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Abstract—As Deep Neural Networks (DNNs) are rapidly being
adopted within large software systems, software developers are
increasingly required to design, train, and deploy such models into
the systems they develop. Consequently, testing and improving
the robustness of these models have received a lot of attention
lately. However, relatively little effort has been made to address
the difficulties developers experience when designing and training
such models: if the evaluation of a model shows poor performance
after the initial training, what should the developer change? We
survey and evaluate existing state-of-the-art techniques that can
be used to repair model performance, using a benchmark of
both real-world mistakes developers made while designing DNN
models and artificial faulty models generated by mutating the
model code. The empirical evaluation shows that random baseline
is comparable with or sometimes outperforms existing state-of-
the-art techniques. However, for larger and more complicated
models, all repair techniques fail to find fixes. Our findings call
for further research to develop more sophisticated techniques for
Deep Learning repair.

Index Terms—deep learning, real faults, program repair,
hyperparameter tuning

I. INTRODUCTION

Deep Neural Networks (DNNs) are rapidly being adopted

into large software systems due to the significant advances

in their performance across multiple domains such as image

and speech recognition, machine translation, and autonomous

driving [1]–[6]. Especially because some of these application

domains, such as medical imaging [7], [8] or autonomous

driving [9], are safety-critical, findings about failure-inducing

inputs [10]–[12] and adversarial examples [13], [14] posed

serious threats, resulting in significant efforts to test [15]–[19]

and improve [11], [20] the robustness of DNN models.

When considering the proposed ways to improve model

performance and robustness, most attention was directed to

the training dataset, looking for effective methods to augment

it in order to address the discovered deficiencies [21], [22].

However, a model may exhibit poor predictive performance

(e.g., high prediction errors) because of issues affecting the

model structure and the training process, not the training

data. Relatively little work has been done to repair the model

structure or to improve the training process, as compared to re-

training the model on an augmented dataset. In the following,

we refer to model architecture faults with the broad meaning of

mistakes made by developers when specifying the model and

its training process in the source code. Examples of such faults

include the choice of an inappropriate activation function for a

layer of the DNN or too large a value for the learning rate of

the optimiser. Such mistakes can have critical impacts on the

model’s predictive performance yet also remain easy to make

for the software engineers who are not necessarily experts on

deep learning [23]. More importantly, these mistakes are often

not easy to fix manually for developers, e.g., due to the lack

of expertise, the stochastic nature of DNN models, and the

cost of training and evaluating candidate patches.

This paper assesses existing DNN improvement techniques

proposed within both the software engineering (SE) and the

machine learning (ML) research communities. In particular, the

former aim explicitly at detecting and eliminating problematic

symptoms observed during training (such as vanishing gradients

or dying ReLU [24], [25]). The latter aim at optimising the

model’s hyperparameters. While neither directly addresses the

issue of model architecture faults made by developers, they

nonetheless can take as input an underperforming model and

can produce output repair actions that fix architectural faults

affecting the model. As the two families of techniques have

a large overlap in terms of the model architecture faults that

they address, we consider both in our empirical assessment.

Specifically, we focus our empirical evaluation on AUTO-

TRAINER [26], a representative DNN repair tool, recently

presented at the flagship software engineering conference

(ICSE), and on HEBO [27] and BOHB [28], which represent

state-of-the-art among the Hyperparameter Optimisation (HPO)

techniques developed by the machine learning community. The

latter belong to the Bayesian optimisation family, which has

been shown to outperform all alternative approaches (e.g.,

search-based) [29]. As a sanity check, we include random

search as a baseline in our study.

We use a collection of both real-world and artificial model
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architecture faults to evaluate these repair techniques. The real-

world model architecture faults have been manually curated

from the fault benchmark made available by Cao et al. [24], who

in turn collected them from GitHub issues and StackOverflow

questions about DNN model underperformance. The artificial

model architecture faults have been created by applying source-

level mutation operators [30], which are designed based

on a taxonomy of real-world faults [23]. We consider a

model architecture fault fixed once the improvement in model

performance, measured across multiple runs, is statistically

significant. The models we study include image classifiers

for MNIST [31] and CIFAR10 [32], a text classifier for

Reuters [33], and eye gaze direction predictors based on the

UnityEyes simulator [34].

Our results show that while existing techniques are capable

of improving models with architecture faults, there is ample

room for improvement. Surprisingly, the random baseline

generally performs competitively against more sophisticated

repair techniques. Also, both Random and HPO techniques

significantly outperform AUTOTRAINER. However, none of the

studied techniques shows good performance for larger and more

complex models. A further analysis that simulates different

time budgets for each technique reveals that Random and HPO

techniques tend to perform better when larger budgets are

allowed, while AUTOTRAINER does not benefit from larger

budgets. Lastly, a complexity analysis of generated patches

shows that all techniques tend to produce more complex patches

when compared to the human-generated ground truth ones (i.e.,

they have redundant changes compared to the ground truth

patches).

The contributions of this paper are as follows:

• We present a wide empirical evaluation of existing state-

of-the-art techniques for the automated repair of DNN

model architecture faults.

• We provide a carefully curated benchmark of repairable

model architecture faults for various DNN benchmark

datasets and tasks. It includes both real-world faults as

well as artificial mutations.

The rest of the paper is organised as follows. Section II

formulates the problem of automatically repairing DNN ar-

chitecture faults and introduces the techniques we evaluate.

Section III describes the fault benchmark we use for our

empirical evaluation. Section IV describes the design of the

empirical study, the results of which are presented in Section V.

Section VI discusses the findings obtained from the empirical

evaluation, followed by threats to validity (Section VII). Sec-

tion VIII presents the related work, and Section IX concludes.

II. AUTOMATED DL REPAIR

The taxonomy of real Deep Learning (DL) faults constructed

by Humbatova et al. [23] includes five top-level categories of

DL faults: (1) model faults; (2) GPU usage faults; (3) API

usage faults; (4) training faults; and (5) tensor faults. In this

work, we focus on the faults affecting the architecture of the

DNN model, i.e., errors made by developers when choosing

the architecture of the model, including its structure, properties

and the training hyperparameters. In the above mentioned

taxonomy, the model architecture faults match entirely the

top-level category (1) (model faults), and partially the top level

category (4) (training faults). More specifically, among the

training faults, we consider the following subcategories as

model architecture faults: optimiser faults, loss function faults,

and hyperparameters faults, while from the same category,

faults affecting the training data, data preprocessing or the

training process are out of scope, as none of the existing DL

repair tools can be applied to these faults.

In summary, by model architecture faults, we mean the

following (sub-)categories of faults from the DL fault tax-

onomy [23]: faults affecting the structure and properties,

faults affecting the DNN layer properties and activation

functions, faults due to missing/redundant/wrong layers, and

faults associated with the choice of optimiser, loss function and

hyperparameters (e.g., learning rate, number of epochs). Given

a DNN model affected by an architectural fault, we define the

DNN model architecture repair problem as the problem of

finding an alternative configuration of the model architecture

that can improve the model performance (e.g., accuracy or

mean squared error) on the test set by a statistically significant

amount.

In the Machine Learning community, the model architecture

repair problem was not addressed directly, but the existing

works on Hyperparameter Optimisation (HPO) can be regarded

as approaches to improve an under-performing model, not only

to choose the initial set of hyperparameters. Moreover, the

list of hyperparameters being optimised by HPO techniques

is not limited to the learning rate and the number of epochs:

it instead includes layer properties, activation functions, and

even the number of layers/neurons in the DNN structure,

effectively covering all configuration parameters considered in

our definition of the DNN model architecture repair problem.

Hence these approaches fall within the scope of our empirical

investigation. In the Software Engineering community, the

model architecture repair problem was addressed directly by a

few recent works, among which is AUTOTRAINER [26].

A. Hyperparameter Optimisation (HPO)

Hyperparameter tuning or optimisation is the problem of

finding a tuple of hyperparameter values such that the model

trained with such hyperparameters solves the given task with

acceptable performance [35]. Often this problem is solved

manually, but the rising popularity of deep learning methods

has pushed for its automation [35]–[37].

Along with the manual search, grid search (full factorial
design) [38] is a simplistic approach to HPO. It is based on

setting a finite set of values for each of the hyperparameters

and evaluating all the possible combinations in order to find

the best-performing one [36]. This approach is found not be

efficient with the growth of dimensionality of the configuration

space, as the number of the required evaluations increases

exponentially [36] (it should be noted that each evaluation

requires full training of the DNN).
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Algorithm 1: Bayesian optimisation HPO technique

input : D, initial dataset of model configurations, consisting of
pairs 〈xi, yi〉, with xi a tuple of hyperparameter values and
yi the model accuracy when trained with xi
N , total number of allowed model trainings

output : x∗, the best hyperparameter tuple found during the search

1 function BO-OPTIMISATION
2 b ← |D|
3 while b < N do
4 f ← fitSurrogate(D)
5 X ← sampleHyperparameters(f , D)
6 b ← b+ |X|
7 D ← D ∪ trainEvaluateModel(X)
8 end
9 x∗ ← argmaxxi{yi|〈xi, yi〉 ∈ D}

10 return x∗

Another simple approach is random sampling in the hyper-

parameter space within a provided search budget [39]. Random
search was shown to substantially outperform the manual and

grid approaches [39]. It proves to be an appropriate baseline

for more sophisticated search algorithms as it is, in theory, able

to achieve optimal or nearly optimal results when provided

enough budget, and it does not require any knowledge of the

function being optimised [36].

Bayesian optimisation (BO) is an efficient, state-of-the-art

strategy for global optimisation of objective functions that are

costly to evaluate [36], [40]. The iterative approach behind

BO, shown in Algorithm 1, is based on two main components:

a probabilistic surrogate model (line 4) and an acquisition

function (line 5) [36]. The surrogate model f (usually a

Gaussian process) approximates the objective function (i.e.,

the model accuracy given the hyperparameters to be used

for training) from the historical observations made during

the previous iterations [27], [36]. This function is trained on

the available dataset D of previously observed pairs 〈xi, yi〉,
where xi is a tuple of hyperparameter values and yi is the

model accuracy when trained with xi. Function f is also

supposed to provide an estimation of the uncertainty affecting

its prediction, which is also used to guide the exploration

of the configuration space [27]. The acquisition function,

sampleHyperparameters at line 5, in its turn, calculates the

utility of various new candidate tuples by using the surrogate

model’s prediction (i.e., its estimation of the objective function

value) and uncertainty, trading off exploration vs exploitation

in the search space [27], [36], [40]. The result is a set of new

tuples X that are predicted to bring high model accuracy

(exploitation) or diversify the search w.r.t. the previously

considered configurations D (exploration). When the budget

N of allowed model trainings is over, the algorithm returns the

configuration x∗ associated with the best-performing model

obtained after training with hyperparameters x∗. BO techniques

are efficient w.r.t. the number of model trainings and evaluations

they require [41], [42], and produced prominent results in

the optimisation of DL network hyperparameters in different

domains [43]–[46].

HEBO (Heteroscedastic Evolutionary Bayesian Optimisa-
tion) is a state-of-the-art BO algorithm developed specifically

to optimise a performance metric (validation loss) over the con-

figuration space of various hyperparameters of DL algorithms

[27]. The approach won the NeurIPS 2020 annual competition

that evaluates black-box optimisation algorithms on real-world

score functions [27]. The motivation behind HEBO is the

observation that the majority of BO implementations adopt

only one acquisition function and Gaussian noise likelihood

as a surrogate model to predict the objective function values

for candidate hyperparameter tuples [27]. By analysing the

available competition data, the authors found out that different

acquisition functions provide conflicting results, and noise

processes are heteroscedastic and complex. To mitigate these

issues, HEBO handles heteroscedasticity and non-stationarity

of the complex noise processes through non-linear input

and output transformations. Moreover, it uses multi-objective

acquisition functions with evolutionary optimisers that avoid

conflicts by reaching a consensus among different acquisition

functions [27]. Another popular family of HPO approaches,

called bandit-based strategies [36], [47], [48], has been recently

combined with BO, achieving promising results. The main

representative of these combined approaches is BOHB [28].

For our evaluation, we chose Random Search as the baseline

approach and compared it with the two best-performing state-

of-the-art HPO algorithms, HEBO and BOHB.

B. AutoTrainer

AUTOTRAINER [26] is an approach that aims to detect

and repair potential DL training problems. It takes as an

input a trained DL model saved in the “.h5” format and

a file that contains training configurations of the model

such as optimisation and loss functions, batch size, learning

rate, and training dataset name. Given a DL model and its

configuration, AUTOTRAINER starts the training process and

records training indicators, such as accuracy, loss values,

calculated gradients for each of the neurons. It then analyses

the collected values according to a set of pre-defined rules and

recognises potential training problems. In its current version,

the supported symptoms of training problems are: vanishing

and exploding gradients, dying ReLU, oscillating loss and slow

convergence.

Once a problem has been detected, AUTOTRAINER applies

its own built-in repair solutions one by one based on a default

order, if an alternative, preferred order is not specified, and

checks whether the problem has been fixed by the built-in

solution. The list of predefined solutions includes adding

batch normalisation layers, adding gradient clipping, adjusting

batch size and learning rate, substituting activation functions,

initialisers and optimisation functions. It should be noted that

when applying the possible repair solutions, AUTOTRAINER

does not re-train the model with the applied repair from scratch,

but starts from the already trained initial model and continues

the training process for more epochs with the applied solution.

If none of the solutions can fix the problem, AUTOTRAINER

reports its failure to find a repair to the user.

236

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 10,2023 at 06:07:31 UTC from IEEE Xplore.  Restrictions apply. 



III. BENCHMARK

To evaluate techniques applicable to the problem of DL

repair, we prepare a set of faulty models. In the set, we

include programs of two different kinds: those with artificially

seeded faults and faulty programs affected by real faults. In

this section, we describe the nature of such programs, the

differences between the two categories, and the methodology

behind the construction of the benchmark.

A. Artificial Faults

Artificial faults, also known as mutations, are at the core

of the software testing approach called Mutation Testing

(MT) [49]: a test suite is deemed mutation-adequate if it can

expose the artificially injected faults (i.e., it can kill the mutants).
As DL systems significantly differ from traditional software,

syntactic mutations are ineffective for mutation testing of DL

[50]. Thus, over recent years researchers have proposed a

variety of DL-specific mutation operators. Two main groups are

distinguished: pre-training mutation operators and post-training

operators. The post-training operators are applied to a model

after the training process is successfully finished. They focus

on altering the structure or weights of the trained model [51]–

[53]. An example of such operators could be deleting a random

layer or adding gaussian noise to a randomly selected subset

of the weights. However, such operators are not realistic and

were found not to be sufficiently sensitive to changes in the

test set quality [30]. On the other hand, such mutations are

fast to generate and can be preferable in settings with limited

time and resources. Another group, the pre-training operators,

seed faults into a model before the training process begins [30],

[52]. They can affect different aspects of a DL model, such as

training data, model architecture and various hyperparameters.

Such operators were shown to be more sensitive to the quality

of test data than those of the post-training mutations [30]. A

recent DL mutation tool, DEEPCRIME, generates a set of pre-

training mutants given an original DL system as input [30]. It

is based on existing, systematic analyses of real faults affecting

DL models [23], [54], [55]. We decided to adopt DEEPCRIME

to generate mutated models for the purposes of our evaluation,

as it produces mutants that are inspired by faults reported by

developers to occur in real life.

The replication package of DEEPCRIME [56] comes with

a set of pre-trained and saved mutants that cover a range of

diverse DL tasks. Specifically, DEEPCRIME was applied to a

model for handwritten digit classification based on the MNIST

dataset [57] (MN), to a predictor of the eye gaze direction from

an eye region image [34] (UE or UnityEyes), to a self-driving

car designed for the Udacity challenge (UD), to a model that

recognises the speaker from an audio recording (AU), to an

image classifier for the CIFAR10 dataset [58] (CF10), and to

a Reuters news categorisation model [33] (RT).

In total, the faulty model dataset of DEEPCRIME consists of

850 distinct mutants. We examined all of them and selected the

mutants that were killed by the test dataset provided with the

subjects, according to the statistical mutation killing criterion

proposed by Jahangirova and Tonella [50], which requires a

statistically significant drop in prediction accuracy when the

mutant is used to make predictions on the test set. In our

evaluation, we adopt this statistical notion of fault exposure,

with the parameters suggested by DEEPCRIME’s authors [30]:

p-value < 0.05 and non-negligible effect size. First of all, out

of the pool of the selected mutants, we have excluded those

that were generated with the help of mutation operators that

affect training data, such as, for example, removing a portion

of the training data or adding noise to the data, as these are

not model architecture faults. After evaluating the remaining

mutants, we introduced thresholds on the performance drop

to filter out the mutants that are potentially too easy to detect

and repair (have a dramatic drop in performance metric when

compared to the original) or those that could be too hard

to repair (have a performance comparable to the original one,

despite the statistical significance of the difference). Specifically,

we discarded mutants that have an average accuracy lower than

10% of the original model’s accuracy and those that are less

than 15% worse than the original. As for the regression systems,

we kept the mutants that have an average loss value between

1.5 and 5 times of the original model’s loss.

When more than one mutant was left after filtering for a

given mutation operator, we have randomly selected one per

dataset for inclusion in the final benchmark. For example, if

for the “change optimisation function operator”, we were left

with two suitable mutants of the MNIST model, which were

obtained by changing the original optimiser to either SGD

or Adam [59], we took only one of them randomly. After

applying the described filtering procedure, we were left with

25 faulty models suitable for repair. As a result, our benchmark

contains 25 artificial DL faults split by nine mutation operators

(Op), as shown in Table I. We also report whether these fault

types are in the scope of the DL repair tools considered in

the empirical study (columns 3-4, where HPO-9 is a single

column for both HEBO and BOHB, configured with a limited

set of nine repair operators), as well as the datasets affected

by these faults (columns 5-10). However, we note that our

empirical evaluation excludes two artificial faults from both

AU and UD, respectively, because a single experiment on them

with HPO techniques and Random exceeds 48 hours. The two

‘Coverage’ columns show that the overall coverage of patched

fault types by AUTOTRAINER is lower than that achieved by

HPO techniques. In addition, the RAW type of fault is not

covered by any considered technique. Still, we include it in the

benchmark because an alternative patch, which differs from

the ground truth but is equally effective, could be, in principle,

found by the the repair tools.

B. Real Faults

To enhance our dataset of artificial faults with real-faulty

models, we analyse the benchmark of DeepFD, an automated

DL fault diagnosis and localisation tool [24]. Their benchmark

contains 58 buggy DL models collected from StackOverflow

(SO) and GitHub, and provides an original and repaired version

of the DL programs. We first checked if the reported faulty

model, its training dataset, the fault, and its fix correspond
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TABLE I: Benchmark of artificial faults

Op Description
Coverage Coverage

MN UE CF10 AU UD RT
HPO-9 AUTOTRAINER

HLR Decrease learning rate Y Y � � - - - �
HNE Change number of epochs Y N - � � � - -
ACH Change activation function Y Y - � � - - �
ARM Remove activation function Y N � - - - - �
AAL Add activation function to layer Y Y - � - - - -
RAW Add weights regularisation N N - � - - - �
WCI Change weights initialisation Y Y � � � - - �
LCH Change loss function Y N - � - � � �
OCH Change optimisation function Y Y - � - - � �

TABLE II: Benchmark of real faults

Id SO Post # Task Faults
Coverage Coverage # Hyper
HPO-9 AUTOTRAINER parameters

D1 31880720 C Wrong activation function Y Y 15

D2 41600519 C
Wrong optimiser | Wrong batch size Y | Y Y | Y 20
Wrong number of epochs Y N

D3 45442843 C
Wrong optimiser | Wrong loss function | Wrong batch size Y | Y | Y Y | N | Y 13
Wrong activation function | Wrong number of epochs Y | Y Y | N

D4 48385830 C Wrong activation function | Wrong loss function | Wrong learning rate Y | Y | Y Y | N | Y 12
D5 48594888 C Wrong number of epochs | Wrong batch size Y | Y N | Y 18

D6 50306988 C
Wrong learning rate | Wrong number of epochs Y | Y Y | N 12
Wrong loss function | Wrong activation function Y | Y N | Y

D7 51181393 R Wrong learning rate Y Y 9
D8 56380303 C Wrong optimiser | Wrong learning rate Y | Y Y | Y 17
D9 59325381 C Wrong preprocessing | Wrong activation function | Wrong batch size N | Y | Y N | Y | Y 19

to the original SO post or GitHub commit. We then tried to

reproduce such faults and discarded the issues where it was

not possible to expose the fault in the buggy version of the

model or get it eliminated in the fixed version (i.e., there is no

statistically significant performance difference). As a result of

such a filtering procedure, we were left with nine real faults, all

coming from SO. Despite our best efforts, we could not collect

more faults due to the rigorousness of the filtering procedure

we applied. The list of these faults, along with the SO post ID,

fault description, coverage, and the number of hyperparameters

by the DL repair tools considered in our empirical study, is

available in Table II. We can notice that overall the coverage

of patched fault types by AUTOTRAINER is lower than that

achieved by HPO techniques. Of these nine models, eight are

aimed at solving a classification task (‘C’ in column 2), and

one is for a regression problem (‘R’ in column 2).

IV. EMPIRICAL STUDY

A. Research Questions

The goal of our empirical study is to compare existing DL

repair tools on our benchmark of artificial and real faults. We

design the empirical study to investigate the following four

research questions:

• RQ1. Effectiveness: Can existing DL repair tools generate

patches that improve the evaluation metric? Which repair

tool produces the best patches?

• RQ2. Stability: Are the patches generated by existing DL

repair tools stable across several runs?

• RQ3. Costs: How much does the performance of the repair

tools change when having a smaller or bigger budget?

• RQ4. Patch Complexity: How complex are the generated

patches? Do they match the ground truths?

B. Selected Repair Operators

While the number of possible repair combinations grows

exponentially with the number of hyperparameters that can

be changed, not all repair operators are equally likely to be

effective and useful in practice. To identify which hyperparam-

eters should be given high priority while searching for a DL

repair operator, we analyse the taxonomy of real faults in DL

systems [23]. Specifically, we consider the number of issues

coming from SO, GitHub and interviews that contributed to

each leaf of the taxonomy and grouped similar fault types

together. Given the resulting list of fault types sorted by

prevalence, we only consider the top ten entries for the purposes

of this study. However, we have to exclude faults types that

would typically lead to a crash, as they are out of scope when

considering model architecture faults. For example, we exclude

fault types related to wrong input or output shapes of a layer.

This leaves us with the nine most frequent faults. The selected

fault categories include: change loss function, add/delete/change

a layer, enable batching/change batch size, change the number

of neurons in a layer, change learning rate, change number of

epochs, change/add/remove activation function, change weights

initialisation, and change optimisation function.

C. Implementations & Experimental Settings

We use the Ray Tune [60] library to implement the Random

baseline, as well as HEBO and BOHB. We set the nine chosen

repair operators as the hyperparameter search space, and we

change the time budget to simulate different experimental

settings. Except for Random, the two HPO techniques start the

search from the initial configuration of the faulty model. We use

a publicly available version of AUTOTRAINER.1 Our goal is to

apply AUTOTRAINER to all of our subject systems. However,

1https://github.com/shiningrain/AUTOTRAINER
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its current implementation does not support regression systems.

As a result, AUTOTRAINER is applicable to 13 mutants out of

21 and eight real faults out of nine.

As the performance of DL repair tools can be highly affected

by the time budgets, we run all experiments on three different

time budgets, 10, 20, and 50, which are the multipliers of the

training time of initial faulty model. We run each tool ten

times to handle the randomness of the search and the training

process, and report the average of the results. In addition, we

split the test set into two parts: one for guiding the search

(i.e., only used during the search to evaluate candidate patches)

and the other for the final evaluation of the generated patches

at the end of the search. Note that AUTOTRAINER operates

differently from HPO techniques: it only begins the repair

once it diagnoses a failure symptom and continues until it does

not observe any. This makes it challenging to apply the same

time budget configurations as for the other HPO techniques.

Instead, we simply execute AUTOTRAINER repeatedly until

the total execution time reaches the maximum budget, and

collect results for lower budgets by looking at the executions

completed within the time budget. Consequently, a single run
of AUTOTRAINER for a given time budget may actually include

multiple runs of the tool.

D. Statistical Test & Evaluation Metrics

To measure the statistical significance of the patches in terms

of their performance metric values, we use a non-parametric

Wilcoxon-signed rank test. The null hypothesis is that the

medians of two lists of metrics values (one from the faulty

model and the other from the patch) are the same, and the

alternative hypothesis is that the medians are different. We use

a significance level of 0.05 to reject the null hypothesis.

Furthermore, we use the following metric, named Improve-

ment Rate (IR), to measure how much the evaluation metric

of the fault (Mfault) has been improved by the patch, in

comparison with the ground truth improvement:

IR =
Mpatch −Mfault

Mfix −Mfault
(1)

where Mpatch is the evaluation metric of the patch generated by

the repair tools and Mfix is the evaluation metric of the ground

truth fixed model, either provided by developers (real faults)

or computed on the model before mutation (artificial faults).

For example, if IR is 1, the generated patch is as effective as

the ground truth fix (it can be noticed that, in principle, IR can

be even greater than 1). We reverse the sign of the IR when

computing it for mean squared error or loss (as lower loss is

better).

To quantify the stability of each DL repair tool, we measure

the standard deviation σ of the optimal model performance

achieved in ten runs of the tools.

The complexity of a patch is computed as the number of

different hyperparameters between the generated patch and the

initial faulty model. For example, if the patch only changes the

batch size from 8 to 32, while all remaining hyperparameters

are unchanged, the patch is considered to have a complexity

of 1. We normalise the complexity metric by dividing it with

the total number of hyperparameters, so that it ranges between

0 (i.e., it has the same hyperparameters as the initial faulty

model) and 1 (i.e., all hyperparameters have been changed).

Lastly, to quantify the similarity between the sets of repair

operators used by the generated patch and the ground truth,

we adopt the Asymmetric Jaccard (AJ) metric for the repair

operators, which measures the number of ground truth repair

operators (OPfix) that also appears in the patch (OPpatch):

AJ =
|OPpatch ∩OPfix|

|OPfix| (2)

V. RESULTS

TABLE III: Evaluation metric (average: μ; standard deviation:

σ) of faulty model, models patched by Random, AUTO-

TRAINER (AT), HEBO, BOHB, and ground truth value (Fix)

Id Faulty Random AT HEBO BOHB Fix
Model μ σ μ σ μ σ μ σ

D1 0.52 1.00 0.00 T/O T/O 0.76 0.24 0.95 0.14 1.00
D2 0.53 0.67 0.00 0.68 0.00 0.67 0.00 0.67 0.01 0.71
D3 0.61 1.00 0.01 0.93 0.00 1.00 0.00 1.00 0.00 1.00
D4 0.10 0.95 0.02 0.10 0.00 0.94 0.03 0.93 0.06 0.94
D5 0.66 0.66 0.00 N/A N/A 0.66 0.00 0.66 0.00 0.75
D6 0.45 0.60 0.20 T/O T/O 0.85 0.21 0.65 0.23 1.00
D7 6.71 0.91 1.73 N/A N/A 2.48 2.85 0.49 1.02 0.13
D8 0.22 0.57 0.03 0.54 0.00 0.57 0.02 0.57 0.02 0.33
D9 0.10 0.13 0.03 0.10 0.00 0.13 0.03 0.12 0.01 0.99

C1 0.61 0.61 0.00 0.72 0.01 0.61 0.00 0.61 0.00 0.70
C2 0.52 0.52 0.00 N/A N/A 0.52 0.00 0.52 0.00 0.70
C3 0.49 0.49 0.00 N/A N/A 0.49 0.00 0.49 0.00 0.70
U1 0.184 0.152 0.051 N/A N/A 0.184 0.000 0.184 0.000 0.044
U2 0.118 0.050 0.056 N/A N/A 0.004 0.000 0.061 0.057 0.044
U3 0.121 0.057 0.055 N/A N/A 0.028 0.047 0.084 0.052 0.044
U4 0.400 0.087 0.126 N/A N/A 0.004 0.000 0.004 0.000 0.044
U5 0.071 0.071 0.000 N/A N/A 0.071 0.000 0.071 0.000 0.044
U6 0.130 0.080 0.061 N/A N/A 0.080 0.061 0.042 0.058 0.044
U7 0.098 0.023 0.037 N/A N/A 0.033 0.043 0.033 0.043 0.044
U8 0.163 0.163 0.000 N/A N/A 0.163 0.000 0.163 0.000 0.044
M1 0.85 0.86 0.04 N/A N/A 0.94 0.04 0.87 0.04 0.99
M2 0.11 0.43 0.36 0.99 0.00 0.93 0.04 0.21 0.26 0.99
M3 0.10 0.52 0.41 0.31 0.05 0.87 0.25 0.45 0.35 0.99
R1 0.51 0.56 0.10 0.58 0.00 0.52 0.03 0.52 0.02 0.82
R2 0.29 0.67 0.09 0.23 0.00 0.49 0.13 0.71 0.10 0.82
R3 0.35 0.68 0.10 0.34 0.00 0.53 0.19 0.64 0.14 0.82
R4 0.66 0.70 0.06 0.81 0.00 0.67 0.03 0.72 0.07 0.82
R5 0.64 0.72 0.05 0.82 0.00 0.69 0.07 0.71 0.05 0.82
R6 0.50 0.75 0.04 0.56 0.00 0.61 0.12 0.72 0.08 0.82
R7 0.30 0.68 0.13 0.12 0.00 0.61 0.12 0.67 0.09 0.82

A. Effectiveness (RQ1)

Table III shows the evaluation metric value (accuracy or

regression loss, depending on the model; regression models

are underlined) of the patched models averaged over ten runs

of patch generation (μ) for Random, AUTOTRAINER (AT),

HEBO and BOHB. Column ‘Faulty Model’ shows the metric

value for the initial faulty model, while column ‘Fix’ shows the

value for the ground truth repaired model. The cases that show

statistical significance of the difference between the metric

value of the faulty model and patched model are highlighted

in bold. The fault Id (first column) is composed of a letter and

an incremented integer. The letter identifies the dataset: D =

real faults, C = CIFAR10, U = UnityEyes, M = MNIST, R =

Reuters. ‘N/A’ means that AUTOTRAINER cannot be applied

to the faulty program (e.g., to UnityEyes, which is a regression

model) or did not find any failure symptoms, and ‘T/O’ means
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that AUTOTRAINER did not have enough time to find any

patch. Note that, due to space limits, Table III only shows the

results for the time budget 20, i.e., 20 times longer than the

training time used by the initial, faulty model. For the full

tables, please see the online supplementary material at https:

//github.com/dlfaults/dnn-auto-repair-empirical-assesment.

Overall, ground truth patches (column ‘Fix’ in Table III)

show the highest evaluation metrics, although there are a few

cases where the Random or HPO find better patches than the

ground truth: D8, U2, U3, U4, and U7.

Next, we compare the repair performance between four repair

techniques, based on the number of statistically significant

patches found by each. Out of the 52 cases,2 BOHB and HEBO

find patches in 35 and 36 cases (67%, 69%), respectively,

showing statistical significance, followed by Random with

33 cases (63%), and AUTOTRAINER with 27 cases (52%).

Furthermore, Figure 1 shows IR values for the considered

techniques: within the 20 trainings time budget, the median

IR values of both Random and HEBO are 0.55, followed

by BOHB with 0.45 and AUTOTRAINER with 0.18 (see

Section V-C for the analysis on all budgets). This means that,

in general, AUTOTRAINER and HPO techniques fail to generate

more effective patches than Random. Despite being a baseline

technique, overall, Random performs surprisingly well in terms

of IR, across all subjects and faults. This conclusion differs from

the ones reported in the papers of HEBO and BOHB [27], [28],

which showed that their techniques are better than Random. We

hypothesize that this is due to the different set of subjects that

we considered, which has a larger number of hyperparameters

and correspondingly a larger search space: our study required

tuning of an average of 15 hyperparameters as opposed to the

six in their studies.

Fig. 1: IR values from all faults in the benchmark, broken down

by the combinations of repair technique and budget, shown

as [technique]_[budget]. Note that some IR values are higher

than 1.0, meaning that the corresponding patches are better

than the ground truth patches.

The boxplot of each fault provides a closer look at how

differently each technique performs depending on the type of

fault. For example, Figure 2 presents the accuracy boxplots for

two artificial faults. As shown in Figure 2a, AUTOTRAINER

2For a fair comparison, we only consider the cases where all four
techniques can run on the faults without errors. Also, this number of cases
represents a comprehensive result by aggregating the results of all time
budgets.

(a) Artificial fault R4

(b) Artificial fault R7

Fig. 2: Example boxplots of the results from two artificial

faults, showing the accuracy of the generated patches. The x-

axis represents combinations of repair techniques and budgets,

shown as [technique]_[budget].

easily and consistently fixes this fault, even with a small

budget. While AUTOTRAINER’s coverage of different fault

types is not that high, being generally lower than that of HPO

techniques (see Tables I & II), when a fault type is in the scope

of AUTOTRAINER, it can be effective, especially on simpler

faults, such as mutants generated by DEEPCRIME, which by

construction, can be fixed with a single repair operation. Faults

M2, R4, and R5 in Table III are cases in which AUTOTRAINER

finds good patches more easily than others. However, as shown

in Figure 2b, if there is no specific repair operator for the

fault, AUTOTRAINER cannot find a good patch. In contrast,

since HPO techniques are designed to apply multiple repair

operators at once, they effectively search a wider space of

patches and, thus, are more likely to find better patches for

more complicated cases. While the overall trend is that the fixes

produced by Random are better than AUTOTRAINER and are

comparable with fixes by HPO techniques, this is not always

the case. Also, the efficacy of a repair technique depends on

the type of faults; there is no single best repair technique.

Answer to RQ1: In general, random baseline produces

comparable or better patches than other repair techniques,

but the effectiveness of tools varies depending on the

fault, which justifies the need for future work to find more

efficient ways of exploring the hyperparameter space.

B. Stability (RQ2)

Table III shows the standard deviations (σ), which quantify

the stability of the patches found by each tool across ten
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runs (i.e., σ quantifies the performance variability of the best

patched model across multiple executions of each tool). Below,

we comment on the standard deviation of each tool, considering

only the cases showing statistical significance of the model

performance improvement.

AUTOTRAINER has the smallest average standard deviation

of 0.006, followed by HEBO with 0.060, Random with 0.085,

and BOHB with 0.094. AUTOTRAINER is shown to be the most

stable technique: this is because, in principle, the number of

repair operators being applied is relatively small compared to

the others (see their coverages in Tables I & II and complexities

in Section V-D for details), allowing it to generate consistent

patches across executions, despite the randomness occurring in

multiple runs. In contrast, HPO techniques, as well as Random,

tend to produce more diverse and different patches, which

implies that their patches are less stable in terms of patched

model performance. This calls for future work to improve the

stability of the repair techniques for DL models, especially

when the patches are complex in terms of the number of

changed hyperparameters and applied repair operators.

Answer to RQ2: AUTOTRAINER produces similar

patches across several runs since it operates by applying

operators selected from a relatively small set, while HPO

techniques and Random produce varied patches, hence,

they are more prone to instability.

C. Costs (RQ3)

Automated program repair for traditional software usually

requires a significant amount of time and computational

resources, as it needs to search a large space of patches while

running the tests for each candidate patch. Techniques such as

Random and HPO also have similar issues because each patch

requires training and validating its model from scratch.

We investigate three different time limits, 10, 20, and 50,

under the assumption that developers may have different time

constraints when repairing a faulty DL model. Due to lack of

space, we report only a time limit of 20 in Table III (full results

are available in online supplementary material). As expected,

all techniques produce more patches showing the statistical

significance of the improvements when larger budgets are

allowed. For instance, Random finds patches showing statistical

significance in 14 cases with a 10 time budget, which becomes

17 cases with a 20 time budget and 23 cases with a 50 time

budget. This trend is consistent even considering IR, as shown

in Figure 1: larger time budget results in larger IR as well as

a smaller standard deviation. AUTOTRAINER does not take

advantage so much of a larger time budget, compared to the

other techniques, due to its limited search space. HEBO can

be a good alternative to Random when the budget is large such

as 50: it shows slightly better performance than Random with

a smaller standard deviation.

Overall, given larger budgets, our results support the use

of HPO techniques, such as HEBO, which are preferable to

AUTOTRAINER because of the narrower scope of the latter.

Answer to RQ3: For all DL repair techniques, using a

larger time budget results in more stable and better patches.

The results also show that AUTOTRAINER does not benefit

from larger budgets, while HPO techniques can benefit

from them.

D. Patch Complexity (RQ4)

(a) Real faults

(b) Artificial faults

Fig. 3: Complexities of statistically significant patches. Box-

plots represent HPO and Random’s patches3; triangles the

ground truth’s one and circles the AUTOTRAINER’s one.

Figure 3 presents the boxplots of the complexity of the

statistically significant patches generated by HPO techniques

and Random with time budget 20. The blue triangles and

orange circles show the complexity of the ground truth

patches and AUTOTRAINER’s patches, respectively.3 Overall,

the complexity of the generated patches of HPO and Random

is much higher than the complexity of the ground truth

patches. This means that the generated patches manipulate

many different hyperparameters (around 80% to 90% of them)

to achieve an improvement of the faulty model. In contrast,

a ground truth patch makes fewer changes, despite achieving

similar or higher evaluation metric values. The main reason

for this difference is that both Random and HPO explore the

hyperparameter space at large in search for configurations

that improve the model’s accuracy. Random is completely

unconstrained in its exploration: thus, it is expected that it

can generate solutions that are far from the initial faulty

model. HPO, on the other hand, balances exploitation (i.e.,

local improvements of the best model found so far, which at

the beginning is the initial faulty model) and exploration (i.e.,

it samples new diversified points in the hyperparameter space

3We present integrated results of Random and two HPO techniques as
they all show similar trends, and we do not use boxplots for ground truth and
AUTOTRAINER as their variance is too small. Also, note that there are missing
boxplots and circles because we only consider statistically significant patches.
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to avoid getting stuck in a local minimum). Consequently, the

results suggest that, in our subjects, the exploration component

is dominant, and improvements are obtained only when HPO

techniques moved away from the initial model.

In general, the patches generated by AUTOTRAINER have

lower complexity than Random and HPO. This is consistent

with its design principle: it can handle a narrow set of repair

actions, targeting specific fault types, which makes the tool

either effective and capable of improving the initial solution

with a small number of changes or completely ineffective.

Despite the high complexity, the observed AJ values4 suggest

that the generated patches do contain the same ingredients as the

ground truth patches, i.e., they include similar repair operators.

For real faults, the AJ values for HPO and Random have a mean

of 0.97 and a standard deviation of 0.11; for artificial faults,

0.90 and 0.29, respectively. The AJ values for AUTOTRAINER,

however, reflect its narrower repair scope, with a mean and

standard deviation of 0.26 and 0.19 for real faults, and 0.61

and 0.49 for artificial faults, respectively. Considering this,

in conjunction with the high complexity values, we suggest

that the generated patches may be bloated, i.e., they contain

redundant changes when compared to the ground truth.

Answer to RQ4: The complexity of the patches gener-

ated by HPO techniques and Random are high compared

to the ones of the ground truth and of AUTOTRAINER,

which demands better Bayesian optimisation algorithms

that can take advantage of the initial, faulty model.

VI. DISCUSSION

The analysis of the existing benchmarks of real faults

currently used in the literature has revealed that the majority of

real faults collected so far are rather simplistic. In many cases,

the models represent toy examples for naive tasks and data

used to train and test the models are either randomly generated

or too small. On the other hand, the artificial faults produced

by DEEPCRIME cover a larger variety of fault types and affect

more diverse and complex models.

Indeed, in our empirical evaluation, artificial faults were

more challenging to repair than the real ones. The evaluated

approaches are either unable to reach the performance of an un-

mutated model or show a high standard deviation across repair

repetitions. A common pattern we observed in the results is that

on large models such as CIFAR10 model, all techniques could

not generate any successful fixes (see C2 and C3 in Table III).

Since the number of hyperparameters of the CIFAR10 model

is 27, which is twice bigger than that of the Reuters model,

the search space is relatively large, so it becomes more

difficult to find patches. While developing more advanced

search techniques to deal with large models is a promising

direction for future work, the other option would be combining

Fault Localisation (FL) [24], [25] and repair techniques. FL

4AJ figures are available at https://github.com/dlfaults/
dnn-auto-repair-empirical-assesment

techniques can narrow down the search space and pinpoint

the locations of a fault (i.e., faulty hyperparameters), which

can be used as a starting point for the repair techniques. See

Section VIII-B for more details on FL techniques.

Future work could include various repair operations. We

used nine frequent fault types, but this selection is insufficient

to cover all faults in real world. In particular, the existing repair

operations and techniques do not cover faults related to the

quality and pre-processing of training and test data.

Compared to traditional Automated Program Repair (APR)

techniques for source code, one critical step that is missing in

model architecture repair is patch minimisation. Although, our

analysis shows that smaller patches do exist and such patches

are useful for developers, minimization might be difficult

due to the stochastic nature of model repair. Existing model

slicing [61] and pruning [62] techniques tend to apply directly

to the trained models and not to the source code that defines the

model architecture. Patch minimisation for model architecture

faults remains an unexplored area.

Lastly, our results open up a new direction of research

that targets the space of higher-order patches by smaller and

more local changes of the initial, faulty model. In fact, HPO

techniques are designed to start from scratch far from the initial

hyperparameters. Intensification of the search around the initial

faulty model seems a promising research direction.

VII. THREATS TO VALIDITY

One of the threats to internal validity is the selection of the

HPO algorithms. We carefully studied state of the art in HPO

algorithms and chose novel and best-performing approaches

as well as generally accepted baseline. To avoid incorrect

implementations of those algorithms, we used widely used

libraries and frameworks. The main threat to external validity
is the construction of the benchmark used for the comparison

of the approaches. To mitigate any risks, we included both

artificial faults that cover a variety of subjects and a dataset of

real faults used in the previous literature. All the faults included

in our benchmark were obtained through a methodologically

sound selection procedure. Threats to construct validity lie in

a correct measurement of the performance of the repair tools.

All evaluation metrics used in the benchmark are standard and

widely used in the ML literature. For what concerns conclusion
validity, we measured effect size using our custom metric IR

and statistical significance using Wilcoxon’s test.

VIII. RELATED WORK

A. Model-level Repair

To the best of our knowledge, no automatic source-level

repair tool currently exists that aims to fix the performance of

a given faulty DL model by applying patches to the source

code that defines the model’s architecture and hyperparameters.

As discussed in Section II, the closest approaches come from

machine learning, in particular, those solving the HPO problem,

and from software engineering, AUTOTRAINER, a tool that

continues to train an already trained model using patched

hyperparameters. The goal of our empirical study was to
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compare these two families of approaches when adapted to

solve the model architecture repair problem. No previous

empirical study attempted to conduct any similar comparison.

On the other hand, post-training, model-level repair of

DNN networks, i.e., repair through the modification of the

weights of an already trained model, is gaining increasing

popularity. CARE [63] identifies and modifies weights of

neurons that contribute to detected model misbehaviors until

the defects are eliminated. Arachne [64] operates similarly

to CARE while ensuring the non-disturbance of the correct

behaviour of a model under repair. GenMuNN [65] ranks the

weights based on the effect on predictions. Using the computed

ranks, it generates mutants and evaluates and evolves them

using a genetic algorithm. NeuRecover [66] keeps track of

the training history to find the weights that have changed

significantly over time. Such weights become a subject for

repair if they are not beneficial for the prediction of the

successfully learnt inputs but have become detrimental for

the inputs that were correctly classified in the earlier stages of

the training. Similarly to NeuRecover, I-Repair [67] focuses

on modifying localised weights to influence the predictions

for a certain set of misbehaving inputs, whereas minimising

the effect on the data that was already correctly classified.

NNrepair [68] adopts fault localisation to pinpoint suspicious

weights and treats them by using constraint solving, resulting

in minor modifications of weights.

PRDNN [69] took a slightly different path by focusing on

the smallest achievable single-layer repair. If provided with a

limited set of problematic inputs and a model, this algorithm

returns a repaired DNN that produces correct output for these

and similar inputs and retains the model’s behaviour for other,

dissimilar kinds of data. Apricot [21], however, uses a DL

model trained on a reduced subset of inputs and then uses the

weights of the reduced model to adjust the weights of the full

model to fix its misbehaviour on the inputs from the reduced

dataset. In our work, we are interested in the approaches that

recommend changes to the model’s source code rather than

patching the weights of the model.

B. Fault Localisation

Fault localisation in DNNs is a rapidly evolving area of DL

testing [24], [25], [70]–[72]. Most of the proposed approaches

focus on analysing the run-time behaviour during the model

training. According to the collected information and some

predefined rules, these approaches decide whether they can

spot any abnormalities and report them [25], [70], [72].

During the training of a model, both DeepDiagnosis [25]

and DeepLocalize [70] insert a callback that collects var-

ious performance indicators such as loss function values,

weights, gradients and activations. Both tools then compare

the analysed values with a list of pre-defined failure symptoms.

UMLAUT [72] combines heuristic static checks of the model

structure and its parameters with dynamic monitoring of the

training and the model behaviour. It complements the results of

the checks with the analysis of the error messages, providing

best practices and suggestions on how to deal with the faults.

Unlike previously discussed methods, Neuralint [71] is a

model-based approach that employs meta-modelling and graph

transformations for fault detection. Given a model under test,

it constructs a meta-model consisting of the base skeleton

and some fundamental properties. This model is then checked

against a set of 23 rules embodied in graph transformations,

each representing a fault or a design issue. DeepFD [24]

employs mutation testing to construct a database of mutants

and their original models to train a fault type ML classifier.

From the mutants, it extracts a number of runtime features and

use several combinations of them to localise the faults.

Although all of these approaches are potentially useful for the

task of automated repair of DNNs, they just provide suggestions

without any detailed instructions on how to change the faulty

model. Hence, they could not be included in our empirical

comparison of DL repair tools.

IX. CONCLUSION

In this work, we evaluate techniques proposed in the ML and

SE research communities that are applicable to the problem of

repair of DNN architecture faults. In particular, we compare the

state-of-the-art hyperparameter tuning algorithms HEBO [27]

and BOHB [28], which are based on Bayesian optimisation,

and the recent DNN repair tool called AUTOTRAINER [26],

while using random search as a baseline. To allow a thorough

assessment, we apply these techniques to a carefully collected

benchmark of real and artificial faults. The obtained results

indicate that all of the evaluated techniques are able to enhance

the performance of fault models in some cases but are often

not as effective as the ground truth fixes. Moreover, the

generated patches tend to have a higher complexity than

that of the ground truth. According to our observations, for

simpler models, more advanced approaches do not happen to

outperform random search, whilst random search and HPO

algorithms clearly surpass AUTOTRAINER. For more complex

models, all considered approaches fail to perform well. Thus,

there is ample space for improvement in the area of DNN

model architecture repair. Furthermore, our findings reveal

a number of promising future research directions: a synergy

with DNN fault localisation techniques, the need for more

sophisticated repair operators and algorithms, and the need for

patch minimisation.
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“Nn repair: Constraint-based repair of neural network classifiers,” in
International Conference on Computer Aided Verification. Springer,
2021, pp. 3–25.

[69] M. Sotoudeh and A. V. Thakur, “Provable repair of deep neural networks,”
in Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, 2021, pp. 588–603.

[70] M. Wardat, W. Le, and H. Rajan, “Deeplocalize: Fault localization for
deep neural networks,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 251–262.

[71] A. Nikanjam, H. B. Braiek, M. M. Morovati, and F. Khomh, “Automatic
fault detection for deep learning programs using graph transformations,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 1, pp. 1–27, 2021.

[72] E. Schoop, F. Huang, and B. Hartmann, “Umlaut: Debugging deep
learning programs using program structure and model behavior,” in
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 2021, pp. 1–16.

245

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 10,2023 at 06:07:31 UTC from IEEE Xplore.  Restrictions apply. 


