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Abstract—Mutation analysis can effectively capture the de-
pendency between source code and test results. This has been
exploited by Mutation Based Fault Localisation (MBFL) tech-
niques. However, MBFL techniques suffer from the need to
expend the high cost of mutation analysis after the observation of
failures, which may present a challenge for its practical adoption.
We introduce SIMFL (Statistical Inference for Mutation-based
Fault Localisation), an MBFL technique that allows users to
perform the mutation analysis in advance before a failure is
observed, allowing the amortisation of the analysis cost. SIMFL
uses mutants as artificial faults and aims to learn the failure
patterns among test cases against different locations of mutations.
Once a failure is observed, SIMFL requires either almost no
or very small additional cost for analysis, depending on the
used inference model. An empirical evaluation using DEFECTS4J
shows that SIMFL can successfully localise up to 113 out of
203 studied faults (55%) at the top, and 159 (78%) faults
within the top five, significantly outperforming existing MBFL
techniques while using the results of mutation analysis that has
been undertaken before the test failure. The amortised cost of
mutation analysis can be further reduced by mutation sampling:
SIMFL retains 80% of its localisation accuracy at the top rank
when using only 10% of generated mutants, compared to results
obtained without sampling.

Index Terms—Fault Localisation

I. INTRODUCTION

As software systems grow in size and complexity, auto-
mated fault localisation techniques [1] have received a lot of
attention [2], [3], [4], [5], [6], [7]. There are two driving
motivations for automated fault localisation. First, various
studies have shown that developers can benefit from automated
fault localisation technique if the location of a real fault can
be narrowed down to a sufficiently small candidate set [8], [9].
Second, Automated Program Repair (APR), another technique
increasingly in demand, depends on the accuracy of automated
fault localisation for its success [10], [11], [12].

Mutation analysis has been successfully applied to fault
localisation, resulting in a group of techniques called Muta-
tion Based Fault Localisation (MBFL) [13], [14], [15], [16],
[17]. Mutation analysis applies random syntactic modifications
(each corresponding to a mutation operator) to existing code,
and observes whether the changes in the program behaviour
are detected via testing [18]. Existing MBFL techniques ex-
ploit the captured dependency between the artificial faults (i.e.,
mutants) and the changes in program behaviours (i.e., test

results). For example, if mutating a program causes test cases
to fail in a pattern similar to an observed failure, the mutant
may be near the root cause of the observed failure [15], [16].
Alternatively, if mutating a program causes test cases to fail in
a pattern very different from an observed failure, the mutant
may be far from the location of the root cause [13].

Despite their success, MBFL techniques share a major
weakness with mutation testing, which is the cost of test
execution [18]. The more closely mutants approximate real
faults, the more accurate MBFL techniques can be. As such,
MBFL benefits from a large number of mutants, generated by
a diverse set of mutation operators, to be analysed. However,
this directly increases the cost of inspecting whether each
mutant can be killed (i.e., whether the behavioural differences
introduced by them are detectable), as this process requires
the execution of the test suite per each mutant.

With large systems, this cost can grow significantly large,
to the point that MBFL techniques cannot be used just-in-
time after failures are observed. This is especially the case
when MBFL techniques are used in the context of Continuous
Integration (CI) [19], [20]. If developers encounter a failure
during pre-commit testing, they are likely to want a just-
in-time debugging technique that ensures fast and accurate
feedback, so that they can remove the fault and continue to
submit the changes. If, on the other hand, failure is observed
during the post-commit testing initiated by the CI, it is still
crucial for a fault localisation technique to be sufficiently fast
so that developers do not wait hours for feedback [21]. The
cost of having to re-run MBFL for each of the possibly many
different failure patterns that can arise during pre- and post-
commit testing efforts over, possibly, several commits could
be truly staggering.

To overcome the high cost of mutation analysis in MBFL,
we introduce SIMFL (Statistical Inference for Mutation-based
Fault Localisation), an MBFL technique that allows developers
to perform the mutation analysis in advance against an earlier
version of the code. SIMFL constructs a kill matrix using
a version of the System Under Test (SUT) before any test
failures are observed. The matrix essentially captures which
test cases fail when specific locations of SUT are mutated.
Once an actual failure is observed, SIMFL builds predictive
models and consults them using the information of which test



cases pass and/or fail under the observed failure. Depending on
the statistical inference technique, the actual post-hoc analysis,
required after the observation of the failure, takes either
virtually no time at all (Bayesian inference), or a small fraction
of mutation analysis time (Logistic Regression or Multi-Layer
Perceptron). SIMFL allows developers to amortise the cost
of mutation analysis and use MBFL techniques in a just-in-
time manner. By doing even the model building ahead-of-time
the cost can be amortised further since we only need to use
the previously built model and apply it to the specific failure
patterns that are observed.

We have implemented and evaluated SIMFL using multiple
modelling schemes and statistical inference techniques. The
empirical evaluation studies real-world faults in DEFECTS4J
benchmark [22], using the Major mutation tool [23]. SIMFL
can successfully localise up to 113 out of 203 faults at the top,
and 159 faults within the top five places. To reduce the cost of
SIMFL even further, we also evaluate the impact of mutation
sampling on the mutation analysis step of SIMFL. When using
only 10% of the generated mutants for analysis, SIMFL can
still achieve 80% of its localisation accuracy, compared to
when not using sampling. The technical contributions of this
paper are as follows:

• We introduce SIMFL, a Mutation Based Fault Localisa-
tion (MBFL) technique that allows ahead-of-time muta-
tion analysis. Using the outcome of the mutation analysis,
SIMFL builds a predictive model that allows developers
to predict the location of actual future faults, using the
test failure information as input. This process significantly
amortises the cost of mutation analysis.

• We present the results of an empirical evaluation of
SIMFL using the real world Java faults in DEFECTS4J
benchmark. The empirical study concerns not only the
localisation accuracy compared to the state-of-the-art FL
techniques, but also various related aspects of SIMFL
such as the impact of different modelling schemes, the
viability of models built earlier than faults, and the impact
of sampling rates.

• We discuss implications and characteristics of SIMFL
and the impact of filtering mutants by their kill reason.
Our observations suggest that mutant filtering has impact
on localisation effectiveness of SIMFL and a potentially
effective hybridisation would be possible between SIMFL
and other fault localisation techniques.

The rest of the paper is organised as follows. Section II
lays out the foundations of SIMFL by describing how the
results of mutation analysis are formulated into predictive
models for fault localisation. Section III presents the details of
experimental design, including the protocols of the empirical
study and research questions. Section IV presents and analyses
results, while Section V discusses the results in the wider
context of fault localisation. Section VI considers potential
threats to validity, and Section VII presents related work.
Finally, Section VIII concludes and presents future work.

II. METHODOLOGY

Intuitively, the underlying assumption of SIMFL is that, for
a test that has killed the mutants located on a specific program
element, the same program element should be identified as
the suspicious location when the same test later fails again.
This is based on the coupling effect hypothesis in mutation
testing: essentially we simulate the occurrence of real faults
with artificial faults with known locations, i.e., mutants, and
build predictive models for actual future faults. This section
describes the models and the statistical inference techniques
used by SIMFL.

Failure observed
(Tests fail)

Mutation Analysis

Continuous
IntegrationFixedReference

Version

Kill Matrix

Build Model
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Fig. 1. Expected use case scenario of SIMFL

Figure 1 depicts the expected use case scenario of SIMFL,
which includes four stages:

1) Perform mutation analysis for a version of SUT, and
produce the kill matrix. The version is called the reference
version.

2) While testing a subsequent version, a failure is observed.
3) Using the information of which test case(s) failed, as

well as the kill matrix, build a predictive model for fault
localisation.

4) Guided by the localisation result, patch the fault.

A. Mutation Analysis

We perform mutation analysis on the reference version of a
program P with a test suite T, and compute a kill matrix K,
which contains a complete report of all tests executed on all
mutants. Let Km denote a set of tests that kill mutant m, let
Xe be a set of mutants located on a program element e ∈ P,
let Me be an event that e is mutated, and let Ft be an event that
a test case t fails on a given program. Based on the kill matrix
Km, we can approximate the probability of test case t killing
the mutants located on the program element e as follows:

Pr (Ft |Me) '
| {m ∈ Xe | t ∈ Km} |

|Xe|
(1)

Note that this is strictly an approximation based on the
observed kill matrix because it is impossible to produce and
evaluate all possible mutants. The exact value of Pr (Me) is
the ratio of the number of all possible mutants on e to the
number of all possible mutants on P; for Pr (Ft |Me), we
need to calculate the number of all possible mutants in e that
are killed by t. Neither is feasible. Consequently, we assume
that we can analyse a finite set of mutants that allow us to
approximate Equation 1.



Next, using Bayes’ rule, we calculate the revised probability
of the event that the program element e has been mutated,
given that the test case t fails:

Pr (Me | Ft) =
Pr (Ft |Me)Pr (Me)

Pr (Ft)

' Pr (fault exists in e | Ft)

(2)

We argue that, if real faults are coupled to mutants, the
probability above can approximate the likelihood that the fault
is located on the program element e, when t is a failing test
case in the future. This allows us to make ranking models
that sort the program elements in descending order of the
probability.

B. Ranking Models

We regard the probability in Equation 2 as the quantitative
score representing how suspicious the program element e is for
the failure observed via the failure of t. This section presents
the formulations of ranking models based on the scores as well
as more refined inference models based on kill matrix data.

1) Exact Matching (EM): This model is an extension of
Equation 2 to a set of test cases. Let T = {ti | 1 ≤ i ≤ n ≤
n′} be the test set, which consists of two disjoint sets: Tf =
{t1, . . . , tn} is the set of failing test cases, and Tp = T\Tf is
the set of passing tests, on the faulty program. While there can
be many different formulations of ranking models based on a
set of test cases, we start by treating the set of all observed
failures, FTf

, as a conjunctive event of individual test case
failures, i.e., FTf

= Ft1 ∩ · · · ∩ Ftn . Our goal is to find the
faulty program element ei ∈ P with the highest probability
of being the cause of the observed failure symptoms, that is,
Pr

(
Mei | FTf

)
. It follows that:

argmax
i

Pr
(
Me | FTf

)
= argmax

i

Pr
(
FTf |Me

)
Pr (Me)

Pr
(
FTf

) (3)

The denominator in Equation 3, Pr
(
FTf

)
, can be ignored

without affecting the order of ranking based on this score,
because it is not related to a specific program element.
Expanding the numerator yields the following:

argmax
i

Pr
(
FTf |Mei

)
Pr (Mei)

= argmax
i

Pr (Ft1 ∩ · · · ∩ Ftn |Mei)Pr (Mei)

= argmax
i

|{m ∈ Xei | {t1, . . . , tn} = Km}|
|Xei |

Pr (Mei)

= argmax
i

|{m ∈ Xei | Tf = Km}|
|Xei |

|Xei |
|XP|

= argmax
i

|{m ∈ Xei | Tf = Km}|
|XP|

= argmax
i
|{m ∈ Xei | Tf = Km}|

(4)

Intuitively, Equation 4 counts the mutants on e that cause
the same set of test cases to fail as the symptom of the actual
fault, FTf

. We call this model the Exact Matching (EM) model
with failing test cases, denoted by EM(F).

Alternatively, we can include passing tests in the pattern
matching as well. Let Pt be an event that a test case t passes
on a given program, then Equation 4 changes as follows:

argmax
i

Pr
(
FTf ∩ PTp |Mei

)
Pr (Mei)

= argmax
i

Pr
(
Ft1 ∩ · · · ∩ Ftn ∩ Ptn+1 ∩ · · · ∩ Ptn′ |Mei

)
Pr (Mei)

= argmax
i
|{m ∈ Xei | Tf = Km ∧Tp = T \Km}|

(5)

Similarly to EM(F), this model is called EM(F+P): it counts
the mutants on e that cause the same set of test cases to fail
and pass exactly as the symptom of the actual fault. If, for
example, a test case t passed under the actual fault, EM(F+P)
model will not count any mutants that are killed by t.

2) Partial Matching (PM): The Exact Matching (EM)
models lose any partial matches between the symptom and
the mutation results. Suppose two test cases, t1 and t2, failed
under the actual fault, but only t1 killed a mutant on the faulty
program element, i.e., ∃t1, t2 ∈ Tf , t1 ∈ Km∧ t2 /∈ Km. The
information that t1 kills a mutant on the location of the fault is
lost, simply because t2 failed to do the same. To retrieve this
partial information, we propose two additional models based
on partial matches: a multiplicative partial match model and
an additive partial match model.

• PM∗(F): Multiplicative Partial Match Model w/ Failing
Tests

argmax
i

∏
t∈Tf

(Pr (Mei | Ft) + ε)

= argmax
i

∏
t∈Tf

(|{m ∈ Xei | t ∈ Km}|+ ε)
(6)

• PM+(F): Additive Partial Match Model w/ Failing Tests

argmax
i

∑
t∈Tf

Pr (Mei | Ft)

= argmax
i

∑
t∈Tf

|{m ∈ Xei | t ∈ Km}|
(7)

Intuitively, instead of counting exact matches, we want to
aggregate scores from the relationship between individual fail-
ing test cases and all mutants on a specific program element.
PM∗(F) and PM+(F) respectively aggregate individual scores
by multiplication and addition. Note that the PM∗(F) model
requires a small positive quantity ε to prevent the value of the
entire formula from being zero when there exist one or more
terms that evaluate to zero: the value of ε does not affect the
ranking.

Similarly to the case of EM models, we can also include
the information of test cases that pass under the actual fault.
These two models are called PM∗(F+P) and PM+(F+P), and
defined as follows:



• PM∗(F+P): Multiplicative Partial Match Model w/ All
Tests

argmax
i

∏
t∈T

(Pr (Mei | Ft) + ε)
∏
t∈Tp

(Pr (Mei | Pt) + ε)


= argmax

i

∏
t∈T

(|{m ∈ Xei | t ∈ Tf ⇐⇒ t ∈ Km}|+ ε)

(8)

• PM+(F+P): Additive Partial Match Model w/ All Tests

argmax
i

∑
t∈T

(Pr (Mei | Ft)) +
∑
t∈Tp

(Pr (Mei | Pt))


= argmax

i

∑
t∈T

|{m ∈ Xei | t ∈ Tf ⇐⇒ t ∈ Km}|

(9)

3) Linear and Non-linear Classifiers: Scores from the
Bayesian inference models described in Section II-B1
and II-B2 are directly computed from the kill matrix, and
requires virtually no additional analysis cost when scores are
needed to be computed. However, all these models simply rely
on counting matches between test results under the actual fault
and kill matrix from the ahead-of-time mutation analysis.

To investigate if more sophisticated statistical inference
techniques can improve the accuracy of SIMFL, we apply both
linear and non-linear classifiers to build predictive models.
These classifiers take the test results as input, and yield the
most suspicious method, as well as the suspiciousness score
of each method as output. Let αTi

denote a 0-1 vector of
the test results of Ti, where 0 indicates that test case fails,
and 1 indicates that test case passes. We first build a training
set using the kill matrix K: test results per mutant Ti are
transformed into αTi

, and the class is labelled based on the
method where the mutant is located.

We train representative linear and non-linear classifiers
using Logistic Regression (LR) and Multi-Layer Perceptron
(MLP) [24], [25]. For our study, we use a vanilla MLP
that consists of one input layer, one hidden layer with 50
neurons, and one output layer. In the serving phase, we use
the suspiciousness score of each program element, which
is obtained before the model computes the most suspicious
method. Only using the observed failures, we can compose
0-1 vectors (i.e., LR(F) and MLP(F)), or compose 0-1 vectors
by including the information of passing tests (i.e., LR(F+P)
and MLP(F+P)). Note that, unlike the Bayesian inference
models described in Section II-B1 and II-B2, training these
classifiers requires additional analysis cost to SIMFL, although
the training cost of these models is much lower than the cost
of mutation analysis.

III. EXPERIMENTAL DESIGN

This section describes the design of our empirical evalua-
tion, including the way we use DEFECTS4J benchmark, the
research questions, as well as other environmental factors.

A. Protocol

One foundational assumption of SIMFL is that existing test
cases can be fault revealing also for future changes. That is,
for future faults to which SIMFL will be applied, test cases
that would reveal them are available at the time of the ahead-
of-time mutation analysis. We believe this is a likely scenario
mainly in two contexts: regression faults, which are defined
as failures of existing test cases, and pre-commit testing, for
which developers depend on existing test cases for a sanity
check. SIMFL is designed to reduce the cost of MBFL for
these scenarios.1

However, this makes realistic experiments on real-world
data challenging since a majority of failure triggering changes
are not likely to have been committed to the main branch
of the Version Control System (VCS): one of the purposes
of Continuous Integration is to prevent such commits [21].
Consequently, fault benchmarks, such as DEFECTS4J, contain
faults that have been reported externally (e.g., from issue
tracking systems), and provide fault revealing test cases that
have been added to the VCS with the patch itself [22]. This
presents a challenge for the realistic evaluation of SIMFL in
the context it was designed for. To address this issue, we
introduce two experimental protocols.

1) Faulty Commit Emulation (FCE): This scenario emu-
lates a faulty commit that would trigger failures of existing
test cases simply by reversing a fix patch in DEFECTS4J. We
take the fixed version (Vfix) in DEFECTS4J as the reference
version and performs the mutation analysis, including the test
cases from the same version. Subsequently, we reverse the fix
patch, execute the same test cases, and try to localise the fault
using the results with SIMFL.

We argue that this is more realistic than injecting mutation
faults artificially to evaluate SIMFL. Since mutants are exactly
what SIMFL uses to build its models, SIMFL may unfairly
benefit if evaluated using mutants as faults. Instead, we emu-
late faulty commits using faults that some developers actually
had introduced in real-world software. Existing work on test
data generation has also used the fixed version as the reference
version, against which a test generation tool is applied. The
reversed fix patch is then used to emulate regression faults for
the evaluation of the generated tests [26], [27]. Our approach
with FCE is similar in the sense that we analyse the fixed
version first, then use the outcome to localise the emulated
regression fault.

2) Test Existence Emulation (TEE): This scenario uses
original faulty commits that led to the faulty versions (Vbug)
in DEFECTS4J, but simply pretends that the fault revealing
test cases existed earlier. We have checked whether the fault
revealing test cases in DEFECTS4J can be executed against
versions that precede the actual faulty version. Since system
specifications evolve over time, executing a future test case
against past versions is not always successful: we have identi-

1Although we do note that the more mature a software system is and the
stronger and more complete its test suite is, the more likely it is that these
conditions hold and thus that the proposed approach can be useful.



fied 28 previous versions for which the future fault revealing
test cases can be executed and do not fail. We use these 28
versions as references, and use their mutation analysis results
to localise the corresponding faults that happened later. Com-
pared to FCE, TEE follows the ground truth code changes, and
only assumes the earlier existence of fault revealing test cases.
We use TEE to complement the FCE scenario. Specifically,
TEE can evaluate whether training SIMFL models with kill
matrices of earlier versions degrades its localisation accuracy.

3) Experimental Premise: Building a full kill matrix re-
quires huge computational cost: mutation analysis on all
versions of Closure using Major exceeded our 24 hours
timeout, and other subject programs also required significant
amounts of analysis time. To address this practical concern,
for empirical evaluation, we have constructed the kill matrix
using only the relevant test cases as defined by DEFECTS4J2,
which include the failing test cases as well as any passing test
cases that makes the JVM to load at least one of the classes
modified by the fault introducing commit.

Note that this procedure has been adopted strictly to reduce
experimental cost. Since we only have the kill matrix for the
relevant test cases, models that use F+P test cases actually
use the full set of relevant test cases. However, if construction
of the full kill matrix is feasible, the same input used by
SIMFL in this paper is naturally available. The F+P models
can be trained either using the full set of test cases (increased
training cost but also richer input information), or using the
relevant test cases (relevancy information is still cheaper than
full coverage instrumentation). We argue that, in general, the
limitation to only the relevant test cases is a conservative one
and should reduce rather than improve the fault localisation
accuracy of SIMFL since other test cases could also be
informative for its statistical models.

4) Using Test Runtime Information: The use case of SIMFL
assumes that, while the actual mutation analysis can be per-
formed in advance, the inference models are trained after
the observation of a failure (see Figure 1). In practice, the
observation of the behaviour of the failing test cases can
provide information that is beyond the mutation analysis. Con-
sequently, we exploit this additional information by collecting
coverage reports of failing test cases using Cobertura. We
then exclude any methods and mutants that are not covered by
the failing test cases from model training and the final ranking.

TABLE I
SUBJECT PROGRAMS IN DEFECTS4J

Subject # Faults kLoC # Methods # Mutants # Test cases

Commons-lang (Lang) 65 50 1,527 21,178 2,245
JFreeChart (Chart) 26 132 4,903 75,985 2,205
Joda-Time (Time) 27 105 1,946 21,689 4,130
Closure compiler (Closure) 133 216 5,038 58,515 7,927
Commons-math (Math) 106 104 2,713 79,428 3,602

Total 357 607 16,126 256,792 20,109

2See https://github.com/rjust/defects4j/tree/v1.3.1#export-version-specific-
properties

B. Subject Programs

In our study, we use 357 versions of five different programs
from the DEFECTS4J version 1.3.1. They provide reproducible
and isolated faults of real-world programs. Table I summarises
the subject programs we used with the average number of
generated mutants, methods, lines of code, and test cases
across all faults belonging to each subject respectively. We
could not include Mockito as we failed to compile the majority
of its versions and their mutants using the build script provided
by DEFECTS4J on Docker containers.

C. Research Questions

RQ1. Localisation Effectiveness: Does the models of SIMFL
produce accurate fault localisation compared to the state-of-
the-art FL techniques? RQ1 is answered by computing the
standard evaluation metrics on the eight models of SIMFL un-
der the FCE scenario outlined in Section III-A1. We compare
SIMFL with two MBFL techniques (MUSE and Metallaxis),
two SBFL techniques (Ochiai and DStar), and two learning-
to-rank based FL techniques (TraPT and FLUCCS).

RQ2. Model Viability: How well does SIMFL hold up when
applied using models built earlier? RQ2 is answered by
computing the standard evaluation metrics using prior models
built under the TEE scenario outlined in Section III-A2.

RQ3. Sampling Impact: What is the impact of mutation sam-
pling to the effectiveness of SIMFL? Since the cost of mutation
analysis is the major component of the cost of SIMFL, we
investigate how much impact different mutation sampling rates
have. We evaluate two different sampling techniques: uniform
random sampling, which samples from the pool of all mutants
uniformly, and stratified sampling, which samples as the equal
number of mutants from each method as possible.

D. Evaluation Metrics and Tie Breaking

We use three standard evaluation metrics:
• acc@n: counts the number of faults located within top n

ranks. We report acc@1, acc@3, acc@5, and acc@10. If
a fault is patched across multiple methods, we take the
highest ranked method to compute acc@n.

• wef : approximates the amount of efforts wasted by
developer while investigating non-faulty methods that are
ranked higher than the faulty method.

• Mean Average Precision (MAP): measures the mean of
the average precision values for a group of all faults.

If multiple program elements have the same score, resulting
in the same rank, we break the tie using max tie breaker that
places all program elements with the same score at the lowest
rank.

E. Mutation Tool and Operators

In the study, we use Major version 1.3.4 [23] as our mutation
analysis tool, and choose all mutation operators in Major. Note
that some operators had to be turned off for specific classes



TABLE II
EFFECTIVENESS OF SIMFL MODELS USING FCE SCENARIO.

Model Project Total acc wef MAP Model Project Total acc wef MAP
Studied @1 @3 @5 @10 med Studied @1 @3 @5 @10 med

EM
(F)

Lang 62 (65) 35 45 47 48 0.0 0.6176

EM
(F+P)

Lang 61 (65) 36 41 43 44 0.0 0.5922
Chart 26 (26) 6 11 13 15 5.0 0.3294 Chart 25 (26) 6 9 10 11 27.0 0.2917
Time 26 (27) 4 9 9 13 8.5 0.2451 Time 26 (27) 10 13 14 15 3.0 0.3819
Closure 132 (133) 10 31 41 57 17.0 0.1753 Closure 0 (133) - - - - - -
Math 102 (106) 22 43 53 71 4.0 0.3404 Math 91 (106) 32 45 47 49 3.0 0.4098

Total 348 (357) 77 139 163 204 Total 203 (357) 84 108 114 119

PM∗
(F)

Lang 62 (65) 38 47 51 53 0.0 0.6732

PM∗
(F+P)

Lang 61 (65) 27 36 37 42 1.0 0.5264
Chart 26 (26) 6 11 13 16 5.0 0.3562 Chart 25 (26) 7 9 12 14 6.0 0.3598
Time 26 (27) 4 10 10 13 8.0 0.2549 Time 26 (27) 1 3 4 12 16.0 0.1172
Closure 132 (133) 11 36 50 66 9.5 0.1982 Closure 0 (133) - - - - - -
Math 102 (106) 23 47 59 77 3.5 0.3753 Math 91 (106) 14 26 33 42 12.0 0.2460

Total 348 (357) 82 151 183 225 Total 203 (357) 49 74 86 110

PM+

(F)

Lang 62 (65) 40 48 52 53 0.0 0.6977

PM+

(F+P)

Lang 61 (65) 19 31 33 37 2.0 0.4291
Chart 26 (26) 6 10 13 19 4.0 0.3697 Chart 25 (26) 5 9 12 13 8.0 0.2712
Time 26 (27) 4 10 10 13 8.0 0.2564 Time 26 (27) 0 2 3 5 40.5 0.0616
Closure 132 (133) 12 41 52 65 11.0 0.2005 Closure 0 (133) - - - - - -
Math 102 (106) 24 46 59 77 4.0 0.3845 Math 91 (106) 9 15 20 29 23.0 0.1574

Total 348 (357) 86 155 186 227 Total 203 (357) 33 57 68 84

LR
(F)

Lang 62 (65) 41 49 53 55 0.0 0.7179

LR
(F+P)

Lang 61 (65) 40 49 51 53 0.0 0.7017
Chart 26 (26) 5 9 12 14 6.0 0.3175 Chart 25 (26) 8 14 14 16 2.0 0.4194
Time 26 (27) 4 10 12 14 5.5 0.2668 Time 26 (27) 8 14 17 19 2.0 0.4094
Closure 132 (133) 12 37 50 68 9.0 0.2074 Closure 0 (133) - - - - - -
Math 102 (106) 28 47 59 75 3.0 0.3976 Math 91 (106) 32 43 47 51 3.0 0.4066

Total 348 (357) 90 152 186 226 Total 203 (357) 88 120 129 139

MLP
(F)

Lang 62 (65) 39 51 53 55 0.0 0.7052

MLP
(F+P)

Lang 61 (65) 48 55 56 56 0.0 0.7882
Chart 26 (26) 5 10 12 15 6.0 0.3319 Chart 25 (26) 9 13 15 19 2.0 0.4477
Time 26 (27) 4 10 12 14 5.0 0.2710 Time 26 (27) 11 16 18 24 1.0 0.4847
Closure 132 (133) 11 33 41 60 12.0 0.1888 Closure 0 (133) - - - - - -
Math 102 (106) 26 46 62 79 3.0 0.3941 Math 91 (106) 45 61 70 82 1.0 0.5194

Total 348 (357) 85 150 180 223 Total 203 (357) 113 145 159 181

so that Major does not generate an exceptionally large number
of mutants.3

IV. RESULTS

Due to a space limit, we present the full results includ-
ing all evaluation metrics online at https://coinse.github.io/
simfl-results.

A. Effectiveness (RQ1)

We start by comparing different SIMFL models. Subse-
quently, using the best SIMFL model, we compare SIMFL
to the state-of-the-art fault localisation techniques.

1) Comparison Between SIMFL Models: Table II shows the
results of each evaluation metric for all studied faults, follow-
ing the FCE scenario. The numbers X(Y ) in the column "Total
Studied" represent the number of faults that we can localise
(X), and the number of faults provided by DEFECTS4J (Y ).
Evaluation metric values representing the best outcome (i.e.,
the largest acc@n and MAP, and the smallest wef ) are typeset
in bold. See Section III-B for the details of exclusion criteria
we used: note that more faults are excluded from the study of
F+P models shown on the right.

Overall, MLP(F+P) shows the best performance in terms of
acc@n metrics, placing 48 out of 61 faults at the first place
for Lang, and 45 out of 91 faults at the first place for Math.
Considering that MLP(F+P) is evaluated on fewer faults (203)

3Due to the internal design of Major, some classes that yield too many
mutants may lead to the violation of bytecode length limit imposed by Java
compiler. See https://github.com/rjust/defects4j/issues/62 for technical details.

than MLP(F) (348), the result suggests that MLP(F+P) shows
better performance on average.

We argue that including results of passing tests gives richer
information when compared to only using results of failing
tests. However, we also note that only MLP significantly
benefits from the additional information: MLP(F+P) places 28
more faults at the top than MLP(F). Two linear models, LR(F)
and LR(F+P), on the other hand, do not show any significant
difference in performance. This suggests that exploiting this
information requires more sophisticated, non-linear inference
methods.

The reason that PM+(F) shows comparable results to
MLP(F) may be that it is relatively easy to simply count
the matching patterns of failing tests, which are much rarer
than passing tests. We also note that PM∗(F) and PM+(F)
both produce better results than EM(F), suggesting that partial
matches are better than exact matches. This is because even the
fault revealing test case may not be able to kill all mutations
applied to the location of the fault. In such a case, the EM(F)
model will lose the information, while the PM(F) models will
benefit from other killed mutants from the same location.

Finally, the addition of passing test information to PM
models actually degrades the performance significantly, as
the metrics for PM∗(F+P) and PM+(F+P) show. Partially
matching test cases that did not fail against the faulty version
with test cases that did not kill mutants at the location of
the fault will directly dilute the signal, as failing tests and
killed mutants are likely to provide more information about



the location of the fault in general.
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Fig. 2. Comparison to other FL techniques: acc@n metric values without
counts of Closure

2) Comparison to Other FL Techniques: To gain some
insights into the trade-off between amortised modelling efforts
and localisation accuracy, we compare the method-level fault
localisation results of the state-of-the-art MBFL and SBFL
techniques, the result of which is shown in Figure 2. We
obtained the performance of the each model (i.e., acc@n)
on DEFECTS4J from the literatures, and artefact of Zou et
al. [28]. Based on the results of the comparison between
SIMFL models, we choose MLP(F+P) to represent SIMFL.
However, since Closure has been excluded from the evaluation
of F+P models, we have excluded Closure from the results of
other techniques for a fair comparison.

Figure 2 shows that MLP(F+P) is better than other tech-
niques in terms of acc@1, but TraPT performs better in terms
of acc@3 and acc@5. Although SIMFL does not make use
of learning-to-rank technique to boost performance by fully
including runtime information or suspiciousness scores of
other FL techniques, SIMFL localises faults at the top better
than others, and shows comparable results to the learning-to-
rank techniques: FLUCCS and TraPT.

Based on this analysis, we answer RQ1 that SIMFL can
localise faults accurately compared to the existing techniques:
SIMFL places up to 25.86% (90 of 348 for LR(F)) of studied
faults at the top using F models, and 55.67% (113 of 203 for
MLP(F+P)) of studied faults at the top using F+P models.

B. Model Viability (RQ2)

Following the TEE scenario described in Section III-A2,
we seek reference versions preceding the faulty version, i.e.,
the versions before the faulty version that pass all test cases
of the fixed program, including the fault revealing test cases.
Assuming that more recent versions are more likely to serve
as references, given a faulty version n, we check n − 1, . . . ,
n − 10, n − 20, and n − 30 previous program versions, as it
is impractical to inspect all of them. Starting from 357 faulty
versions of subject programs, we found 28 preceding reference
versions that correspond to seven different faulty versions.
We have trained five F models on each of the 28 reference

TABLE III
VIABILITY OF F MODELS USING TEE SCENARIO. THE RANKS THAT DO

NOT HAVE SAME RANKS WITH FCE ARE TYPESET IN BOLD.

Fault Commit Rank Fault Commit Rank
(∆rev.) EM PM∗ PM+ LR MLP (∆rev.) EM PM∗ PM+ LR MLP

C
lo

su
re

21 FCE Rank 2 2 2 2 2

M
at

h

46 FCE Rank 188 188 188 47 85
32a12ba (2) 2 2 2 2 2 bbb5e1e (1) 188 188 188 35 47
43a5523 (3) 2 2 2 2 2 37680e2 (2) 188 188 188 35 47

61 FCE Rank 7 4 5 5 6 1861674 (3) 188 188 188 35 27
f5529dd (3) 7 4 5 5 6 f0b12de (4) 188 1 1 3 1
b12d1d6 (4) 7 4 5 5 6 8581b76 (5) 188 188 188 35 41

245362a (7) 7 4 5 5 7 89 FCE Rank 13 13 13 8 7
8abd1d9 (8) 7 4 5 5 8 43336b0 (1) 12 12 12 2 3
37b0e1b (9) 7 4 5 5 6 cdd62a0 (2) 14 14 14 2 5

62 FCE Rank 1 1 1 1 1 90439e5 (3) 13 13 13 8 11
245362a (2) 1 1 1 1 1 36a8485 (4) 13 13 13 8 13
8abd1d9 (3) 1 1 1 1 1 dbe7842 (5) 13 13 13 8 7
37b0e1b (4) 1 1 1 1 1 d84a587 (6) 13 13 13 8 12

115 FCE Rank 14 22 24 19 11 d27e072 (7) 13 13 13 8 10
b9262dc (5) 14 19 22 18 13 3590bdc (8) 13 13 13 8 8
911b2d6 (6) 14 22 24 19 12 6b108c0 (9) 13 13 13 8 13

120 FCE Rank 7 7 7 6 6 9c55428 (10) 13 13 13 8 12
2aee36e (3) 24 24 24 15 16

versions to localise the fault in the faulty version, resulting
in 140 rankings based on TEE scenario. Note that we did not
consider F+P models on these reference versions because they
require more than 24 hours for mutation analysis, as described
in Section III-B.

Table III shows the rank of the faulty method for each F
model built on each preceding reference version. Out of 140
TEE based rankings produced by F models, 103 are identical
to the corresponding FCE ranking. One notable exception
is Math 46 (f0b12de) that shows a significant improvement
over the FCE scenario rank. We have manually examined the
kill matrix of this reference version, and found that some
mutants in the future faulty method have been additionally
killed due to timeout (enforced by Major itself), contributing to
the high rank (these mutants were not killed in other preceding
reference versions of Math 46). We suspect that this is due to
the non-determinism in the process of building the kill matrix:
the mutation may have brought in flakiness that has been
removed for the original program. We study the impact of
different kill reasons in Section V-C, and furthermore discuss
this as one of the threats to internal validity in Section VI.

We answer RQ2 that performances of SIMFL using models
built with preceding reference versions tend to be stable when
compared to the FCE results: only 19 out of 140 cases show
degraded performance since we used less recent mutation
analysis results.

C. Sampling Impact (RQ3)

To investigate how the mutation sampling rates affect the
performance of SIMFL, we attempt to localise the studied
faults using mutants sampled with different rates. Table IV
(left side) shows the uniform sampling results with rates of
0.1, 0.3, 0.5, and 0.7: all metric values are averaged across 20
different samples. Table IV also includes the results obtained
without sampling (Full). The best results are typeset in bold.

As expected, the Full configuration often shows the best
performance, followed by sampling rates of 0.7 and 0.5. Since
we expect different mutants to contribute different amounts of
information to localisation, we do not find it surprising that
sampling rates down to 0.5 show comparable results with the
Full configuration. However, the performance does not degrade



TABLE IV
UNIFORM AND STRATIFIED RANDOM SAMPLING

Ratio Model Total acc N acc
Studied @1 @3 (Ratio) @1 @3

0.1

EM(F) 348 59.80 95.35

5
(0.27)

36.50 65.05
PM∗(F) 348 66.55 107.85 40.95 74.75
PM+(F) 348 68.40 108.50 40.05 75.00
LR(F) 348 71.75 121.50 49.15 91.10
MLP(F) 348 76.70 120.05 49.90 88.85
EM(F+P) 203 46.35 56.55 39.50 57.05
PM∗(F+P) 203 45.45 66.65 65.70 100.25
PM+(F+P) 203 29.35 52.45 39.55 52.45
LR(F+P) 203 70.70 93.30 75.95 114.40
MLP(F+P) 203 83.60 111.30 78.15 118.20

0.3

EM(F) 348 72.25 118.55

10
(0.41)

45.60 80.95
PM∗(F) 348 78.90 132.15 49.65 93.50
PM+(F) 348 83.45 133.70 53.65 93.00
LR(F) 348 84.85 142.15 59.95 106.60
MLP(F) 348 82.45 139.40 56.90 102.60
EM(F+P) 203 66.70 82.35 50.60 74.00
PM∗(F+P) 203 47.80 71.40 74.45 106.35
PM+(F+P) 203 31.75 55.45 39.20 55.05
LR(F+P) 203 81.95 107.60 82.15 115.90
MLP(F+P) 203 101.55 132.20 89.70 126.35

0.5

EM(F) 348 75.90 128.30

15
(0.50)

53.60 96.70
PM∗(F) 348 82.90 141.80 58.70 110.10
PM+(F) 348 86.30 143.80 62.20 109.15
LR(F) 348 88.75 145.90 66.70 118.30
MLP(F) 348 84.70 146.00 63.05 114.25
EM(F+P) 203 73.90 93.10 57.35 82.65
PM∗(F+P) 203 47.55 72.70 78.75 109.90
PM+(F+P) 203 32.70 57.00 42.15 61.45
LR(F+P) 203 86.35 112.15 86.95 116.95
MLP(F+P) 203 104.90 138.65 94.80 134.60

0.7

EM(F) 348 78.05 133.55

20
(0.56)

55.80 105.80
PM∗(F) 348 84.80 147.75 64.95 121.45
PM+(F) 348 88.15 150.05 70.05 124.10
LR(F) 348 89.65 148.50 74.35 127.05
MLP(F) 348 84.30 144.60 69.70 124.70
EM(F+P) 203 78.05 98.85 62.50 88.05
PM∗(F+P) 203 48.30 73.60 81.55 110.15
PM+(F+P) 203 32.90 57.20 40.55 62.40
LR(F+P) 203 87.20 115.20 90.70 118.60
MLP(F+P) 203 108.45 142.55 98.25 138.20

Full

EM(F) 348 77.00 139.00

Full

77.00 139.00
PM∗(F) 348 82.00 151.00 82.00 151.00
PM+(F) 348 86.00 155.00 86.00 155.00
LR(F) 348 90.00 152.00 90.00 152.00
MLP(F) 348 85.00 150.00 85.00 150.00
EM(F+P) 203 84.00 108.00 84.00 108.00
PM∗(F+P) 203 49.00 74.00 49.00 74.00
PM+(F+P) 203 33.00 57.00 33.00 57.00
LR(F+P) 203 88.00 120.00 88.00 120.00
MLP(F+P) 203 113.00 145.00 113.00 145.00

at the same rate as the sampling rate, as can be seen from the
results obtained using the sampling rate of 0.1.

Since larger methods are likely to produce more mutants,
uniform sampling will effectively sample more mutants for
larger methods. We investigate whether this is disadvantageous
for relatively smaller methods by evaluating stratified sam-
pling: given the threshold parameter N , stratified sampling
randomly chooses only N mutants from methods with more
than N mutants, and chooses all mutants if their number is
below N . Table IV (right side) contains the results obtained
using stratified mutant sampling with N ∈ {5, 10, 15, 20}. The
value in the parenthesis, i.e., "Ratio", is the average ratio of
the number of mutants sampled by stratified sampling to the
number of all mutants.

Compared to the Full configuration, the performance degra-
dation as N decreases is notably worse than what has been ob-
served from the results of uniform random sampling. However,
even with N = 5, the sample ratio is 0.27 on average, higher

than the smallest sampling rate for the uniform sampling.
The comparison suggests that, contrary to our concern for a
potential bias against smaller methods, stratified sampling is
actually harmful to SIMFL. One interpretation of the result is
that, if we assume that the location of a fault is a random
variable, larger methods are by definition more likely to
contain it.

We answer RQ3 that the impact of mutation sampling is
observable but not too disruptive. Using uniform sampling, on
average 80% of the faults ranked at the top without sampling
can still be localised at the top. However, stratified sampling
actually harms SIMFL: larger methods need to be represented
by more mutants.

V. DISCUSSION

A. Relation with Other FL Techniques
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(a) Ochiai (r = 0.215)
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(b) FLUCCS (r = 0.105)
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(c) MUSE (r = 0.072)
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(d) Metallaxis (r = 0.130)

Fig. 3. Comparison of MLP(F+P) and other FL techniques.

Two FL techniques can be complementary to each other
if there is little overlap between faults ranked highly by
each technique. To investigate whether the contribution of
SIMFL is uniquely different from others, we investigate how
individual faults are ranked differently by SIMFL and other
FL techniques. SIMFL is represented by the MLP(F+P) model.
We omit TraPT from this comparison as the individual rank
information was not available from the paper; DStar is also
excluded as its results are very similar to that of Ochiai.

Figure 3 plots each individual fault according to its rank by
MLP(F+P) of SIMFL (x-axis) and its rank by the other FL
technique (y-axis). Data points on the line y = x represent
faults that are ranked at the same place by both techniques,
whereas the farther from the line a point is, the more dif-
ferently it is ranked by two techniques. Plots only contain
faults that are ranked within the top 20 places by at least



one technique: the size of the dots corresponds to the number
of faults plotted at the location of the dot. The numbers on
the y = x line as well as above and below the line show
the total number of faults that belong to the corresponding
parts, regardless of being ranked within the top 20 or not. For
example, SIMFL ranks 135 faults higher than MUSE. The
agreement between two techniques are measured using Pear-
son correlation coefficient (r): value 0 implies no correlation
and, therefore, no agreement, whereas value 1 implies perfect
correlation and, therefore, two identical rankings.

While there exist dense clusters of points near the top
ranks around the y = x line, there is no clear relationship
between FL techniques. SIMFL shows low Pearson corre-
lation coefficients against all compared techniques. Notably,
SIMFL is significantly different from two existing MBFL
techniques, MUSE and Metallaxis, suggesting that the way
SIMFL captures the relationship between faults and tests
differs significantly from existing MBFL techniques. SIMFL
also ranks the most faults identically to FLUCCS, a tech-
nique that uses multiple SBFL scores as well as code and
change metric, suggesting that mutation analysis can be a
rich source of information for fault localisation. Overall, the
results provide evidence that there exist faults that SIMFL
can localise much more effectively than the other, and vice
versa. The complementary nature also suggests the possibility
of an effective hybridisation of SIMFL and other techniques, as
recent work that combine multiple FL techniques suggest [28],
[29], [3]. We leave the hybridisation as future work.

B. Test Case Granularity

TABLE V
THE RESULT OF ONE-TAILED t-TEST BETWEEN W3 AND O3.

Model Project W3 O3 p Model Project W3 O3 p
mean mean mean mean

EM(F)

Lang 5.5 10.0 0.029

EM(F+P)

Lang 6.2 7.9 0.238
Chart 10.0 144.9 0.056 Chart 11.4 136.1 0.086
Time 69.2 129.6 0.002 Time 103.7 113.7 0.320
Closure 167.2 322.7 0.000 - - - -
Math 15.5 34.8 0.000 Math 20.5 28.5 0.056

PM∗(F)

Lang 5.1 11.9 0.002

PM∗(F+P)

Lang 4.7 9.8 0.009
Chart 10.0 144.9 0.056 Chart 96.3 88.4 0.534
Time 78.4 127.6 0.009 Time 20.0 120.3 0.000
Closure 175.7 327.6 0.000 - - - -
Math 15.4 36.3 0.000 Math 15.2 28.2 0.009

PM+(F)

Lang 5.1 12.4 0.002

PM+(F+P)

Lang 4.4 9.2 0.012
Chart 9.8 136.6 0.072 Chart 96.9 88.1 0.538
Time 78.4 127.6 0.009 Time 0.5 117.7 0.001
Closure 203.2 323.5 0.000 - - - -
Math 15.5 35.8 0.000 Math 11.5 27.1 0.010

LR(F)

Lang 4.9 13.5 0.000

LR(F+P)

Lang 5.5 12.2 0.006
Chart 11.8 135.9 0.087 Chart 70.3 117.9 0.298
Time 78.4 127.6 0.009 Time 90.8 129.6 0.031
Closure 193.3 322.3 0.000 - - - -
Math 16.5 35.3 0.000 Math 17.3 31.0 0.003

MLP(F)

Lang 5.4 12.9 0.003

MLP(F+P)

Lang 5.9 13.3 0.013
Chart 10.8 144.9 0.066 Chart 14.6 174.2 0.032
Time 62.3 137.7 0.000 Time 95.1 130.5 0.049
Closure 168.6 325.3 0.000 - - - -
Math 15.6 35.8 0.000 Math 17.0 40.9 0.000

A common pattern observed in all configurations of SIMFL
is that it performs the best for Commons Lang. Following
Laghari and Demeyer [30], we hypothesise that this may be
related to the test case granularity: if each test case kills
mutants that exist in only a few methods, SIMFL can benefit

from this because failures of each test case will be tightly
coupled with a few candidate locations.

To investigate the impact of test case granularity, we check
whether the number of the methods that are relevant to failures
caused by highly ranked faults is lower than the number of
methods relevant to faults that are not ranked near the top. We
define a method m to be relevant to the failure of a test case
t if t kills a mutant in m. A finer granularity test case t is
expected to be relevant to fewer methods. We categorise faults
into those ranked in the top three places (set W3), and those
that are not (set O3), and compare the number of relevant
methods between W3 and O3.

Table V reports the result of one-tailed t-test on the number
of relevant methods between W3 and O3: for 33 out of 45
cases, we accept the alternative hypothesis that the mean of
O3 is significantly greater than W3. In other words, the faults
in W3 are likely to be revealed by test cases with finer-
granularity than the faults in O3. The test cases of Commons
Lang have finer-granularity when compared to other subjects,
leading us to conjecture that test case granularity is why
SIMFL performs more effectively against Lang than others.
However, the results also show that SIMFL is not simply
reflecting a one-to-one mapping between methods (mutants)
and their unit tests: failing test cases of Closure kill mutants
in 203 methods on average, but PM+(F) can still localise 41
out of 132 faults within the top three places (see Table II).

C. Kill Reason Filtering

TABLE VI
THE acc@n METRIC VALUES AFTER FILTERING MUTANTS BASED ON

THEIR KILL REASONS.

Model Total Assertion Timeout Exception
Studied @1 @3 @5 @1 @3 @5 @1 @3 @5

EM(F) 348 100 163 179 21 30 38 53 90 107
PM∗(F) 348 108 185 206 23 35 44 60 97 117
PM+(F) 348 114 183 206 22 36 45 61 99 119
LR(F) 348 118 181 213 40 79 88 66 109 131
MLP(F) 348 121 189 210 43 76 91 60 106 129

EM(F+P) 203 72 89 96 7 11 16 55 64 68
PM∗(F+P) 203 50 76 90 23 42 57 49 71 80
PM+(F+P) 203 34 57 68 20 34 50 34 59 68
LR(F+P) 203 89 117 128 23 41 51 77 104 115
MLP(F+P) 203 112 147 160 29 50 55 91 120 135

A mutated program can cause a test failure due to many
different reasons, such as assertion (i.e., test oracle) violation,
uncaught exception, or timeout. All these reasons are normally
marked as a kill. While all three reasons do reveal some
dependency between the mutated location and the test outcome
(otherwise the mutant would not be killed), we suspect that
different kill reasons may have varying degrees of importance
for fault localisation. Assertion violations would imply that
the test oracles actually capture the correct program behaviour.
Uncaught exceptions and timeouts, however, may only show
coincidental impacts of the mutation.

Considering the relative importance of different kill reasons,
we investigate whether filtering out the kill matrix based
on the exact reason of test failure has any impact on the
localisation effectiveness. This is partly motivated by the use



of failure messages by TraPT [31]. We train SIMFL models
using one of three kill reasons, and compare their results to
those of models trained using all three reasons. Kill reasons
supported by Major are: assertion violations ("Assertion"),
timeouts ("Timeout"), and uncaught exceptions ("Exception").

Table VI shows the results of acc@n metrics for SIMFL
models of three different kill reasons. For all F models, using
only mutants killed due to the assertion failures shows the best
performance in terms of acc@1 and acc@3, adding support to
our assumption that assertion violations reflect test oracles of
correct program behaviour better than others. Timeouts appear
to be the weakest signal.

However, for F+P models, the unfiltered original results
("All") often show the best performance. This trend reveals
a seemingly counter-intuitive, yet fundamental intuition about
SIMFL: test cases in Tf and Tp contribute to localisation in
different ways. If a test case t is in Tf , all mutants killed
by t earlier suggest that their locations may contain the fault.
However, if t ∈ Tp, all mutants killed by t earlier suggests
that their locations may not contain the fault that is detected
by t′ ∈ Tf . Consequently, kill reason filtering can make the
contributions from tests in Tf more precise (i.e., to only reflect
real fault detection), but may also reduce the total amount of
contributions from tests in Tp because it removes potential
locations that could have been excluded by being associated
with a test in Tp. This explains why, for F+P models, using
only Assertion as the kill reason cannot dominate the results.
Note that the distribution of kills between Assertion, Timeout,
and Exception is likely not uniform, which we also think
contributes to the mixed results of F+P models, combined with
program semantics.

VI. THREATS TO VALIDITY

Given the controlled setting for our experiments and the
clearly defined objective measures, there are few threats to
the internal validity of our study. There are some threats to
internal validity that are inherent to any mutation analysis and
hard to completely avoid, such as non-determinism caused by
mutation and equivalent mutants, which have been discussed in
Section IV. Similarly, we see few threats to the construct and
conclusion validity. The metrics we used are standard in the
fault localisation literature. We note that establishing one best
technique is not our main goal here and we would likely need
more study subjects for such a comparison to be meaningful.

Rather, the main threat of our study is to its external validity.
Even though we studied five different subjects from the real-
world DEFECTS4J benchmark to mitigate this threat, this does
not allow us to generalise to many, other programs and test
suite contexts. Still, there was enough variation among the
five subjects for us to identify SIMFL’s dependence on the
granularity of the test cases.

VII. RELATED WORK

A number of Mutation Based Fault Localisation techniques
have been proposed in the literature. Metallaxis uses SBFL-
like formulas to measure the similarity between failure patterns

of the actual fault and mutants [16], [15]. MUSE [13], and its
variation MUSEUM [14], depend on two principles: first, if
we mutate already faulty parts of the program, it is unlikely
that we will observe more failing test cases, and we may
even observe partial fixes, and second, if we mutate non-faulty
parts, tests that used to fail are now likely to fail. MUSE
and MUSEUM define their suspiciousness scores using the
ratios of fail-become-pass and pass-become-fail tests. TraPT
is similar to MUSE and MUSEUM in nature, but transforms
both the output messages of failing tests, to distinguish dif-
ferent types of exceptions, and the test code itself, to prevent
early program termination due to the assertion violation that
precludes collecting information of other assertions [31]. All
existing MBFL techniques mutate the faulty program once
testing is finished. In contrast, SIMFL allows the mutation
analysis to be performed ahead of time.

SIMFL was initially formulated based on Bayesian analysis
to infer likely fault locations given test information. In the
context of fault localisation, Abreau et al. [32] have introduced
BARINEL, an SBFL technique that adopts Bayesian reasoning
to generate candidate sets of multiple fault locations. To the
best of our knowledge, SIMFL is the first MBFL technique that
uses Bayesian inference as well as other statistical inference
techniques. While SIMFL also uses dynamic information from
mutation, the mutation analysis can be performed ahead-of-
time, which allows the cost to be amortised over multiple
development iterations, and provides faster feedback.

VIII. CONCLUSION

This paper introduces SIMFL, a Mutation Based Fault
Localisation (MBFL) technique that allows users to perform
the mutation analysis in advance, before the actual failure
is observed. SIMFL relies on statistical inference techniques
to train predictive models that can be used with the actual
failure information. This allows us to use the concrete and
precise dependencies between source code and test cases for
fault localisation, without having to expend the large cost
of mutation analysis when failures are observed. We have
empirically evaluated SIMFL using real-world faults from
DEFECTS4J benchmark. SIMFL can localise 113 faults at the
top, and is capable of retaining 80% of its localisation accuracy
at the top when we sample only 10% of all generated mutants.
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