
Field Report: Applying Monte Carlo Tree
Search for Program Synthesis

Jinsuk Lim(B) and Shin Yoo

Korea Advanced Institute of Science and Technology, 291 Daehak Ro,
Yuseong Gu, Daejeon, Republic of Korea

rhapsody js@kaist.ac.kr

Abstract. Program synthesis aims to automatically generate an exe-
cutable segment of code that satisfies a given set of criteria. Genetic
programming has been widely studied for program synthesis. However,
it has drawbacks such as code bloats and the difficulty in finer con-
trol over the growth of programs. This paper explores the possibility of
applying Monte Carlo Tree Search (MCTS) technique to general purpose
program synthesis. The exploratory study applies MCTS to synthesis of
six small benchmarks using Java Bytecode instructions, and compares
the results to those of genetic programming. The paper discusses the
major challenges and outlines the future work.

1 Introduction

Program synthesis aims to automatically generate an executable segment of code
that satisfies a given specification. A number of different approaches have been
studied, including logical reasoning [11], similarity-based gradient descent [4], as
well as the widely studied genetic programming [1,9]. While genetic program-
ming has been used for many successful applications of program synthesis, such
as coevolution of programs and tests [1] as well as automated patching [5], it has
drawbacks such as code bloats [10] and parameter tuning [8].

This paper considers Monte Carlo Tree Search (MCTS) [7] for general pur-
pose program synthesis. MCTS is a search heuristic that has achieved impressive
results in a number of applications, most notably in computer Go [2]. It has a
number of advantages over GP. First, it is more robust against bloats as it is
a constructive algorithm. Second, it is mathematically well-established, with a
provable guarantee for convergence. Moreover, it has fewer hyperparameters to
tune, making it amenable to experimentations and analyses.

MCTS has been recently studied in the context of symbolic regression [12].
This paper extends the application area with an exploratory study of MCTS
based synthesis of six small benchmark programs using Java Bytecode instruc-
tions. We report initial findings, which suggests that the performance of MCTS
is comparable to that of genetic programming. The paper aims to serve as a
launchpad for future research on applications of MCTS in SBSE with discus-
sions of practical issues in MCTS based program synthesis.

c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 304–310, 2016.
DOI: 10.1007/978-3-319-47106-8 27



Field Report: Applying Monte Carlo Tree Search for Program Synthesis 305

2 MCTS for Program Synthesis

Although MCTS is typically applied to playing games [2], it has recently been
applied [3] and evaluated [12] in the context of symbolic regression. In case of
symbolic regression, MCTS iteratively builds a stack-based representation of an
expression tree, in which consuming a subsequent symbol is equivalent to finding
the next optimal move in a game state.1

This paper extends the same core idea to program synthesis by replacing
expression trees with program trees. Both symbolic regression and program
synthesis are based on the same intuition that sequences of nodes (symbols
or instructions) can be interpreted as (expression or program) trees. However,
unlike pure functions in symbolic regression, a general purpose program presents
a few additional challenges, such as program control flow structure and typing.

2.1 Control Flow Structure

Since we rely on the stack representation of program trees, concatenation of
an arbitrary number of program statements raises an issue. If each statement
can be represented as a subtree in the program tree, these subtrees should be
concatenated using a fixed-arity node type. Our solution is to introduce a binary
node concat, whose semantic is equal to nop: it simply acts as a placeholder so
that two subtrees can be concatenated. Concatenation of multiple lines require
a successive use of concat nodes.

Similarly, branching instructions such as if are represented as tertiary nodes:
they take three child subtrees, each representing the Boolean predicate, the true
body, and the false body. When generating code from if subtrees, we insert
goto instructions immediately following a comparison operator (e.g. icmplt),
which points to the beginning of the else block, and immediately following the
then block, which points to the instruction following the else block.

2.2 Typing

Use of typing system is either absolutely necessary, because the synthesis task or
the actual instruction specifically requires statically typed elements, or strongly
encouraged, because it greatly reduces the search space by restricting the set of
instructions to consider at each phase of the search.

Our typing system consists of seven types: int, float, boolean, string,
void, control, and conditional. The first five are natural consequences of
choosing Java Bytecode as our code generation tool. The control is a spe-
cial type reserved for instructions that affect control flow: if and concat. The
conditional is used as the return type of comparison operators - icmplt (<)
and icmple (≤). In the expansion step, MCTS considers only those instruc-
tions that have compatible types as its next instruction, i.e., instructions whose

1 A brief overview of MCTS, as well as details of the experimental results, is available
from http://coinse.kaist.ac.kr/projects/mctsps.

http://coinse.kaist.ac.kr/projects/mctsps


306 J. Lim and S. Yoo

return types are compatible with the type of the required arguments. The true
or false body of the if instruction, as well as the (empty) program root, may
start with instructions of any type.

3 Experimental Setup

3.1 Implementation

We implemented our MCTS based program synthesis tool using Java and Byte
Code Engineering Library (BCEL)2. Not all of the instructions used by MCTS
are Java bytecode. Some of them are lightweight Intermediate Representations
(IRs) that provide shortcuts and type specific instructions. For example, instead
of preparing appropriate method invocation of System.out.println, we provide
iprint and fprint for integers and floats respectively. Others are directly from
bytecode instructions (such as iadd, fadd, etc.). The IR program is translated
into actual Java bytecode for fitness evaluation.

For comparison, we have also implemented a genetic programming based
synthesis tool that generates Java bytecode instructions. Since no existing tool
fits our exact purpose, we constructed a bytecode generation tool that takes
node sequence as input and writes corresponding Java classfiles as output; the
actual search has been driven by pyevolve3, with all typing restrictions added.

3.2 Benchmarks

We evaluated our method on six benchmarks from Helmuth et al. [6], whose
descriptions are given in Table 1. Each benchmark is given a distinct set of
terminals and non-terminals which is sufficient to output a correct program. For
the test cases, we follow the prescriptions outlined by Helmuth et al. [6].

Table 1. Subject Benchmarks from Helmuth et al. [6]

Name Instructions Expected Behaviour

ADD INTE-

GER AND

FLOAT

iload 1 iadd isub imul idiv fload 2 fadd fsub

fmul fdiv concat return iprint fprint f2i i2f

Given an integer (iload 1) and a float

(fload 2), print their sum

COMPARE

STRING

LENGTHS

sload 1 sload 2 sload 3 true false nop breturn

strlen if icmplt icmple concat

Given three strings s1, s2 and s3, return true

if len(s1) < len(s2) < len(s3) and false oth-

erwise.

GRADE iload 1 iload 2 iload 3 iload 4 iload 5 sload 1

sload 2 sload 3 sload 4 sload 5 sprint return if

icmplt icmple concat

Given four distinct integer thresholds for

achieving A, B, C, and D in descending order,

and the fifth represents the student’s score,

print the letter grade.

MEDIAN iload 1 iload 2 iload 3 nop iprint return if

icmplt icmple concat

Given three integers, print their median.

SMALL OR

LARGE

iload 1 iload 2 iload 3 sload 4 sload 5 nop

iprint sprint return if icmplt icmple concat

Given an integer i, print “small” if i < 1000

and “large” if i ≤ 2000.

SMALLEST iload 1 iload 2 iload 3 iload 4 nop iprint return

if icmplt icmple concat

Given four integers, print the smallest of

them

2 http://commons.apache.org/bcel/.
3 http://pyevolve.sourceforge.net.

http://commons.apache.org/bcel/
http://pyevolve.sourceforge.net


Field Report: Applying Monte Carlo Tree Search for Program Synthesis 307

���

� �

�

�

� �
�
�

�

�

�

� � �

�

��

��

�

�

�
�

�

�
��

��

���
�

�

�

�

�

�
�

��

� �

�

� � �

�
�

�

�
�

�

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)
ADD_INTEGER_AND_FLOAT

�

�

�

�

� �

� �

�

�

�

�
��

� � �

�

��

�

�

���

��� ��

��
�

�

�

�

�

�

�

�

�

��
�

�

�

�

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

COMPARE_STRING_LENGTHS

��
���

��
�
� �

�
����
�

���� ������� ���
�
�

�
���
��

�

�� ����
�
�

�����
�
�
����� ��

��� ���� ������ ��

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

GRADE

� ���� � �� � � ��
�

��

�

�

�

������ � �
�

���� ���� ���� ��

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

MEDIAN

�
� ��

�

���

��

�

����
� ������

�

�

�

�

�

�

�
���

�

��

� � � � � �

� � �� � � � �
�
�

� � ����� �� �
��
�

� �

���

�

�

��

�

��

�
���

�

� �

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

SMALL_OR_LARGE

��
�
��
� �

��
�
�
�

�
�

�

����

�

�

�

��� �����

�

��
� �

��
� ���

���

�

�
�� �

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

SMALLEST

Fig. 1. Boxplots of test data fitness for UCT and GP across different number of eval-
uation budgets

3.3 Configurations

The variant of MCTS we implemented, Upper Confidence Bounds on Trees
(UCT) [7], has two hyperparameters: exploration constant ec and maximum
program length lp. In particular, lp has to be large enough for a candidate pro-
gram to be able to encode the correct behavior. We set lp to be 100 and ec to be
10 in our experiments. GP is configured with population size 32, rank selection,
mutation rate 0.1, crossover rate 0.9 and maximum tree depth 7.4

Both UCT and GP were run for 30 times to cater for the stochastic nature
of each algorithm. Each run was given a maximum of 215 = 32, 768 evaluations.
Experiments have been run on machines with Core i7 6700 with 8 GB RAM
running Ubuntu 14.04, Java version 1.7.0 80, and Python runtime version 2.7.11.

3.4 Fitness Function

Each benchmark either prints or returns an output. Our fitness function con-
siders three aspects of a candidate program: whether it is executable, whether
it prints the correct output, and whether it returns the correct output. The

4 GP should generate programs of lengths similar to lp. As most non-terminals have
one or two leaves, maximum depth of 7 achieves this.



308 J. Lim and S. Yoo

fitness of a program P with respect to a test suite T is defined as follows for
minimisation:

f(P, T ) =
{

1.0 if P is non-executable
w · fp(P, T ) + (1 − w) · fr(P, T ) otherwise (w = 0.5)

where fp and fr measures fitness for printed and returned output respectively.
For each output type, we adopt a widely-used distance measure between two
instances: absolute distance for int, float, and character, Levenshtein distance
for strings, and NAND for boolean. Both fp and fr return the worst fitness when
something is printed or returned when it should not be.

4 Results

Results for the six benchmarks are shown in Fig. 15. Both UCT and GP show
clear trends of improvement as the number of evaluations increase. Both per-
form well on the relatively easy benchmarks, Add Integer And Float, Small
Or Large and Compare String Lengths: several runs produce correct programs.
Grade, Median and Smallest are harder because correct solutions require non-
trivial control flow structures. Both algorithms fail to output correct programs,
although the fitnesses continue to improve.

5 Discussion and Future Work

Both UCT and GP shows inferior performance compared to those reported in
Helmuth et al. [6]. This may be due to much smaller budget, but it may also be
relevant that Helmuth et al. use a language specifically designed for GP.

We observe that typing is critical. A vast majority of samples by MCTS is
non-executable when types are not considered. However, implementing a full
type system on top of a tree search can make the algorithm bulky. We plan to
investigate the feasibility of implementing a type system as a skewed sampling
probability distribution.

Second, being a constructive algorithm, MCTS is prone to early suboptimal
commitment. This tendency is shown in difficult benchmarks such as Median
and Smallest: the fitness hardly improves past a certain number of evaluations.
It appears that MCTS commits to an instruction that yields moderate rewards
and keeps exploiting it, when in fact its rewards are suboptimal. Tuning the
exploration constant and favoring longer samples may improve this behaviour.

The choice of code generation layer can have a significant impact on perfor-
mance. While Java bytecode achieves good expressiveness with a relatively small
set of instructions, the low level nature of the instructions introduces challenges
such as having to deal with explicit jumps to implement branching. We plan to
compare different levels of abstractions for program synthesis.
5 Detailed statistics, as well as the output program instructions, are available from

http://coinse.kaist.ac.kr/projects/mctsps.

http://coinse.kaist.ac.kr/projects/mctsps


Field Report: Applying Monte Carlo Tree Search for Program Synthesis 309

Finally, it should be noted that MCTS is only concerned with a sequence
of choices (i.e. selection of nodes); there may be alternatives ways to translate
this into programs other than the stack-based representation of trees. We plan
to investigate other forms of program construction.

6 Conclusion

This paper presents an early exploration on how to apply Monte Carlo Tree
Search for general purpose program synthesis. Java bytecode based implementa-
tions of MCTS shows comparable performance to genetic programming. There
are many challenges that are specific to different aspects of program synthesis,
such as control flow structure, typing, and the choice of code generation layer.

Acknowledgments. Authors would like to thank David White and Kee-eung Kim for
many thoughtful discussions about Monte Carlo Tree Search. This research has been
supported by Undergraduate Research Program (URP) at KAIST.

References

1. Arcuri, A., Yao, X.: Co-evolutionary automatic programming for software devel-
opment. Inf. Sci. 259, 412–432 (2014)

2. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

3. Cazenave, T.: Monte Carlo expression discovery. Int. J. Artif. Intell. Tools 22(1)
(2013)

4. Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare, A., Marron, M., Sailesh,
R., Roy, S.: Program synthesis using natural language. In: Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, pp. 345–356. ACM,
New York (2016)

5. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming app-
roach to automated software repair. In: Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation, pp. 947–954 (2009)

6. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO 2015, pp. 1039–1046. ACM, New York (2015)

7. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

8. de Lima, E.B., Pappa, G.L., de Almeida, J.M., Gonçalves, M.A., Meira, W.: Tuning
genetic programming parameters with factorial designs. In: IEEE Congress on
Evolutionary Computation, pp. 1–8, July 2010

9. Orlov, M., Sipper, M.: Flight of the finch through the java wilderness. IEEE Trans.
Evol. Comput. 15(2), 166–182 (2011)

10. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
Published via http://lulu.com (2008). (With contributions by J.R. Koza)

http://lulu.com


310 J. Lim and S. Yoo

11. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. SIGPLAN Not. 45(1), 313–326 (2010)

12. White, D.R., Yoo, S., Singer, J.: The programming game: evaluating MCTS as
an alternative to GP for symbolic regression. In: Proceedings of the Companion
Publication of the 2015 on Genetic and Evolutionary Computation Conference,
GECCO Companion 2015, pp. 1521–1522. ACM, New York (2015)


	Field Report: Applying Monte Carlo Tree Search for Program Synthesis
	1 Introduction
	2 MCTS for Program Synthesis
	2.1 Control Flow Structure
	2.2 Typing

	3 Experimental Setup
	3.1 Implementation
	3.2 Benchmarks
	3.3 Configurations
	3.4 Fitness Function

	4 Results
	5 Discussion and Future Work
	6 Conclusion
	References


