
The GitHub Recent Bugs Dataset for Evaluating
LLM-based Debugging Applications

Jae Yong Lee
KAIST

Daejeon, South Korea

jaeyonglee0205@kaist.ac.kr

Sungmin Kang
KAIST

Daejeon, South Korea

sungmin.kang@kaist.ac.kr

Juyeon Yoon
KAIST

Daejeon, South Korea

juyeon.yoon@kaist.ac.kr

Shin Yoo
KAIST

Daejeon, South Korea

shin.yoo@kaist.ac.kr

Abstract—While Large Language Models (LLMs) have demon-
strated strong natural language and code processing capabilities,
concern has been raised as to whether existing bug benchmarks
are included in their training data. We examine the training data
of the open-source LLM StarCoder, and find it likely that data
from the widely used Defects4J benchmark was included, raising
the possibility of its inclusion in the training data of the GPT
model as well. This makes it difficult to tell how well LLM-
based results on Defects4J would generalize, as for any results
it would be unclear whether a technique’s performance is due
to LLM generalization or memorization. To remedy this issue
and facilitate continued research on LLM-based SE, we present
the GitHub Recent Bugs (GHRB) framework, which continuously
gathers real-world Java bugs for use in evaluation of LLM-based
techniques. To date, we have gathered 89 bugs reported after the
GPT-3.5 training data cutoff point of September 2021.

Index Terms—Benchmark, Debugging, Machine Learning

I. INTRODUCTION

A significant portion of software engineering research re-

volves around the automatic handling of bugs [1]–[4]. As a

result, software bug benchmarks using actual bugs from open-

source software have been proposed. Examples of such bench-

marks include the widely used Defects4J [5], Siemens [6],

BugsInPy [7] and BugsJS [8] benchmarks.

However, the permissive licenses that led to these bench-

marks also make these repositories a prime target as training

data for code-based large language models. Large Language

Models (LLMs) have been showing substantial performance

gains relative to traditional techniques [2], [9]–[11]. LLMs

need a large training dataset [12], and thus a large amount of

software data from open-source repositories is gathered [13].

Our own findings show that bugs from the Defects4J bench-

mark are often included in the training data of the open-

source LLM StarCoder [13]; it is reasonable to assume that

the closed-source LLMs such as ChatGPT would be similar.

The potential overlap between existing bug benchmarks and

LLM training data raises a critical question: are the state-

of-the-art results from LLMs due to the strengths of LLM

generalization, or simply due to memorization? While such

a concern had been voiced in early literature [14], we are

unaware of subsequent attempts to build a real-world bug

dataset that is not likely to be part of LLM training data.

To this end, we propose the GITHUB RECENT BUGS

(GHRB) framework, which continuously gathers recent Java

bugs reported in GitHub. Up to now, we have collected 89

bugs reported after September 2021, which is the cutoff date

for many GPT LLMs [15]. Additionally, these bugs were likely

not used for the training of the open-source StarCoder LLM.

Thus, researchers can evaluate LLM-based applications with

GHRB without concern about data leakage.

II. MOTIVATION

Under the assumption that LLM developers are likely to

gather similar training data, we provide an initial assessment

of the degree to which existing benchmark data is included in

open-source LLM training data. To do so, we use the ‘Data

Portraits’ tool1, which allows users to check whether any text

was included in the StarCoder training data. Using this tool, we

evaluate the widely-used Defects4J v1.0 benchmark. We con-

servatively assume that if 90% of a test or method is included

in StarCoder data, data about that bug was likely included,

making it inappropriate for evaluation when using StarCoder.

Worryingly, we find 35% of tests and 39% of buggy methods

from Defects4J were included in StarCoder training data, using

the 90% criterion mentioned above. In combination, 59% of

Defects4J bugs were likely compromised. While it is difficult

to justify, our finding strongly suggests that OpenAI may have

included these projects in its LLM training data in a similar

fashion, raising concerns about the validity of LLM-based SE

evaluation using Defects4J.

III. DATA COLLECTION

This section describes the process used to collect bugs for

GITHUB RECENT BUGS (GHRB), that are recent enough to

avoid being included in LLM training data. Specifically, every

bug should meet the following requirements:

1. The bug is in the source code: Every bug in the database

should exist inside the source code of the project, and not in

e.g. the configuration file.

2. The bug is reproducible: Every bug in the database should

have at least one test that fails on the buggy version and passes

on the fixed version.

3. The bug is isolated: For every bug in the database, the

difference between the buggy and fixed versions should be

directly related to the bug, and should not include any external

changes such as feature additions or refactoring.

1https://stack.dataportraits.org/

442

2024 IEEE Conference on Software Testing, Verification and Validation (ICST)

979-8-3503-0818-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ICST60714.2024.00049

20
24

 IE
EE

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

Va
lid

at
io

n
(IC

ST
) |

 9
79

-8
-3

50
3-

08
18

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

ST
60

71
4.

20
24

.0
00

49

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 11,2024 at 02:57:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PROJECTS AND NUMBER OF REAL BUGS AVAILABLE IN THE PUBLIC RELEASE OF GHRB (AS OF 19 JANUARY 2024)

Project Bugs LoC Test LoC # Tests # Stars Project Bugs LoC Test LoC # Tests # Stars

fastjson 1 43.6k 143.4k >435 25.4k jackson-dataformat-xml 1 5.9k 9.4k >2 541
nacos 6 215.9k 8.7k 2.7k 27.4k gson 12 9.0k 19.6k 1.3k 22.4k
dubbo 1 146.7k 89.4k 3.3k 39.3k sslcontext 6 3.7k 7.2k 497 406
rocketmq 19 150.3k 54.7k 1.7k 19.8k jsoup 5 14.3k 12.5k 1.1k 10.3k
assertj 4 45.9k 161.4k 11.8k 2.4k openapi-generator 6 9.8k 37.6k 1.8k 17.5k
checkstyle 16 41.7k 238.2k 4.5k 7.8k seata 2 166.4k 30.5k 1.0k 24.2k
jackson-core 3 30.7k 44.8k >100 2.2k retrofit 1 3.9k 6.5k 329 42k
jackson-databind 5 73.1k 71.0k >28 3.3k Apktool 1 10.7k 3.4k 202 17.6k

Total 89 972 938k 30.8k 263k

Using GitHub Actions, the bug gathering process is auto-

matically triggered at the start of every month. An example

result of the process can be found in a recent issue of our

repository2, where the result of the static filtering process (i.e.,

before running the tests to check if the issue reproduces) is

summarized. Using another script, the bugs can be verified and

added to the benchmark dataset on a monthly basis. Through

this process, even if LLMs are updated with more recent

training data, GHRB is capable of autonomously gathering

more bugs for the use of evaluation.

IV. DATABASE OF REAL BUGS

While GHRB is a living framework that automatically finds

new bugs every month, as of March 11th, 2024, the GHRB

dataset consists of 89 bugs from 16 repositories. The chosen

repositories vary in size and popularity, but all are primarily

written in Java. Table I shows summary statistics of the dataset.

Similarly to Section II, we checked if the oldest bug-

revealing tests in GHRB were included in the StarCoder train-

ing data, finding no overlap using 90% criterion3, demonstrat-

ing that the bugs of GHRB are free from data contamination

concerns when evaluating StarCoder-based applications. Since

GHRB is based on commits merged after September 2021,

GHRB is also ‘safe’ when used to evaluate when using all

OpenAI LLMs except for the GPT-4-preview models, which

have a data cutoff date of April 2023. Nonetheless, the number

of bugs in GHRB after April 2023 are 24, a number which will

grow due to the automatic bug gathering process of GHRB.

The GHRB dataset additionally provides the following:

Metadata. The bug database provides the creation date of

the pull requests, the original bug report ID (ID of the pull

request), and the URL of the bug report.

Bug revealing tests. The bug database includes of the list

of one or more tests that reveal the bug, which fails on the

buggy version and passes on the fixed version. For each test,

the absolute path and the root cause is available.

Patch information. The bug database includes of the patch

information, which is collected by taking the git diff between

the buggy and fixed version.

2https://github.com/coinse/GHRB/issues/6
3The maximum overlap observed was 66%: note that non-zero overlap is

inevitable as these projects were created before September 2021.

V. INTERFACE OF GHRB

In addition to the collection of bugs described in the

previous section, the artifact of GHRB provides the following

interfaces to facilitate ease of use.

Interface to Version Control Systems: The interface allow

users to access the buggy and fixed versions of included repos-

itories by using a simple flag, without the need of knowledge

of the version control system adopted by the contributors. Each

bug in the database is mapped to an integer ID, which is in

the chronological order of its creation date. In addition, users

can filter bugs by their creation date, enhancing compatibility

with other LLMs. This creates a layer of abstraction over the

version control system of each repository, as mentioned above.

Interface to Build Environments: The interface allows users

to compile each target in a simple manner. During runtime,

GHRB automatically derives the required build tool (i.e.,

maven, gradle), the required build tool versions, and the

repository’s use of a project-specific script for compilation.

Overall, this abstraction relieves users from the burden of

searching for build environments.

Interface to Testing: The interface allows users to easily

test each compiled target. GHRB automatically creates a

configuration file when a user checkouts to a specific version

of a repository. During testing, the interface searches for

the configuration file to derive the failing test information,

allowing for efficient bug reproduction via test execution.

VI. CONCLUSION

We introduce GITHUB RECENT BUGS (GHRB), a real-

world Java bug-collecting framework and dataset designed to

mitigate data leakage concerns when evaluating LLM-based

software engineering techniques. Our hope is to present a sup-

plementary evaluation benchmark to the larger and established

bug benchmarks, so to allow evaluation of the generality of

LLM-based software engineering tools.

ACKNOWLEDGEMENT

This work was supported by the Engineering Research

Center Program through the National Research Foundation of

Korea (NRF) funded by the Korean Government MSIT (RS-

2023-00208998), and the Institute of Information & Communi-

cations Technology Planning & Evaluation (IITP) grant funded

by the Korea government (MSIT) (2022-0-00995).

443

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 11,2024 at 02:57:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–
2331, 2021.

[2] S. Kang, J. Yoon, and S. Yoo, “Large language models are few-shot
testers: Exploring llm-based general bug reproduction,” in Proceedings
of the 45th IEEE/ACM International Conference on Software Engineer-
ing, ser. ICSE 2023, 2023.

[3] M. Soltani, A. Panichella, and A. van Deursen, “Search-based crash
reproduction and its impact on debugging,” IEEE Transactions on
Software Engineering, vol. 46, no. 12, pp. 1294–1317, 2020.

[4] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1, pp.
34–67, 2019.

[5] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of exist-
ing faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014. New York, NY, USA: Association for
Computing Machinery, 2014, pp. 437–440.

[6] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, pp. 405–435, 2005.

[7] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan,
F. Wee, J. E. Tan, Y. Yieh, B. K. P. Goh, F. Thung, H. J.
Kang, T. Hoang, D. Lo, and E. L. Ouh, “Bugsinpy: a database
of existing bugs in python programs to enable controlled testing
and debugging studies,” Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:226274286

[8] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Á. Beszédes, R. Fer-
enc, and A. Mesbah, “Bugsjs: a benchmark of javascript bugs,” 2019
12th IEEE Conference on Software Testing, Validation and Verification
(ICST), pp. 90–101, 2019.

[9] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” 2023.

[10] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, “Auto-
mated repair of programs from large language models,” in Proceedings
of the 45th International Conference on Software Engineering, ser. ICSE
’23. IEEE Press, 2023, pp. 1469–1481.

[11] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language mod-
els,” in 2023 45th International Conference on Software Engineering
(ICSE), 2023.

[12] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark,
T. Hennigan, E. Noland, K. Millican, G. van den Driessche, B. Damoc,
A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals,
and L. Sifre, “Training compute-optimal large language models,” ArXiv,
vol. abs/2203.15556, 2022.

[13] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, and C. M. et al.,
“Starcoder: may the source be with you!” ArXiv, vol. abs/2305.06161,
2023.

[14] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[15] “Openai official documentation,” https://platform.openai.com/docs/
model-index-for-researchers/models-referred-to-as-gpt-3-5, accessed:
2023-09-10.

444

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 11,2024 at 02:57:49 UTC from IEEE Xplore. Restrictions apply.

