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Abstract—Large Language Models are increasingly used to
build agents to perform more complex tasks. As LLMs perform
more complicated reasoning through longer interactions, self-
consistency, i.e., the idea that the answer obtained from sampling
and marginalising a number of multiple independent inferences
is more likely to be correct, has received much attention as
a simple validation technique. This paper aims to empirically
verify this intuitive hypothesis by predicting the correctness of
answers obtained using self-consistency from properties of the
samples of reasoning paths. We introduce Lachesis, a predictive
model for self-consistency based LLM inferences, and empirically
evaluate it using AutoFL, a recently proposed LLM-based fault
localisation technique, as the target technique that uses self-
consistency. Lachesis converts collected reasoning paths from
AutoFL using specifically designed reasoning path representa-
tions, and trains LSTM and GCN models to predict whether a
given set of reasoning paths would result in a correct answer.
The results suggest that Lachesis can predict the correctness
of answers with a precision of up to 0.8136, highlighting the
possibility of training a predictive model that can allow early
termination of inferences that are not likely to be successful.

Index Terms—LLMs, Self-Consistency, Accuracy Prediction

I. INTRODUCTION

Large Language Models (LLMs) are rapidly being adopted
to automate various stages of the software development lifecy-
cle due to their capability to perform semantic reasoning across
the barrier between natural and programming language [1].
While the chatbot model, where an LLM after instruct-tuning
converses with a human user, has been the initial mode of
interaction, increasingly LLMs are being used to build more
complicated agents [2] for tasks like program repair [3], [4],
testing [5], and fault localisation [6]. These agents are assisted
by various in-context learning techniques, such as Chain-of-
Thoughts [7], self-consistency [8], and ReAct [9].

Self-consistency [8] in particular has received much at-
tention because of the simplicity of the technique: instead
of greedily decoding LLM outputs, self-consistency posits
that sampling and marginalising reasoning paths can produce
more accurate answers. That is, if multiple inferences sampled
independently reaches the same answer, the answer is more
likely to be correct. Since the only required computation is
multiple sampling of LLMs and the majority voting, self-
consistency has been widely studied and adopted [6], [10].

Despite the success of self-consistency, there are corre-
sponding cost concerns when using it as well, as to use self-
consistency one must query an LLM multiple times, which
is computationally costly (and as an extension, potentially
harmful for the environment [11]). To find a clue to overcome
this challenge, we look at the hypothesis that self-consistency
relies on: for logical problems, there tend to be multiple
reasoning paths that lead to the correct answer [8]. This is
interestingly reminiscent of fitness landscape analyses, where
an optimum can be said to have a broader ‘basins of attraction’,
in that more random solutions will end up at the optima [12].
In optimization, one may imagine multiple solutions ‘ag-
gregating’ at the neighbours of an optimum before actually
arriving at the optimum. Similarly, with self-consistency, one
may observe a convergence of intermediate reasoning steps
before observing convergence towards the final answer, and
use that to make an early prediction of whether the LLM will
get the answer correct for this question. Simply put, can we
predict the result of self-consistency before LLM inference
generates the answer? This may enable early termination of
likely unsuccessful LLM inferences, thereby reducing the cost
of self-consistency.

As a preliminary study, this paper empirically investigates
whether such predictions are feasible by looking at the traces
of multiple inferences. We introduce Lachesis, a predictive
model that aims to classify whether a given set of LLM
reasoning paths will result in a correct answer. Lachesis is
evaluated in conjunction with an LLM-based fault localization
tool, AutoFL [6], as the target, and can predict the success of
inferences with precision of up to 0.8136.

II. METHODOLOGY

A. AutoFL & Self-Consistency

AutoFL [6] is a recently proposed method-level Fault Lo-
calization (FL) technique that leverages LLMs. FL requires
extensive contextual information, such as contents of source
code and test coverage, which are often too long to fit in the
context window of LLMs. To overcome this issue, AutoFL
equips the LLM with a set of functions (tools), enabling the
LLM to autonomously gather relevant information, instead
of receiving all contextual details upfront, ReAct [9]. Given
the initial failure information, AutoFL uses the set of given
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Fig. 1: Structure of LIM

functions to collect details on class- and method-level coverage
of failing test cases, method snippets, and documentation.
AutoFL is given N such function calls to determine the buggy
method as its final answer: it repeats this process R times for a
single bug and aggregates to generate a final list of suspicious
methods to present to the user. While AutoFL is an ideal
candidate for Lachesis, note that Lachesis can generalise to
any LLM-based agents that uses a set of functions (i.e., tools)
as reasoning steps.

B. Representation of Reasoning Paths

Wang et al. [8] hypothesise that complex reasoning tasks
for LLMs would typically allow multiple paths that reach
the correct solution. In turn, we posit that, if the hypothesis
about reasoning paths is true, it would also be possible to
predict the correctness of the reasoning based on the shape
of the combined multiple reasoning paths. Lachesis uses two
representations of reasoning paths in AutoFL: LLM Inference
Matrix, and LLM Inference Graphs.

1) LLM Inference Matrix: An LLM Inference Matrix (LIM)
is a collection of reasoning paths: each column of the matrix
corresponds to a single reasoning path. Consequently, with
AutoFL inference data, the corresponding LIM would have
R columns, each of which consists of up to N embedding
vectors (see Section II-C) that occupy different rows, each
corresponding to a function call, as shown in Fig. 1. If AutoFL
returns an answer before completing all N function calls, the
remaining positions in the chain are padded with zeros.

2) LLM Inference Graph: An LLM Inference Graph is
a digraph representation of multiple reasoning paths: each
node is a specific reasoning step (a specific function call,
or FL outcome, in the case of AutoFL), whereas each edge
connects two consecutive reasoning steps (i.e., nodes) in the
order in which they were performed. Edges are weighted to
represent multiple reasoning paths with the same subsequence
of reasoning actions. Ans example is given in Fig. 2.

C. Embedding Reasoning Steps

A reasoning step of AutoFL is either a specific function
call, or an FL result. We experiment with different information
contents that go into the representation of a reasoning step.
Embedding examples are provided in Fig. 3.
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Fig. 2: Example graph of LIG: Edge weight is represented by
the width of arrows.

1) Shape Only (S): The bare minimum information that
can support the self-consistency hypothesis is the shape of
reasoning paths, i.e., whether multiple paths converge to a
single answer that is correct. To verify this, Shape Only (S)
representation uses a vector filled with ones of length 5 as
the node embedding for both function call nodes and answer
nodes, without any additional information. This helps us to
evaluate how accurate the prediction can be when using only
the shape of the LIG. Unlike other embeddings of reasoning
steps, Shape Only can only be used with LIG.

2) Function Type Only (F): Kang et al. [6] reports a pattern
in AutoFL function calls: the LLM gradually narrows down its
search scope by looking at code snippets and documentations.
To reflect this, Function Only (F) representation uses one-hot
vectors to represent different function types used at each rea-
soning step. Since AutoFL provides three common functions
and one unique function each for BugsInPy and Defects4J, we
use a one-hot vector of length five to represent the function
type used in a reasoning step.

3) Function Type and Arguments (F+A): In addition to
Function Type representation, this representation also includes
the specific function argument values used with function calls.
We hope to capture the cases where AutoFL is gradually
narrowing down the candidate fault locations. For example, if
multiple reasoning paths look at code snippet and documen-
tation of the same method, it can be a sign that the method is
more likely to be the correct location of the fault. For F+A,
we first collect all classes or methods that appeared during
reasoning for each bug, both as function arguments and as
AutoFL answers, excluding those that failed to interact with
AutoFL because they do not exist in the repository. These are
represented as one-hot vectors with one extra position beyond
the collection size, with the last position reserved for those
arguments that are not included in the collection due to the
non-existence. These vectors are then concatenated with the
function type one-hot vectors.

4) Function Type, Arguments, and Answer (F+A+A): In
addition to Function Type and Argument, this representation
includes the final answer given by AutoFL. Similarly to F+A,
we collect all methods and classes that have appeared in
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reasoning paths. Since AutoFL can provide multiple answers
as buggy method, we mark all corresponding position in the
vector with ones to represent the answers. The vector is then
appended to the path of the function calls.

D. Prediction Model

Once Lachesis represents reasoning paths in either LIM
or LIG, it predicts whether the given set of reasoning paths
contains the correct answer. In the case of AutoFL, we define
a set of reasoning paths to contain a correct answer if AutoFL
ranks the faulty method at the top after it computes the ranking
score by voting [6]. Consequently, we use the AutoFL results
to label LIMs and LIGs. Lachesis uses an Long Short Term
Memory (LSTM) [13] model to predict the correctness of
LIMs, and a Graph Convolution Network (GCN) [14] model
to predict the correctness of LIGs.

1) LSTM: The LSTM architecture consists of multiple
LSTM layers and a single fully connected layer. When passing
through the LSTM layer, multiple reasoning paths are stacked
together, so that the LSTM can process all paths step-wise
along the time axis in the order of function calls (i.e., the
LSTM process R first reasoning steps, followed by R second
reasoning steps, up to N -th reasoning steps).

2) GCN: In the GCN model, the data passes a sequence
of GCN layer, ReLU activation function, and dropout layer
multiple times, allowing the model to learn the graph structures
effectively. Subsequently, the final GCN layer, followed by
global mean pooling and a fully connected layer, performs
the final classification.

III. EVALUATIONS

A. Experimental setups

1) Dataset Construction: In the original experiments of
AutoFL [6], R and N were set to 5 and 10, respectively, that
is, for each bug, AutoFL performs 5 inferences, each of which

TABLE I: Hyperparameter Settings

LSTM GCN
F F+A F+A+A S F F+A F+A+A

Layers 1 2 1 3 3 3 3
Hidden dim. 32 128 32 128 64 64 64
Batch 64 16 32 32 16 16 16
Dropout 0 0.5 0 0.3 0.8 0.8 0.8

can have up to 10 function calls. AutoFL was evaluated using
798 bugs from the BugsInPy [15] and Defects4J [16] datasets.1

For this study, we configure AutoFL to run 10 times per bug
(i.e., R = 10), and create a dataset from these 10 reasoning
paths, and keep N as 10. To simplify data preparation and
model training, we limited our dataset to buggy program
versions containing only one ground truth buggy method from
the original AutoFL evaluation dataset. Bugs from Closure
of Defects4J were excluded due to the high cost of LLM
executions. This results in a dataset of 456 bugs, 294 from
BugsInPy and 162 from Defects4J. AutoFL correctly ranks
the buggy methods at the top for 307 of these bugs.

2) Baselines: We compare the results with AutoFL confi-
dence scores [6]. Each of R inferences conducted by AutoFL
produces answers (i.e., candidate faulty locations), to which
AutoFL votes. The voting produces final scores for candidate
faulty methods, and the method with the most votes is chosen
as the final answer. The highest score then becomes the
confidence score, serving as a measure of confidence in the
final answer. The formula used to measure the confidence
score is as follows:

confidence = max
m∈M

score(m) (1)

where M denotes the set of methods covered by failing tests
and score(m) denotes the voting score of each method. The
AutoFL-confidence metric requires the final answer of the
reasoning process to measure accuracy, as demonstrated here.
Using this confidence score, we calculated the classification
accuracy, ROC-AUC, precision, and recall, to compare with
our approach. In addition, we report baseline scores by assum-
ing all prediction results are correct to ensure that Lachesis can
handle the imbalance in the dataset.

3) Metrics: We use the standard evaluation metrics for
classification: accuracy, ROC-AUC, precision, and recall. With
AutoFL-Confidence, we set the threshold to 0.5, which means
that the final result of AutoFL is predicted to be correct (i.e.,
the actual faulty method will be ranked at the top) when the
confidence score is greater than or equal to 0.5.

4) Hyperparameter Tuning: The number of LSTM layers,
the number of iterations of layer sequences including GCN
layers, hidden dimensions, batch size and dropout probability
are manually fine-tuned. The tuned hyperparameters are pre-
sented in the Table I. A 10-fold cross-validation is employed to
mitigate the risk of over-fitting. Both LSTM and GCN models
are trained for 50 and 100 epochs each with a learning rate

1Our code and data are available at https://figshare.com/s/
d7fc515a52a379ae47ea.

https://figshare.com/s/d7fc515a52a379ae47ea
https://figshare.com/s/d7fc515a52a379ae47ea
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Fig. 4: ROC-AUC Graphs

TABLE II: Performance of Prediction Models and Baselines

Method Accuracy ROC-AUC Precision Recall

LSTM
F 0.7063 0.7356 0.7570 0.8302
F+A 0.7149 0.6870 0.7662 0.8268
F+A+A 0.7191 0.7557 0.7711 0.8272

GCN
S 0.6900 0.7791 0.7323 0.9182
F 0.7235 0.7866 0.7751 0.8524
F+A 0.7454 0.7723 0.8022 0.8332
F+A+A 0.7454 0.7755 0.8136 0.8172

AutoFL Conf. 0.7610 0.8193 0.8173 0.8306
Baseline 0.6732 - 0.6732 1.0000

of 0.001. We report test accuracy, ROC-AUC, precision, and
recall from the epoch with the highest test accuracy.

B. Results

As shown in Table II, Lachesis achieves performance com-
parable to AutoFL confidence, although AutoFL confidence
slightly outperforms it. A similar trend is observed in ROC-
AUC plots in Fig. 4: the average ROC-AUC from k-fold
evaluation of Lachesis is slightly outperformed by AutoFL
confidence score. However, Lachesis achieves competitive
precision (GCN, F+A+A) and the highest recall (GCN, S). We
argue that the high precision would be better in the expected
use case, as it would also lead to fewer false positives.

We note that both the LSTM and GCN models show a
tendency to perform better as more information about argu-
ments and answers are provided. This may be due to the
fact that the additional information can reveal how AutoFL
gradually narrows down the location of the faults by making
function calls to a specific location. In addition, the GCN,
which provides a more intuitive representation of the structure
between function calls, outperforms the LSTM overall. Thus,
the integration of function call information with structural
information seems to have a synergistic effect.

On the other hand, AutoFL-confidence is not designed to
provide scores specifically for 0.5-threshold binary classifica-
tion, so its calculated classification accuracy, precision, and
recall scores may not serve as fully comparable metrics. As
described before (Section II-A), computing AutoFL confidence
score requires the inference run to finish itself, whereas while
configurations of Lachesis such as F and F+A can perform
well by leveraging limited information. This, in turn, suggests
that predictions based on partial data may be possible, leading
to the possibility of early terminations.

IV. CONCLUSION

We present Lachesis, a predictive model that aims to classify
sets of LLM reasoning paths based on whether they will result
in correct answers or not. Lachesis is based on the hypothesis
behind self-consistency, i.e., there tend to be multiple reason-
ing paths that lead to the correct answer. This allows Lachesis
to predict the correctness of the final answer based on the
structural properties of the reasoning paths. Lachesis achieves
precision of 0.8136 when applied to reasoning of AutoFL,
an LLM-based Fault Localisation technique. Future work will
investigate whether Lachesis can be extended to enable early
termination of LLM inferences that are unlikely to be correct.
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