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Abstract—Code documentation can, if written precisely, help
developers better understand the code they accompany. However,
unlike code, code documentation cannot be automatically verified
via execution, potentially leading to inconsistencies between doc-
umentation and the actual behavior. While such inconsistencies
can harmful for developer’s understanding of the code, checking
and finding them remains a costly task due to the involvement of
human engineers. This paper proposes METAMON, which uses
an existing search-based test generation technique to capture
the current program behavior in the form of test cases, and
subsequently uses LLM-based code reasoning to identify the
generated regression test oracles that are not consistent with
the program specifications in the documentation. METAMON
is supported in this task by metamorphic testing and self-
consistency. An empirical evaluation against 9,482 pairs of code
documentation and code snippets, generated using five open-
source projects from Defects4J v2.0.1, shows that METAMON
can classify the code-and-documentation inconsistencies with the
precision of 0.72 and the recall of 0.48.

Index Terms—Metamorphic Testing, Code Documentation,
Large Language Model, Oracle Problem, Regression Test

I. INTRODUCTION

Code documentation, such as comments or docstrings, is a
human-readable description of the source code and its behav-
ior. While languages like Java and Python provide documen-
tation formats that can be processed by machines to produce
structured documents (PyDoc and JavaDoc, respectively),
primarily code documentation aims to aid the human under-
standing of the code that they accompany [1]. As such, it is
critical that code documentation is consistent with the behavior
of the code they accompany. If the documentation is out of
sync with the program behavior, developers may understand
the existing code incorrectly or imprecisely, potentially leading
to buggy code changes.

Finding such inconsistencies between code documenta-
tion and program behavior is an important but challenging
problem, due to the fact that documentation is written in
natural languages whereas program behavior is described in
programming langauges. Checking the semantic consistency
across natural and programming languages has been primarily
reserved only for human developers. However, the cost of man-

ual inspection means that such checks cannot be performed
frequently enough, resulting in inconsistencies in real-world
projects [2]. Existing attempts to detect these inconsistencies
either depend on rule-based approaches [3]–[6] or textual
similarities [7]–[9] to make the task more tractable.

Recently, LLMs have shown significant capabilities to per-
form logical reasoning across the barrier of natural and pro-
gramming languages. In addition to successfully synthesizing
code from natural language specifications [10], LLMs can
generate bug reproducing tests from bug reports written in
natural language [11], or incorporate error messages from
synthesized test cases to improve the code coverage iter-
atively [12]. These capabilities are directly relevant to the
task of checking documentation inconsistencies, and LLMs
have been evaluated for the task [13]. However, existing
techniques based on LLMs tend to simply prompt LLMs to
spot inconsistencies between code and documentation and falls
short of actually checking the dynamic program behaviour.
Given that LLMs can hallucinate [14], augmenting LLM-based
inconsistency checking with a more concrete exploration of
program behavior seems to be a missed opportunity.

This paper presents METAMON, an automated technique
that finds inconsistencies between code documentation and
program behavior via the use of a search-based test data
generation technique and LLMs. To capture program behavior
in more detail, instead of presenting the code verbatim in
prompts, METAMON uses EvoSuite [15] to generate regression
test cases. These test cases not only achieve high structural
coverage (and thereby expose program behavior in more
depth) but also capture the current program behavior in the
form of assertions that record the program output. METAMON
uses LLMs to judge whether these regression test oracles
are correct or not with respect to the current documentation.
To further enhance its performance, METAMON adopts a
couple of prompt engineering strategies. First, METAMON uses
metamorphic LLM queries: given a prompt P and an answer
A, METAMON will form a subsequent query prompt P ′ and
an expected answer A′ by transforming (P,A) with Meta-
morphic Relations (MRs). Second, METAMON uses Chain-



of-Thoughts [16] and self-consistency [17] to improve the
accuracy of the responses from the LLM.

We evaluate METAMON using 9,482 pairs of Java methods
and their documentation, taken from five open source projects
in Defects4J [18] version 2.0.1: the dataset contains both
consistent and inconsistent pairs, since we generate half of
the pairs using the buggy versions. METAMON can classify
the consistency between the code documentation and the
program behavior captured in test cases with a precision of
0.72 and a recall of 0.48. An ablation study shows that both the
metamorphic queries, and the advanced prompt engineering
techniques, contribute positively to the performance.

The technical contributions of this paper are as follows:
• We present METAMON, an LLM-based technique that can

check inconsistencies between documentation and program
behavior. METAMON captures program behavior by gen-
erating regression test cases using EvoSuite, and uses
metamorphic LLM queries and tailored prompt engineering
techniques to enhance its performance.

• We perform an empirical evaluation of METAMON based
on 9,482 pairs of documentation and source code extracted
from five open-source projects in Defects4J v2.0.1. An
ablation study shows that metamorphic LLM queries and
self-consistency-based scoring all contribute to the final
performance.

• We make the implementation of METAMON, along with
the dataset of 9,482 pairs of code documentation and
method/test code snippets, publicly available for replicabil-
ity: https://figshare.com/s/dd17b119d40d4bf3176a
The rest of the paper is structured as follows: Section II

provides an overview of the background and related research.
Section III presents our approach, METAMON. Detailed exper-
imental settings and research questions for evaluating META-
MON are covered in Section IV, while Section V details the
findings, and Section VI concludes.

II. BACKGROUND AND RELATED WORK

A. Code-and-Documentation Inconsistency

Code documentation refers to the descriptions of speci-
fications and requirements of the program, or explanations
of the source code, written with the purpose of improving
code readability, facilitating easier maintenance, supporting
collaboration among developers, and enhancing code reusabil-
ity. However, it is common for documentation and source
code to become out-of-sync over time, which can happen
when only code is updated without the documentation or vice
versa [2]. Analyzing the consistency between documentation
and source code has traditionally been a challenging task.
Some approaches have used rule-based methods to detect
specific types of inconsistencies, such as issues related to
locking [3], interrupt-related concurrency bugs [4], null value-
related exceptions [5], and identifier renaming [6]. Other
techniques have treated the inconsistency detection problem
as a text similarity problem, employing machine learning
models [7]–[9], which often requires a dedicated training step.

Recently, LLMs have shown remarkable capabilities in
understanding both natural and programming languages, en-
abling them to be applied to tasks such as code generation
from specifications [10], [19] or document generation from
source code [19]–[21]. This suggests that checking the con-
sistency between code and documentation is now becoming
increasingly feasible. For example, a recent study shows that
GPT-4 [22] can identify subtle inconsistencies between code
and its documentation [13]. However, this study does not
focus directly on the problem of inconsistency detection, but
rather uses it as a means of assessing the code understanding
capabilities of LLMs. In comparison, we propose a novel
LLM-based approach that checks the consistency between
program behavior (captured by regression tests) and their
specifications captured in documentation, rather than directly
comparing source code and documentation. We also introduce
the concept of metamorphic prompting.

B. Metamorphic Testing

Metamorphic testing [23] is a testing technique that aims
to reveal faults when there is no explicit test oracle. In
metamorphic testing, the correctness of a program is not based
on the expected output (from oracles): rather, it is based on the
relationships between different inputs and their corresponding
outputs, known as Metamorphic Relations (MRs). For exam-
ple, in a program that calculates the square of a number, i.e.,
f(x) = x2, the metamorphic relation could be that the square
of the negative of a number is equal to the square of the
number, i.e, a = −b → f(a) = f(b). Metamorphic testing has
been successfully applied to machine learning models [24]–
[26], which are essentially untestable [27].

In our work, we use the concept of metamorphic testing to
assess the reliability of LLMs in identifying inconsistencies
between program specifications and behavior. By examining
the alignment of the LLM’s responses with the expected
MRs, we can assess the model’s reliability and consistency
in comprehending the underlying relationships between the
program documentation and behavior. Note that this approach
can also be seen as a form of LLM self-consistency, as the
LLM should produce opposite outputs for inverted queries if
it is truly consistent.

III. METHODOLOGY

In this paper, we introduce METAMON, a novel approach
that uses LLM to automatically identify inconsistencies be-
tween program documentation and behavior. Given the pro-
gram documentation for a method that meets certain quality
criteria (Step A), instead of directly analyzing the method’s
source code, METAMON generates regression tests to capture
the current semantics of the target method (Step B). To
enhance the reliability of the evaluation, METAMON generates
two types of prompts based on metamorphic relations: the
original/transformed-version prompts that ask whether the cap-
tured program behavior in the original/transformed versions of
the regression test aligns well with the program documentation
(Step C). Subsequently, each type of prompt is queried to LLM



multiple times, and the answers are recorded (Step D). The
final set of responses from the LLM is aggregated to compute
a consistency score, which numerically represents the extent to
which the given specification in method documentation aligns
with the captured method behavior (Step E). In the following
sections, we provide more detailed explanations for each step
of METAMON approach.

A. Selecting Method Documentation
The quantity and quality of documentation vary across

projects and even down to the level of individual classes or
methods, influenced by factors such as a method’s complexity
and its significance within the project. To ensure a fair eval-
uation of METAMON, we focus on documentation containing
specifications that meet a set of minimum criteria.

Components in documentation essential for our analysis
include descriptions of method input parameters and expected
output values. This description is needed when constructing
unit tests, which are divided into the test prefix/setup and
the test oracle. The test prefix/setup initiates the method
with appropriate inputs and drives the unit under test to an
interesting state, while the test oracle specifies a condition
that the resultant state should satisfy. These specifications are
typically documented in Java using @param and @return
tags. Thus, our selection process prioritizes methods whose
specifications clearly delineate these aspects, ensuring META-
MON is assessed against well-defined and actionable criteria.

B. Capturing Program behavior using Regression Tests
We employ automatically generated regression tests to pro-

duce a textual representation of the current program behavior.
This textual representation serves as input for METAMON,
enabling us to compare the program’s captured behavior
against its specifications. Regression test generation tools, such
as EvoSuite [15], are typically used to generate tests that help
ensure that future updates do not inadvertently disrupt the
existing functionality of the program.

Fig. 1 illustrates an example of a regression test generated
for the ClassUtils.getPackageName method in the
Apache Commons Lang project, which has an incorrect oracle.
This test demonstrates the consequences of an artificially
introduced bug in the method’s return statement. When
ClassUtils.getPackageName("line.separator")
is invoked with the current version of the program, it
erroneously returns "ine". This output is in conflict with
the method’s documented expected behavior, which is to
accurately return "line" as the package name for the
specified input.

C. Prompt Engineering based on Metamorphic Relations
METAMON uses Metamorphic Relations (MRs) to improve

the reliability of the LLM responses. These MRs are grounded
in two core components: the input transformation and the
output relation [23]. The MRs employed in METAMON are
defined as follows:

R = {(a1, a2,Exec(t, a1),Exec(t, a2)) | a1 = ¬a2
→ Exec(t, a1) = ¬Exec(t, a2)}

(1)

TABLE I: Oracle transformations based on MR

Transformation Description

MR T2F Replacing assertTrue to assertFalse
MR F2T Replacing assertFalse to assertTrue
MR N2NN Replacing assertNull to assertNotNull
MR NN2N Replacing assertNotNull to assertNull
MR E2NE Replacing assertEquals to assertNotEquals
MR NE2E Replacing assertNotEquals to assertEquals
MR S2NS Replacing assertSame to assertNotSame
MR NS2S Replacing assertNotSame to assertSame

where a1 and a2 are assertion predicates that negate each other,
the function Exec returns the execution result (true if pass,
false if fail) for test input t against the given assertion. Note
that the execution results for t with a1 should be different from
that of a2 in order to satisfy the output relation. To generate a
transformed test case, we apply a transformation as described
in Table I to the source test case generated at Step B. Through
input transformation, we negate the semantics of the original
assertion. Subsequently, to verify whether the output relation
is met, we compare test outcomes to ensure that a pass in
one execution directly corresponds to a fail in its counterpart,
and vice versa. Notably, we filter out original assertions that
do not lead to clear metamorphic relations, such as assertions
that expect thrown exceptions (e.g., assertThrows).

In the final stage of the prompt construction, we enhance
the model’s problem-solving capability by incorporating the
Chain-of-Thought technique [28]. This approach explicitly
outlines each reasoning step, thereby improving the model’s
analytical processes. It facilitates systematic evaluation of
the model’s reasoning and ensures clarity in its responses,
significantly enhancing the reliability and interpretability of
outcomes. The process involves several key steps:

• Step 1: Identifying Method Signature
• Step 2: Identifying Method Description
• Step 3: Evaluating Test Case
• Step 4: Asking Confirmatory Question
• Step 5: Labeling Oracle
We use the term metamorphic prompt to refer to a pair of

an original prompt and its transformed prompt. The prompt
example referenced by Fig. 1 is illustrated in Fig. 2. The texts
with gray background are automatically filled in by METAMON
for both the original and the transformed prompts, while the
sections with blue and red backgrounds represent the content
for the original and transformed prompts, respectively.

D. Querying LLM

Using the generated prompt, METAMON queries the LLM
to respond to the reasoning steps (Step D). We present both
the original version and the transformed-version prompt to
the LLM, each version n times, adopting the self-consistency
prompt engineering. For the output, we instruct the LLM to
label the correctness of the given test case and assertion with
respect to the given documentation using three distinct types:
<correct>, <undecidable> and <incorrect>. Given
that the test oracles (representing the program’s behavior) in
the original version and the transformed version are opposite



public static String getPackageName(String className) {
if (StringUtils.isEmpty(className)) {

return StringUtils.EMPTY;
}

while (className.charAt(0) == ’[’) {
className = className.substring(1);

}

//
// < ... Omitted ... >
//

if (i == -1) {
return StringUtils.EMPTY;

}
// Bug! (should be substring(0, i);)
return className.substring(1, i);

}

(a) In Lang-1f, ClassUtils.Java-(mutated line 306)

/**
* Gets the package name from a String.

*
* The string passed in is assumed to be a class name - it

is not checked.

* If the class is unpackaged, return an empty string.

*
* @param className the className to get the package name

for, may be null

* @return the package name or an empty string

*/

(b) Javadoc

public void test() throws Throwable {
String string0 = ClassUtils.getPackageName("line.
separator");
assertEquals("ine", string0);

}

(c) Regression Test Case Generated by EvoSuite

Fig. 1: An example of a buggy source code along with its corresponding Javadoc and EvoSuite-generated regression test case

to each other, we would expect the responses from an LLM to
differ for each prompt if the LLM is consistent and can judge
the consistency between the given document and the test case.

E. Scoring based on LLM Responses

We aggregate LLM responses and convert these responses
into scores. The scoring methodology differs for original and
transformed prompts, and is calculated as follows:

1) Original Prompts: For original prompts, the final label
obtained from the LLM’s responses is converted into a numer-
ical form using the following function:

forig(r) =


+1, if r = <correct>

0, if r = <undecidable>

−1, if r = <incorrect>

Suppose that we query the original-version prompt n
times and the answers are {r1, · · · , rn}, we aggregate
the answers by taking the sum of the numerical values,
scoreorig({r1, · · · , rn}) =

∑n
i=1 forig(r), which ranges from

−n to n. This score represents the degree of alignment or
misalignment between the program’s actual behavior and its
intended specification in documentation, as perceived by the
LLM. A score of n indicates that all n responses from
the LLM unanimously confirmed a consistency between the
program behavior and specifications. Conversely, a score of
−n signifies that all responses identified an inconsistency.

2) Transformed Prompts: The scoring system for trans-
formed prompts is deliberately inverted:

ftran(r) =


+1, if r = <incorrect>

0, if r = <undecidable>

−1, if r = <correct>

Similarly, the answers from n queries are aggregated as:
scoretran({r′1, · · · , r′n}) =

∑n
i=1 ftran(r

′), which also ranges
from −n to n, representing the degree of alignment or

misalignment between the program’s behavior and its specifi-
cation. For instance, a score of −n indicates that the LLM
consistently found a consistency between the behavior and
specification of the inversed program across all n responses.
This, in turn, indicates an inconsistency between the behavior
and specification of the original program, aligning with forig.

We then aggregate scores from both the original and
transformed prompts by taking the sum of both scores.
When querying both types of prompts n times, the final
score will range from [−2n, 2n], where 2n represents a
scenario where all n responses for the original prompt are
<correct>, and all n responses for the transformed prompt
are <incorrect> (or vice versa). We then normalize this
score to a score ranging in [−1,+1] by dividing it by 2n.

TABLE II: Details of METAMON dataset

Projects # Mutants # Test

w/ incorrect oracle w/ correct oracle Total

Chart 11,589 2,684 2,684 5,368
Closure 343 93 93 186
Lang 4,723 594 594 1,188
Math 11,168 740 740 1,480
Time 1,983 630 630 1,260

Total 29,806 4,741 4,741 9,482

IV. EVALUATION SETUP

A. Dataset

We evaluate our approach on a carefully constructed dataset
comprising 9, 482 pairs of tests and documentation. This
dataset, shown in Table II, is evenly balanced, containing
4, 800 tests with incorrect oracles and an equal number of
tests with correct oracles. We construct this dataset from five
open-source projects included in Defects4J v2.0.1 as follows:

1) Documentation Quality Assessment: For each project,
we examine the documentation quality of each method to
confirm it contains descriptions for both parameters and return



# Evaluation Steps

## Step 1: Method Signature
What is the full method signature of `ClassUtils.getPackageName`?

## Step 2: Method Description
What does the `ClassUtils.getPackageName` method do, based on its 
Javadoc description?

## Step 3: Test Case Evaluation
Consider the test input 'ClassUtils.getPackageName("line.seperator");'. 
With knowledge based on the specifications, are you able to evaluate the 
expected result of the input? If not, what is the reason?

## Step 4: Confirmatory Question

Provide a detailed response, explaining why you consider it <correct>, 
<incorrect>, or <undecidable>.
```
<correct> if the test case aligns with the expected behavior based on 
the specifications.
<incorrect> if there is a mismatch between the test case and the 
expected behavior outlined in the specifications.
<undecidable> if the specifications are unclear or ambiguous in relation 
to the test case.
```

## Step 5: Label(<correct>, <incorrect>, <undecidable>)
Label:

You are tasked with assessing the accuracy of a given test case in 
verifying the expected behavior of a method, specifically examining its 
alignment with the method's specifications (Javadoc). Your role involves 
reviewing the Javadoc description of a method and evaluating the 
effectiveness of a test case in validating the method's expected 
behavior as outlined in the specifications.

System Message

# Method Specification
```
signature: 
org.apache.commons.lang3.ClassUtils.getPackageName(java.lang.String)

* <p>Gets the package name from a {@code String}.</p>
// ... omitted for brevity
* @return the package name or an empty string
```

Specification

Generated Unit Test

Evaluate the 'assertEquals' statement in the context of the 
specifications.

Evaluate the 'assertNotEquals' statement in the context of the 
specifications.

Verification Steps (CoT)

# Test to evaluate
```

```

@Test(timeout = 4000)
public void test() throws Throwable {
  String string0 = ClassUtils.getPackageName("line.seperator");
  assertEquals("ine", string0);
}

@Test(timeout = 4000)
public void test() throws Throwable {
  String string0 = ClassUtils.getPackageName("line.seperator");
  assertNotEquals("ine", string0);
}

Original Prompt Transformed Prompt

Fig. 2: An example of metamorphic prompt

conditions within the latest fixed version for each project
(e.g., Chart-1f, Closure-1f). Only methods with documentation
satisfying these criteria move to the next step. As illustrated in
Table II, despite its large size, many methods from the Closure
project were filtered out during this phase.

2) Mutant Injection: This step involves artificially intro-
ducing modifications to the program semantics. We create a set
of methods injected with first-order mutants with Major [29], a
mutation testing tool designed for Java programs, on methods
that have passed the documentation quality assessment.

3) Regression Test Generation: Generating regression tests
for every mutated method would incur a significant compu-
tational cost. Instead, through a random selection process,
we choose no more than 10 mutants per method, prioritizing
mutants that modify distinct lines of code to ensure diversity.
However, if a method produces fewer than 10 mutants, we
accept the set as is, without sampling. After selecting the
mutants out of about 30,000 mutants from five projects, we
employ EvoSuite to generate regression tests targeting the
chosen mutated methods.

4) Oracle Identification: Automatically generated tests are
executed against the latest fixed version of the program,
identifying the outcomes as failing or passing tests. A failing
test indicates a test with an incorrect oracle that captures the
behavior modified by the mutants injected into the program.
Conversely, a passing test refers to a test with a correct oracle
that fails to capture the behavior modified by the mutants
injected into the program. Since some mutants may be difficult
to kill, the number of failing tests is significantly smaller than
that of the passing ones. To ensure a balanced representation,
we adjust the ratio by randomly selecting passing tests to equal
the number of failing tests, facilitating a fairer comparison.

B. Experimental Settings

As a LLM model, we use GPT-3.5-Turbo-0613 pro-
vided by OpenAI with a default parameter setting of temper-
ature 0.7. We use EvoSuite version 1.0.7 and Major version
1.3.4 for test case and mutant generation, respectively.

C. Research Questions

We ask the following research questions in this paper.
1) RQ1. What is the effectiveness of METAMON?: To

answer this question, we apply METAMON (with n = 5) to
the 9,482 regression test cases shown in Table II. Our analysis
focuses on assessing how well the normalized score computed
from each metamorphic prompt corresponds with the ground
truth. We evaluate how effectively METAMON identifies mis-
alignment between regression oracles and documentations by
examining the precision and recall against different thresholds.

2) RQ2. How does each component affect the performance
of METAMON?: As described in Section III, METAMON
employs techniques such as metamorphic relations and self-
consistency to enhance the reliability of the LLM. To examine
the impact of these techniques on METAMON, we conduct an
ablation study. This study also evaluates the essential role of
the <undecidable> label, which is used in cases where
making a determination based solely on the provided prompt
is difficult. We investigate the model’s performance using only
two labels, <correct> and <incorrect>, to assess the
utility of the <undecidable> label.

3) RQ3. In what circumstance does METAMON fail to
identify inconsistencies?: In RQ3, we conduct a qualitative
analysis to identify the environments in which METAMON fails
to detect inconsistencies accurately. Specifically, we exam-
ine cases where METAMON reports consistencies with high
confidence, even though the test-specification pairs were, in
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Fig. 3: Incorrect oracle detection of METAMON

TABLE III: Precision, Recall, and F1 at different thresholds

Score Pre. Rec. F1 Score Pre. Rec. F1

≤ −0.1 0.722 0.480 0.576 ≤ −0.6 0.967 0.099 0.180
≤ −0.2 0.808 0.361 0.499 ≤ −0.7 0.971 0.064 0.120
≤ −0.3 0.873 0.267 0.409 ≤ −0.8 0.973 0.046 0.087
≤ −0.4 0.926 0.199 0.328 ≤ −0.9 1.000 0.021 0.042
≤ −0.5 0.952 0.134 0.235 ≤ −1.0 1.000 0.014 0.027

fact, inconsistent. This examination aims to uncover the causes
behind these misjudgments.

V. RESULTS

A. RQ1. Effectiveness of METAMON

To answer RQ1, we present the results of METAMON (with
n = 5) evaluated on the five projects listed in Table II. Fig. 3
shows the distribution of the number of metamorphic prompts
across the normalized score, with the red indicating those
based on tests with incorrect oracles, and the green for correct
ones. The majority of evaluations result in a score of 0.0,
where the METAMON either responded <undecidable> for
all queries, or produced both positive and negative scores
that canceled each other out. This emphasizes the difficulty
in assessing the correctness of oracles from developer-written
documentation that might lack sufficient detail for clear eval-
uation. Note that we used the documentation as they were
written by developers. The blue line depicts the proportion
of metamorphic prompts constructed from tests with incorrect
oracles (denoted as red in the bar plot) relative to the entire set
of metamorphic prompts corresponding to each score. The red
dotted line represents a baseline of 0.5, reflecting the balanced
nature of our dataset, which includes an equal number of tests
with correct and incorrect oracles. A point close to 100% at a
score of -1.0 signifies that the test-specification pairs steadily
identified by METAMON to be inconsistent were indeed pairs
with inconsistencies. Conversely, The point near 0% at a
score of 1.0 means that the pairs confidently classified by
the METAMON as aligned are very rarely associated with an
incorrect oracle.

To further evaluate the performance of METAMON in de-
tecting the test oracles inconsistent with documentation, we
analyze the precision and recall at different scoring thresholds,
as detailed in Table III. The oracle in a test is classified as
incorrect if the normalized score is equal to or lower than a
specified threshold. For example, when the threshold is set

TABLE IV: Spearman’s correlation coefficient (ρ) and the p-
value between scores and the ratio of incorrect oracles

w/o <undecidable> w/ <undecidable>
ρ p-value ρ p-value

Metamorphic Prompt -0.977 3.81e-13 -0.992 1.75e-18
Original Prompt -0.700 1.65e-02 -0.355 2.84e-01
Transformed Prompt -0.955 4.99e-06 -0.991 3.76e-09

to -0.1, all instances with negative scores are classified as
incorrect. At this threshold, the precision is 0.722 while the
recall is 0.480. As the threshold is lowered, the precision
increases but the recall drops. These results indicate that
choosing an appropriate threshold based on user requirements
can balance utility and performance.

Answer to RQ1: METAMON effectively identified mis-
alignment between documentation and test, demonstrating
a high precision of 0.722 and a recall of 0.480 in detecting
inconsistencies. When applying stricter thresholds, precision
can be set to nearly 100%.

B. RQ2: Ablation Study

Fig. 4a shows the ratio of tests with incorrect oracles per
their scores when METAMON is applied using only the original
(orange) and the transformed (green) prompts. The blue line
and red-dotted line follow the same representation as in RQ1.
If metamorphic relations are not employed, i.e., assessing
inconsistencies with just original prompts, the capability of
METAMON to detect incorrect oracles shows a marked de-
crease. Specifically, when scores range between -1.0 and 0.0,
the ratio drops below the baseline, leading to outcomes that
are essentially indistinguishable from random alignment judg-
ments. However, when incorporating the outcomes from the
transformed prompts, as observed in RQ1, it is almost always
the case that prompts receiving low scores from METAMON
are strongly associated with incorrect oracles.

Fig. 4b illustrates the impact of the number of queries to the
LLM on the performance of METAMON. When the number of
queries, denoted as n in Section III-E, for both the original
and transformed prompts increases, we observe a higher ratio
of incorrect oracles within the score ranges from -1.0 to 0.0,
and a lower ratio of incorrect oracles within the range of [0,1].
Additionally, the observed gain in performance grows smaller
as n increases, suggesting that METAMON may be converging
with respect to the number of queries.

We also explore the need for the <undecidable> label.
Fig. 4c shows the results obtained using METAMON but
without the <undecidable> label, i.e., the LLM is forced
to label each assertion as <correct> or <incorrect>. It
shows a weaker correlation between the scores and the ratio of
oracles classified as incorrect at each score. This observation
is supported by the Spearman’s correlation coefficient values
presented in Table IV. Spearman’s correlation coefficient mea-
sures the strength and direction of a monotonic relationship
between two variables. As can be seen in Table IV, including
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Fig. 4: An impact of metamorphic relations, self-consistency, and labels

TABLE V: Analysis of false alarms in METAMON

Chart Lang Math Time Total

Lack of Specification 2 0 0 0 2
Need for Contextual information 1 0 2 0 3
LLM Underperformance 0 8 7 1 16

<undecidable> produces a stronger negative correlation
across metamorphic prompts as evidenced by Spearman’s
correlation coefficient values approaching -1. These findings
suggest that including the <undecidable> label can im-
prove the effectiveness of our approach, especially in situations
where the program specifications in the documentation may
not clearly define the program’s semantics.

Answer to RQ2: The ablation study shows that metamor-
phic relations, self-consistency, and the <undecidable>
label enhance the effectiveness of METAMON.

C. RQ3: Qualitative Analysis

In RQ3, we analyze instances where METAMON identified
tests with incorrect oracles as correct, reflected by normalized
scores of 0.8 or higher, denoting high confidence. Among
the 9,482 pairs analyzed, 21 were identified as exhibiting
this discrepancy, and we manually inspected the reasons
behind these. We categorize the causes of misclassification into
three primary reasons, Lack of Specification Detail, Need for
Contextual Information, and LLM Underperformance, whose
distributions across projects are shown in Table V.

/*
* Returns a string that is equivalent to the input string,

* but with special characters converted to JavaScript

* escape sequences. < ... Omitted ...>

*/

public void test() throws Throwable {
String string0 = ImageMapUtilities.javascriptEscape("&lt;

");
assertEquals("\\’lt;", string0);

}

Fig. 5: An example of Lack of Specification Detail

Lack of Specification Detail: An example of this category
is in Fig. 5. Although the specification mentions that the

method is supposed to convert special characters to JavaScript
escape sequences, it does not provide concrete examples of
special characters. This lack of detailed specification makes it
challenging to assess the correctness of the test oracles.

/*signature: org.apache.commons.math3.geometry.euclidean.
threed.Plane.isSimilarTo

* Check if the instance is similar to another plane.

* <p>Planes are considered similar if they contain the
same

* points. This does not mean they are equal since they can
have

* opposite normals.</p>

* @param plane plane to which the instance is compared

* @return true if the planes are similar

*/

public void test3() throws Throwable {
Vector3D vector3D0 = Vector3D.NaN;
Plane plane0 = new Plane(vector3D0);
boolean boolean0 = plane0.isSimilarTo(plane0);
assertTrue(boolean0);

}

Fig. 6: An example of Need for Contextual Information

Need for Contextual Information: An example of this
category is in Fig. 6 containing the specification of the
isSimilarTo function from Math. As the properties that a
Plan object acquires upon creation are not known, it becomes
challenging to accurately evaluate the test outcomes.
LLM Underperformance: Fig. 7 shows a simple test case
that the LLM fails to classify correctly due to its lack of
mathematical reasoning capabilities. However, the reasoning
abilities of LLMs have been improving over time. When we
re-evaluated all prompts associated with this kind of case using
GPT-4, the average normalized score improved to −0.156,
reflecting the improved arithmetic capabilities, suggesting that
such issues may further diminish as LLM performance con-
tinues to enhance.

Answer to RQ3: The majority of false alarms were due to
the limitations in the reasoning capabilities of the LLMs.
Additionally, depending on projects, factors such as the
lack of detailed specifications and the need for contextual
information also contributed to these issues.



public void test() throws Throwable {
Fraction fraction0 = Fraction.ONE_HALF;
Fraction fraction1 = Fraction.ONE_THIRD;
int int0 = fraction0.compareTo(fraction1);
assertEquals((-1), int0);

}

Answer 1:  ... The expected result is -1 since `ONE_HALF` is less than 
`ONE_THIRD`. ... 

Answer 2: ...Since `1/2` is less than `1/3`, we expect the result of the 
`compareTo` method to be -1. ... 

Answer 3: ...Without further information, it is not possible to evaluate 
the expected result of this input.... 

Answer 4: ...Since 1/3 is less than 1/2, the expected result of 
`fraction0.compareTo(fraction1)` is -1....  // Wrong Conclusion 

Answer 5: ...it is expected that the method will compare `fraction0` to 
`fraction1` and return a value indicating the relative size between the 
two fractions ...//completely misunderstanding the specification

Fig. 7: An example of Underperformace of LLMs

VI. CONCLUSION

This paper introduces METAMON, an LLM-based technique
designed to automatically identify inconsistencies between a
program’s documentation and its actual behavior, as captured
by regression test oracles. To address the issue of LLM halluci-
nations, METAMON captures program behavior via the regres-
sion test cases generated by EvoSuite and applies metamorphic
prompts. Our experiments with 9,482 test-documentation pairs
derived from Defects4J show that METAMON can effectively
identify inconsistency with a precision of 0.72 and a recall of
0.48. We hope to expand upon these results by exploring its
capabilities when used in conjunction with existing techniques
such as fault localization and automatic program repair.
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