential testing: due to the
effect of the majority voting, 𝑁 = 3 produces fewer violations than
𝑁 = 2 for the 𝑁 -version approach.

Table 2: Analysis of error detection effect and validity

Similar Model N-version Our
MyNet- MyNet- N=2 N=3 ApproachResNet LeNet

𝑛 (𝐼𝑆∩𝐼𝐹 )
𝑛 (𝐼𝐹 )

44.0% 41.7% 37.9% 26.6% 86.4%
( 495.91,128 ) ( 469.71,128 ) ( 428.31,128 ) ( 300.11,128 ) ( 975.41,128 )

𝑛 (𝐼𝑆∩𝐼𝐹 )
𝑛 (𝐼𝑆 )

62.4% 58.2% 57.4% 71.1% 86.1%
( 495.9795.1 ) ( 469.7806.5 ) ( 428.3746.4 ) ( 300.1422.2 ) ( 975.4

1,133.7 )

Table 2 presents the error detection rates of each approach. Our
approach can detect more than 80% of the total 1,128 errors. While
differential testing using ResNet or LeNet is more effective than the
N-version approaches, no other approach detects more than 50%.

The bottom row of Table 2 contains the proportion of selected test
data that are actually effective. This ratio can be used to determine
the validity of the input selection method. Our method shows the
highest proportion of 86.1%, showing that input selection using our
approach has high precision (i.e., if a disagreement is observed, it is
highly likely that the MUT is misclassifying), as well as high recall
(i.e., most of the misclassifications made by MUT can be detected
by disagreements between MUT and subspecialized models).

3.2.2 Impact of the Test Model Quality on Effectiveness (RQ2). We
further investigated whether the quality of the MUT affects the
effectiveness of our approach: are we seeing high effectiveness sim-
ply because MyNet is a poorly performing classifier? To investigate
this, we have also used ResNet and LeNet as the MUT, and applied
the subspecialized model approach to these DL models.

Table 3: Analysis of effects according to model quality

ResNet LeNet MyNet

|𝐼𝐹 | 1,025 1,106 1,128
|𝐼𝑆 | 1,099 1,119 1,134

|𝐼𝑆 ∩ 𝐼𝐹 | 902 958 975
|𝐼𝑆∩𝐼𝐹 |
|𝐼𝐹 | 88.0% ( 902

1,025 ) 86.6% ( 958
1,106 ) 86.4% ( 975

1,128 )
|𝐼𝑆∩𝐼𝐹 |
|𝐼𝑆 | 82.1% ( 902

1,099 ) 85.6% ( 958
1,119 ) 86.1% ( 975

1,134 )

Table 3 shows the results of this investigation, along with the
result from MyNet. The numbers in the table are rounded and
expressed as natural numbers. There is not significant difference
between models. Interestingly, our approach shows the highest
error detection rate for ResNet, which is the model with the lowest
test classification error rate (7.1%, see Section 3.1.2).

4 LIMITATIONS
One obvious limitation is that our approach requires an additional
classification of incoming inputs by the subspecialization bound-
aries. For some DL applications, this subspecialization classification
may take place naturally during the data collection. We expect
unsupervised learning to be a good fit, as it can be applied even in
cases in which labels are not avaialble.

5 CONCLUSION
We present a novel approach to perform differential testing for DL
models without having to implement additional model architectures.
Instead, we partition the training data into subgroups, and train
subspecialized models that are used for differential testing of inputs
belonging to the subgroup. We evaluate our approach using a CNN
model trained for EMNIST benchmark as the Model Under Test: the
subspecialized models outperform ResNet, LeNet, and alternative
𝑁 -versions of the MUT, when used as the reference model for
differential testing of MUT. The results show the potential of using
subspecialized models in the context of differential testing. Future
work will consider automated subspecialized group classification
for unseen inputs based on unsupervised learning.
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