
Evaluating Lexical Approximation of Program Dependence

Seongmin Leea,∗, David Binkleyc, Nicolas Goldb, Syed Islamb, Jens Krinkeb,
Shin Yooa

aKAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
bUniversity College London, Gower St, London WC1E 6BT, UK

cLoyola University Baltimore, 4501 North Charles Street, Baltimore, MD 21210, USA

Abstract
Complex dependence analysis typically provides an underpinning approximation

of true program dependence. We investigate the effectiveness of using lexical infor-
mation to approximate such dependence, introducing two new deletion operators to
Observation-Based Slicing (ORBS). ORBS provides direct observation of program
dependence, computing a slice using iterative, speculative deletion of program parts.
Deletions become permanent if they do not affect the slicing criterion. The original
ORBS uses a bounded deletion window operator that attempts to delete consecutive
lines together. Our new deletion operators attempt to delete multiple, non-contiguous
lines that are lexically similar to each other. We evaluate the lexical dependence approx-
imation by exploring the trade-off between the precision and the speed of dependence
analysis performed with new deletion operators. The deletion operators are evaluated
independently, as well as collectively via a novel generalization of ORBS that exploits
multiple deletion operators: Multi-operator Observation-Based Slicing (MOBS). An
empirical evaluation using three Java projects, six C projects, and one multi-lingual
project written in Python and C finds that the lexical information provides a useful ap-
proximation to the underlying dependence. On average, MOBS can delete 69% of lines
deleted by the original ORBS, while taking only 36% of the wall clock time required
by ORBS.

Keywords: ORBS, Program Slicing, Lexical Analysis

1. Introduction

Program slicing often acts as a preprocess for tasks such as testing (Binkley, 1998),
debugging (Agrawal et al., 1993), maintenance (Gallagher and Lyle, 1991), and program
comprehension (Korel and Rilling, 1998). Traditional program slicing techniques re-
quire complex dependence analysis to approximate the underlying dependencies (Bink-
ley et al., 2015). Recently introduced Observation-Based Slicing (ORBS) (Binkley

∗Corresponding author
Email addresses: bohrok@kaist.ac.kr (Seongmin Lee), binkley@cs.loyola.edu

(David Binkley), n.gold@ucl.ac.uk (Nicolas Gold), s.islam@cs.ucl.ac.uk (Syed Islam),
j.krinke@ucl.ac.uk (Jens Krinke), shin.yoo@kaist.ac.kr (Shin Yoo)

Preprint submitted to Journal of Systems and Software November 4, 2019

Jens Krinke
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

This is the authors’ version of an article that has been published in the Journal of Systems and Software, Volume 160, February 2020.
The original publication is available at https://doi.org/10.1016/j.jss.2019.110459

et al., 2014a; Gold et al., 2017) foregoes this need, discovering the exact dynamic
dependencies given a set of inputs. However, this discovery can be expensive since,
in the case of statements separated by (large amounts of) other code, many iterations
may be required to remove all of the independent code. Given this shortcoming, we
conjecture that lexical similarity (e.g., two lines that both include the string tax_rate)
might provide a useful approximation to the dependence information. If so, then in the
case of ORBS, similar lines can likely be deleted together, irrespective of their relative
separation. Thus lexical similarity should bring value in the form of an efficiency gain
(assuming that lexical dependence can act as a proxy for the true dependence).

As an example, consider a situation where source lines l1 and l2 relate to a (single)
computation, unrelated to the slicing criterion, but sufficiently far apart from each other
that they are never in the same deletion window (the contiguous group of lines selected
by ORBS as a deletion candidate). Since they are unrelated to the slicing criterion they
can in principle be deleted simultaneously. A lexical approximation of dependence
seeks to identify the two as related and therefore potentially deletable in a single step.
For example, l1 might assign the variable tax_rate, which is subsequently used in l2:
tax = tax_rate * sale, while the slicing criterion concerns a variable independent
from tax_rate. The lexical connection between l1 and l2 (i.e., the common occurrence
of the words ‘tax’ and ‘rate’) might be exploited in an attempt to delete both lines
simultaneously.

Exploiting the lexical dependence approximation, techniques that rely on the re-
peated compilation and execution for their operation should benefit because doing
so would permit operations on spatially separated parts of the code. In the case of
ORBS, for example, exploiting lexical dependence should enable the deletion of mul-
tiple spatially-separated lines in a single compile/execute step. Doing so would permit
the full scope of the program to be examined for deletion candidates at any one time
rather than just adjacent lines. The net effect would be witnessed as an improvement in
slicing performance.

This paper presents and investigates two approaches to the lexical approximation
of dependence: one using the Vector Space Model (Salton et al., 1975) and the other
using Latent Dirichlet Analysis (LDA) (Blei et al., 2003). To investigate the two, we
use them as the basis for two new deletion operators within ORBS. The investigation
first considers each new operator in isolation and then in concert with each other and
the original ORBS deletion operator.

In the later case, we investigate the possibility of employing multiple deletion
operators within ORBS. Ideally, the slicer could select the operator that leads to the
largest successful deletion. In the absence of such knowledge, we consider two selection
heuristics: Fixed Operator Selection (FOS), which relies on probabilities determined
a priori, and Rolling Operator Selection (ROS), which learns the relative applicability
of each deletion operator as it computes a slice. The resulting generalization of ORBS
uses FOS or ROS to select between multiple deletion operators at each step.

The effectiveness of the lexical dependence approximation is measured using slicing
effectiveness (i.e., how small are the resulting slices when compared to the original
ORBS slices?) and slicing efficiency (i.e., how fast can the slicing be undertaken in
comparison with the original ORBS algorithm?). In other words, what is the trade-off
approximating the dependence lexically brings in terms of slice size and slice time.

2

We compare the original ORBS implementation (Binkley et al., 2014a) against the
new deletion operators in isolation, and their combination with the existing deletion
operator, using thirty slicing criteria selected from ten projects written in various
programming languages including Java, C, and Python: eighteen slicing criteria from
three real world Java projects, six slicing criteria from six C programs taken from the
Siemens suite, and six slicing criteria from a multi-lingual open-source project written
in Python and C. The results show that slicing using only lexical deletion operators
leads to larger slices but take significantly less time. Furthermore, the combined use of
the new and existing deletion operators deletes 63% to 83% of lines deleted by ORBS
in 27% to 45% of the time.

This paper makes the following technical contributions:

• We introduce two new lexical dependence approximations.

• To study the two approximations independently we introduce two new variants
of observation-based slicing, VSM-ORBS and LDA-ORBS, which each exploit
lexical information. Broad stroke, the experiments show that lexical information
can be used to complement existing techniques.

• To study the approximations in concert with the original, we introduce MOBS,
Multi-operatorObservation-Based Slicing, which selects a deletion operator from
a set of deletion operators using four different operator selection strategies.

• We empirically evaluate the new lexical dependence approximations using thirty
slicing criteria from Java and C projects, and a multi-lingual project written in
Python and C. The results show that, on average, MOBS deletes 69% of the code
deleted by ORBS, but requires only 36% of its execution time.

2. Observation-Based Slicing

Based on Weiser’s original slicing definition (Weiser, 1979), observation-based
slicing (ORBS) dynamically checks whether one or more consecutive lines of program
source code can be deleted by observing the impact of their deletion (Binkley et al.,
2014a; Gold et al., 2017): if the source code after deletion either fails to compile
or does not preserve the value trajectory of the slicing criterion when executed using
the given set of inputs, then the deletion is rejected. While ORBS is designed to
under-approximate the full semantics of program dependence through test executions,
it has surpassed static slicing in some tasks, such as capturing dependencies that static
slicers cannot handle (Binkley et al., 2015), and slicing multi-lingual systems (Binkley
et al., 2014a), XML-based modelling languages (Gold et al., 2017), as well as Picture
Description Languages, which have visual semantics (Yoo et al., 2017).

ORBS takes as input a slicing criteria and a set of inputs. It computes a slice as a
series of decisions about whether to accept the deletion of successive source code lines.
If, after deleting a line, the program still compiles and preserves the observed behaviour
of the slicing criterion for all inputs, then ORBS accepts the deletion. ORBS iterates
until no further deletions can be made. ORBS is thus able to uncover the “ground-truth”
dependence with respect to the set of inputs.

3

One of the drawbacks of finding ground-truth dependence using ORBS is its inef-
ficiency: ORBS requires a large number of compilations and executions. This partly
arises because ORBS is relatively naive in its view of a program, working at the level
of lines of text, and treating each line as simply deleted or not. Dependence is thus
discovered on the basis of the presence or absence of a line, with no regard for its content
(thus permitting language independence). Furthermore, considering only single lines
limits ORBS ability to delete mutually dependent lines such as the braces around an
empty block.

To address the mutually dependent lines problem, the original ORBS implemen-
tation (Binkley et al., 2014a), uses a deletion window approach, which enables it to
handle sequences of source lines that can only be deleted together (e.g., the pair of
brackets that enclose an empty block). Applied to line li , ORBS attempts to delete
from one up to k lines (i.e., from {li } to {li, . . . , li+k−1}). If it successfully deletes j
lines (i.e., {li, . . . , li+j−1}), the deletion continues with line li+j ; if all k attempts fail,
the deletion continues with line li+1. Thus after each successful deletion, ORBS moves
onto the next target source code line (skipping over the deleted lines), while after each
unsuccessful deletion it reverts the deletion before moving on to the next line of the file.
ORBS performs multiple passes over the code until it cannot delete anything further.
Because in practice it is more efficient, the implementation considers the lines of source
code in reverse order, for example, in the hope of deleting all of a variable’s uses before
attempting the deletion of its declaration.

Algorithm 1: ORBS Parameterised with Deletion Operators
input : Source program P = {l1, ..., ln}, Slicing criterion (v, l,I), Deletion Operator, D
output : A slice, S, of P for (v, l,I)

1 O ← Setup(P, v, l)
2 V ← Execute(Build(O),I)
3 repeat
4 deleted ← False
5 for i ← Length (O) to 1 do
6 O′, nd, sd ← D(O,V, i,I)
7 if sd = success then
8 O ← O′

9 deleted ← True
10 until ¬deleted
11 return O

As shown in Algorithm 1, ORBS is parameterised by a deletion operator, D, along
with the source program P and a slicing criterion composed of variable v, line l, a
set of inputs I. In the code the function Setup inserts probe statements to capture the
trajectory of the slicing criterion, while function Execute executes the program with
inputs I and returns the trajectory associated with the slicing criterion.

Deletion operator D has four parameters: the current observational slice O, the
original trajectory V , the index of the current line i, and the inputs I. It first performs a
deletion resulting inO′, and then builds and executesO′ usingI, capturing the trajectory
and comparing it withV . The operator returnsO′, the number of deleted lines, nd , and a

4

result of the deletion attempt, sd (either compilation-error, trajectory-change,
or success). In the case of a successful deletion, O′ is made the current observational
slice.

Algorithm 2: Pseudocode for Deletion Operator DMwk

input : Instrumented Source Code O, Value Trajectory of Slicing Criterion Variable, V ,
Index of Current Target Line, i, Set of inputs, I

output : A candidate slice, O′,
Number of Lines Deleted, nd ,
Result of the Deletion Attempt, sd

1 for δ ← 1 to k do
2 O′, nd, sd ← Dwδ (O,V, i,I)
3 if sd = success then
4 return O′, nd, sd
5 return O′, 0, sd

Because it deletes the maximal window up to size k, the original ORBS deletion
operator, shown as Algorithm 2, is denoted DMwk . This deletion operator is defined
in terms of window deletion operator, Dwδ , which attempts to delete a window of
exactly δ consecutive lines. DMwk successively applies the k deletion operators, from
Dw1 to Dwk , and then returns success if any deletion operator succeeds, immediately,
or returns failure if none of Dw1 through Dwk succeeds. To emphasize its use of
a deletion window, we refer to the original ORBS algorithm, which implicitly uses
DMwk , as W-ORBS.

3. Lexical Similarity Deletion Operators

This section introduces the two new lexical deletion operators that seek to exploit
lexical similarity within the text of a program. Lexical similarity can be a good proxy
for syntactic or semantic similarity (Ragkhitwetsagul et al., 2018). Our new deletion
operators are based on the intuition that if a source line can be safely deleted with
respect to a given slicing criterion, then there are likely other lexically similar lines that
can also be safely deleted. For example, if the slicing criterion involves a variable that
holds an account balance in a banking system, then a line that handles logging will
be deleted by ORBS. When deleting this line, it may be beneficial to attempt to delete
all other lines that include the lexical token log. In other words, we posit that we can
approximate the semantics of program dependence using lexical similarity. To this end
we introduce the two lexical deletion operators: Dvsm and Dlda.

The first lexical deletion operator, Dvsm, makes use of the Vector Space Model
(VSM), which has been used in Information Retrieval (IR) to calculate the distances
between a collection of text documents and a query (Salton et al., 1975). VSM represents
each document and the query as a vector of weights, that associate a value with each
unique term (word) that occurs in any of the documents. The distance between vectors
captures the similarity between the documents and the query.

In our application, Dvsmγ is parameterized by a threshold γ and treats all lines
of text in the source code as individual documents. It identifies two lines as similar

5

if their lexical similarity is greater than γ. In greater detail, let L be the set of all
non-comment lexical tokens in the code and let K be a list of stop words typically
composed of programming-language reserved keywords. The vocabulary used is the
set of terms, T = L \ K . A range of techniques for assigning term weights and
computing distances has been used in VSMs (Mitra and Chaudhuri, 2000). We use
tf–idf to determine term weights (Rajaraman and Ullman, 2011) and measure distances
using cosine similarity (Singhal, 2001).

The second lexical deletion operator, Dlda, makes use of Latent Dirichlet Alloca-
tion (LDA), whichmodels a collection of documents using two probability distributions:
each document is represented as a probability distribution of topics where each topic is
a probability distribution over the words of the vocabulary (Blei et al., 2003). The simi-
larity between two documents is measured as the distance between their corresponding
topic vectors. Similar to Dvsmγ, the deletion operator Dldaγ treats each source code
line as a document, uses the same vocabulary, and also computes distances using cosine
similarity.

4. Variants of ORBS

Our empirical investigation is designed to investigate the effectiveness of using
lexical dependence approximation. To do so, we first introduce two variants of ORBS
based on the two lexical deletion operators, Dvsm and Dlda. We then consider two
additional variants that, analogous to the use of multiple window sizes by DMwk ,
each consider a range of parameter (threshold) values. Looking ahead, the empirical
analysis considers two final variants (bringing the total to six). These final two follow
lexical deletion with the application of W-ORBS. Finally, having a range of deletion
operators suggests the potential in trying the leverage the strengths of each. Thus the
bulk of this section presents MOBS, Multi-operator Observational Slicing, which aims
to selectively apply a range of deletion operators.

4.1. Lexical ORBS variants
The first two variants of ORBS are based on Algorithm 1 with D being passed

one of the two lexical deletion operators. We refer to ORBS when using Dvsmγ as
VSM-ORBS. Similarly, we refer to ORBS when using the deletion operator Dldaγ
as LDA-ORBS. By virtue of using lexical deletion operators, VSM-ORBS and LDA-
ORBS share a few distinguishing features that may yield advantages over W-ORBS.

1. There is no limit to the number of lines that can be deleted in a single deletion.
2. They can delete non-consecutive lines.
3. Because Dvsm and Dlda are lexical, ORBS language independence is preserved.
4. During a single iteration, only one deletion is attempted at each slicing point,

unlike W-ORBS, which may attempt multiple deletions at each slicing point
depending on the window size.

The other two variants successively apply a deletion operator with a range of
parameter values analogous to Dw’s successive application of a range of window
sizes. Considering first VSM, Algorithm 3 shows the pseudo code for the successive

6

Algorithm 3: Pseudocode for Deletion Operator DMvsm{γ1,...,γn }. The input and
output are the same as with Algorithm 2.
1 for γi ∈ {γ1, ..., γn} do
2 O′, nd, sd ← Dvsmγi (O,V, i,I)
3 if sd = success then
4 return O′, nd, sd
5 return O′, 0, sd

application of Dvsmγ for a range of values of γ to target source code line, i. We
denote this deletion operator as DMvsmΓ, where Γ is a list of thresholds (parameter
values). While it may spend more than one deletion attempt on a single line, DMvsmΓ
thoroughly checks the lexical dependence the line could have with different thresholds.
We refer to ORBS when using multiple thresholds with DMvsmΓ as VSM-ORBS-M.
Likewise, we refer to ORBS when using DMldaΓ as LDA-ORBS-M.

4.2. MOBS: Multi-operator Observational Slicing
With three deletion operators, Dw, Dvsm, andDlda, we can instantiate Algorithm 1

in different ways producing multiple ORBS’ variants. However, because each deletion
operator attempts to delete different parts of the code, amore synergistic approachmight
better exploit the strengths of each operator. Here our goal is to improve slicing perfor-
mance by using the ‘right’ deletion operator at the ‘right’ time and in the ‘right’ place.
To study the range of possibilities we introduce MOBS: Multi-operator Observational
Slicing, which selectively applies multiple deletion operators while slicing.
4.2.1. MOBS Algorithm

Algorithm 4: MOBS
input : Source program P = {l1, ..., ln}, Slicing criterion (v, l,I), Set of deletion

operators D = {D1, ...,Dn}, Probability Updater U, Static Proportion R
output : A slice of P for (v, l,I)

1 O ← Setup(P, v, l)
2 V ← Execute(Build(O),I)
3 D ← InitOperator (D, R)
4 repeat
5 deleted ← False
6 for i ← Length (O) to 1 do
7 Dk ← SelectOperator(D)
8 O′, nd, sd ← Dk (O,V, i,I)
9 D ← UpdateOperator(D,U,Dk, nd, sd)

10 if sd = success then
11 O ← O′

12 deleted ← True
13 until ¬deleted
14 return O

7

Algorithm 4 presents MOBS, which has the same basic structure as Algorithm 1.
MOBSmakes use of three helper functions. The first of these, InitOperator, initializes
the deletion operator selection probabilities. The second, SelectOperator, chooses a
deletion operator to apply at each line using roulette-wheel selection (Goldberg, 1989)
based on the probability distribution on operators. Once chosen, the speculative deletion
by MOBS is the same as that done by ORBS except that UpdateOperator updates the
probability distribution according to the updater function U.

4.2.2. Fixed Operator Selection (FOS)
The remainder of this section considers two operator selection strategies: Fixed

Operator Selection (FOS) and Rolling Operator Selection (ROS). For a given slicing
criterion FOS computes fixed probabilities based on the success proportion of each
deletion operator and stores them in D in Line 3 of Algorithm 4. Such an exhaustive
approach is not viable in production where an approximation over multiple criteria
would be required, but for the experimental evaluation it serves to establish an upper
bound on FOS performance.

We use two methods to compute the success proportion of an operator: the number
of successful deletions and the number of lines deleted. We call the proportions
calculated by each method its ‘applicability’ and ‘effect’, respectively. In addition, we
study the use of a uniform proportion as a baseline. Note that for FOS the probabilities
remain constant throughout slicing. In other words, the probability updater U is the
identity function.

Algorithm 5 details the calculation of the initial probabilities. It can compute
applicability (if Line 8 is used) or effect (if Line 9 is used). Given a source program, a
slicing criterion, and a set of deletion operators, D, this algorithm returns a proportion
array, R, for each deletion operator Dk ∈ D. The function Initialize first assigns
each entry the value 0. The algorithm then iteratively applies each operator Dk to each
source line and records in the proportion array RDk

, either the deletion’s successful
application (when using Line 8) or the number of lines deleted (when using Line 9).
InitOperator, used in Line 3 of Algorithm 4, takes the proportion array and initializes
the selection probability of each deletion operator Dk as follows:

P(Dk) =
∑

1≤i≤n RDk
[i]∑

D j ∈D

∑
1≤i≤n RD j [i]

(1)

4.2.3. Rolling Operator Selection (ROS)
In contrast to the FOS strategy, the Rolling Operator Selection, ROS, updates the

probability after each deletion attempt. The intuition here is that early on different
operators will be effective than when the slice approaches its final state. The proba-
bility distribution over the operators P(Dk) is initialized with a uniform distribution.
UpdateOperator, first, changes the probability of the current deletion operator using
the probability updater U with respect to the result of the deletion attempt. Then, it
normalizes the sum of the probability distribution to be 1.

In our study, we used Equation 2 as the probability updater U. The penalty factor
for a compilation failure, ωcomp, and an execution failure ωexec, both range from zero

8

Algorithm 5: Applicability/Effect Measurement for FOS
input : Source program P = {l1, ..., ln},

Slicing criterion (v, l,I),
Set of deletion operators D = {D1, ...,Dn}

output : Static Proportion R
1 O ← Setup(P, v, l)
2 V ← Execute(Build(O),I)
3 R← Initialize(D,Length (O))
4 for i ← Length (O) to 1 do
5 foreach Dk ∈ D do
6 O′, nd, sd ← Dk (O,V, i,I)
7 if sd = success then
8 RDk

[i]← 1 . {applicability}
9 RDk

[i]← nd . {effect}
10 return R

to one. We penalise compilation failure more severely (i.e., ωcomp ≤ ωexec) because
successful compilation is necessary for a successful deletion. On the other hand, a
successful deletion always increases the probability as log10(nd +1) > 0. Based on our
empirical investigation, we set ωcomp as 0.98 and ωexec as 0.99. The selection of the
next deletion operator makes use of the updated distribution.

Pnew(Dk) =

ωcomp · P(Dk) compilation-error

ωexec · P(Dk) trajectory-change(
1 + log10(nd + 1)

)
· P(Dk) success

(2)

5. Research Questions

We investigate the following six research questions:

RQ1. Lexical Deletion Operators: How efficient and how effective are the lexical
deletion operators?

We compare the results of VSM-ORBS, LDA-ORBS, and W-ORBS with respect
to the number of lines deleted (effectiveness) and the time taken to compute a slice
(efficiency). We also investigate the impact of the similarity threshold parameter γ
of the deletion operators Dvsmγ and Dldaγ used by VSM-ORBS and LDA-ORBS,
respectively. Finally, we consider the impact of successive application of a range of
different thresholds using VSM-ORBS-M and LDA-ORBS-M.

RQ2. Operator Comparison: How different are the deletion operators from each
other, both quantitatively and qualitatively?

We compare the lexical dependence approximation provided by the two lexical
deletion operators by comparing various statistics gatheredwhen applying each operator
to each line of the source code.

RQ3. Operator Selection Strategy: What impact does the operator selection strategy
have on MOBS’s ability to exploit lexical dependence?

9

In contrast to RQ2’s head-to-head comparison, RQ3 begins the investigation into
how the deletion operators complement each other. Our goal here is to determine which
selection strategy to use in the subsequent experiments.

RQ4. Strategy Impact: How does MOBS using the chosen selection strategy compare
with W-ORBS?

RQ4 compares MOBS with its best strategy (as determined when considering RQ3)
against the original ORBS algorithm, W-ORBS. We again compare the results in terms
of effectiveness and efficiency.

RQ5. Qualitative Analysis: What impact do differences in the lexical dependencies
considered have on the resulting slices?

To provide a more intuitive feel for the impact of lexical dependence, we investigate
characteristics of the slices produced by variants of ORBS andMOBS. The comparison
considers several qualitative properties of the resulting slices.

RQ6. Scalability: How well does the lexical dependency approximation scale?
The lexical deletion operators preserve the language agnostic nature of ORBS.With

this research question, we investigate the scalability of lexical deletion operators using
a larger, multi-lingual program.

6. Experimental Setup

6.1. Metrics
We define several performance metrics for use in the quantitative analysis. The

first three, CPD (Compilations Per Deletion), EPD (Executions Per Deletion), and TPD
(Time Per Deletion) capture the efficiency of a slicing method. For these metrics, the
smaller the value, the better. On the other hand, DPS (Deletions Per Success) is the
number of deleted lines per one successful application of the deletion operator. DPS
evaluates the efficiency of a deletion operator: the larger the value, the better (the more
efficient the operator).

Original S1 S2
foo(){ foo(){ foo(){

int a; int a; <
a = 1; a = 1; <
int b; int b; int b;
b += 1; b += 1;
b += 1; b += 1;
return b; > return b;

} } }

Figure 1: Diff result of two slices of the original code. Our modified Jaccard similarity between S1 and S2
is: Jaccard(S1, S2) = 4/(4 + 2 + 1) ≈ 0.57.

Finally, we use a variant of Jaccard similarity to calculate the similarity between
two slices. The traditional definition of Jaccard similarity, which is a measure of

10

similarity between two sets, is not appropriate for our purpose because, from the lexical
viewpoint, a slice is an ordered multiset, i.e., the order of the lines matter and it may
contain multiple instances of the same line. Furthermore, it is not viable to calculate
the Jaccard similarity by making each line uniquely identifiable (e.g., by adding the
tuple (file name, line number)). Figure 1 shows an example of two slices, S1 and S2
where S1 and S2 delete ‘b += 1;’ from different locations, but deletions result in the
same common subsequence ‘foo(){, int b;, b += 1;, }’. Adding unique identifiers to
lines would have unwontedly not produced the same result.

Given two sequences, S1 and S2, our variant of Jaccard similarity, modified for
ordered multisets, is defined as follows:

Jaccard(S1, S2) =
|C |

|C | + |O1 | + |O2 |

whereC as the longest common subsequence1 of S1 and S2,O1 = S1−C, andO2 = S2−C.

6.2. Subjects and Environment
Table 1 shows the programs chosen for our empirical evaluation. For Java, we choose

three open-source projects: commons-cli2 and commons-csv3 from Apache Commons
Project, and guava4, which is a core Java library developed by Google. We choose
five slicing criteria from commons-cli, three from commons-csv, and ten from guava (five
each from com.google.common.escape and com.google.common.net). For the C code, we
choose the Siemens suite (Do et al., 2005). The program tcas has been excluded from
the experiment, as it was too small for the lexical similarity models such as LDA to be
applicable (tcas has only 120 Non-Comment Lines of Code (NCLOC). We choose one
slicing criterion for each C program. Finally, the table provides the size of each subject
program in NCLOC, as well as the number of test cases provided by the developers.
The provided test cases will be used as inputs as part of the slicing criteria. The second
from the last row shows the statistics ofmisaka, an open-source multi-lingual benchmark
used to study RQ6. misaka includes both C and Python source code and has a total of
over 5,000 NCLOC.

To avoid the task of generating an obvious slice, we choose all slicing criteria
thoroughly, making the dependency analysis challenging enough. Each slicing criterion
consists of a variable located at a call depth of at least three. For Java, the slicing criteria
are chosen from the class which has a dependency with at least three (seven on average)
other classes.

For the purposes of this investigation, we filter out comments and reserved words
prior to analysis. Although this violates language independence to some degree, it
does not demand even the construction of a program’s parse trees but is restricted

1Note that a longest common subsequence refers to a non-consecutive subsequence, such as ‘foo(){,
int b;, b += 1;, }’ in S2 of Figure 1, whereas a longest common substring is a consecutive substring that
is common to two strings.

2https://commons.apache.org/proper/commons-cli/
3https://commons.apache.org/proper/commons-csv/
4https://github.com/google/guava

11

Lang. Proj. # of Files NCLOC # of Test cases # of Slicing Criteria

Java

commons-cli 23 2,081 26 5
commons-csv 11 1,504 13 3
guava-escape 10 590 6 5
guava-net 9 1,569 8 5

C

prttok 1 410 11 1
prttok2 1 387 10 1
replace 1 508 15 1
sched 1 208 6 1
sched2 1 276 6 1
totinfo 1 261 6 1

C + Python misaka
15 5,125 92 6(10 + 5) (4742 + 473)

Total 30

Table 1: Subject programs and slicing criteria. The notation (A + B) formisaka denotes the statistics for its
C and Python source code, respectively.

to the lexical analysis in the matching of (regular expression) tokens to the stoplist.
Consideration of all program elements forms part of our future work.

Experiments were performed on machines with Intel Core i7-6700K and 32GB
RAM, running Ubuntu 14.04.5 LTS. Operator specific variants of ORBS (W-, VSM-,
and LDA-) as well as MOBS have been implemented and executed in Python version
3.6.5. Java subjects have been built and executed using Java version 1.8.0_141 and
JUnit version 4.12. C subjects have been built using GCC version 4.8.4.

6.3. Configuration
W-ORBS has a single parameter, δ, the maximum size of the deletion window. Our

prior empirical study with W-ORBS has found that using four as the maximum window
size provides the best performance. Thus, we use W-ORBS with maximum window
size δ = 4 as the baseline. While the studied subject programs and their test suites are
deterministic, during the slicing process ORBS can produce nondeterministic candidate
slices due to changes in control flow that arise from the deletions. Looking ahead, the
impact of this non-determinism can be seen in Table 7 where the standard deviation of
the number of deleted lines, σdel by W-ORBS is non-zero in some cases. To account
for this, as well as the randomness from the use of wall clock execution time, each
W-ORBS slice was computed ten times.

Both VSM-ORBS and LDA-ORBS are parameterised by similarity threshold γ.
Since cosine similarity is used, the similarity is in the range of [0, 1]. We report
results using thresholds of 0.6, 0.7, 0.8, and 0.9. LDA-ORBS also requires selecting
a topic count, which determines how many topics exist in the model. The best topic
count depends heavily on properties such as the size and vocabulary of the documents.
Tuning it typically requires manual inspection. We evaluated the values 25, 50, 100,
300, 500, 700, and 900 during the experiment for RQ1 and choose 500 as the best
performer for Java projects; we also evaluated the values 25, 50, 75, 100, 200, and 300

12

for C projects, and chose 200 as the best performer (see Section 7.1 for more details).
We set the LDA hyperparameters, α and β, which affect the sparsity of the document-
topic and topic-word distributions of the LDA model, respectively, to the inverse of the
topic count. Finally, for VSM-ORBS-M and LDA-ORBS-M we use two sequences for
Γ: {0.6, 0.7, 0.8, 0.9} and {0.9, 0.8, 0.7, 0.6}, which we refer to as increasing order and
decreasing order. For LDA-ORBS-M we use the same topic count as used with LDA-
ORBS. Note that there is no need to repeat the VSM-ORBS(-M) and LDA-ORBS(-M)
runs because VSM-ORBS is deterministic and LDA-ORBS is deterministic apart from
the generation of the topic model. Our experience is that the variance from other
parameters, such as the similarity threshold and topic count, is much more significant
than the variation from rerunning the topic modelling.

The library of deletion operators used by MOBS includes the following twelve
operators, which are different paramaterisations of the operators Dw, Dvsm, and Dlda:

• Dwδ for deletion window size δ = 1, 2, 3, and 4

• Dvsmγ for threshold γ = 0.6, 0.7, 0.8, and 0.9

• Dldaγ for threshold γ = 0.6, 0.7, 0.8, and 0.9

Due to the stochastic nature of the operator selection, and the use of wall clock time,
like W-ORBS, we repeat each MOBS slice ten times for each slicing criterion.

7. Results

7.1. Lexical Deletion Operators
Before comparing the efficiency and effectiveness of VSM-ORBS, LDA-ORBS, and

W-ORBS, we investigate how lexical deletion operators delete source code. Table 2
shows several example deletions. The first criterion of commons-cli, cli-1, involves the
program’s option-setting function. Dvsm simultaneously deletes lines that are related
to the option printing, but are irrelevant to the criterion. In the second example, Dvsm
deletes all function calls that handle a deficient token error from prttok2, since the
criterion checks whether the input token is an identifier. Similar to cli-1, for the
criterion csv-1, Dlda deletes all string building functions from commons-csv, because
they are unrelated to the line-break checking function for a csv file.

To answer RQ1, we report results from comparisons between VSM-ORBS, LDA-
ORBS and W-ORBS. As an example, Figure 2 shows the comparison between the
three slicers for guava-escape5: the x-axis indicates the variant of ORBS (γ denotes the
threshold; n the topic count of LDA). On the left is a bar chart showing the number
of deleted lines (blue), the number of compilations (light grey), and the number of
executions (dark grey), required by each slicer. On the right is a bar chart showing
the wall-clock time (red), and the number of lines deleted (blue) for each slicer. We
also report the performance metrics CPD (denoted by ©), EPD (×), and TPD (♦) with

5Plots for other slicing criteria as well as other RQs are available at https://coinse.github.io/
MOBS_data_webpage/.

13

File-name:Line-num Code line

c
l
i
-
1
,D

vs
m

HelpFormatter.java:166 buff.append(" ");
HelpFormatter.java:173 buff.append("[");
HelpFormatter.java:182 buff.append(" | ");
HelpFormatter.java:186 buff.append("]");
HelpFormatter.java:191 buff.append("[");
HelpFormatter.java:203 buff.append("]");
OptionGroup.java:46 buff.append("[");
OptionGroup.java:50 buff.append("-");
OptionGroup.java:53 buff.append("�");
OptionGroup.java:57 buff.append(" ");
OptionGroup.java:61 buff.append(", ");
OptionGroup.java:64 buff.append("]");

p
r
t
2

D
vs

m print_tokens2.c:123 unget_error(tp);
print_tokens2.c:130 unget_error(tp);
print_tokens2.c:142 unget_error(tp);

c
s
v
-
1
,D

ld
a CSVFormat.java:410 sb.append("Delimiter=<").append(delimiter).append(’>’);

CSVFormat.java:416 sb.append(’ ’);
CSVFormat.java:428 sb.append(’ ’);

CSVFormat.java:443 sb.append("HeaderComments:")
.append(Arrays.toString(headerComments));

CSVFormat.java:447 sb.append("Header:").append(Arrays.toString(header));

Table 2: Lines that have been deleted by lexical deletion operators. cli-1 and csv-1 represent the first
criterion of commons-cli and commons-csv. prt2 represents the criterion of prttok2.

connected lines. Both VSM-ORBS and LDA-ORBS delete many fewer lines, but with
significantly higher efficiency, as can be seen in their lower CPD, EPD, and TPD values:
a similar trend is observed across all subjects.

The data in Table 3 compares the efficiency of W-ORBS, VSM-ORBS, and LDA-
ORBS. For these results, the similarity threshold of VSM-ORBS and LDA-ORBS is
set to 0.9; the topic count for LDA-ORBS is set to 500 for Java projects and 200 for
C projects (the remainder of this Section explains the rationale behind these choices).
On average, VSM-ORBS and LDA-ORBS delete 42.2% and 33.2% of the number
of lines deleted by W-ORBS, respectively. However, VSM-ORBS uses only 19.4%
of compilations and 29.2% of executions used by W-ORBS, requiring only 21.0%
of the wall clock execution time of W-ORBS. Similarly, LDA-ORBS uses 19.4% of
compilations, 22.1% of executions, and takes only 20.0% of the wall clock execution
time of W-ORBS.

The results in Table 3 can be summarised using the per deleted line efficiency
metrics as follows. For VSM-ORBS, its CPD, EPD, and TPD values are, on average
across all subjects, 45.9%, 63.1%, and 49.5% of the corresponding W-ORBS’s value.
For LDA-ORBS they are 59.9%, 65.9%, and 62.2%, respectively.

Figure 3 shows the results of VSM-ORBS with various similarity thresholds. As
the threshold increases, the number of deleted lines tends to increase: that is, as VSM-
ORBS targets similar lines with higher thresholds, it becomes more likely that it can
delete those lines together. On the other hand, the number of compilations is relatively
stable because compilation is performed every time ORBS attempts a deletion. Since
the number of compilations is much larger than that of executions, the wall clock
execution time tends to follow the trends of compilations. Consequently, the CPD and
TPD values show similar trends and are dependent on how the number of deleted lines
changes. If the number of deleted lines varies significantly (as in commons-cli), CPD

14

W
−O

RBS

VSM
(γ

: 0
.9

)

LD
A(γ

: 0
.9

,n
:5

00
)

0
20

00
40

00
60

00
80

00

0
10

0
20

0
30

0
40

0
50

0

C
om

pi
la

tio
ns

E
xe

cu
tio

ns

●

●

●

18.8

7.99

12.57

1.27

0.72 0.72

●

Compilations
Executions
Deletions
CPD
EPD

W
−O

RBS

VSM
(γ

: 0
.9

)

LD
A(γ

: 0
.9

,n
:5

00
)

0
20

0
40

0
60

0
80

0

0
20

00
40

00
60

00
80

00
10

00
0

D
el

et
io

ns
(li

ne
)

T
im

e(
se

c)23.29

10.01

15.79

Deletions
Time
TPD

guava−escape criterion3: W− and VSM−, LDA−ORBS

Figure 2: Efficiency of ORBS variants. CPD, EPD, and TPD are the number of compilations, executions,
and time taken per deleted line, respectively.

and TPD tend to increase; if the number of deletions varies little (as in commons-csv),
CPD and TPD tend to be more stable.

Figure 4 shows the results of LDA-ORBS with various threshold parameters. Over-
all, the results show similar trends to those of VSM-ORBS: the smaller the threshold
value, the worse the efficiency. However, for C projects, the difference between the
number of the compilations and executions is less than that of the Java projects; their
compilation time is also smaller. Consequently, the trend of TPD is more likely to
follow the EPD.

Let us briefly discuss the impact of topic count on LDA-ORBS. Figure 5 shows
the results of LDA-ORBS with various topic counts for commons-cli. In commons-cli,
we observe the number of deleted lines increases until it reaches a maximum at topic
count of n = 500, where it levels off. This is because, when n is too small, the topic
model cannot capture sufficient features of the source code lines resulting in insufficient
similarity and, consequently, fewer deleted lines. A similar trend is observed in the C
subjects: the number of deleted lines increases as n brows to 200, and then levels off.
Based on these observations, we use the topic counts 500 for Java and 200 for C in
the remainder of our experiments, as these are the values around which the number of
deletions improves and remains stable afterwards.

Finally, we consider the performance of VSM-ORBS-M and LDA-ORBS-M. Fig-
ure 6 compares W-ORBS, VSM-ORBS with Dvsm0.9, and VSM-ORBS-M using the
increasing and decreasing values for Γ. Results suggest that there is almost no differ-
ence in the number of lines deleted by VSM-ORBS and VSM-ORBS-M using either
order. VSM-ORBS-M deletes only 0.8% and 0.5% more lines than VSM-ORBS with
Γ increasing and decreasing, respectively. Meanwhile, VSM-ORBS-M (with either Γ)
employs 49% more compilations than VSM-ORBS; thus, CPD increases 48% when
compare to VSM-ORBS. LDA-ORBS and LDA-ORBS-M show a similar pattern; LDA-

15

Criteria W-ORBS VSM-ORBS LDA-ORBS
C E T D C E T D C E T D

cli-1 21052 2413 28975 980 3680 470 5510 325 4330 408 5596 240
cli-2 22241 2318 25168 1123 3297 370 3920 375 4076 359 4813 291
cli-3 21498 1886 26165 1160 3583 391 4805 393 4195 359 5535 290
cli-4 23163 2760 32246 818 4472 579 7005 285 4306 478 6178 217
cli-5 24340 2463 30812 1144 3571 368 4594 364 4197 348 5119 279

csv-1 14627 1373 25146 696 2706 323 4805 219 2499 234 3939 155
csv-2 13751 933 16909 903 2718 253 3767 302 2897 187 3527 199
csv-3 11979 760 13713 1017 3240 250 3911 299 2834 173 2897 209

esc-1 5840 415 7894 239 1099 117 1586 115 1022 77 1229 95
esc-2 7174 517 9983 228 1100 124 1578 114 1012 77 1286 101
esc-3 5808 391 7196 309 1070 97 1341 134 1332 76 1673 106
esc-4 5387 284 7185 337 1178 90 1636 137 824 67 1049 119
esc-5 6163 458 8189 216 1109 127 1465 110 1001 102 1467 85

net-1 12576 814 15727 877 2780 397 3652 448 2630 234 3406 278
net-2 12288 781 15861 905 2779 393 3796 453 2569 233 3367 285
net-3 13115 901 16672 844 2373 396 3199 443 2272 231 2940 291
net-4 12911 1806 17933 842 2446 455 3854 368 2157 281 3035 231
net-5 12004 739 14736 925 2360 379 3014 463 2796 237 3522 308

prttok 2926 726 882 212 693 206 302 114 657 176 197 108

prttok2 3220 570 596 223 558 126 69 59 565 132 114 54

replace 6208 1254 1539 157 1219 392 373 92 839 230 210 61

sched 3186 589 208 93 459 136 34 32 743 216 81 34

sched2 1661 372 252 86 445 103 79 42 453 113 69 55

totinfo 1883 261 54 98 415 93 11 48 392 66 10 38

Table 3: Comparison of the number of compilations (C), executions (E), execution time (T, sec), and deleted
lines (D) for W-ORBS, VSM-ORBS, and LDA-ORBS

ORBS-M with Γ increasing and decreasing requires 48% and 50% more compilations
than LDA-ORBS while deleting only 1.7% and 1.1% more lines than LDA-ORBS. The
results imply that the different thresholds have minimal impact in terms of the lines that
can be deleted using our lexical dependence approximation. Even so, we continue to
consider different thresholds with the lexical deletion operators since their efficiency
might differ from each other.

In summary for RQ1, while lexical deletion operators delete fewer lines, they use
significantly fewer compilations and executions, reducing wall clock time. Both lexical
deletion operators are highly attractive in terms of their per-deleted-line efficiency,
motivating MOBS’s use of multiple deletion operators.

7.2. Operator Comparison
To answer RQ2, we investigate the relative applicability of different deletion op-

erators. This is done by applying each deletion operator to all non-comment lines of
code in the program’s source to identify which lines are successful application points.
Let W , V , and L be the set of lines against which Dwδ (δ ∈ {1, . . . , 4}), and Dvsmγ

16

W
−O

RBS

VSM
(γ

: 0
.6

)

VSM
(γ

: 0
.7

)

VSM
(γ

: 0
.8

)

VSM
(γ

: 0
.9

)0
50

00
15

00
0

25
00

0
35

00
0

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

C
om

pi
la

tio
ns

E
xe

cu
tio

ns

●

● ●

●

●

21.28

14.05 13.76
11.94

9.81

2.15

0.71
0.86 0.99 1.01

●

Compilations
Executions
Deletions
CPD
EPD

W
−O

RBS

VSM
(γ

: 0
.6

)

VSM
(γ

: 0
.7

)

VSM
(γ

: 0
.8

)

VSM
(γ

: 0
.9

)0
50

0
10

00
15

00
20

00
25

00
30

00

0
10

00
0

20
00

0
30

00
0

40
00

0

D
el

et
io

ns
(li

ne
)

T
im

e(
se

c)26.93

17.23
14.71 14.68

12.62

Deletions
Time
TPD

commons−cli criterion5: W−ORBS and VSM−ORBS

W
−O

RBS

VSM
(γ

: 0
.6

)

VSM
(γ

: 0
.7

)

VSM
(γ

: 0
.8

)

VSM
(γ

: 0
.9

)0
50

00
10

00
0

15
00

0
20

00
0

0
20

0
40

0
60

0
80

0
10

00
12

00

C
om

pi
la

tio
ns

E
xe

cu
tio

ns

●

● ● ●
●

15.54

6.22 6.05 5.86 5.36

1.07

0.74
0.82 0.87 0.89

●

Compilations
Executions
Deletions
CPD
EPD

W
−O

RBS

VSM
(γ

: 0
.6

)

VSM
(γ

: 0
.7

)

VSM
(γ

: 0
.8

)

VSM
(γ

: 0
.9

)0
50

0
10

00
15

00
20

00

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

D
el

et
io

ns
(li

ne
)

T
im

e(
se

c)

19.75

8.03 7.72 7.63 7.22

Deletions
Time
TPD

guava−net criterion3: W−ORBS and VSM−ORBS

Figure 3: VSM-ORBS: Threshold analysis

Dldaγ (γ ∈ {0.6, 0.7, 0.8, 0.9}) can be successfully applied: let t denote the union of
W , V , and L. In this experiment, we compute all pair-wise set differences to check how
uniquely the operators can be applied to different locations.

Table 4 presents sizes of W , V , and L as well as set differences between them, along
with DPSW , DPSV , and DPSL . DPSW is the average number of deleted lines across all
successful applications of each Dwδ operator to all source code lines. Similarly, DPSV
and DPSL are the average number of deleted lines across the applications of Dvsm and
Dlda to all lines of source code, respectively.

In all cases, the size of W is either identical or very close to that of the union, while
sizes of V and L are significantly smaller than that of W ; |V \W | and |L \W | are always
close to zero. Overall, this suggests that Dw can be applied to the largest number of
lines successfully.

However, the results from the DPS analysis provide evidence that lexical deletion
can improve the efficiency of ORBS. The results show that, for most of the Java subjects,
DPSV is notably higher than DPSW , suggesting that, when successful, Dvsm is capable
of deleting more lines per attempt than Dw. DPSL shows mixed results. For C projects,
DPS values are almost equal between window and lexical deletion operators. We

17

W
−O

RBS

LD
A(γ

: 0
.6

,n
:2

00
)

LD
A(γ

: 0
.7

,n
:2

00
)

LD
A(γ

: 0
.8

,n
:2

00
)

LD
A(γ

: 0
.9

,n
:2

00
)0

10
00

20
00

30
00

40
00

0
20

0
40

0
60

0
80

0

C
om

pi
la

tio
ns

E
xe

cu
tio

ns

●

●

● ●

●

34.26

20.48
24.86 24.27

21.85

6.33

4.86

6.17 6.47 6.35

●

Compilations
Executions
Deletions
CPD
EPD

W
−O

RBS

LD
A(γ

: 0
.6

,n
:2

00
)

LD
A(γ

: 0
.7

,n
:2

00
)

LD
A(γ

: 0
.8

,n
:2

00
)

LD
A(γ

: 0
.9

,n
:2

00
)0

10
0

20
0

30
0

40
0

0
50

10
0

15
0

20
0

25
0

30
0

D
el

et
io

ns
(li

ne
)

T
im

e(
se

c)

2.25

1.36

1.94

2.57
2.41

Deletions
Time
TPD

schedule criterion1: W−ORBS and LDA−ORBS by Threshold

Figure 4: LDA-ORBS: Threshold value comparison

W
−O

RBS

LD
A(γ

: 0
.9

,n
:2

5)

LD
A(γ

: 0
.9

,n
:5

0)

LD
A(γ

: 0
.9

,n
:1

00
)

LD
A(γ

: 0
.9

,n
:3

00
)

LD
A(γ

: 0
.9

,n
:5

00
)

LD
A(γ

: 0
.9

,n
:7

00
)

LD
A(γ

: 0
.9

,n
:9

00
)0

50
00

10
00

0
15

00
0

20
00

0

0
20

0
40

0
60

0
80

0
10

00
12

00

C
om

pi
la

tio
ns

E
xe

cu
tio

ns

●

●

●
●

● ● ●
●

14.34

24.22

19.1218.15

10.049.46 9 7.7

0.93

1.12 1.07 1.06

0.69
0.84 0.89

0.8

●

Compilations
Executions
Deletions
CPD
EPD

W
−O

RBS

LD
A(γ

: 0
.9

,n
:2

5)

LD
A(γ

: 0
.9

,n
:5

0)

LD
A(γ

: 0
.9

,n
:1

00
)

LD
A(γ

: 0
.9

,n
:3

00
)

LD
A(γ

: 0
.9

,n
:5

00
)

LD
A(γ

: 0
.9

,n
:7

00
)

LD
A(γ

: 0
.9

,n
:9

00
)0

50
0

10
00

15
00

20
00

0
50

00
10

00
0

15
00

0
20

00
0

D
el

et
io

ns
(li

ne
)

T
im

e(
se

c)

17.93

29.11

20.8222.04

13.7812.2511.7 9.9

Deletions
Time
TPD

guava−net criterion1: W−ORBS and LDA−ORBS by Topic Count

W
−O

RBS

LD
A(γ

: 0
.9

,n
:2

5)

LD
A(γ

: 0
.9

,n
:5

0)

LD
A(γ

: 0
.9

,n
:7

5)

LD
A(γ

: 0
.9

,n
:1

00
)

LD
A(γ

: 0
.9

,n
:2

00
)

LD
A(γ

: 0
.9

,n
:3

00
)

0
50

0
10

00
15

00
20

00
25

00

0
50

10
0

15
0

20
0

25
0

30
0

35
0

C
om

pi
la

tio
ns

E
xe

cu
tio

ns

●

●

●
●

●

● ●

19.21

35.29

20.1918.58
13.92

10.3210.55

2.66

1.43

1.94
2.21

1.96
1.74 1.74

●

Compilations
Executions
Deletions
CPD
EPD

W
−O

RBS

LD
A(γ

: 0
.9

,n
:2

5)

LD
A(γ

: 0
.9

,n
:5

0)

LD
A(γ

: 0
.9

,n
:7

5)

LD
A(γ

: 0
.9

,n
:1

00
)

LD
A(γ

: 0
.9

,n
:2

00
)

LD
A(γ

: 0
.9

,n
:3

00
)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0
10

20
30

40
50

60
70

D
el

et
io

ns
(li

ne
)

T
im

e(
se

c)

0.55

0.98

0.62
0.54

0.37
0.29 0.32

Deletions
Time
TPD

totinfo criterion1: W−ORBS and LDA−ORBS by Topic Count

Figure 5: LDA-ORBS: Impact of topic count

18

W
−O

RBS

VSM
(γ

: 0
.9

)

VSM
(Γ

:[0
.6

→
0.

9]
)

VSM
(Γ

:[0
.9

→
0.

6]
)0

50
0

10
00

15
00

20
00

25
00

0
10

0
20

0
30

0
40

0
50

0

C
om

pi
la

tio
ns

E
xe

cu
tio

ns

●

●

● ●

19.31

10.6

17.57 17.55
4.33

2.45 2.55 2.6

●

Compilations
Executions
Deletions
CPD
EPD

W
−O

RBS

VSM
(γ

: 0
.9

)

VSM
(Γ

:[0
.6

→
0.

9]
)

VSM
(Γ

:[0
.9

→
0.

6]
)0

50
10

0
15

0
20

0
25

0
30

0
35

0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

D
el

et
io

ns
(li

ne
)

T
im

e(
se

c)

2.94

1.9

2.55 2.44

Deletions
Time
TPD

schedule2 criterion1: W−ORBS and VSM−ORBS−M

Figure 6: Efficiency of VSM-ORBS-M. The notation Γ = [0.6 → 0.9] denotes the values 0.6, 0.7, 0.8, 0.9,
while [0.9→ 0.6] denotes the same values in decreasing order.

suspect that, due to the smaller size of these subjects, there are fewer similar source
code lines for the lexical operators to exploit.

Note that higher DPS values do not necessarily mean that the corresponding op-
erator will be highly applicable, as it measures the expected deletions per successful
application. However, the results in Table 4 suggest that, if applied appropriately, lex-
ical deletion operators stand to improve the efficiency of ORBS by deleting a greater
number of lines per attempt.

The contrast in operator behaviours provides an answer to RQ2 and suggests the
use of both window and lexical deletion operators during observation-based slicing.
We initially tried a naive combination that ran W-ORBS on the slice generated by
VSM-ORBS or LDA-ORBS. The strategy first deletes lines that can be detected using
lexical deletion and then applies window deletion to the remaining lines. In doing so, it
aims to combine the efficiency gain of lexical deletion with the smaller slices attained
using window deletion.

Figure 7 compares the results of applying VSM-ORBS or LDA-ORBS followed
by W-ORBS to those attained by applying W-ORBS alone. For the numerator, the
number of iterations, compilations, executions, lines deleted, and the time taken is
the sum of the value for VSM-ORBS or LDA-ORBS plus that for W-ORBS. The box
plots in the figure summarize the ratios for each of the 24 slicing criteria studied. The
green box is the ratio of W-ORBS after VSM-ORBS to W-ORBS, while the yellow
box is the ratio of W-ORBS after LDA-ORBS to W-ORBS. On average, there is a
slight increase in the number of deleted lines. However, the cost (e.g., the number
of compilations, executions, and the time taken) increase dramatically. Interestingly,
the initial application of lexical deletion does reduce the number iterations used in the
subsequent application ofW-ORBS. In 11 of the 24 slicing criteria, W-ORBS following
VSM-ORBS or LDA-ORBS requires one fewer iteration, while for replace does it
required two fewer.

The data shows that applying window deletion as a “second pass” does not improve
slicing efficiency. Even so, initial lexical deletions do help to break certain dependence

19

Criteria t W V L W \ V W \ L V \W V \ L L \W L \ V
DPS

W V L

cli-1 661 660 288 213 373 447 1 102 0 27 2.11 3.98 1.22
cli-2 804 802 347 285 456 518 1 95 1 33 2.11 4.45 1.94
cli-3 767 766 363 280 404 486 1 108 0 25 2.15 4.37 2.0
cli-4 549 548 225 192 323 357 0 58 1 25 2.04 5.35 2.84
cli-5 722 721 334 263 388 458 1 96 0 25 2.13 4.26 1.96

csv-1 530 530 197 141 333 389 0 67 0 11 2.31 3.76 1.59
csv-2 624 623 254 176 369 448 0 89 1 11 2.31 3.48 1.62
csv-3 670 670 255 186 415 484 0 82 0 13 2.34 3.46 1.55

esc-1 190 185 95 80 92 109 2 29 4 14 1.96 5.48 2.03
esc-2 169 160 89 77 73 91 2 25 8 13 1.89 5.75 2.04
esc-3 215 207 111 89 98 125 2 38 7 16 1.98 5.08 1.85
esc-4 252 237 118 111 122 140 3 30 14 23 2.03 4.78 4.93
esc-5 176 170 90 73 82 102 2 28 5 11 1.94 5.66 2.15

net-1 679 675 421 269 257 409 3 162 3 10 2.31 2.76 1.76
net-2 667 658 422 275 239 391 3 164 8 17 2.3 2.78 1.62
net-3 649 642 416 288 228 361 2 147 7 19 2.32 2.8 2.53
net-4 606 602 341 222 265 382 4 130 2 11 2.28 3.05 1.82
net-5 702 697 438 292 262 408 3 161 3 15 2.31 2.73 1.79

prttok 179 179 60 56 119 123 0 10 0 6 2.25 1.38 1.26

prttok2 189 184 107 95 82 93 5 24 4 12 2.23 2.81 3.21

replace 120 120 75 51 45 69 0 26 0 2 1.42 1.36 1.32

sched 91 90 40 52 51 39 1 2 1 14 1.61 1.39 1.45

sched2 54 54 30 26 24 28 0 6 0 2 1.56 1.15 1.34

totinfo 92 90 47 38 45 54 2 10 2 1 2.01 1.38 1.43

Table 4: Comparison between deletion operators

Iteration Compiles Executes Deletes Time CPD EPD TPD
Metric

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ra
tio

Strategy
VSM->W / W
LDA->W / W

Figure 7: Ratios comparing VSM-ORBS or LDA-ORBS followed by W-ORBS to W-ORBS alone.

chains and thus reduce the slice size and the number of iterations W-ORBS requires.
This potential synergy between window and lexical deletion further motivates MOBS.
The interplay between the two suggests that a more sophisticated combination might
be able to exploit the strengths of each approach. It is this potential that motivates our
introduction and subsequent study of MOBS.

20

Criteria Dw with δ = Dvsm with γ = Dlda with γ =
1 2 3 4 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

cli-1 0.162 0.069 0.082 0.059 0.065 0.080 0.098 0.119 0.050 0.058 0.072 0.088
cli-2 0.155 0.062 0.088 0.052 0.064 0.080 0.097 0.118 0.055 0.063 0.076 0.091
cli-3 0.153 0.073 0.081 0.063 0.061 0.077 0.096 0.119 0.050 0.059 0.076 0.092
cli-4 0.159 0.056 0.075 0.048 0.064 0.082 0.103 0.113 0.054 0.066 0.085 0.095
cli-5 0.152 0.074 0.077 0.061 0.062 0.077 0.092 0.114 0.056 0.065 0.079 0.091

csv-1 0.139 0.075 0.098 0.081 0.059 0.077 0.094 0.109 0.059 0.060 0.069 0.078
csv-2 0.135 0.080 0.102 0.079 0.061 0.081 0.098 0.111 0.054 0.057 0.068 0.075
csv-3 0.131 0.076 0.110 0.079 0.060 0.079 0.096 0.108 0.057 0.060 0.069 0.077

esc-1 0.140 0.043 0.049 0.040 0.088 0.098 0.107 0.114 0.068 0.071 0.089 0.094
esc-2 0.142 0.045 0.042 0.036 0.092 0.104 0.109 0.116 0.060 0.067 0.089 0.097
esc-3 0.146 0.046 0.052 0.043 0.093 0.103 0.113 0.126 0.059 0.059 0.074 0.087
esc-4 0.131 0.041 0.052 0.043 0.084 0.092 0.101 0.111 0.074 0.073 0.095 0.103
esc-5 0.145 0.047 0.048 0.040 0.093 0.104 0.112 0.118 0.056 0.062 0.086 0.088

net-1 0.118 0.072 0.080 0.073 0.096 0.101 0.108 0.112 0.049 0.053 0.064 0.074
net-2 0.120 0.074 0.079 0.071 0.098 0.104 0.111 0.115 0.044 0.048 0.063 0.073
net-3 0.115 0.071 0.075 0.072 0.095 0.100 0.107 0.111 0.050 0.056 0.069 0.079
net-4 0.125 0.063 0.078 0.070 0.094 0.101 0.111 0.116 0.048 0.053 0.067 0.075
net-5 0.117 0.069 0.076 0.072 0.095 0.101 0.108 0.112 0.051 0.056 0.068 0.074

prttok 0.134 0.091 0.080 0.073 0.065 0.077 0.089 0.092 0.073 0.073 0.075 0.080

prttok2 0.160 0.099 0.130 0.082 0.052 0.055 0.069 0.085 0.058 0.060 0.067 0.084

replace 0.191 0.047 0.017 0.015 0.069 0.073 0.109 0.140 0.075 0.075 0.094 0.096

sched 0.180 0.051 0.035 0.012 0.055 0.090 0.094 0.118 0.082 0.090 0.090 0.102

sched2 0.151 0.034 0.041 0.009 0.073 0.084 0.089 0.089 0.096 0.103 0.114 0.116

totinfo 0.137 0.054 0.041 0.056 0.090 0.092 0.099 0.106 0.083 0.079 0.081 0.081

Table 5: The selection probability for FOS with applicability for each deletion operator

7.3. Operator Selection Strategy
Tables 5 and 6 contain the probability of each operators calculated using applicability

and effect for FOS, respectively (Section 4.2.2). Table 5 shows that operators that
delete fewer lines tend to take higher probability (i.e., opportunities to delete a large
number of lines together are rare) for all subjects. Dw1 has the highest probability, and
consequently will be most frequently selected by FOS-MOBSwhen using applicability.
However, in an interesting contrast, Table 6 shows that Dvsm has a much higher
probability than other deletion operators for the Java projects (i.e., when those rare
opportunities arise, Dvsm can delete a sufficiently large number of lines to overcome its
rareness). Among the Dw operators, applicability shows a negative correlation while
a positive correlation is observed between δ and effect. Note that there does not exist
an observable trend in effect for the C subjects. We suspect the higher verbosity of
Java code compared to C may yield the higher applicability of Dvsm, due to the richer
lexical information in the source code: however, further study is required to confirm
this. Finally, probabilities of Dlda remain relatively low across all subjects.

Figure 8 shows the result of Vargha-Delaney Â12 statistic (Vargha and Delaney,
2000) for the TPD values of the four different operator selection strategies used by
MOBS. Each of ROS,APP, EFF, andUNI appearing in the name of columns represents
MOBS with rolling operator selection, fixed operator selection using ‘applicability’,
‘effect’, and uniform proportion, respectively. To facilitate the comparison toW-ORBS,
we terminate MOBS after the number of iterations W-ORBS requires to complete a
slice, and compute TPD values until that iteration. In column P : Q, the Â12 statistic

21

Criteria Dw with δ = Dvsm with γ = Dlda with γ =
1 2 3 4 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

cli-1 0.064 0.054 0.097 0.093 0.140 0.138 0.134 0.152 0.024 0.029 0.035 0.040
cli-2 0.053 0.042 0.091 0.072 0.131 0.148 0.133 0.137 0.046 0.046 0.051 0.048
cli-3 0.053 0.050 0.084 0.087 0.126 0.142 0.131 0.135 0.043 0.045 0.053 0.051
cli-4 0.046 0.032 0.065 0.055 0.132 0.155 0.142 0.129 0.035 0.062 0.087 0.062
cli-5 0.054 0.053 0.082 0.087 0.121 0.143 0.129 0.128 0.046 0.053 0.055 0.049

csv-1 0.053 0.058 0.112 0.124 0.113 0.121 0.124 0.132 0.039 0.040 0.040 0.044
csv-2 0.053 0.063 0.120 0.124 0.118 0.120 0.118 0.122 0.037 0.041 0.042 0.041
csv-3 0.052 0.060 0.131 0.125 0.116 0.118 0.117 0.120 0.039 0.038 0.041 0.043

esc-1 0.041 0.025 0.043 0.047 0.159 0.163 0.165 0.165 0.047 0.046 0.050 0.048
esc-2 0.040 0.025 0.036 0.040 0.167 0.172 0.170 0.171 0.043 0.046 0.044 0.046
esc-3 0.044 0.028 0.047 0.053 0.164 0.168 0.169 0.171 0.041 0.039 0.040 0.037
esc-4 0.032 0.020 0.038 0.042 0.113 0.113 0.114 0.114 0.104 0.103 0.108 0.100
esc-5 0.040 0.026 0.040 0.044 0.165 0.169 0.170 0.170 0.046 0.047 0.045 0.037

net-1 0.050 0.061 0.101 0.123 0.135 0.122 0.117 0.113 0.040 0.041 0.044 0.053
net-2 0.051 0.063 0.101 0.122 0.139 0.127 0.123 0.117 0.032 0.033 0.044 0.048
net-3 0.045 0.055 0.088 0.112 0.123 0.113 0.110 0.105 0.049 0.059 0.069 0.074
net-4 0.050 0.050 0.094 0.112 0.141 0.128 0.126 0.121 0.035 0.040 0.049 0.053
net-5 0.050 0.059 0.097 0.123 0.131 0.121 0.118 0.113 0.045 0.044 0.050 0.050

prttok 0.050 0.067 0.087 0.106 0.101 0.085 0.074 0.074 0.093 0.092 0.088 0.082

prttok2 0.091 0.111 0.219 0.182 0.053 0.043 0.051 0.057 0.042 0.042 0.048 0.061

replace 0.140 0.067 0.034 0.040 0.074 0.073 0.107 0.136 0.076 0.076 0.088 0.089

sched 0.135 0.076 0.079 0.035 0.047 0.079 0.082 0.100 0.085 0.091 0.091 0.100

sched2 0.102 0.047 0.084 0.025 0.075 0.085 0.082 0.076 0.102 0.102 0.115 0.104

totinfo 0.087 0.067 0.074 0.138 0.083 0.084 0.086 0.087 0.081 0.070 0.071 0.071

Table 6: The selection probability for FOS with effect for each deletion operator

is the probability that a score sampled at random from the first population, P, will be
greater than a score sampled at random from the second, Q. Columns starting with
ROS contain more dark blue cells than others, indicating that ROS tends to show higher
efficiency (marked by lower TPD). Variants of FOS show little difference from each
other. Based on these results, we answer RQ3 by concluding that the Rolling Operator
Selection (ROS) has the best performance.

7.4. Comparison between MOBS and W-ORBS
We compare MOBS to W-ORBS. Table 7 shows the means and standard deviations

for thewall clock execution time, the number of deleted lines, and per-deletion efficiency
for W-ORBS and MOBS using the four different operator selection strategies. The
largest number of deleted lines, the shortest execution time, and the lowest TPD values
among the four strategies are typeset in bold. The box plots shown in Figure 9 show the
distributions of these values at the end of each iteration for four slicing criteria. Note
that the y-axis for the execution time box plots on the right use a logarithmic scale.

ROS-MOBS (found to be the most efficient variant in RQ3) deletes 63% to 83%
of lines deleted by W-ORBS in 27% to 45% of the time required by W-ORBS. The
worst case efficiency of ROS-MOBS is observed in sched, whose TPD value is highest
when compared to that of W-ORBS. For this program ROS-MOBS only deletes 63% of
the lines deleted by W-ORBS, while taking only 40% of its execution time. However,
even in this worst case, the trade-off is better than linear. Based on these results, we
answer RQ4 by concluding that ROS-MOBS can be both effective and efficient, being

22

Criteria Strategy µdel σdel µtime σtime µtpd σtpd Criteria Strategy µdel σdel µtime σtime µtpd σtpd

cli-1
(W-ORBS
Iter.:5)

ROS-MOBS 721.40 28.64 11272.02 906.65 15.65 1.41
esc-5
(W-ORBS
Iter.:4)

ROS-MOBS 140.70 8.50 2434.85 128.74 17.37 1.47
FOS-uni-MOBS 608.20 17.33 10961.53 513.61 18.06 1.26 FOS-uni-MOBS 154.00 8.88 2457.16 103.25 16.03 1.36
FOS-app-MOBS 597.50 21.38 11175.68 480.81 18.74 1.25 FOS-app-MOBS 137.70 8.12 2542.52 114.95 18.53 1.39
FOS-eff-MOBS 598.90 23.42 11158.46 320.87 18.67 1.05 FOS-eff-MOBS 129.30 7.07 2418.29 118.81 18.77 1.56
W-ORBS 979.30 0.46 28134.40 1088.38 28.73 1.11 W-ORBS 216.00 0.00 8069.86 355.38 37.36 1.65

cli-2
(W-ORBS
Iter.:6)

ROS-MOBS 791.40 139.13 9593.28 1932.33 12.09 0.90
net-1
(W-ORBS
Iter.:5)

ROS-MOBS 561.00 90.04 5558.79 1396.09 9.79 1.37
FOS-uni-MOBS 726.40 16.04 10276.15 476.00 14.16 0.85 FOS-uni-MOBS 621.80 14.08 6776.59 349.01 10.91 0.65
FOS-app-MOBS 709.20 16.15 10568.47 406.63 14.91 0.70 FOS-app-MOBS 617.90 20.76 6821.67 328.34 11.05 0.69
FOS-eff-MOBS 690.10 23.39 10316.25 404.77 14.97 0.91 FOS-eff-MOBS 645.30 19.74 6778.88 333.59 10.52 0.76
W-ORBS 1123.00 0.00 25224.20 702.45 22.46 0.63 W-ORBS 877.00 0.00 16250.56 878.72 18.53 1.00

cli-3
(W-ORBS
Iter.:6)

ROS-MOBS 872.70 114.47 10837.41 1376.55 12.47 0.92
net-2
(W-ORBS
Iter.:5)

ROS-MOBS 497.80 93.83 4589.39 1364.66 9.06 1.03
FOS-uni-MOBS 763.40 16.05 11228.13 437.73 14.71 0.57 FOS-uni-MOBS 637.60 17.10 6902.16 376.68 10.84 0.72
FOS-app-MOBS 774.00 26.24 11226.59 521.40 14.53 0.94 FOS-app-MOBS 638.30 17.75 6952.53 314.39 10.90 0.55
FOS-eff-MOBS 752.20 19.16 11110.52 459.07 14.79 0.88 FOS-eff-MOBS 659.20 14.10 6668.74 335.09 10.12 0.60
W-ORBS 1160.00 0.00 26109.18 737.05 22.51 0.64 W-ORBS 905.00 0.00 15605.63 753.18 17.24 0.83

cli-4
(W-ORBS
Iter.:5)

ROS-MOBS 645.20 17.91 12126.29 593.73 18.78 0.48
net-3
(W-ORBS
Iter.:5)

ROS-MOBS 474.80 76.77 4212.45 1394.51 8.70 1.69
FOS-uni-MOBS 504.20 17.38 11692.39 392.95 23.21 1.01 FOS-uni-MOBS 623.10 16.63 6826.59 300.39 10.97 0.60
FOS-app-MOBS 493.40 22.50 11899.10 487.58 24.19 1.88 FOS-app-MOBS 609.60 13.37 6893.63 273.25 11.31 0.51
FOS-eff-MOBS 434.90 16.02 11616.53 532.42 26.76 1.86 FOS-eff-MOBS 613.30 17.05 6666.82 361.27 10.89 0.77
W-ORBS 817.20 0.75 31665.95 930.87 38.75 1.13 W-ORBS 844.00 0.00 16499.28 681.01 19.55 0.81

cli-5
(W-ORBS
Iter.:6)

ROS-MOBS 826.80 119.27 10490.76 1205.87 12.79 0.95
net-4
(W-ORBS
Iter.:4)

ROS-MOBS 471.20 86.42 5243.92 944.86 11.16 0.95
FOS-uni-MOBS 726.60 13.45 10914.85 564.61 15.03 0.91 FOS-uni-MOBS 518.80 15.33 6432.89 279.95 12.40 0.51
FOS-app-MOBS 725.20 18.48 11124.64 531.14 15.35 0.92 FOS-app-MOBS 516.70 9.57 6451.88 306.13 12.49 0.66
FOS-eff-MOBS 702.10 16.36 10916.40 513.33 15.56 0.80 FOS-eff-MOBS 527.60 17.20 6347.30 252.24 12.05 0.78
W-ORBS 1144.00 0.00 29801.89 1227.73 26.05 1.07 W-ORBS 842.00 0.00 17701.25 838.83 21.02 1.00

csv-1
(W-ORBS
Iter.:5)

ROS-MOBS 507.70 74.33 9581.00 1155.33 19.17 2.58
net-5
(W-ORBS
Iter.:5)

ROS-MOBS 505.00 95.67 4072.71 1325.93 7.89 1.11
FOS-uni-MOBS 439.80 12.28 9117.84 364.35 20.73 0.66 FOS-uni-MOBS 659.60 22.26 6521.51 330.75 9.90 0.61
FOS-app-MOBS 443.10 13.09 9541.62 506.47 21.58 1.67 FOS-app-MOBS 651.50 20.91 6692.08 362.52 10.29 0.74
FOS-eff-MOBS 456.10 13.22 9072.71 461.40 19.91 1.24 FOS-eff-MOBS 674.20 16.96 6394.88 330.91 9.50 0.62
W-ORBS 696.00 0.00 27677.29 3280.38 39.77 4.71 W-ORBS 925.00 0.00 15093.32 748.07 16.32 0.81

csv-2
(W-ORBS
Iter.:6)

ROS-MOBS 673.50 103.54 6872.09 1054.63 10.28 1.15
prttok2
(W-ORBS
Iter.:5)

ROS-MOBS 158.20 14.57 182.38 76.60 1.14 0.46
FOS-uni-MOBS 601.30 12.03 7629.31 365.57 12.70 0.73 FOS-uni-MOBS 145.40 8.67 245.81 60.02 1.70 0.43
FOS-app-MOBS 622.20 10.67 7726.95 346.49 12.42 0.59 FOS-app-MOBS 160.50 8.19 255.50 70.59 1.60 0.48
FOS-eff-MOBS 629.50 17.63 7530.18 333.35 11.97 0.61 FOS-eff-MOBS 171.20 4.51 218.37 42.34 1.28 0.27
W-ORBS 903.00 0.00 16996.75 837.50 18.82 0.93 W-ORBS 223.00 0.00 601.91 4.78 2.70 0.02

csv-3
(W-ORBS
Iter.:6)

ROS-MOBS 723.60 71.90 5956.72 1068.92 8.23 1.34
prttok
(W-ORBS
Iter.:5)

ROS-MOBS 175.40 9.11 361.10 63.76 2.07 0.40
FOS-uni-MOBS 642.10 22.72 6945.58 436.10 10.85 1.00 FOS-uni-MOBS 167.70 6.33 464.75 24.12 2.78 0.21
FOS-app-MOBS 684.50 23.41 6791.43 395.51 9.93 0.66 FOS-app-MOBS 170.90 5.43 489.20 31.97 2.87 0.21
FOS-eff-MOBS 699.80 22.44 6759.21 231.33 9.67 0.52 FOS-eff-MOBS 164.00 6.05 429.71 36.88 2.62 0.24
W-ORBS 1017.00 0.00 13378.98 504.69 13.16 0.50 W-ORBS 210.80 1.83 860.68 151.17 4.08 0.70

esc-1
(W-ORBS
Iter.:4)

ROS-MOBS 158.10 11.39 2419.24 128.02 15.35 1.02
replace
(W-ORBS
Iter.:6)

ROS-MOBS 118.70 10.37 700.25 137.06 5.90 1.01
FOS-uni-MOBS 166.80 8.45 2385.50 148.60 14.35 1.26 FOS-uni-MOBS 98.20 10.32 586.78 78.29 5.96 0.37
FOS-app-MOBS 148.00 6.77 2460.76 89.41 16.66 0.93 FOS-app-MOBS 113.90 7.13 652.74 72.45 5.74 0.63
FOS-eff-MOBS 148.20 7.85 2400.78 40.82 16.25 0.95 FOS-eff-MOBS 109.70 6.81 662.87 77.21 6.05 0.72
W-ORBS 239.00 0.00 7875.26 290.58 32.95 1.22 W-ORBS 150.40 7.03 1421.99 211.15 9.42 1.05

esc-2
(W-ORBS
Iter.:5)

ROS-MOBS 163.70 7.72 2972.71 147.53 18.21 1.38
sched2
(W-ORBS
Iter.:3)

ROS-MOBS 64.70 5.95 117.17 24.86 1.80 0.30
FOS-uni-MOBS 166.00 11.86 2963.51 186.19 17.93 1.62 FOS-uni-MOBS 61.20 4.24 97.31 7.11 1.60 0.17
FOS-app-MOBS 150.40 4.20 3016.77 122.80 20.08 1.16 FOS-app-MOBS 62.50 3.07 113.17 17.45 1.82 0.32
FOS-eff-MOBS 139.10 7.08 2923.23 117.45 21.06 1.17 FOS-eff-MOBS 61.40 3.01 104.53 11.35 1.71 0.21
W-ORBS 228.00 0.00 9522.98 357.31 41.77 1.57 W-ORBS 86.00 0.00 254.91 2.58 2.96 0.03

esc-3
(W-ORBS
Iter.:5)

ROS-MOBS 209.90 15.95 2680.11 116.08 12.85 1.17
sched
(W-ORBS
Iter.:4)

ROS-MOBS 58.20 10.49 88.28 5.91 1.57 0.30
FOS-uni-MOBS 204.80 9.34 2626.56 166.92 12.87 1.20 FOS-uni-MOBS 53.20 7.81 65.11 8.02 1.27 0.37
FOS-app-MOBS 186.40 9.17 2704.12 90.17 14.55 1.04 FOS-app-MOBS 56.70 6.62 83.43 9.62 1.50 0.28
FOS-eff-MOBS 179.30 8.04 2617.82 118.46 14.63 0.87 FOS-eff-MOBS 58.70 6.87 83.38 7.78 1.44 0.24
W-ORBS 309.00 0.00 7030.67 326.03 22.75 1.06 W-ORBS 93.00 0.00 220.23 10.44 2.37 0.11

esc-4
(W-ORBS
Iter.:5)

ROS-MOBS 223.30 21.39 2635.30 309.91 11.82 1.13
totinfo
(W-ORBS
Iter.:3)

ROS-MOBS 68.20 6.05 17.79 0.69 0.26 0.03
FOS-uni-MOBS 221.30 10.06 2610.84 145.66 11.84 1.06 FOS-uni-MOBS 67.60 4.45 17.84 0.58 0.27 0.02
FOS-app-MOBS 198.30 8.78 2760.42 91.40 13.95 0.86 FOS-app-MOBS 65.00 5.14 18.06 0.68 0.28 0.02
FOS-eff-MOBS 177.60 10.32 2617.47 186.62 14.80 1.49 FOS-eff-MOBS 67.30 7.01 18.24 1.26 0.27 0.04
W-ORBS 337.00 0.00 7118.56 240.77 21.12 0.71 W-ORBS 98.00 0.00 54.79 1.55 0.56 0.02

Table 7: Statistics on execution time and the number of deleted lines for W-ORBS and MOBS .

23

0.12
0.05
0.01

0
0.04
0.26
0.06
0.07
0.72
0.56
0.47
0.52
0.75
0.27
0.1

0.17
0.12
0.09
0.16
0.03
0.58
0.71
0.78
0.46

0.06
0.03
0.06

0
0.01
0.2

0.06
0.17
0.18
0.07
0.14
0.05
0.27
0.22
0.07
0.17
0.15
0.03
0.23

0
0.64
0.49
0.56
0.31

0.04
0.03
0.04

0
0.01
0.39
0.11
0.18
0.26
0.04
0.11
0.06
0.23
0.3

0.23
0.18
0.21
0.12
0.35
0.14
0.55
0.62
0.64
0.42

0.31
0.2

0.54
0.37
0.38
0.36
0.61
0.8

0.06
0.12
0.16
0.09
0.1

0.44
0.49
0.3

0.41
0.36
0.58
0.41
0.59
0.32
0.23
0.33

0.39
0.23
0.5
0.03
0.32
0.69
0.77
0.87
0.13
0.03
0.13
0.05
0.09
0.71
0.75
0.47
0.7
0.68
0.81
0.65
0.5
0.34
0.25
0.46

0.56
0.44
0.44
0.15
0.39
0.78
0.67
0.66
0.62
0.29
0.48
0.32
0.45
0.74
0.84
0.66
0.69
0.83
0.69
0.75
0.47
0.58
0.54
0.57

ROS : UNI ROS : APP ROS : EFF UNI : APP UNI : EFF APP : EFF

totinfo
sched2

sched
replace
prttok2
prttok
net−5
net−4
net−3
net−2
net−1
esc−5
esc−4
esc−3
esc−2
esc−1
csv−3
csv−2
csv−1
cli−5
cli−4
cli−3
cli−2
cli−1

C
rit

er
ia

0.0

0.2

0.4

0.6

0.8

Â12

Figure 8: Vargha-Delaney Â12 on TPD between selection strategies. Each of ROS, APP, EFF, and UNI
represents MOBS with rolling operator selection, fixed operator selection using ‘applicability’, ‘effect’, and
uniform proportion, respectively.

capable of deleting an average of 69% of the number of lines deleted by W-ORBS,
while requiring only 36% of wall clock execution time required by W-ORBS.

7.5. Qualitative Analysis of the Slices
This section answers RQ5 with a qualitative analysis of the slices. We investigate

the differences between the slices generated by W-ORBS, VSM-ORBS, and MOBS.
We omit LDA-ORBS from the analysis as the results hitherto clearly suggest it is not
as effective as VSM-ORBS.

7.5.1. Similarity between W-ORBS and MOBS Slices
Figure 10 shows our modified Jaccard similarity computed between the results of

ROS-MOBS and W-ORBS for two slicing criteria, net-3 and replace. The values on
the leftmost column represent the similarity between the slice produced by W-ORBS
and ten trials of MOBS; values above the diagonal represent the similarity between
the ten trials of MOBS where darker squares indicate greater similarity between the
two slices. Except for small fluctuations, slices generated by MOBS are much more
similar to each other, than they are similar to the slices generated by W-ORBS. This
implies that, despite stochasticity, slices generated by MOBS share common patterns
that are different from those generated by W-ORBS. We next consider whether lexical
approximation of dependence is particularly effective or ineffective against specific
types of statements.

24

●●

●

●
●

●●

2505007501000

1
2

3
4

5
6

Ite
ra

tio
n

Deleted Lines

M
O

B
S

−
U

N
I

M
O

B
S

−
A

P
P

M
O

B
S

−
E

F
F

M
O

B
S

−
R

O
S

O
R

B
S

●●●

●

●

●●

● ●

●

● ●
● ●●

●

●

● ●
●●●

● ●

● ●●
●●●

●

● ●
●●●

● ● ●

2000400080001600032000

1
2

3
4

5
6

Ite
ra

tio
n

Time (sec.)

co
m

m
on

s−
cl

i c
rit

er
io

n5

●

●

200300400500600700

1
2

3
4

5

Ite
ra

tio
n

Deleted Lines

M
O

B
S

−
U

N
I

M
O

B
S

−
A

P
P

M
O

B
S

−
E

F
F

M
O

B
S

−
R

O
S

O
R

B
S

●

● ●

●

●

2000400080001600032000

1
2

3
4

5

Ite
ra

tio
n

Time (sec.)

co
m

m
on

s−
cs

v
cr

ite
rio

n1

●

●

●

●

●

●

100150200250300

1
2

3
4

5

Ite
ra

tio
n

Deleted Lines

M
O

B
S

−
U

N
I

M
O

B
S

−
A

P
P

M
O

B
S

−
E

F
F

M
O

B
S

−
R

O
S

O
R

B
S

●●

●●
●●

● ●●

●●

●●
●

●●●

●●

●●
●

●●●

●●

●●
●

●●●

●●

● ●

●●●

1000200040008000

1
2

3
4

5

Ite
ra

tio
n

Time (sec.)

gu
av

a−
es

ca
pe

 c
rit

er
io

n3

●

● ●

●

●

●

●

●

●

4080120160

1
2

3
4

5
6

Ite
ra

tio
n

Deleted Lines

M
O

B
S

−
U

N
I

M
O

B
S

−
A

P
P

M
O

B
S

−
E

F
F

M
O

B
S

−
R

O
S

O
R

B
S

●

●

●●

● ●

●

● ●

●

●●

●●●

●

●●●

●

●
●

10002000

1
2

3
4

5
6

Ite
ra

tio
n

Time (sec.)

re
pl

ac
e

cr
ite

rio
n1

Fi
gu

re
9:

B
ox

pl
ot
so

fe
xe
cu
tio

n
tim

e
an
d
nu

m
be
ro

fd
el
et
ed

lin
es

fo
rW

-O
R
B
S
an
d
va
ria

nt
so

fM
O
B
S
ov
er

10
re
pe
at
ed

ru
ns

25

ORBS
ROS0

ROS1
ROS2

ROS3
ROS4

ROS5
ROS6

ROS7
ROS8

ROS9

ROS0
ROS1
ROS2
ROS3
ROS4
ROS5
ROS6
ROS7
ROS8
ROS9

.62 1 .96 .98 .96 .84 .96 .96 .90 .94 .79

.63 1 .97 .99 .83 .99 .99 .91 .96 .80

.62 1 .97 .83 .96 .96 .90 .94 .78

.63 1 .83 .99 .98 .91 .96 .79

.72 1 .84 .83 .84 .83 .82

.63 1 .98 .91 .95 .79

.63 1 .91 .95 .80

.68 1 .92 .82

.65 1 .81

.78 10.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

guava-net_criterion3

ORBS
ROS0

ROS1
ROS2

ROS3
ROS4

ROS5
ROS6

ROS7
ROS8

ROS9

ROS0
ROS1
ROS2
ROS3
ROS4
ROS5
ROS6
ROS7
ROS8
ROS9

.88 1 .93 .92 .94 .92 .90 .91 .94 .90 .90

.88 1 .94 .95 .94 .92 .92 .94 .90 .90

.89 1 .92 .94 .91 .94 .93 .90 .89

.88 1 .96 .94 .92 .95 .91 .90

.88 1 .94 .92 .94 .90 .88

.86 1 .92 .93 .92 .89

.87 1 .92 .91 .90

.87 1 .92 .90

.89 1 .89

.82 1
0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

replace

Figure 10: Jaccard similarity between ROS-MOBS and W-ORBS for net-3 and replace .

7.5.2. Characteristics of Slices
Table 8 shows the top thirty lines that are most frequently found in slices by VSM-

ORBS but not in those by W-ORBS. We observe the following patterns that make it
difficult for VSM-ORBS to delete these lines:

• Multi-line Statements: Lexical deletion operators do not try to delete consecutive
lines. Thus, they may attempt to delete one line from a multi-line statement,
raising compilation errors. This case includes lines ending with a left bracket
that marks the beginning of a compound statement, such as if (it.hasNext()){.

• Declarations: As can be seen in Section 7.1, the lexical deletion operators cannot
delete asmany lines asW-ORBS. Consequently, they often fail to delete all uses of
a variable before attempting to delete its declaration. Similarly, they often fail to
delete the body of a method before attempting to delete the method declarations.
This means that declaration statements are harder for VSM-ORBS to delete than
for W-ORBS.

• Frequent Lexemes: certain lexemes occur frequently throughout the code in many
different, and potentially unrelated, semantic contexts. They may be lexically
similar to each other, but this does not necessarily mean that there also exists
dependence. For example, return this; is a lexeme that can be found in many
different methods: attempting to delete all instances of return this; is most
likely to fail, even if the specific instance under consideration can actually be
deleted.

We investigate how capable W-ORBS, VSM-ORBS, and MOBS are at deleting
lines having these characteristics. Figure 11 contains box plots that show how many
lines of interest (i.e., either lines that are part of multi-line statements or declarations)
can be deleted by each technique. Figure 12 shows the results of a similar analysis for
frequent lexemes.

The box plots in Figure 11 show that, for all slicing criteria, VSM-ORBS deletes
the fewest lines of interest, followed by MOBS, and W-ORBS, which deletes the most

26

Code line (Top thirty with frequency) Freq.

} 10228
import static com.google.common.base.Preconditions.checkNotNull; 212
checkArgument(168
throw new IllegalArgumentException(144
public String toString() { 140
return (TRUE); 136
currentOption = null; 135
eatTheRest = true; 120
return (this); 104
if (it.hasNext()) { 92
{ 92
public int hashCode() { 84
import java.util.Iterator; 80
return (token); 80
hostPortString); 76
return (s); 75
return (false); 73
quote = true; 72
opt = Util.stripLeadingHyphens(opt); 68
return (true); 64
this.option = option; 60
import java.util.List; 60
if (opt == null) { 60
}else if (matchingOpts.size() > 1) { 60
else{ 60
import static com.google.common.base.Preconditions.checkArgument; 60
return (dest); 60
dest[3] = ’%’; 60
import java.util.ArrayList; 56
import javax.annotation.Nullable; 56

Table 8: Lines that are retained in VSM-ORBS slices but not in W-ORBS slices.

lines of interest. The results suggest that syntactic structures in source code presents
challenges to the lexical deletion operators, while thewindow deletion used byW-ORBS
can circumvent this challenge.

Analysis of frequent lexemes requires a more subtle approach, as we cannot antic-
ipate all such lexemes. Instead, we posit that these lexemes are more likely to consist
of stop words, as our characterising definition of frequent lexemes is a lexeme that can
appear in many different contexts. Non-stop words (i.e., solution-domain identifiers)
are more likely to be bound to specific local contexts. Consequently, we compare the
average number of non-stop word tokens per deleted line in Figure 12.

While there is variance in the difference, VSM-ORBS deletes more non-stop word
tokens per deleted line than W-ORBS. One implication of this is that lexical deletion
operators may find it more difficult to delete irrelevant control structures, as deleting
them would require deleting lines with frequent lexemes that are related to control flow,
such as return; or } else {. However, as long as lines that mostly consist of unique
identifiers are deleted, the resulting slices may still be useful in cases where the user
is interested more in understanding the dependencies between individual lines than in
slicing out entire control flow structures.

27

cli_
1
cli_

2
cli_

3
cli_

4
cli_

5
csv

_1
csv

_2
csv

_3
esc

_1
esc

_2
esc

_3
esc

_4
esc

_5
ne

t_1
ne

t_2
ne

t_3
ne

t_4
ne

t_5prt
2 prt rep

sch
e2sch

e tot

Criterion

0

100

200

300

400

500

600
Nu

m
be

r o
f d

el
et

ed
 c

ha
ra

ct
er

ize
d

lin
e

Multi-line stmt
W_ORBS
VSM_ORBS
MOBS

cli_
1
cli_

2
cli_

3
cli_

4
cli_

5
csv

_1
csv

_2
csv

_3
esc

_1
esc

_2
esc

_3
esc

_4
esc

_5
ne

t_1
ne

t_2
ne

t_3
ne

t_4
ne

t_5prt
2 prt rep

sch
e2sch

e tot

Criterion

0

20

40

60

80

Nu
m

be
r o

f d
el

et
ed

 c
ha

ra
ct

er
ize

d
lin

e

Declaration
W_ORBS
VSM_ORBS
MOBS

Figure 11: Number of deleted characterized lines

7.6. Scalability
To investigate how lexical dependency scales to both larger and multi-lingual sys-

tems, we consider the open-source project misaka6 as a benchmark program. Misaka is
a CFFI-based binding for Hoedown, a fast markdown processing library written in C.
The project consists of ten C files from Hoedown, which performs text parsing, and five
Python files that wrap the C functions to produce a Python module. Misaka has a rich
test suite containing 92 test cases written in Python that focus on evaluating the linkage
between the Python and C functions, rather than the Hoedown library itself. The test
suite consists of two unit tests that test the input arguments and 39 integration tests that
test the binding of the C functions to Python methods. The remaining 41 system-level
tests involve 41 different markdown text files and their corresponding HTML files.

We consider six slicing criteria for misaka, in an attempt to cover as diverse a set of
functionalities as possible. We select slicing criteria in the C code, which are eventually
reached from the Python test scripts through the CFFI binding. The first slicing criterion
(crit-1) involves a variable tracking the index of the beginning of each line in a buffer
while rendering a regular markdown document. The second slicing criterion (crit-2)
targets the size of the text to render. The third slicing criterion (crit-3) is a variable
containing the maximum size of the custom stack before it is changed by a method that
grows the stack to a given size. The fourth slicing criterion (crit-4) targets the size of
misaka’s renderer object while allocating a regular HTML renderer. The fifth slicing
criterion (crit-5) is a temporary variable which discriminates the starting index of the
row from the padding when parsing a markdown table row. The last slicing criterion
(crit-6) is the index of the beginning of a markdown link in the method that calculates
the index of the end of the markdown link.

We ran W-ORBS, VSM-ORBS, and LDA-ORBS on the six slicing criteria using a
threshold of 0.9 for γ with both Dvsm and Dlda, and n = 500 topics for Dlda. We also
ran ROS-MOBS ten times for each slicing criteria. The results for VSM-ORBS and
LDA-ORBS when compared to W-ORBS shows a similar trend to those of the previous

6https://misaka.61924.nl

28

cli_
1
cli_

2
cli_

3
cli_

4
cli_

5
csv

_1
csv

_2
csv

_3
esc

_1
esc

_2
esc

_3
esc

_4
esc

_5
ne

t_1
ne

t_2
ne

t_3
ne

t_4
ne

t_5prt
2 prt rep

sch
e2sch

e tot

Criterion

0

1

2

3

4

5

Av
g

nu
m

be
r o

f n
on

-s
to

p
wo

rd
 to

ke
ns

 p
er

 d
el

et
ed

 li
ne

Non-stop word

W_ORBS
VSM_ORBS
MOBS

Figure 12: Average number of non-stop word tokens on a deleted line

experiments. On average for all slicing criterion, VSM-ORBS and LDA-ORBS slice
the code 2.82 times and 2.31 times faster than W-ORBS while they delete 32.1% and
33.5% of lines that W-ORBS could delete, respectively.

Table 9 shows the result comparing W-ORBS and ROS-MOBS, and box plots in
Figure 13 show the ratio between two. In Figure 13, the red box plot on the left
represents how many times ROS-MOBS run faster compare to W-ORBS, and the blue
box plot on the right represents the ratio of the number of deleted lines by ROS-MOBS
to the number of deleted lines by W-ORBS. According to the result, crit-1 shows good
performance from MOBS, where it deletes 71% of the lines deleted by W-ORBS while
executing 2.6 times faster. MOBS shows poor performance on crit-4 and crit-5. For
crit-5 it is only 1.4 times faster while for crit-4 the timing is essentially the same with
the average speed up of 1.01. For these slices it deletes 48% and 57% of the lines
deleted by W-ORBS, respectively. We investigated this difference in performance. The
main cause is the size of the slice. For slicing criterion crit-4, the size of the renderer
object calculated by simply calling sizeof method on the object, has no control or data
dependence between the surrounding source code. The dependency chains reaching crit-
4 are also simple and shallow, making most of the code easy to delete in early stages of
W-ORBS and MOBS. The small number of remaining lines reduce MOBS’s advantage
of fewer deletion attempts on a single line when compared to W-ORBS. Similarly, the
dependence of crit-5 is limited. It focuses solely on parsing the markdown table, which
is a local function of the program, and has little dependence on other parsing methods
in the program; thus, its slice size is the second smallest among all slicing criteria. On
the other hand, criterion crit-1 targets the central logic of the Hoedown library. It occurs
inside a while loop calculating the beginning index of every line of the document. Thus,
the dependence chains weave through much of the code, and the final slice is the largest
over all slicing criteria. A large number of remaining lines enhances the advantage of

29

Criterion Strategy Iteration Compile Execute Deleted lines Time

crit-1 ROS-MOBS 5.9 17,683 5,135 2,209 34,890
W-ORBS 6.0 42,292 16,027 2,950 92,305

crit-2 ROS-MOBS 5.1 13,561 2,937 2,145 22,765
W-ORBS 6.0 25,612 8,849 3,880 50,970

crit-3 ROS-MOBS 5.4 13,316 3,133 2,284 23,930
W-ORBS 6.0 23,978 8,448 3,956 47,203

crit-4 ROS-MOBS 4.9 10,579 1,602 2,626 10,953
W-ORBS 6.0 12,700 2,787 4,642 10,683

crit-5 ROS-MOBS 4.8 11,697 2,019 2,140 18,036
W-ORBS 6.0 15,370 3,723 4,465 24,704

crit-6 ROS-MOBS 5.4 16,231 3,994 2,488 30,922
W-ORBS 6.0 26,878 9,163 3,794 50,762

Table 9: Statistics comparing ROS-MOBS and W-ORBS on the six misaka slicing criteria. The data for
ROS-MOBS is an average of ten trial runs. Misaka has a total of 5,125 lines of code.

●

●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

2.63 0.71 2.26 0.55 2.01 0.58 1.01 0.57 1.42 0.48 1.76 0.66

0.5

1

1.5

2

2.5

3

0.00

0.25

0.50

0.75

1.00

criterion1 criterion2 criterion3 criterion4 criterion5 criterion6

S
pe

ed
 u

p
D

eletion ratio

●

●

Speed up
Deletion ratio

Figure 13: Ratios comparing the number of deleted lines and time taken by ROS-MOBS and W-ORBS

MOBS over W-ORBS, making the slice much faster than W-ORBS. The other three
slicing criteria (crit-2, crit-3, and crit-6) show a similar trend. Their slices are smaller
than the slice of crit-1, but larger than the slices of crit-4 and crit-5. Both crit-2 and crit-6
involves greater dependence with other parsing methods than crit-5. Finally, slicing
criterion crit-3 targets a function that increases the stack’s size limit, which is used as a
data structure to buffer parts of a document.

Table 10 shows examples of successful multi-lingual deletion by the lexical deletion
operators. The first column shows which operator was used; both of Dvsm and Dlda
are successfully applied to the code lines in the last row. Dvsm successfully deletes
three lines: two from ‘callbacks.py’ and one from ‘html.c’. Terms ‘table’, ‘align’,
and ‘left’ are shared among the three causing them to be considered similar by the
Vector Space Model. Dlda successfully delete lines from ‘api.py’, ‘document.c’,
and ‘html_smartypants.c’, together. In this case, the terms ‘hoedown’, ‘buffer’, and
‘text’ are shared among three lines making them similar under LDA. Both Dvsm

30

Operator File-name:Line-num Code line

Dvsm
callbacks.py:97 elif align_bit == TABLE_ALIGN_LEFT:
callbacks.py:98 align = ‘left’
hoedown/html.c:393 case HOEDOWN_TABLE_ALIGN_LEFT:

Dlda
api.py:29 lib.hoedown_buffer_puts(ib, text.encode(‘utf-8’))
hoedown/document.c:2490 hoedown_buffer_free(text);
hoedown/html_smartypants.c:195 hoedown_buffer_putc(ob, text[0]);

Dvsm,
Dlda

callbacks.py:125 result = renderer.blockhtml(text)
hoedown/html.c:635 renderer->blockhtml = NULL;

Table 10: Example successful multi-lingual deletions by the lexical deletion operators

and Dlda successfully deletes the lines result = renderer.blockhtml(text) from
‘callbacks.py’ and renderer->blockhtml = NULL; from ‘html.c’, together. This result
exemplifies that our new lexical deletion operators can capture (an approximation to)
inter-language dependence in a multi-lingual program.

7.7. Threats to Validity
This section considers three threats to the validity of our experiments: external

validity, internal validity, and construct validity. To begin with, external validity
consider how well our results generalize to other environments. The subjects studied,
shown in Table 1, include imperative and object-oriented codes of modest size. It is
possible that our technique is not effective when larger programs or programs written
in other languages are considered. Mitigating both of these threats is the previous
application of ORBS to larger programs written in a range of programming languages.
In fact this is one of ORBS strengths. The more serious external threat that larger
programs bring is that the naming would become cluttered resulting in a lowering of
the effectiveness of the IR based lexical approximations. In general, IR systems scale
to very large corpora where then often perform better in the presence of more data.

Next, internal validity is the causal effect of the explanatory variables on the re-
sponse variables. The use of ORBS, which empirically identifies the exact dynamic
dependencies provides an excellent bellwether for assessing the lexical approximation
of program dependence. When a lexical operator successful deletes a set of lexically
related lines the ORBS’s framework ensures that these lines are not semantically related
to the slicing criterion and thus they can all be safely removed. In the other direction,
just because one of a set of lexically similar lines can not be deleted, does not mean
that other members of this set can not be deleted. Therefore we have strong evidence
when a deletion is accepted, but the approximation is more suspect when a deletion is
rejected.

The final threat considered is the threat to construct validity, which considers how
well our approach measures what it claims. In our experiments construct validity is not
a significant issue because we can directly measure dynamic dependence by running
the program using the given test suite.

8. Related Work

Lexical analysis, especially techniques borrowed from Information Retrieval, have
been widely studied and applied in software engineering. For example, LDA has

31

been applied to program comprehension (Binkley et al., 2014b) and traceability recov-
ery (Panichella et al., 2013); Vector Space Models have been applied to fault locali-
sation, based on the intuition that bug reports and the faulty program code may tend
to be lexically similar (Saha et al., 2013; Le et al., 2014, 2015; Wang et al., 2015).
More broadly, application of Natural Language Processing (NLP) techniques to source
code has been studied in the context of subjects such as the natural language model of
source code (Hindle et al., 2012), coding conventions (Allamanis et al., 2014), and code
snippet recommendation (Campbell and Treude, 2017). As far as we know, MOBS
is the first approach to program slicing and, more generally, dependence analysis that
exploits lexical information in program source code.

Since its introduction by Weiser in the 1970s (Weiser, 1979), program slicing has
been widely studied and developed (Anderson and Teitelbaum, 2001; Horwitz et al.,
1990; Amtoft and Banerjee, 2016; Hur et al., 2014). Static program slicing (Weiser,
1981) produces slices that are correct for all possible program executions, whereas
dynamic slicing aims to tailor slices to a particular set of program inputs (Korel and
Laski, 1988).

Many flavours of static slicing algorithms attempt to reduce the size of the resulting
slice. Incremental Slicing (Orso et al., 2001) allows selection of the type of data
dependencies that are considered while slicing. Stop-list slicing (Gallagher et al., 2006)
allows the programmer to define variables that are not of interest, information that is
subsequently used to purge the dependence graph before computing slices, resulting in
smaller slices. Barrier Slicing (Krinke, 2003) allows the programmer to specify which
parts of the program can and cannot be traversed while constructing the slice. A barrier
is specified with a set of nodes or edges of the program’s program dependence graph
that cannot be passed during the graph traversal, also resulting in a focused and thus
smaller slice.

Amorphous Slicing (Harman andDanicic, 1997) is an approach that aims to preserve
the semantics of the program, but not its syntax. Amorphous slices use program
transformation to simplify programs, preserving the semantics of the program with
respect to the slicing criterion. In contrast MOBS (and ORBS) only transform a
program using deletion.

Korel and Laski (1988, 1990) considered several algorithms to compute dynamic
slices based on their definition. In contrast, most later work on dynamic slicing ‘defines’
dynamic slicing based on the algorithms used to compute it (e.g., Agrawal and Horgan
(1990) and DeMillo et al. (1996)). Although many research prototypes and approaches
exist (Beszedes et al., 2001, 2006; Mund and Mall, 2006; Szegedi and Gyimóthy, 2005;
Zhang and Gupta, 2004; Zhang et al., 2007; Barpanda and Mohapatra, 2011), all these
approaches are for a single specific programming language and requires additional
analysis for the interface between languages to support multi-language programs.

Finally, union slicing (Beszédes et al., 2002) is also related to ORBS. Union slicing
approximates a static slice by unioning dynamic slices obtained using a set of inputs.
However, union slicing inherits the critical difference between dynamic and observation-
based slicing: dependencies considered by union slicing are dynamically occurring (but
statically determined) dependencies, rather than dynamically observed dependencies as
in ORBS. Moreover, unioning of slices does not necessarily lead to correct slices (De
Lucia et al., 2003), whereby ORBS computes dynamic slices for multiple criteria

32

without unioning.
MOBS builds upon Observation-Based Slicing (ORBS), a type of dynamic slicing:

it only preserves program dependencies that are observable (Binkley et al., 2014a) via
program execution. The dynamic nature of ORBS means it under-approximates the
semantics of program dependence, limited by the test suites used as input. However,
accepting deletions of source code lines based on purely dynamic observation has
its own benefits, such as being able to handle dependencies that no static slicers can
cope with (Binkley et al., 2015), slicing multi-lingual systems (Binkley et al., 2015),
and slicing languages with highly unconventional program semantics such as Picture
Description Language (Yoo et al., 2017). While MOBS and ORBS uses deletions of
source code lines, a later variant (Gold et al., 2017; Binkley et al., 2019) represents
source code as a tree structure and the proceeds to delete subtrees. Binkley et al. (2014a)
also introduced a parallel ORBS. Rather than applying window deletion successively,
the parallel version applies all deletion operators of different window size in parallel
and then selects the largest deletion that succeeds. By definition, MOBS is very much
parallelisable. Furthermore, if the deletion operators MOBS uses subsume all the
window deletion operators used by W-ORBS, parallel MOBS is a super set of parallel
W-ORBS. Theoretically, its worst case performance will match that of parallel W-
ORBS, but it has the potential to opportunistically take advantage of successful lexical
deletions. In this paper, we focus evaluating the impact of lexical dependence; thus, we
leave the study of parallelisation’s impact to future work.

The notion of deleting parts of a program or inputs also features prominently in
Delta Debugging (Zeller, 1999; Cleve and Zeller, 2000; Zeller and Hildebrandt, 2002).
Some variants of delta debugging try to reduce the cost of the original Delta Debug-
ging by exploiting language syntax and semantics. For example, Hierarchical Delta
Debugging (Misherghi and Su, 2006) exploits tree structures providing a tree-based
Delta Debugging approach. Delta (McPeak et al., 2006), a well known implementation
of Delta Debugging, uses a separate tool to flatten the tree structures in source code,
before applying delta debugging. Regehr et al. (2012) exploit the syntax and semantics
of C for four delta-debugging based algorithms to minimize C programs that trigger
compiler bugs. Coarse Hierarchical Delta Debugging (Hodován et al., 2017) is a re-
cently introduced variant of Hierarchical Delta Debugging that filters out tree nodes
that are not allowed to be deleted by the grammar of the language, thereby speeding up
Hierarchical Delta Debugging.

Finally, Jiang et al. (2014) introduced a forward dynamic slicing approach similar
to ORBS: their technique mutates the value of the variable at the location of the slicing
criterion, and subsequently observes the computed values in the state trajectory. The
dynamic slice consists of all statements for which the computed values have changed
compared to the trajectory of the original program.

9. Conclusion

Given program slicing’s wide range of applications, an efficient, language-indepen-
dent slicing technique can bring significant benefits to developers. The small increase
in slice size produced byMOBS is likely acceptable if it is accompanied by a significant
decrease in slicing time.

33

This paper makes two novel technical contributions. First, we present a novel
generalisation of observational slicing that can take advantage of a wide range of
deletion operators rather than the original algorithm’s use of only one, the deletion
window. Second, we introduce lexical deletion operators that exploit lexical similarities
between source code lines to improve the efficiency of ORBS. MOBS is the resulting
observational slicer that uses multiple deletion operators including the existing deletion
window operators and the newly-introduced lexical deletion operators.

The results of our empirical evaluation of MOBS show a significantly improve in
efficiency over W-ORBS, which is based solely on window deletion: MOBS deletes
approximately 69% of the lines deleted by W-ORBS, while taking only about 36% the
wall clock execution time. Furthermore, ROS’s ability to learn the relative applicability
of different operators dynamically during slicing produced the best result for MOBS.
Finally, we qualitatively considered the lexically deletable lines of code and the scala-
bility of MOBS using the multi-lingual open-source project misaka, which include both
Python and C code.

These results show that using a lexical approximation of dependence is viable.
Future work will include investigating the impact of involving reserved words and
comments in the lexical similarity computations as well as the impact of increasing the
size of the test corpus and programs.

10. Acknowledgement

This research was supported by Next-Generation Information Computing Develop-
ment Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Science, ICT (No. 2017M3C4A7068179). Dr. Binkley is supported by
NSF grant 1626262.

References

Agrawal, H., DeMillo, R.A., Spafford, E.H., 1993. Debugging with dynamic slicing
and backtracking. Software Practice and Experience 23, 589–616.

Agrawal, H., Horgan, J.R., 1990. Dynamic program slicing, in: Proc. of the ACM
SIGPLAN’90 Conf. on Programming Language Design and Implementation (PLDI),
pp. 246–256.

Allamanis, M., Barr, E.T., Bird, C., Sutton, C., 2014. Learning natural coding con-
ventions, in: Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ACM, New York, NY, USA. pp. 281–293.

Amtoft, T., Banerjee, A., 2016. A Theory of Slicing for Probabilistic Control Flow
Graphs. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 180–196.

Anderson, P., Teitelbaum, T., 2001. Software inspection using CodeSurfer, in: Work-
shop on Inspection in Software Engineering (CAV 2001).

Barpanda, S.S., Mohapatra, D.P., 2011. Dynamic slicing of distributed object-oriented
programs. IET software 5, 425–433.

34

Beszédes, Á., Faragó, C., Szabó, Z.M., Csirik, J., Gyimóthy, T., 2002. Union slices
for program maintenance, in: Proc. of the 18th Intl. Conf. on Software Maintenance
(ICSM), pp. 12–21.

Beszedes, A., Gergely, T., Gyimóthy, T., 2006. Graph-less dynamic dependence-
based dynamic slicing algorithms, in: Intl. Workshop on Source Code Analysis and
Manipulation (SCAM), pp. 21–30.

Beszedes, A., Gergely, T., Szabó, Z.M., Csirik, J., Gyimothy, T., 2001. Dynamic slicing
method for maintenance of large C programs, in: Proc. of the 5th Conf. on Software
Maintenance and Reengineering, pp. 105–113.

Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S., 2014a. ORBS:
Language-independent program slicing, in: Proceedings of the 22ndACMSIGSOFT
International Symposium on the Foundations of Software Engineering, pp. 109–120.

Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S., 2015. ORBS and
the limits of static slicing, in: Proceedings of the 15th IEEE International Working
Conference on Source Code Analysis and Manipulation, pp. 1–10.

Binkley, D., Gold, N., Islam, S., Krinke, J., Yoo, S., 2019. A comparison of
tree- and line-oriented observational slicing. Empirical Software Engineering 24,
3077âĂŞ3113.

Binkley, D., Heinz, D., Lawrie, D., Overfelt, J., 2014b. Understanding LDA in source
code analysis, in: Proceedings of the 22Nd International Conference on Program
Comprehension, ACM. pp. 26–36.

Binkley, D.W., 1998. The application of program slicing to regression testing. Infor-
mation and Software Technology Special Issue on Program Slicing 40, 583–594.

Blei, D.M., Ng, A.Y., Jordan,M.I., 2003. Latent dirichlet allocation. Journal ofmachine
Learning research 3, 993–1022.

Campbell, B.A., Treude, C., 2017. NLP2Code: Code snippet content assist via natural
language tasks. CoRR abs/1701.05648. URL: http://arxiv.org/abs/1701.
05648.

Cleve, H., Zeller, A., 2000. Finding failure causes through automated testing, in: Intl.
Workshop on Automated Debugging, pp. 254–259.

DeMillo, R.A., Pan, H., Spafford, E.H., 1996. Critical slicing for software fault local-
ization, in: Proc. of the Intl. Symposium on Software Testing and Analysis (ISSTA),
pp. 121–134.

Do, H., Elbaum, S.G., Rothermel, G., 2005. Supporting controlled experimentationwith
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering 10, 405–435.

Gallagher, K.B., Binkley, D., Harman, M., 2006. Stop-list slicing, in: Intl. Workshop
on Source Code Analysis and Manipulation (SCAM), pp. 11–20.

35

Gallagher, K.B., Lyle, J.R., 1991. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering 17, 751–761.

Gold, N., Binkley, D., Harman, M., Islam, S., Krinke, J., Yoo, S., 2017. Generalized
observational slicing for tree-representedmodelling languages, in: Proceedings of the
11th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp. 547–558.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization & Machine Learn-
ing. Addison-Wesley, Reading, MA.

Harman, M., Danicic, S., 1997. Amorphous program slicing, in: 5th IEEE International
Workshop on Program Comprenhesion (IWPC’97), IEEE Computer Society Press,
Los Alamitos, California, USA. pp. 70–79.

Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P., 2012. On the naturalness of soft-
ware, in: Proceedings of the 34th International Conference on Software Engineering,
IEEE Press, Piscataway, NJ, USA. pp. 837–847.

Hodován, R., Kiss, Á., Gyimóthy, T., 2017. Coarse hierarchical delta debugging,
in: 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 194–203. doi:10.1109/ICSME.2017.26.

Horwitz, S., Reps, T., Binkley, D.W., 1990. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems 12, 26–61.

Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S., 2014. Slicing probabilistic programs,
in: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, New York, NY, USA. pp. 133–144.

Jiang, S., Santelices, R., Grechanik, M., Cai, H., 2014. On the accuracy of forward
dynamic slicing and its effects on software maintenance, in: Intl. Working Conf. on
Source Code Analysis and Manipulation (SCAM), pp. 145–154.

Korel, B., Laski, J., 1988. Dynamic program slicing. Information Processing Letters
29, 155–163.

Korel, B., Laski, J., 1990. Dynamic slicing in computer programs. Journal of Systems
and Software 13, 187–195.

Korel, B., Rilling, J., 1998. Program slicing in understanding of large programs, in:
6th IEEE International Workshop on Program Comprenhesion (IWPC’98), IEEE
Computer Society Press, Los Alamitos, California, USA. pp. 145–152.

Krinke, J., 2003. Barrier slicing and chopping, in: IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2003), IEEE Computer Society
Press, Los Alamitos, California, USA. pp. 81–87.

Le, T.B., Thung, F., Lo, D., 2014. Predicting effectiveness of IR-based bug local-
ization techniques, in: 25th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2014, Naples, Italy, November 3-6, 2014, pp. 335–345.

36

Le, T.D.B., Oentaryo, R.J., Lo, D., 2015. Information retrieval and spectrum based
bug localization: Better together, in: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ACM, New York, NY, USA. pp. 579–590.

De Lucia, A., Harman, M., Hierons, R., Krinke, J., 2003. Unions of slices are not slices,
in: European Conference on Software Maintenance and Reengineering (CSMR
2003), pp. 363–367.

McPeak, S., Wilkerson, D.S., Goldsmith, S., 2006. Delta (http://delta.tigris.
org). URL: http://delta.tigris.org.

Misherghi, G., Su, Z., 2006. HDD: hierarchical delta debugging, in: Proc. of the 28th
Intl. Conf. on Software Engineering (ICSE), pp. 142–151.

Mitra, M., Chaudhuri, B., 2000. Information retrieval from documents: A survey.
Information Retrieval 2, 141–163.

Mund, G., Mall, R., 2006. An efficient interprocedural dynamic slicingmethod. Journal
of Systems and Software 79, 791–806.

Orso, A., Sinha, S., Harrold, M.J., 2001. Incremental slicing based on data-dependences
types, in: Proceedings of the IEEE International Conference on Software Mainte-
nance (ICSM 2001), IEEE Computer Society Press, Los Alamitos, California, USA.
pp. 158–167.

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A., 2013.
How to effectively use topic models for software engineering tasks? an approach
based on genetic algorithms, in: Proceedings of the 2013 International Conference
on Software Engineering, IEEE Press, Piscataway, NJ, USA. pp. 522–531.

Ragkhitwetsagul, C., Krinke, J., Clark, D., 2018. A comparison of code similarity
analysers. Empirical Software Engineering 23, 2464–2519.

Rajaraman, A., Ullman, J.D., 2011. Mining ofMassive Datasets. Cambridge University
Press, New York, NY, USA.

Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X., 2012. Test-case reduction
for C compiler bugs, in: Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), pp. 335–346.

Saha, R.K., Lease, M., Khurshid, S., Perry, D.E., 2013. Improving bug localization
using structured information retrieval, in: Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on, IEEE. pp. 345–355.

Salton, G., Wong, A., Yang, C.S., 1975. A vector space model for automatic indexing.
Commun. ACM 18, 613–620.

Singhal, A., 2001. Modern information retrieval: A brief overview. IEEE Data
Engineering Bulletin 24, 35–43.

37

Szegedi, A., Gyimóthy, T., 2005. Dynamic slicing of Java bytecode programs, in: Intl.
Workshop on Source Code Analysis and Manipulation (SCAM), pp. 35–44.

Vargha, A., Delaney, H.D., 2000. A critique and improvement of the “CL” common
language effect size statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics 25, pp. 101–132.

Wang, Q., Parnin, C., Orso, A., 2015. Evaluating the usefulness of IR-based fault
localization techniques, in: Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July 12-17,
2015, pp. 1–11.

Weiser, M., 1979. Program slices: Formal, psychological, and practical investigations
of an automatic program abstraction method. Ph.D. thesis. University of Michigan,
Ann Arbor, MI.

Weiser, M., 1981. Program slicing, in: Proc. of the 5th Intl. Conf. on Software
Engineering, pp. 439–449.

Yoo, S., Binkley, D., Eastman, R., 2017. Observational slicing based on visual seman-
tics. Journal of Systems and Software 129, 60–78.

Zeller, A., 1999. Yesterday, my programworked. today, it does not.Why?, in: European
Software Engineering Conf. and Foundations of Software Engineering, pp. 253–267.

Zeller, A., Hildebrandt, R., 2002. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering 28, 183–200.

Zhang, X., Gupta, N., Gupta, R., 2007. A study of effectiveness of dynamic slicing in
locating real faults. Empirical Software Engineering 12.

Zhang, X., Gupta, R., 2004. Cost effective dynamic program slicing, in: Proc. of the
ACMSIGPLAN2004Conf. on Programming LanguageDesign and Implementation,
pp. 94–106.

38

