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Abstract—Surprise Adequacy (SA) has been widely studied as
a test adequacy metric that can effectively guide software engi-
neers towards inputs that are more likely to reveal unexpected
behaviour of Deep Neural Networks (DNNs). Intuitively, SA
is an out-of-distribution metric that quantifies the dissimilarity
between the given input and the training data: if a new input
is very different from those seen during training, the DNN is
more likely to behave unexpectedly against the input. While
SA has been widely adopted as a test prioritization method, its
major weakness is the fact that the computation of the metric
requires access to the training dataset, which is often not allowed
in real-world use cases. We present DANDI, a technique that
generates a surrogate input distribution using Stable Diffusion
to compute SA values without requiring the original training
data. An empirical evaluation of DANDI applied to image
classifiers for CIFAR10 and ImageNet-1K shows that SA values
computed against synthetic data are highly correlated with the
values computed against the training data, with Spearman Rank
correlation value of 0.852 for ImageNet-1K and 0.881 for CIFAR-
10. Further, we show that SA value computed by DANDI achieves
can prioritize inputs as effectively as those computed using the
training data, when testing DNN models mutated by DeepCrime.
We believe that DANDI can significantly improve the usability
of SA for practical DNN testing.

Index Terms—DL Testing, Diffusion Models, Test Adequacy

I. INTRODUCTION

Deep Neural Networks (DNNs) have been rapidly adopted
into safety critical systems such as autonomous driving vehi-
cles and medical imaging devices, resulting in urgent needs
to test these systems. While DNNs suffer from a range of
faults [7], testing of DNNs remains a challenge as, typically,
the test oracle can only be provided by humans and are
extremely expensive. Consequently, various test adequacy met-
rics for test inputs have been proposed, so that the tester can
prioritise test inputs for DNNs according to their likelihood to
reveal incorrect behaviour [5], [12], [21], [27].

Surprise Adequacy (SA) [12], [13] is a widely studied test
adequacy metric. Intuitively, SA is an out-of-distribution-ness
measure: it quantifies the difference between the current input
and the data seen during the training. The measurement is
made via Activation Traces (ATs), i.e., the activation values
of all neurons in a chosen layer of DNN during the forward
inference of a specific given input. ATs can be thought to
capture the internal behaviour of the model against the input.
If the AT produced by the current input is similar to those
produced by the training data, the model is likely to perform

well with the input; if the AT produced by the current input is
not similar to those from the training data, the model is likely
to perform unexpectedly.

SA has been shown to be effective against image classi-
fiers [12], [13], semantic segmentation models for autonomous
driving [14], as well as RNN models that takes textual
inputs [15], [16]. SA has also been used as guidance to
synthesize test input images near the class boundaries [10],
[11]. Despite its effectiveness, SA has also been criticized
for one major limitation [29], which is that its computation
requires the access to the training data. There may be many
scenarios that do not allow such access: the model may be pre-
trained, or the training data may include private or copyrighted
material.

We propose DANDI (Diffusion as Normative Distribution
for DNN Input), a technique that allows the computation
of SA without the access to the training dataset. DANDI
is based on two core assumptions. First, we note that, to
compute SA values, it is critical to synthesise the distribution
of normative inputs, i.e., those that can represent the majority
of the specific input class under consideration. For example,
an image classifier for fruits would be trained using a large
number of good quality apples, unless the classifier is to be
used to pick out apples that have gone bad. Second, the recent
advances in generative models mean that it is possible for them
not only to produce synthetic test inputs to test models that
are trained and used with real inputs, but also to explicitly
specify the class of inputs to synthesize. For example, to test a
fruit classification model that is part of grocery store checkout
machine, we can synthesise inputs of good looking apples,
whereas to test a model that is part of a production line in
apple jam factory, we can also synthesise worm-eaten apples.
For both use cases, the synthetic inputs would be realistic
enough to be used as inputs to the model under test.

The paper evaluates the use of generative models as a
surrogate input distribution to compute SA. While the paper
instantiates DANDI for image classifiers, using Stable Diffu-
sion as the generative model, we believe the core assumptions
described above apply to other modalities such as natural
language. We first show that distributions of SA values pro-
duced using the real training data and the synthetic surrogate
data are statistically indistinguishable, using ImageNet1K and
CIFAR10 datasets. Subsequently, we also show that, when



prioritising test inputs, there exists a high correlation between
the order produced by SA computed with training data, and SA
computed with synthetic data. Finally, we show that DANDI
can successfully prioritise inputs to kill DNN model mutants
produced by DeepMutation [19].

The remainder of the paper is structured as follows. Section
II provides the academic backdrop to our paper and motivates
our approach. Section III describes in particular how we used
a diffusion model to generate images for DNN testing. Section
IV details our specific research questions and the experimental
setup that we used to obtain our results. In Section V, the
results of our analysis are provided; with threats to validity
discussed in Section VI. We discuss potential future directions
and conclude in Section VII.

II. BACKGROUND

A. Surprise Adequacy

Surprise Adequacy (SA) is a widely studied DNN test ad-
equacy metric that essentialy measures the similarity between
the given input and the data encountered during the model’s
training [12]. The intuition is that the model is more likely
to perform correctly when given inputs similar to the training
data, i.e., less surprising. Conversely, more surprising inputs,
i.e., those that differ significantly from the training data, are
less likely to be handled accurately by the model. Among the
multiple ways of calculating Surprise Adequacy, this paper
adopts Likelihood-based Surprise Adequacy (LSA). LSA first
represents each input using its Activation Trace (AT) vector,
which is the output of a neural layer captured while processing
that input. By gathering Activation Traces from all training
inputs, one captures the model’s internal representation of
the training data. Subsequently, LSA applies Kernel Density
Estimation (KDE) using the Gaussian kernel function. When a
new input is given, its LSA value is computed as the negative
logarithm of this density. A low LSA value indicates that
the input is similar to the training data, suggesting that the
model is likely to perform accurately. Conversely, a high LSA
value signifies that the input is different from the training data,
implying that the model may be less reliable in handling it.

SA has been applied to image classification [12], [13],
object segmentation for autonomous driving [14], question and
answering [15] as well as text classification [16]. However, its
major weakness is that one needs the access to training data to
compute SA values, which may not be the case in real-world
scenario. This paper aims to address this limitation.

B. Mutation Testing for DNNs

DNN models are typically evaluated using test datasets,
therefore the quality of these datasets is crucial; inadequate
test sets can result in models that appear accurate but lack
generality and robustness.

Mutation testing is a traditional software technique that in-
jects artificial faults to evaluate the fault-detection capabilities
of test suites [9]. However, conventional mutation operators are
not directly applicable to DL systems due to fundamental dif-
ferences; traditional software operates with explicit logic and

Fig. 1: Examples of generated images with DANDI for classes
pizza, bee, guinea pig, and candle.

deterministic control flow, while DL models are data-driven
and rely on learned representations from training datasets.
Tools like DeepMutation and DeepCRIME [8], [19] address
this by proposing DNN-specific mutation operators.

DeepMutation [19] provides source-level and model-level
mutation operators. Source-level operators modify training
data or model structure before training, requiring retraining.
In contrast, model-level operators adjust a trained model’s
weights and biases, thus avoiding retraining and offering
higher efficiency. Due to the high cost of retraining on
our datasets, we employ model-level operators, specifically
Gaussian Fuzzing (GF), which introduces Gaussian noise into
model weights by scaling them. The operator is defined as:

GF(W,ρ, σ) = w · (1 + ϵ)

where the weights w to be mutated are sampled uniformly
from W with probability ρ, and ϵ is sampled from N (0, σ2),
altering weights by approximately 100×σ% (default σ = 0.5).
In DeepMutation, a mutant model is considered killed if it
misclassifies a test data point that the original model classifies
correctly. This criterion assesses the test set’s effectiveness
in detecting introduced faults. DeepCRIME [8] introduces
a statistical killing criterion that accounts for the inherent
randomness in model training and mutant generation. Unlike
DeepMutation, which defines killing criteria based on single-
instance mutants, DeepCRIME leverages multiple instances
(20 by default) for each mutant for the same mutation operator.
This approach allows for a statistical definition of mutant
killing. A mutant model is killed if, against a test set, statistical
analysis identifies a significant difference with a meaningful
effect size in output quality metrics, such as accuracy, between
the original and mutant models.

To assess the effectiveness of our approach, we employ mu-
tation testing to determine how well DANDI-based prioritized
input set kills mutants, aiming to verify the dataset’s quality
and demonstrate the efficacy of DANDI-based prioritization.

C. Stable Diffusion

Stable Diffusion is a state-of-the-art text-to-image gener-
ative model capable of producing high-quality, diverse im-
ages guided by textual prompts [22]. It transforms random
noise into coherent images through diffusion modeling tech-
niques [6], specifically utilizing a latent diffusion model that
operates within a compressed latent space. Textual prompts are
processed through an encoder to generate prompt embeddings,
which guide the image generation process to align with the



Trained DNNTraining Data KDE

New Input

!

SA

(a) Original Surprise Adequacy Workflow

Trained DNNSynthetic Data KDE

New Input

!

SA

Stable Diffusion

"️ + “A real image of…”

(b) DANDI Surprise Adequacy Workflow

Fig. 2: Overview of DANDI in comparison to original workflow of SA

provided descriptions. The model employs a U-Net architec-
ture [23] augmented with a cross-attention mechanism [28] to
encode/decode images within this latent space.

In this context, the seed is a critical parameter that initializes
the random number generator used to produce the initial noise
input for the diffusion process. Varying the seed alters the
initial noise pattern, leading to different image outputs even
when the same prompt is used. This capability allows us
to generate a diverse set of images for each class label, as
different seeds result in unique noise patterns that evolve into
distinct images during the diffusion process. By leveraging
different seeds, we enhance the diversity of the synthetic
dataset and prevent duplicates.

III. APPROACH: DANDI

To overcome the dependency on the original training data
for SA computation, we introduce DANDI, a technique that
generates a surrogate input distribution using Stable Diffusion
(Fig. 2b). By creating a synthetic dataset that approximates the
characteristics of the original training data, we can compute
SA values without direct access to the original dataset.

Building on Stable Diffusion, DANDI generates a surrogate
dataset by prompting the Stable Diffusion model with class
labels from the target classification task. We use prompts in
the format “A real image of [label],” replacing [label] with
each class name to ensure the generated images are relevant to
the classification categories. To effectively represent the input
distribution, we generate a diverse set of images per class,
varying the random seed during image generation to enhance
diversity and prevent duplicates. Examples of the generated
images are shown in Fig 1, where the images correspond to
the categories of pizza, bee, guinea pig, and candle. Since
Stable Diffusion operates optimally at a resolution of 512×512
pixels, we generate images at this size and downscale them as
necessary to match the input requirements of the target DNNs.

With the surrogate dataset prepared, we compute the SA
values for new inputs by measuring their dissimilarity to
the activation patterns of the surrogate data. This involves
extracting Activation Trace vectors from the DNN for both
the surrogate dataset and the test inputs, and then calculating
LSA based on these activations. By using the surrogate dataset
generated through DANDI, we effectively approximate the
SA values without the need for the original training data.
This enables us to prioritize test inputs in scenarios where

the training data is inaccessible, enhancing the applicability
and efficiency of SA computation in practical settings.

IV. EXPERIMENTAL SETTINGS

This section describes our RQs and experimental setup.

A. Research Questions

The goal of this study is to evaluate whether the surrogate
input distribution generated by Stable Diffusion can effec-
tively replace original training data in computing the out-of-
distribution metric, SA, and to assess its effectiveness in test
input prioritization for DNNs.

For a comprehensive evaluation, we perform the analysis
in three ways: 1) compare the distributions of LSA values,
2) analyze the rank correlation between LSA values derived
from both the original and synthetic datasets, and 3) assess
the effectiveness of test input prioritization. These aspects are
examined through the following research questions:

1) RQ1. Comparison of SA Distributions: We compare the
original and normalized distributions of LSA values derived
from the original training dataset and by DANDI to determine
whether the synthetic data adequately reflects the properties of
the original data.

2) RQ2. Correlation Between SA Values: To investigate the
relationship between the LSA values derived from the original
training dataset and DANDI, we perform a rank correlation
analysis, measuring how closely the two sets of LSA values
align in terms of prioritizing test inputs.

3) RQ3. Effectiveness in Test Input Prioritization: We eval-
uate the effectiveness of test input prioritization by comparing
the test accuracy obtained from ranking test inputs and muta-
tion scores based on LSA scores derived from both the original
training dataset and by DANDI.

B. Experimental Setup

1) Datasets and DL System: We conduct our experiments
on two datasets: CIFAR-10 [17] and ImageNet-1K [4], both
of which are widely used in machine learning research for
benchmarking image classification models.

CIFAR-10 is a dataset consisting of 60,000 images divided
into 10 different classes, with each image sized at 32 × 32
pixels. The dataset is split into 50,000 training images and
10,000 test images. For the neural network to use as the DNN



under test, a 12-layer convolutional neural network with max-
pooling and dropout layers are employed [12]. It was trained
for 50 epochs to achieve 77.06% accuracy on the test set.

ImageNet-1K (ILSVRC 2012 dataset) consists of 1.2 mil-
lion training images and 50,000 validation images across 1,000
object categories, with images resized to 224× 224 pixels for
classification models. Due to its scale and diversity, it serves as
a standard benchmark for evaluating deep learning models on
large-scale image classification tasks [24]. To balance compu-
tational feasibility with representativeness, we select a subset
of 15 categories from ImageNet by choosing five labels from
each of three broad groups: food, animals and everyday items
(Table IV). We evaluate our approach on a per-label basis,
and utilize the validation and test datasets from ImageNet,
providing approximately 120 images per label. For the food
category, we incorporated the FoodNet101 dataset [2], which
offers 1,000 samples per label, as we found an additional
dataset suitable for this category. Due to insufficient datasets,
similar augmentation is not possible for the other categories.
For the DNN under test, we employ the pre-trained PyTorch
implementation [20] of VGG16 [25], a convolutional neural
network with 13 convolutional and three fully connected
layers. The model achieves 71.59% top-1 and 90.38% top-5
accuracy on ImageNet.

2) Configurations: For all research questions, LSA is com-
puted using the activation traces from the penultimate layer,
i.e., the input vector to the final neural network layer that pro-
duces the softmax logits, for both CIFAR-10 and ImageNet-
1K datasets. Following the methodology suggested by Kim et
al. [12], we reduce the computational cost of Kernel Density
Estimation (KDE) by excluding elements of the activation
trace vectors with low variance. The bandwidth for KDE
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Fig. 3: Distribution of LSA Scores and Standardized LSA
Scores for pizza ImageNet-1K (top) and horse, CIFAR-10
(bottom)

TABLE I: Average Test and Generated set Accuracy across
different categories of ImageNet-1K and CIFAR10

Category Test-set Acc (%) Generated-set Acc (%)

ImageNet-1K Food 79.05 91.88
ImageNet-1K Animals 91.56 99.10
ImageNet-1K Items 74.18 87.46
CIFAR10 77.06 82.60

is selected according to Scott’s Rule to ensure appropriate
smoothing. To further facilitate the computation of KDE we
perform Principal Component Analysis (PCA). This step is
necessary because the aggregated activation traces tend to
reside in a lower-dimensional subspace, resulting in a singular
covariance matrix that the Gaussian KDE algorithm cannot
process. By applying PCA for dimensionality reduction, we
transform the data into a space with a non-singular covariance
matrix, enabling KDE computation. Specifically, we reduce
the dimensionality to 512 for the CIFAR-10 classifier and to
1,024 for VGG16.

3) Generative Model: For the generative model, we em-
ploy the pre-trained Stable Diffusion v1.4 provided by Hug-
gingFace [22]. This specific checkpoint was chosen for its
demonstrated capability to generate photorealistic images from
textual inputs. Following the authors’ guidelines [22], we set
the guidance scale to 7.5 and used 50 inference steps to
generate the surrogate image dataset.

All experiments were performed on machines equipped
with Intel i7-8700 CPUs and 32GB RAM GPU, running
Ubuntu 20.04.6 LTS. CIFAR-10 and ImageNet-1K models are
implemented using Torch v.2.0.1.

V. RESULTS

In this section, we present the results of our evaluation.

A. Comparison of SA Distributions (RQ1)

In this section, we address RQ1 by examining whether
the LSA distributions generated by DANDI can serve as a
surrogate for those derived from the original training dataset
when calculating LSA.

To assess the validity of the generated dataset, we analyze
the top-1 accuracy achieved when using the generated data as
test inputs for pre-trained models. The results for ImageNet-
1K and CIFAR-10 are presented in Table I. For both datasets,
the generated dataset demonstrates a higher average accuracy
than the test set, supporting its validity. Notably, we do not use
these generated images directly for testing; rather, we employ
their distribution as a surrogate for the training dataset in
calculating LSA. This evaluation is conducted to confirm that
the generated dataset is appropriate for this purpose and not
merely a collection of random images.

For descriptive analysis, we visualize and compare the
LSA distributions using KDE plots. Due to space limitations,
we present the results for a single label from ImageNet-
1K and CIFAR-10 in Fig.3. Additional results can be found
in our repository [1]. Each result includes two KDE plots:



one illustratingthe raw LSA score distributions and another
showing the standardized distributions using z-score normal-
ization. This normalization centers distributions around a mean
of zero with unit variance, facilitating comparisons across
different labels by eliminating scale differences. In the plots,
the blue curve represents the LSA distribution from DANDI,
while the green curve corresponds to the original dataset. For
both ImageNet-1K and CIFAR-10, the raw distributions often
differ in range but generally exhibit a unimodal structure with
similar patterns. After normalization, the alignment between
distributions becomes even closer. Some distinctions persist;
for instance, in CIFAR-10, the standardized distribution for
the “horse” label has a higher peak in the original dataset
than in DANDI, indicating a greater density concentration.
Despite these differences, the overall trends between the two
distributions remain consistent post-normalization.

To further analyze the distributions, we compute the Jensen-
Shannon (JS) divergence to quantify the differences between
the LSA distributions generated by DANDI and those from
the original datasets [18]. The JS divergence ranges from
0 (identical distributions) to 1 (maximally different distribu-
tions). The complete results for all labels of ImageNet-1K and
CIFAR-10 are presented in Table II and Table III.

For the ImageNet-1K dataset, the JS divergence values are
relatively low, ranging from 0.065 to 0.202 across different
categories, with average values below 0.15. Similarly, for the
CIFAR-10 dataset, the JS divergence values were generally
low, averaging 0.131. However, certain labels such as “truck”
exhibited higher values, up to 0.231, which is higher than
any observed in the ImageNet-1K dataset. Upon closer ex-
amination, we discover that the CIFAR-10 dataset defines
the “truck” label to include only large trucks and explicitly
excludes pickup trucks. Our general image generation prompt
was “A real image of a truck,” which may have inadver-
tently resulted in images containing pickup trucks or other
mismatched types, thereby causing discrepancies. To address
this issue, we conducted an additional experiment using a
more specific prompt for the “truck” label: “A real image of
a big truck.” This refinement reduced the JS divergence value
from 0.235 to 0.217, illustrating that employing more precise
prompts can enhance the alignment between generated images
and the target dataset.

Our investigation into RQ1 indicates that for ImageNet-1K,
the LSA distributions generated by DANDI closely align with
those of the original training data after z-score normalization,
as evidenced by low JS divergence values. In the case of
CIFAR-10, despite some discrepancies attributable to factors
like coarse prompts, the generated data still exhibited a high
degree of similarity to the original dataset’s LSA distributions.

Answer to RQ1: Our findings affirm that the distribution
generated by DANDI effectively mirrors that of the original
training dataset, validating its use as a surrogate in calculat-
ing LSA values.

TABLE II: Jensen-Shannon Divergence (JSD): ImageNet-1K

Food Animals Items

Label JSD Label JSD Label JSD

pizza 0.086 guinea pig 0.169 monitor 0.202
ice cream 0.088 hamster 0.117 grandpiano 0.124
guacamole 0.121 orangutan 0.164 candle 0.132
carbonara 0.098 bee 0.136 tripod 0.088
burrito 0.065 pelican 0.108 binoculars 0.098

Average 0.092 Average 0.139 Average 0.129

TABLE III: Jensen-Shannon Divergence (JSD): CIFAR-10

Label JSD Label JSD

airplane 0.096 frog 0.204
automobile 0.119 dog 0.114
bird 0.096 horse 0.166
cat 0.074 ship 0.115
deer 0.090 truck 0.231

Average 0.131

B. Correlation Between SA Values (RQ2)

In this section, we address RQ2 by examining the rank
correlation between the LSA values generated by DANDI and
those derived from the original training dataset. We employ
Spearman’s rank-order correlation coefficient to assess the
relationship between the two sets of LSA values [26].

Spearman’s rank-order correlation coefficient (ρ) is a non-
parametric measure that assesses the monotonic relationship
between two variables, ranging from −1 (perfect negative cor-
relation) to +1 (perfect positive correlation), with 0 indicating
no correlation.

To determine the statistical significance of the observed
correlation, we calculate the associated p-value, representing
the probability of obtaining such a correlation by chance under
the null hypothesis of no correlation. A p-value less than 0.05
indicates statistical significance. We consider a correlation to
be strong and significant when ρ > 0.7 and the p-value is less
than 0.05 [3]. The correlation results for both the ImageNet-
1K and CIFAR-10 datasets are presented in Table IV.

For ImageNet-1K, all Spearman correlation coefficients ex-
ceeded 0.7 with corresponding p-values below 0.05, indicating
strong positive correlations across these categories. Notably,
the animals and items categories had smaller sample sizes,
approximately 130 samples per label, which falls below the
recommended minimum for reliable parametric significance
testing. To address this, we employ permutation testing, a
non-parametric method suitable for such conditions. Specif-
ically, we shuffle the LSA values and recalculate Spearman
correlation coefficients 10,000 times to construct an empirical
null distribution. The results show that all labels within the
animals and items categories yielded the minimal possible p-
value (1/(npermutations +1) ≈ 9.9× 10−5), confirming that the
observed correlations are statistically significant and unlikely
to have occurred by chance.

For CIFAR-10, the Spearman correlation coefficients for all
labels are above 0.7, averaging 0.881, with corresponding p-



TABLE IV: Correlation results for ImageNet-1K & CIFAR-10

Label Size Corr. P-val

pizza 1133 0.886 9.6E-302
ice cream 1079 0.922 6.4E-293
guacamole 1122 0.904 2.7E-296
carbonara 1126 0.855 1.0E-270
burrito 1109 0.872 5.9E-306

Avg (ImageNet-Food) 1000 0.888 2.1E-271

guinea pig 131 0.781 <1.0E-04
hamster 149 0.828 <1.0E-04
orangutan 150 0.738 <1.0E-04
bee 139 0.910 <1.0E-04
pelican 140 0.885 <1.0E-04

Avg (ImageNet-Animals) 142 0.826 <1.0E-04

monitor 141 0.752 <1.0E-04
grandpiano 131 0.810 <1.0E-04
candle 119 0.899 <1.0E-04
tripod 105 0.919 <1.0E-04
binoculars 111 0.839 <1.0E-04

Avg (ImageNet-Items) 121 0.844 <1.0E-04

airplane 1000 0.949 1.1E-302
automobile 1000 0.884 5.1E-299
bird 1000 0.924 1.5E-294
cat 1000 0.969 4.1E-305
deer 1000 0.948 5.7E-300
frog 1000 0.712 3.7E-155
dog 1000 0.923 1.2E-292
horse 1000 0.801 1.4E-224
ship 1000 0.918 6.0E-283
truck 1000 0.783 2.2E-208
bigtruck 1000 0.820 1.7E-244

Avg (CIFAR10) 1000 0.881 3.7E-156

values all below 0.05, averaging 3.67× 10−156. These results
align with those obtained from the ImageNet-1K dataset,
indicating strong positive correlations across both datasets.
Answer to RQ2: The rank correlation analysis demonstrates
a strong positive monotonic relationship between the LSA
values derived from the original training dataset and those
obtained using DANDI. The consistently high Spearman
correlation coefficients and statistically significant p-values
indicate that the two sets of LSA values closely agree in
prioritizing test inputs.

C. Effectiveness in Test Input Prioritization (RQ3)
In this section, we address RQ3 by examining input priori-

tization performance of DANDI and compare to those ranked
using the original training dataset. We assess the effectiveness
of DANDI by measuring test accuracy and analyzing mutant-
killing capability based on LSA scores.

To evaluate test accuracy, we sort the test inputs in descend-
ing order based on their LSA values, calculated using both the
original training dataset and DANDI. For ImageNet, we focus
exclusively on the food category. The test sets for the items
and animals categories are relatively small (approximately
130 samples per label) and exhibited near-perfect accuracies,
making it challenging to observe significant differences based
on input prioritization. For CIFAR-10, we evaluate all labels,
as the test dataset contains a sufficient number of samples.

The results are presented in Fig.4. Due to space constraints,
for each dataset, we present the two labels with the highest

and lowest correlation values: the top row displays the highest,
and the bottom row shows the lowest. In each graph, the green
line represents accuracies achieved by prioritizing inputs using
the original training dataset, while the blue line represents
accuracies achieved by prioritizing inputs using DANDI.

Both methods display similar trends: test accuracy increases
with rank, corresponding to decreasing LSA values. This
observation supports the findings outlined in the original
surprise adequacy paper. We also observe that the strength
of correlation is reflected in the accuracy measurements. For
CIFAR-10, accuracy results closely align for labels, which had
high correlation strength. For labels like “frog” and “truck”
while there are some differences at the start of the rankings,
both still exhibit the expected trend of increasing accuracy
with higher ranks. For ImageNet-1K, accuracy trends are
consistently aligned across all labels. The overall consistency
between the two methods suggests that DANDI effectively
approximates the original training dataset in prioritizing inputs.

To evaluate mutant-killing capability, we employ Gaussian
Fuzzing (GF), a model-level mutation operator from DeepMu-
tation, to generate mutant models. To ensure killable and non-
trivial mutants, we adopt the binary search to tune the values of
GF parameter (the ratio of the neurons affected by the mutation
operator), instead of manually picking the parameter. We aim
to discover the most challenging and yet killable configuration
of the mutation operator. We adopt the statistical definition
of killability provided by DeepCRIME, which involves using
multiple instances of both the original and mutant models, as
this approach offers more reliable results than relying on a
single mutant instance.

For CIFAR-10, we train 20 independent instances of the
original model and create mutants based on each one. How-
ever, for the ImageNet-1K, training 20 independent models
is computationally intensive due to its scale and resource
constraints. To address this, we simulate multiple instances by
enabling dropout in the classifier part of the VGG16 model
during inference, approximating the diversity of multiple
models through stochastic outputs. pecifically, we perform 20
stochastic forward passes of the original model with dropout
enabled and compare them to 20 stochastic forward passes of
the mutant model derived from the original model. We assess
killability for each class label based on these comparisons.

Following the experimental setup of the original Deep-
Mutation paper, we select inputs correctly classified by the
original model and prioritize them in the descending order
based on their LSA values. This approach targets inputs that
are more surprising to the model, specifically those likely
near the decision boundary, making them ideal for exposing
discrepancies between the original and mutant models. Since
mutants have perturbed decision boundaries, these prioritized
inputs increase the likelihood of revealing misclassifications
in the mutant models.

We report the killability results using these inputs in Table
V. Each column displays the killability results using selected
subsets of test data, comparing the original dataset with
DANDI. For ImageNet-1K, we use subsets of 30, 50, and 70
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Fig. 4: Impact of Input Prioritization on Model Accuracy

samples; for CIFAR-10, we use subsets of 100, 300, and 500
samples from both datasets. Inputs selected from the original
training set are labeled with ’-O,’ and those from DANDI are
labeled with ’-D.’ For ImageNet-1K, using 30 samples, the
original method killed mutants in 11 out of 15 class labels,
while DANDI killed mutants in 12 out of 15. With 70 samples,
the original method covered 14 class labels, whereas DANDI
achieved kills in all 15. A similar trend is observed on CIFAR-
10: with 100 samples, the original method killed mutants in 8
out of 10 class labels compared to 9 out of 10 for DANDI. At
500 samples, both methods killed mutants in all class labels.
These results demonstrate that DANDI matches or surpasses
the effectiveness of the original input selection method. It
efficiently prioritizes inputs for testing DNN models, achieving
higher mutant kill rates with fewer prioritized inputs.
Answer to RQ3: The effectiveness analysis shows that
inputs prioritized by DANDI closely align with those ranked
using the original training dataset. The test accuracy mea-
surements and mutant-killing capability based on LSA scores
indicate that DANDI effectively prioritizes test inputs.

VI. THREATS TO VALIDITY

Threats to internal validity concern factors that may influ-
ence the conclusions drawn in this paper. In our study, these
threats primarily involve the correctness of the implementation
of the DL systems, the generative model, and the computa-
tion of SA values. To mitigate these risks, we either train
classifier models using publicly available model architectures
or use pre-trained models to ensure correct implementation;
for the generative model, we exclusively use the publicly
available pretrained Stable Diffusion model from Hugging
Face. Our analyses were conducted using well-established
statistical packages such as SciPy and scikit-learn.

Threats to external validity primarily concern the gener-
alizability of our findings to other contexts. In this study,
we employed two DL systems and two datasets: CIFAR-10,

TABLE V: Killability results: Killed labels are marked with
checkmarks (✓), non-killed labels are marked with dashes (-).

Label 30-O 30-D 50-O 50-D 70-O 70-D

pizza ✓ ✓ ✓ ✓ ✓ ✓
ice cream ✓ ✓ ✓ ✓ ✓ ✓
guacamole ✓ ✓ ✓ ✓ ✓ ✓
carbonara ✓ ✓ ✓ ✓ ✓ ✓
burrito ✓ ✓ ✓ ✓ ✓ ✓

guinea pig ✓ - ✓ - ✓ ✓
hamster - ✓ ✓ ✓ ✓ ✓
orangutan ✓ ✓ ✓ ✓ ✓ ✓
bee - - - ✓ ✓ ✓
pelican - - - ✓ - ✓
monitor ✓ ✓ ✓ ✓ ✓ ✓

grandpiano - ✓ ✓ ✓ ✓ ✓
candle ✓ ✓ ✓ ✓ ✓ ✓
tripod ✓ ✓ ✓ ✓ ✓ ✓
binoculars ✓ ✓ ✓ ✓ ✓ ✓

Total 11/15 12/15 13/15 14/15 14/15 15/15
(a) ImageNet-1K

Label 100-O 100-D 300-O 300-D 500-O 500-D

airplane ✓ ✓ ✓ ✓ ✓ ✓
automobile ✓ ✓ ✓ ✓ ✓ ✓
bird ✓ ✓ ✓ ✓ ✓ ✓
cat - ✓ ✓ ✓ ✓ ✓
deer - - - - ✓ ✓
frog ✓ ✓ ✓ ✓ ✓ ✓
dog ✓ ✓ ✓ ✓ ✓ ✓
horse ✓ ✓ ✓ ✓ ✓ ✓
ship ✓ ✓ ✓ ✓ ✓ ✓
truck ✓ ✓ ✓ ✓ ✓ ✓

Total 8/10 9/10 9/10 9/10 10/10 10/10
(b) CIFAR-10

representing a simpler dataset, and ImageNet, representing
a more complex one. Due to computational constraints, our
experiments on ImageNet are restricted to five labels within
broad categories such as animals, food, and items. Future



research should consider a more extensive set of labels.
Threats to construct validity concern whether our exper-

imental setup accurately reflects the theoretical constructs
we aim to study. In our approach, we simulate multiple
model instances for ImageNet-1K by enabling dropout dur-
ing inference in the VGG16 classifier instead of training
20 independent models due to the high cost of training.
This method approximates model diversity through stochastic
outputs; however, it may not fully capture the true variability
of independently trained models with different initializations
and training processes, potentially affecting the validity of our
killability assessments for each class label.

VII. DISCUSSION AND CONCLUSION

We introduce DANDI, a technique that leverages Stable
Diffusion to generate surrogate input distributions for comput-
ing SA without requiring access to the original training data.
By eliminating the dependence on proprietary or unavailable
datasets, DANDI enhances the practicality of SA for testing
DNNs. Our evaluation on classifiers trained on the CIFAR-
10 and ImageNet-1K datasets demonstrates that SA values
computed using synthetic data generated by DANDI highly
correlate with those computed using the original data. This
high correlation enables effective prioritization of inputs that
reveal unexpected behaviors in DNN models. These findings
indicate that DANDI improves the usability of SA for prac-
tical DNN testing.

Future work will consider applying DANDI to other data
modalities, such as text, to broaden its applicability. Addi-
tionally, exploring its performance with various DNN archi-
tectures, including transformer-based networks, may provide
additional insights. In summary, DANDI advances SA as a
more accessible and practical metric for DNN testing by re-
moving the need for original training data, thereby contributing
to more effective testing practices in deep learning.
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