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Abstract—As Deep Neural Networks (DNNs) are rapidly
adopted in various domains, many test adequacy metrics for DNN
inputs have been introduced to help evaluating, and validating,
trained DNN models. Surprise Adequacy (SA) is one such metric
that aims to quantitatively measure how surprising a new input is
with respect to the data used to train the given model. While SA
has been shown to be effective for computer vision tasks such as
image classification or object segmentation, its efficacy for DNN
based Natural Language Processing has not been thoroughly
studied. This paper evaluates whether it is feasible to apply SA
analysis to DNN models trained for NLP tasks. We also show
that the input distribution captured in the latent embedding
space can be multimodal1 for some NLP tasks, unlike those
observed in computer vision tasks, and investigate if catering for
the multimodal property of NLP models can improve SA analysis.
An empirical evaluation of extended SA metrics with three NLP
tasks and nine DNN models shows that, while unimodal SAs
perform sufficiently well for text classification, multimodal SA
can outperform unimodal metrics.

Index Terms—Deep Learning, Natural Language Processing,
Software Testing

I. INTRODUCTION

Testing Deep Neural Network (DNN) models have received
much attention [1]–[4] as DNN models are being incorporated
into various software systems [5]. In particular, the successful
application of DNN computer vision technology in safety
critical domains such as autonomous driving [6] and medical
imaging [7] adds urgency to the need to develop effective
testing techniques for DNNs.

While the recently proposed test adequacy metrics [1]–
[4], as well as data augmentation [8] and model retraining
techniques [9], have contributed to the effectiveness of DNN
testing, most of the literature concern image recognition tasks,
especially image classification, when evaluating proposed
techniques. Consider test adequacy metrics for DNNS: almost
all existing metrics – Neuron Coverage [1], Strong Neuron
Activation Coverage (SNAC) [3], and Surprise Adequacy
(SA) [4] – have been evaluated for image classification, using
benchmarks such as MNIST [10] and CIFAR10 [11].

Testing of DNN models in other domains – for example,
speech recognition or Natural Language Processing (NLP) –

1In this paper, we use the term multimodal to refer to multimodal distribu-
tions, i.e., distributions with more than one mode, in the statistical context. It
does not mean multiple data domains.

has, in contrast, received relatively less attention. In this paper,
we attempt to expand the scope of DL testing techniques to
DNN models trained for NLP tasks. Since the success of deep
learning has been partially attributed to its capability to learn
latent features that are crucial for the given task [5], we posit
that an input domain other than images may exhibit different
characteristics from those observed with image recognition
DNNs. Our primary goal is to investigate whether it is feasible
to apply SA to DNNs trained for NLP tasks, and extend SA
metrics specifically for NLP tasks if necessary.

We choose one of the recently proposed test adequacy
metrics for DNNs, Surprise Adequacy (SA) [4], to study the
characteristics of latent features of NLP tasks. Intuitively, SA
is a quantitative measure of how Out-of-Distribution (OOD,
i.e., surprising) the Activation Trace (AT)2 of a given input is
with respect to the distribution of inputs seen during training.
The more OOD a given input is, the more likely that a DNN
will fail to process the input correctly. In the context of
NLP, if a text input is highly surprising, the model is more
likely to predict imprecisely. The prediction of imprecision is
especially important for NLP, as the only available test oracles
for NLP tasks are usually human labelling that is very costly.
For instance, to evaluate the QA model performance against
new pairs of a context paragraph and a query, a human must
read both the paragraphs and queries and decide whether the
answer is correct, incurring a huge cost. Guided by SA, we
expect to prioritise inputs that are likely to induce failures,
thereby allowing more efficient use of testing resources [12].
Consequently, we aim to improve testing of AI and NLP based
systems, as well as SE tasks that use NLP techniques.

Our study of three different NLP tasks and nine trained
models show that the distributions of AT vectors for some
NLP tasks are multimodal, unlike those observed from image
recognition DNNs. This observation, in turn, allows us to
extend existing SA metrics to handle multimodal distributions
better, because the degree of ATs being OOD is directly
coupled to their distribution. In addition to investigating the

2Activation Trace (AT) [4] is the collection of neuron activation values
from selected neurons, typically all neurons in a single chosen layer. ATs
capture the behaviour of a DNN w.r.t. given input, similarly to execution
traces capturing the behaviour of traditional programs w.r.t. a given input.



feasibility study, we also evaluate whether the multimodal SA
for NLP tasks can improve the accuracy of the analysis.

The empirical evaluation includes three different NLP tasks
(text classification, sequence labelling, and question answer-
ing), nine different DNN models (three per each task), and
five different NLP benchmark datasets. We compare both the
existing SA metrics and the multi-modal variants we propose
against active learning metrics, which can also prioritise inputs
that the model is likely to find difficult to handle.

The technical contributions of this paper is as follows:
• We investigate the feasibility of SA analysis for DNNs

trained for multiple NLP tasks: text classification, Named
Entity Recognition (NER), and Question Answering. Ex-
isting DNN testing literature largely focused on image
recognition tasks only.

• We show that the distribution of ATs in DNNs trained for
some NLP tasks are multimodal. We also show that, when
the multimodal nature of NLP models is not properly
considered, existing unimodal SA metric can perform
sub-optimally, and evaluate two multi-modal variants of
two existing metrics: MMLSA (Multi-Modal Likelihood-
based SA) and MMDSA (Multi-Modal Mahalanobis dis-
tance based SA).

• We conduct a large scale empirical evaluation of our
new multimodal SA metrics using nine different DNN
models trained for three NLP tasks. The results show
that 1) unimodal SAs are sufficient for text classification,
2) multimodal SAs can outperform unimodal metrics for
sequence labelling, and 3) Question Answering task, for
which no other input prioritisation metric exists, remains
challenging for SA analysis.

The rest of this paper is organised as follows. Section II
presents the background information about Surprise Adequacy
(SA) metrics. Section III-A introduces multi-modal variants of
existing SA metrics. Section IV presents experimental setup,
introduces the research questions, and describes our baseline
metrics from active learning metrics. Section V presents the re-
sults of our empirical evaluation. Section VI discusses threats
to validity, and Section VII presents related work. Finally,
Section VIII concludes.

II. BACKGROUND: SURPRISE ADEQUACY FOR DNNS

This section contains the description of Surprise Ade-
quacy(SA) [4] used in this paper.

A. Existing SA Metrics

SA is a test adequacy for DNN inputs which that assesses
how surprising an input is to the model. The basic assump-
tion is that the more familiar an input is to the model (in
comparison to the data observed during training), the more
likely the model will behave correctly. Kim et al. [4] measure
the familiarity of a never-seen-before input by comparing the
pattern of neuron activation to the patterns observed during
training: instead of observing all neurons in a DNN, they opt
to choose a specific layer and take all neuron activation values,
which is called Activation Traces (ATs). Once a model is

trained, ATs can be obtained for both a new input as well
as all inputs in the training data. Subsequently, SA of an
input is measured by calculating the similarity between the
AT of the given input, and the ATs of the training data. Kim
et al. originally introduced Likelihood-based SA (LSA) and
Distance-based SA (DSA) [4]. Mahalanobis distance based SA
(MDSA) was introduced later by Kim and Yoo [13].

1) Likelihood-based SA: LSA performs Kernel Density
Estimation (KDE) over the set of AT vectors obtained from
the training data (T ). With a Gaussian kernel function K and
the AT from a new input, x, LSA computes the density as:

f̂(x) =
1

|T |
∑
αT

i ∈T

K(x− αTi ) (1)

LSA is then computed as the negative log of density:

LSA(x) = − log f̂(x) (2)

The lower the density of new input is, the more surprising the
input is to the model.

2) Distance-based SA: DSA is a measure of a surprise
based on the classification boundaries. Given a new input,
DSA compares the Euclidean distance between AT of the
input and AT of the closest training-set input in the same
classification class, to the Euclidean distance between AT of
the input and AT of the closest training-set input in another
classification class. The ratio of these two distances tells us
how close to the boundaries the input is. The closer to the
class boundary the input is, the more surprising the input is
to the model.

3) Mahalanobis Distance based SA: Mahalanobis Distance
measures the distance between a probability distribution and
a single data point [14]. Given a new vector x and a set
of mean values(µ) and covariance matrix C from training
data(T ), MDSA is defined as:

MDSA(x) =
√
(~x− ~µ)TC−1(~x− ~µ) (3)

The farther away an AT vector of a new input is from the
training data distribution, the more surprising the input is likely
to be to the model. Unlike DSA, MDSA can be applied to non-
classification models, as it does not depend on the concept of
classification boundaries.

B. Distribution of ATs from NLP Models

The intuition behind SA metrics can be applied to all
input and task domains: the AT vectors represent the internal
behaviour of the DNN model under consideration, and the
more OOD a new input AT is w.r.t. to the training data,
the more difficult the model will find it. However, we argue
that the detailed method of measuring the OOD-ness can be
affected by the shape of the AT vector distribution.

Consider the visualisation of AT vectors from two different
DNN models in Figure 1. We first apply PCA to AT vectors
of training data and reduce the dimension to 50; subsequently,
we use t-SNE [15] to visualise the vectors in 2D. The AT



(a) Visualisation of ATs from ResNet Classifier for CIFAR-10

(b) Visualisation of ATs from S-LSTM for CoNLL-2003

Fig. 1: Comparison of ATs from ResNet Image Classifier and
TENER Sequence Labelling Model

vectors shown in Figure 1a are taken from a ResNet Image
Classifier [16] trained with CIFAR-10 dataset [11]. AT vectors
shown in Figure 1b are taken from the S-LSTM, a Graph
LSTM based sequence labelling model for the NER task [17].
The colour of each dot represents the class label: each vector
corresponds to a token (i.e. an entity) in a sequence.

ATs from ResNet form distinct clusters that align with class
labels, which is in line with the high training accuracy of
the model. More importantly, clusters show clear unimodal
distributions. ATs from S-LSTM, on the other hand, show
multimodal distribution: we can observe sub-groups within the
same label. An AT that is close to the centroid of a sub-group
can still be far away from the class centroid.

We suspect that the multimodality can actually affect the
accuracy of SA analysis. Figure 2 compares the result of SA
correlation analysis (similar to those by Kim et al. [4]) for
both CIFAR-10 images classified by ResNet and the PER
tags of CoNLL-2003 classified by S-LSTM. In all plots, we
gradually expand a set of unseen test inputs by adding them
in the ascending (red) and descending (green) order of their
SA values, and plot the accuracy of the model prediction. By
definition of SA, we expect the red line to start at a accuracy
and gradually come down, as we start with less surprising
inputs and gradually add more surprising ones. Similarly,
we expect the green line to start at the low accuracy and
gradually go up, as we start with more surprising inputs and
gradually add less surprising ones. For ResNet, the results
show that SA behaves as expected. However, for S-LSTM,
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Fig. 2: Comparison of SA Correlation Analysis

the degree of surprise does not correlate well with the model
performance. This result motivates our approach with multi-
modal SA analysis. We suspect that the inaccurate measure of
distance and familiarity is affecting the analysis, and posit that
more accurate measurements based on multimodal distribution
can improve the analysis.

Since we cannot fully explain how the latent features are
learnt by DNNs [18], it is difficult to fully explain where
the multimodality in NLP models comes from. However,
we can cautiously propose some relevant characteristics of
NLP tasks: unlike images, words in natural language are
inherently more discrete, with each token conveying different
meanings. In addition, semantic meanings of words are also
highly contextual: not only the word itself, but also its relative
position in the sequence (i.e., sentence) can affect its meaning.
Combined, these factors suggest that the distribution of AT
vectors from NLP models may be more complicated than those
from image recognition models.

III. MULTIMODAL SA AND NLP MODELS

This section first introduces two new variants of SA:
Multimodal Likelihood based SA(MLSA) and Multimodal
Mahalanobis distance based SA (MMDSA). Subsequently, we
describe how Activation Traces (ATs) are extracted from each
of the NLP models we study.

A. Multimodal Surprise Adequacy

The visualisation of ATs shown in Section II-B suggests that
ATs extracted from NLP tasks can be multimodal, i.e., even
ATs that belong to what is thought to be similar inputs can
show more than one mode. Ignoring the multimodal nature
of ATs can adversely affect SA analysis. For example, the
existing MDSA assumes unimodal distributions of ATs: an AT
that is actually very close to one of the modes can be assigned
relatively higher distance from the unimodal centroid.

The key intuition behind our multimodal variants of SA
metrics is that we identify different modes and measure the
distance (or similarity) of a new test input to only one of the
modes. Instead of using Kernel Density Estimation, we can use
Gaussian Mixture Model (GMM) to represent the multimodal



distribution of ATs from the training data. Similarly, instead
of using the global mean and covariance for Mahalanobis
distance, we can cluster the multimodal ATs from training
data, and only compute the Mahalanobis distance between the
input AT and the mean and covariance from the closest cluster
of training data ATs. The following subsections formally
define these multimodal variants of SA metrics.

1) Multimodal Likelihood-based SA (MLSA): Gaussian
Mixture Model (GMM) is essentially a clustering algorithm
in which each cluster is modelled as a Gaussian distribution.
We can train a GMM using the AT vectors of the training
data, and represent the membership of each AT vector to the
clusters using a mixture of Gaussian densities. Given a number
of cluster, k, as well as the mean, µ, covariance, C, and
weight, w, for each Gaussian distribution N , GMM produces
the probabilistic density function, f , as follows:

f(x) =

K∑
j=1

wjN(x|µj , Cj) (4)

Similarly to LSA, we define MLSA for a input x to be the
negative of the log of density:

MLSA(x) = − log(f(x)) (5)

The KDE used by the original LSA can be considered
as a specific case of GMM where all kernels share the
same parameters. In contrast, GMM allows each Gaussian
distribution to be different from others: we expect GMM based
MLSA to capture the multimodal distribution of training data
ATs more accurately.

2) Multimodal Mahalanobis Distance-based SA (MMDSA):
The original MDSA is a surprise adequacy which utilises the
Mahalanobis distance between the given input AT and the
unimodal distribution of the training data ATs. The multimodal
version of MDSA, which is called MMDSA, first applies k-
means clustering [19] to the training data ATs. Subsequently,
given an input AT, MMDSA is defined as the Mahalanobis
distance between the input AT and the distribution of ATs in
the closest cluster, using the mean values and the covariance
matrix obtained from that cluster.

Deciding the optimal number of clusters is a fundamental
challenge in clustering [20], especially for the k-means clus-
tering that takes the number of clusters to generate as an input.
We adopt the widely used Silhouette index [21] to determine
k without depending on any external information or analysis.
Silhouette index evaluates the quality of clustering results by
measuring how a data point is similar to its assigned cluster
compared to other clusters. More formally, the Silhouette
index for an input x assigned to cluster Ci is defined as:

S(x) =
B(x)−A(x)

max(A(x), B(x))
(6)

where A(x) is the mean of intra-cluster distance between
x and other members of Ci, and B(x) is the mean of inter-
cluster distance between x and its nearest neighbour cluster.

A(x) =
1

|Ci| − 1

∑
x∈Ci,x 6=y

d(x, y) (7)

B(x) = min
k 6=i

1

|Ck|
∑
y∈Ck

d(x, y) (8)

We compute the mean silhouette score over all ATs while
varying the clusters’ number and determine the number of
clusters k with the highest score.

B. Task-specific AT Extraction for NLP Models

This paper studies three NLP tasks: Text Classification
(CLS), Named Entity Recognition (NER) and Question An-
swering (QA). Text classification simply aims to classify
given natural language text using the pre-determined set of
labels. For example, sentiment analysis aims to label given
sentences as having positive or negative sentiments. Named
Entity Recognition aims to classify each token in a given
natural language sentence as named entities, such as names,
locations, and quantities. Finally, given a context paragraph
and a question sentence, QA aims to choose the part of the
given context paragraph that contains the answer.

A major difference between image recognition tasks and
NLP tasks is the variability of input size in NLP. Unlike
images that can be rescaled to a fixed size, the length of natural
language data is inherently variable. As the number of words
differs between separate inputs, it is impossible to aggregate
ATs from different sequences into a single fixed dimension.
In turn, this makes the straightforward computation of KDE
or Mahalanobis distance difficult.

To overcome the input dimension variability and to min-
imise the information loss, we need to design customised AT
extraction method for each NLP task at hand. Simply clipping
the internal product of a NLP model into a fixed size based
on a single universal heuristic is not ideal, as NLP models
are expected to label either each word, or an entire sentence,
depending on the task. Extracting a sequence-level AT vector
by taking the average of AT vectors of all included tokens can
cause loss of information about token-level differences.

Our aim is to minimise the information loss in ATs, while
capturing fixed dimension ATs for the given task. Text Clas-
sification (CLS) is the most straightforward case, as any text
classification model should aggregate all latent features into a
single classification result for the entire sentence: inputs are
of variable length, but text classification models inherently
remove the variability during the process of classification.
Consequently, we can extract ATs in a similar way to image
recognition DNNs. NER, on the other hand, aims to identify
the spans in the sequence that belong to different entities, and
also assign the labels to each entity. Consequently, we look
at NER task as a collection of smaller classification tasks.
While inputs for NER are given as sentences, we analyse test
adequacy at entity level.

Question Answering (QA) models have the most compli-
cated internal structure: models are expected to understand
the given context and the question, and to find the location of



the corresponding answer embedded in the context. Therefore,
we argue that the internal representation for the span of
the answer, passed through multiple neural layers, conveys
the essence of QA model behaviour. However, the length of
answer spans is also variable. Instead of taking ATs of all the
tokens in the answer span, we simply concatenate ATs of the
beginning and the end of the answer span.

IV. EXPERIMENTAL SETUP

This section introduces our research questions and describes
the experimental setup of our empirical evaluation. We de-
scribe the baseline metrics from active learning literature,
and introduce the NLP task benchmarks and the DNN model
architectures we use.

A. Research Questions

We present the following research questions and try to
answer them with the results of our empirical evaluation.

1) RQ1. Effectiveness of Unimodal SA Metrics: How effec-
tive are the existing unimodal SA metrics for DNNs trained
for NLP tasks? With RQ1, we investigate whether SA works
as a test adequacy criterion for DNNs trained for NLP tasks.
Following Kim et al. [4], we compare the results of the
correlation analysis between SA and AL metric values and
model accuracy.

2) RQ2. Effectiveness of Multimodal SA: Are multimodal
SA metrics more accurate for DNNs trained for NLP tasks?
With RQ2, we evaluate the newly proposed multimodal SA
metrics, MLSA and MMDSA. We perform the same correla-
tion analysis with multimodal SA metrics and compare their
accuracy to unimodal metrics.

B. Active Learning Methods

We use four metrics from Active Learning (AL) literature
as the baseline to compare SA metrics to. In Active Learning,
the learner can actively request labelling a specific new
input, to alleviate the high cost of labelling large sets of
data [22]. While Active Learning is motivated by the need
to lower the cost of learning, and SA as test adequacy
is motivated by the need to identify inputs that are most
likely to reveal unexpected behaviour of the given model,
both provide a technique to prioritise unseen inputs in the
order of their difficulty from the perspective of the model.
Consequently, the prioritisation metrics used by AL can be
used as a baseline to compare SA metrics to. Compared to
AL metrics, other existing test adequacy metrics for DNNs
(e.g., Neuron Coverage [1]) are designed for sets of inputs,
and cannot be directly used as a measure of how surprising
the model will find a single input. This is why we compare
SA metrics, both unimodal and multimodal, to the AL metrics.

Entropy is the most wide-spread method for measuring the
uncertainty [23]. Given an input x, a set of training data, D,
and a set of class labels, C, we can compute the entropy of
the classification result, y, as follows:

H(y | x,D) = −
∑
c∈C

P (y = c | x,D) · logP (y = c | x,D)

(9)
To convert entropy as a measure of OOD-ness, we take the

negative of entropy.

Following two uncertainty acquisition methods are proposed
by recent approaches to combine Bayesian deep learning into
active learning methods [24]–[26]. AL with Bayesian deep
learning has achieved considerable reduction in the amount
for labelling in training deep neural networks, by performing
random Monte Carlo dropout to the model.

Bayesian Active Learning by Disagreement (BALD) rep-
resents the mutual information between data points and the
model weights [27]. The mutual bond between the model
predictions for a given data and the model parameters can
tell us the degree of confidence the model has about the
output. BALD subtracts the expectation of the entropies over
the posterior of model parameters from the entropy over model
predictions. Given a set of dropout models, M , model weights
wm for m ∈M , a set of class labels, C, and training data D,
we can compute:

I(y;w | x,D) = H(y | x,D)

− 1

|M |
∑
m∈M

∑
c∈C
−P (y = c | x,wm) logP (y = c | x,wm)

(10)
Variation Ratio aims to measure the level of model confi-
dence through the use of random dropouts [24], [28]. After
independently applying |M | dropout masks, let fm denote
the number of dropout predictions that agrees with the model
prediction without any dropout. We measure the proportion of
predictions that disagree with the model prediction as follows;
the larger the value is, the more uncertain the model is.

v(y) = 1− fm
|M |

(11)

Following [24], [29], we independently draw |M | = 100
dropout masks to estimate BALD and Variation Ratio.

Maximum Normalized Log-Probability (MNLP) is an
uncertainty-based, cost-aware input prioritisation strategy for
NER [29]. MNLP aggregates the probability assigned by the
model during the decoding step, and divides it with the length
of sequence to reflect the higher labelling efforts required by
longer sequences. Given an input x, and probabilities for n
class labels, MNLP is defined as12:

M(x) = − max
y1,...,yn

1

n

n∑
i=1

logP (yi | y1, . . . , yn−1, {xij})

(12)
12Notation xij denotes the one-hot encoding of jth character in the ith

word of input sequence x [29].



TABLE I: List of models used in study

Task Evaluation Metric Dataset Description Model Performance

Text
Classification Accuracy

IMDB Sentiment classification on film reviews with binary
labelling (positive/negative) on 50K multi-sentences

L-mixed3 94.55

Transformer4 83.76

AG-News 200K news articles with 4 topic labels L-mixed 94.21

SST-5 215,154 phrases from film reviews with fine-grained
(five-way) sentiment labels

Transformer 44.6

Named Entity
Recognition F1 CoNLL-03 22,137 English sentences labelled with NER tags

LSTM-CRF5 86.77 (97.35)

S-LSTM6 90.74 (98.09)

TENER7 91.43 (98.15)

Question
Answering

Exact Match
(F1) SQuAD 1.1

QA dataset with 100K crowd-sourced questions for
Wikipedia articles. Answer to the question is
guaranteed to be inside of the context

BiDAF8 77.18 (67.31)

DocQA9 80.78(71.59)

QANet10 79.83(70.65)

FusionNet11 81.94(72.94)

Note that MNLP score is computed for the entire input
sequence x: we map the sequence level score to each tagged
token to map MNLP to tag level analysis.

C. Datasets and Models

Table I shows the list of datasets and models we conducted
our empirical evaluation with.

1) Text Classification: Three datasets are used for eval-
uating SA for the text classification task: IMDB [30] and
SST-5 [31] for sentiment analysis of film reviews and
AG-News [32] for topic classification of news articles. L-
mixed [33] is a single-layer BiLSTM classifier which shows
good performance on IMDB and AGNews dataset. Trans-
former is a self-attention based model that has shown state-of-
the-art performance in many NLP tasks [34]: we exploit the
encoder of Transformer to evaluate IMDB and SST-5 dataset.

2) Sequence Labelling: CoNLL-2003 [35] is a widely stud-
ied dataset for NER. It contains labelled sequences with four
different named entity types: person, location, organization,
and miscellaneous. To evaluate SA for the NER task, we use
three models: LSTM-CRF [36], S-LSTM [17], TENER [37].
Each model uses different architectures to encode the character
and word-level information (LSTM-CRF uses Bi-LSTM, S-
LSTM uses Graph LSTM, and TENER uses Transformer),
but all use Conditional Random Field (CRF) layer to model
the tagging decision.

3) Question Answering: To evaluate SA metrics for QA
models, we use version 1.1 of the Stanford Question An-
swering Dataset (SQuAD) [38], which is a widely used to
study Question Answering. A context paragraph in SQuAD
corresponds to one paragraph of a Wikipedia article; answers

4https://github.com/DevSinghSachan/ssl text classification
5https://github.com/huggingface/transformers
6https://github.com/Hironsan/anago/
7https://github.com/leuchine/S-LSTM
8https://github.com/fastnlp/TENER
9https://github.com/allenai/bi-att-flow
10https://github.com/allenai/document-qa
11https://github.com/NLPLearn/QANet
12https://github.com/felixgwu/FastFusionNet

for each question are guaranteed to be a segment of the context
paragraph. We evaluate four different QA models with end-
to-end architectures: the BiDAF model [39] by Seo et al., two
subsequent developments of BiDAF that are DocQA [40] and
QANet [41], and finally the FusionNet [42]. The BiDAF model
as well as its variants uses a bi-directional attention flow layer,
which provides a single representation that reflects both the
context and query words. This architecture, in turn, allows
easy extraction of AT vectors. FusionNet introduces a new
concept called “history of words” and exploits different levels
of fusion information between context and question to capture
the complete content.

D. Model Training & Environment

For BiDAF, DocQA, and FusionNet models for the QA task,
as well as the L-mixed model for the text classification of
the IMDB dataset, we use pre-trained model weights provided
with the original publications. For all other studied models, we
could not obtain pre-trained weights, and instead trained our
own models using the official implementations made publicly
available with the original publications. All models have been
trained using a machine equipped with an Intel Core i7-8700K
CPU, 32GB of RAM, and an NVidia RTX2080 GPU.

E. Evaluation Metrics

For each NLP task, we adopt a widely used, standard
evaluation metric. For text classification task, we simply use
accuracy (i.e., the percentage of correct predictions out of total
inputs). For NER, we adopt the standard F1 score, which is the
harmonic mean of the precision and the recall metric computed
against the ground truth labels. For Question Answering,
typically Exact Match (EM) and F1 are used. Exact Match
(EM) which is the percentage of questions for which the given
model produces the exactly correct answers.

V. RESULTS

A. RQ1. Effectiveness of Unimodal SA Metrics

Figure 3 shows the result of correlation analysis for the
text classification task. We show the results from L-mixed
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Fig. 3: Correlation between various SA/AL metrics and Text Classification Model Accuracy for Test Inputs: red lines show
accuracy for a set of inputs that gradually incorporates new test inputs in the ascending order of their SA (expected go from
high to low accuracy, as the inputs change from easy to hard), whereas green lines show a set of inputs expanding in the
descending order of SA (expected to go from low to high, as the inputs change from hard to easy).

models applied to AGNews and IMDB datasets, as well as
the Transformer applied to SST-5 due to the limited space;
Transformer applied to IMDB dataset shows a similar trend.

As described in Section II-B, we expect the accuracy shown
by red lines in the correlation analysis to monotonically
decrease as inputs given to the model change gradually from
less surprising (i.e., easier to handle) to more surprising (i.e.,
harder to handle); we expect the opposite trend for the green
lines. For all unimodal SAs, the observed trends satisfy our
expectations. Inputs with higher SA values are harder to
classify correctly. Entropy metric also performs well for all
models and datasets. However, BALD and Variation Ratio fail
to prioritise inputs that make the model misbehave: there are
little differences between accuracies of the red and the green.

The notable exception is the SST-5 dataset, for which SA
metrics and Entropy perform worse than BALD and Variation
Ratio. The low test set accuracy around 50% suggests that
the model is either insufficiently trained, or over-fitted to the
training data, when using the configuration included in the
publicly available implementation. In either of such cases, the
distribution of the training data AT vectors cannot be reliably
used as a reference to measure the OOD-ness of a new input.

While SA metrics perform well for text classification mod-
els, the results are suboptimal for other two tasks. See the
plots of unimodal SA metrics in Figure 4, which contains the
correlation analysis for tag level NER accuracy from different
models. Unimodal SA metrics show suboptimal behaviours,
such as failing to distinguish easy and difficult inputs (LSA
in Figure 4a, MDSA in Figure 4d), and inverted red and

green lines (LSA in Figure 4d and 4e). Interestingly, the AL
metric MNLP also shows suboptimal behaviour (Figure 4a
and 4e). We suspect that assigning sequence level metric value
to individual tokens adds too much noise to MNLP analysis. In
comparison, DSA and Variation Ratio perform reliably well,
but note that both are relatively expensive methods.
Answer to RQ1: For text classification task, which we expect
to be both relatively easy, and of a unimodal nature due to
the single unified classification layer, existing unimodal SA
metrics not only work well but also can outperform Active
Learning metrics. However, for more complicated NER task
with multimodal neuron activation, unimodal SA metrics can
show suboptimal behaviour.

B. Effectiveness of Multimodal SA

Let us turn to multimodal SA metrics for NER and QA
models. For NER models, consider the plots for MLSA and
MMDSA in Figure 4. In many cases, the multimodal versions
show improved behaviour compared to their unimodal coun-
terparts. For example, MLSA can reliably distinguish OOD
inputs for the Other tag with S-LSTM model (see LSA and
MLSA in Figure 4a), or untwist crossed accuracy lines (see
LSA and MLSA in Figure 4e).

The results from QA models are shown in Figure 5. Since
no AL metric is available for QA models, we simply compare
unimodal and multimodal SA metrics here. Also note that
DSA is not applicable here as QA cannot be formulated
as a classification problem. In general, we can observe that
BiDAF and its variants – DocQA and QANet – are especially
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Fig. 4: Correlation between various SA/AL metrics and Tag Level Test Accuracy of Various NER Models

challenging to SA analysis. However, there are notably subop-
timal behaviour from unimodal SA metrics for these models.
For example, with the DocQA model, inputs with high LSA
values can actually show higher EM score than inputs with
low LSA values. With BiDAF model, MDSA fails to produce
any difference in EM or F1 between high and low SA inputs.
In both cases, while going multimodal does not solve all the
issues, they ease the severity of issues (MLSA for DocQA, or
MMDSA for BiDAF).

Answer to RQ2: Multimodal SA metrics can produce better
results for sequence labelling models trained for NER tagging.
QA task is challenging for both uni- and multimodal SA
metrics, although going multimodal does bring some benefits.

VI. THREATS TO VALIDITY

Threats to internal validity concerns any factors that could
have interfered with the our experimentation and measure-
ments. We only use the publicly available original imple-
mentations of the studied NLP models, and reuse their pre-
trained weights, whenever possible. Threats to external validity
concern any factors that may limit the generalisation of our
claim. The relative merits of studied metrics are only valid
within the scope of our experimentation. Other models with
different DNN architectures, or other models trained with

different datasets, may respond differently to the studied
metrics. Our results also depend on the specific choice of
AT extraction points: ATs captured from different locations
may show different behaviour. The randomness in clustering
algorithms can also affect our results. To mitigate the effect of
non-determinism, we repeat MLSA and MMDSA computation
five times and perform the accuracy correlation analysis using
the average of five runs for each input. Threats to construct
validity concern any potential misuse or misinterpretation of
measured metrics. To mitigate this, we only use standard
evaluation metrics that are widely used in the literature for
each studied NLP task.

VII. RELATED WORK

The very first work on DNN test adequacy is DeepX-
plore [1], which introduced Neuron Coverage (NC). Given a
threshold for neuron activation value and a set of test inputs,
NC is the percentage of neurons that have activated above
threshold by at least one input during testing. Higher NC
means that more neurons have been activated, pointing to
more diverse model invotations. Subsequently, DeepGauge [3]
proposed a number of additional test adequacy metrics that aim
to improve upon NC. The k-Multisection Neuron Coverage
(kMNC) replaces the activation threshold with buckets of
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Fig. 5: Correlation between various SA metrics and QA Model Accuracy for Test Inputs

activation values, and computes the percentage of buckets
that contain at least one activation during testing. While
kMNC allows us to capture neuron activation at a much finer
granularity, it remains vulnerable for the analysis of a single
input, as most inputs are likely to fill one out of k buckets
per neuron, resulting in overall kMNC value of roughly 1

k .
Strong Neural Activation Coverage (SNAC), on the other hand,
computes the percentage of neurons are activated beyond the
range observed during training. SNAC approximately captures
the number of out-of-distribution episodes at the neuron level.
However, its criterion is Boolean (out of bound or not) and
corser than Suprise Adequacy.

Surprise Adequacy (SA), proposed by Kim et al. [4], focuses
more on the distribution of neuron activations (see Section II
for details of SA). Unlike existing test adequacy criteria, SA
can measure the similarity between a single new input and
the data seen by the model during training. This, in turn,
allows the prioritisation of inputs in the likelihood of model
misbehaviour. Chen et al. [43] have compared SA metrics
to other test adequacy criteria using a range of image clas-
sification benchmarks (MNIST [10], CIFAR-10 and CIFAR-
100 [11], and ImageNet [44]) and found it to be better than
structural coverage metrics such as NC or kMNC. However,
they only considered image classifiers. On testing of NLP
models, Ribeiro et al. have recently proposed CheckList, a set
of NLP specific methodology for test input generation [45].
We note that CheckList is a guideline for manual test data
generation, while the approach presentd in this paper is an

automated technique of evaluating adequacy of test inputs.

VIII. CONCLUSION AND FUTURE WORK

We present a feasibility study for applying Surprise Ad-
equacy (SA) metric to Natural Language Processing (NLP)
tasks. Like many other test adequacy metrics, SA has been
mostly evaluated using image recognition models. This paper
shows that it can be successfully applied to NLP tasks to
prioritise inputs that will reveal incorrect behaviour of a model.
We also report that the distribution of Activation Traces of
some NLP models are multimodal, and investigate whether
multimodal variants of SA metrics can improve the accuracy
of the analysis. We show that, for NER tagging task, the new
metrics can accuracy prioritise tokens that will be mislabelled
by the model. However, more complicated tasks such as
Question Answering remains as a challenge for SA analysis.
Future work includes expanding the domain even further to
other NLP tasks, as well as developing improved AT extraction
and analysis techniques that can handle complicated NLP tasks
more effectively.
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