
Guiding Deep Learning System Testing using
Surprise Adequacy

Jinhan Kim∗, Robert Feldt†‡, Shin Yoo∗

∗School of Computing
KAIST

Daejeon, Republic of Korea
{jinhankim,shin.yoo}@kaist.ac.kr

†Dept. of Computer Science and Engineering
Chalmers University
Gothenburg, Sweden

robert.feldt@chalmers.se

‡Dept. of Software Engineering
Blekinge Inst. of Technology

Karlskrona, Sweden
robert.feldt@bth.se

Abstract—Deep Learning (DL) systems are rapidly being
adopted in safety and security critical domains, urgently calling
for ways to test their correctness and robustness. Testing of
DL systems has traditionally relied on manual collection and
labelling of data. Recently, a number of coverage criteria based
on neuron activation values have been proposed. These criteria
essentially count the number of neurons whose activation during
the execution of a DL system satisfied certain properties, such
as being above predefined thresholds. However, existing cover-
age criteria are not sufficiently fine grained to capture subtle
behaviours exhibited by DL systems. Moreover, evaluations have
focused on showing correlation between adversarial examples
and proposed criteria rather than evaluating and guiding their
use for actual testing of DL systems. We propose a novel test
adequacy criterion for testing of DL systems, called Surprise
Adequacy for Deep Learning Systems (SADL), which is based
on the behaviour of DL systems with respect to their training
data. We measure the surprise of an input as the difference
in DL system’s behaviour between the input and the training
data (i.e., what was learnt during training), and subsequently
develop this as an adequacy criterion: a good test input should be
sufficiently but not overtly surprising compared to training data.
Empirical evaluation using a range of DL systems from simple
image classifiers to autonomous driving car platforms shows
that systematic sampling of inputs based on their surprise can
improve classification accuracy of DL systems against adversarial
examples by up to 77.5% via retraining.

Index Terms—Test Adequacy, Deep Learning Systems

I. INTRODUCTION

Deep Learning (DL) [24] systems have achieved significant
progress in many domains including image recognition [13],
[22], [38], speech recognition [17], and machine transla-
tion [20], [37]. Based on their capability to match or even
surpass human performance, DL systems are increasingly
being adopted as part of larger systems in both safety and
security critical domains such as autonomous driving [6], [10],
and malware detection [12].

Such adoption of DL systems calls for new challenges, as
it is critically important that these larger systems are both
correct and predictable. Despite their impressive experimental
performances, DL systems are known to exhibit unexpected
behaviours under certain circumstances. For example, in a
reported incident, an autonomous driving vehicle expected

another vehicle to yield in one of the rarer circumstances, and
crashed into the other vehicle when the expectation proved
incorrect [3]. There is an urgent need to verify and validate
behaviours of DL systems. However, a significant part of
existing software testing technique is not directly applicable
to DL systems. Most notably, traditional white-box testing
techniques that aim to increase structural coverage [4] is not
very useful for DL systems, as their behaviour is not explicitly
encoded in their control flow structures.

A number of novel approaches towards testing and veri-
fication of DL systems have been recently proposed to fill
in the gap [19], [27], [34], [40]. Most of these techniques
share two assumptions. The first assumption is essentially a
generalisation of the essence of metamorphic testing [11]: if
two inputs to a DL system are similar with respect to some
human sense, the outputs should also be similar. For example,
DeepTest [40] checks whether an autonomous driving system
behaves in the same way when the input image is transformed
as if the same scene is under a different weather condition. The
second assumption, also based in more traditional software
testing results [15], is that the more diverse a set of input is,
the more effective testing of a DL system one can perform.
For example, DeepXplore [34] presented the Neuron Coverage
(the ratio of neurons whose activation values were above a
predefined threshold) as the measure of diversity of neuron
behaviour, and subsequently showed that inputs violating the
first assumption will also increase the neuron coverage.

While the recently introduced techniques have made sig-
nificant advances over manual ad hoc testing of DL systems,
there is a major limitation. The coverage criteria proposed so
far are not sufficiently fine grained, in a sense that all of them
simply count neurons whose activation values satisfy certain
conditions. While this aggregation by counting does allow
the tester to quantify the test effectiveness of a given input
set, it conveys little information about individual inputs. For
example, it is not immediately clear when an input with higher
NC should be considered better than another with lower NC,
and why: certain inputs may naturally activate more neurons
above the threshold than others, and vice versa. Another
example is the k-Multisection Neuron Coverage [27], which

partitions the ranges of activation values of neurons, observed
during training, into k buckets, and count the number of total
buckets covered by a set of inputs. When measured for a single
input, the coverage will be either 1

k if the input activates each
neuron with a value from one of the k buckets, or smaller than
that if some neurons activate outside the range observed during
training. Again, the information about how far such activations
go beyond observed range is lost during aggregation, making
it hard to evaluate the relative value of each input. For a test
adequacy criterion to be practically useful, it should be able
to guide the selection of individual inputs, eventually resulting
in improvements of the accuracy of the DL system under
investigation.

To overcome these limitations, we propose a new test
adequacy for DL systems, called Surprise Adequacy for DL
systems (SADL). Intuitively, a good test input set for a
DL system should be systematically diversified to include
inputs ranging from those similar to training data to those
significantly different and adversarial.1 At individual input
granularity, SADL measures how surprising the input is to
a DL system with respect to the data the system was trained
with: the actual measure of surprise can be either based on the
likelihood of the system having seen a similar input during
training (here with respect to probability density distributions
extrapolated from the training process using kernel density
estimation [41]), or the distance between vectors representing
the neuron activation traces of the given input and the training
data (here simply using Euclidean distance). Subsequently, the
Surprise Adequacy (SA) of a set of test inputs is measured by
the range of individual surprise values the set covers. We show
that SADL is sufficiently fine grained by training adversarial
example classifiers based on SADL values that can produce
higher accuracy compared to the state of the art. We also
show that sampling inputs according to SADL for retraining
DL systems can result in higher accuracy, thus showing that
SADL is an independent variable that can positively affect the
effectiveness of DL system testing.

The technical contributions of this paper are as follows:

• We propose SADL, a fine grained test adequacy metric
that measures the surprise of an input, i.e., the difference
in the behaviour of a DL system between a given input
and the training data. Two concrete instances of SADL
are proposed based on different ways to quantify surprise.
Both are shown to be correlated with existing coverage
criteria for DL systems.

• We show that SADL is sufficiently fine grained in cap-
turing the behaviour of DL systems by training a highly
accurate adversarial example classifier. Our adversarial
example classifier shows as much as 100% and 94.53%
ROC-AUC score when applied to MNIST [25] and
CIFAR-10 [21] dataset, respectively.

• We show that SADL metrics can be used to sample
effective test input sets. When retraining DL systems us-

1Experiments show benefits of diversity for general testing [15] and benefits
of a ‘scale of distances’ of test inputs for robustness testing introduced in [35].

ing additional adversarial examples, sampling additional
inputs with broader SA values can improve the accuracy
after retraining by up to 77.5%.

• We undertake all our experiments using publicly available
DL systems ranging from small benchmarks (MNIST and
CIFAR-10) to a large system for autonomous driving
vehicles (Dave-2 [6] and Chauffeur [1]). All implemen-
tations are available online.2

The remaining of this paper is organised as follows. Sec-
tion II introduces Surprise Adequacy for DL systems, SADL:
two variants of SADL are presented along with algorithms
that measure them. Section III sets out the research questions
and Section IV describes the experimental set-up of the
empirical evaluations. Section V presents the results from
empirical evaluations. Section VI addresses threats to validity.
Section VII presents related work, and Section VIII concludes.

II. SURPRISE ADEQUACY FOR DEEP LEARNING SYSTEMS

All existing test adequacy criteria for DL systems aim
to measure the diversity of an input set. Neuron Coverage
(NC) [34] posits that the higher the number of neurons that
are activated above a predefined threshold, the more diverse
input the DL system has been executed with. DeepGauge [27]
proposed a range of finer grained adequacy criteria including
k-Multisection Neuron Coverage, which measures the ratio
of activation value buckets that have been covered across all
neurons, and Neuron Boundary Coverage, which measures the
ratio of neurons that are activated beyond the ranges observed
during training.

We argue that diversity in testing of DL systems is more
meaningful when it is measured with respect to the training
data, as DL systems are likely to be more error prone for inputs
that are unfamiliar, i.e., diverse. Furthermore, while neuron
activation above thresholds, or beyond observed ranges, may
be closely related to diversity of the given input, they do not
measure to what degree the activations of the network for
one input differs from the activations for another input. They
are fundamentally discretisations and do not utilize the fact
that neuron activations are continuous quantities. In contrast,
our aim is to define an adequacy criterion that quantitatively
measures behavioural differences observed in a given set of
inputs, relative to the training data.

A. Activation Trace and Surprise Adequacy

Let N = {n1, n2, . . .} be a set of neurons that constitutes
a DL system D, and let X = {x1, x2, . . .} be a set of inputs.
We denote the activation value of a single neuron n with
respect to an input x as αn(x). For an ordered (sub)set of
neurons, let N ⊆ N, αN (x) denote a vector of activation
values, each element corresponding to an individual neuron in
N : the cardinality of αN (x) is equal to |N |. We call αN (x)
the Activation Trace (AT) of x over neurons in N . Similarly,
let AN (X) be a set of activation traces, observed over neurons
in N , for a set of inputs X: AN (X) = {αN (x) | x ∈ X}. We

2Please refer to https://github.com/coinse/sadl.

note that the activation trace is trivially available after each
execution of the network for a given input.

Since behaviours of DL systems are driven along the data-
flow and not control-flow, we assume that activation traces
observed over all N with respect to X , AN(X), fully captures
the behaviours of the DL system under investigation when
executed using X .3

Surprise Adequacy (SA) aims to measure the relative nov-
elty (i.e., surprise) of a given new input with respect to the
inputs used for training. Given a training set T, we first
compute AN(T) by recording activation values of all neurons
using every input in the training data set. Subsequently, given a
new input x, we measure how surprising x is when compared
to T by comparing the activation trace of x to AN(T). This
quantitative similarity measure is called Surprise Adequacy
(SA). We introduce two variants of SA, each with different
way of measuring the similarity between x and AN(T).4

Note that certain types of DL tasks allow us to focus on
parts of the training set T to get more precise and meaningful
measurement of SA. For example, suppose we are testing a
classifier with a new input x, which is classified by the DL
system under investigation as the class c. In this case, the
surprise of x is more meaningfully measured against AN(Tc),
in which Tc is the subset of T where members are classified
as c. Basically, the input might be surprising as an example
of class c even if not surprising in relation to the full set of
training examples.

B. Likelihood-based Surprise Adequacy

Kernel Density Estimation (KDE) [41] is a way of esti-
mating the probability density function of a given random
variable. The resulting density function allows the estimation
of relative likelihood of a specific value of the random variable.
Likelihood-based SA (LSA) uses KDE to estimate the proba-
bility density of each activation value in AN(T), and obtains
the surprise of a new input with respect to the estimated
density. This is an extension of existing work that uses KDE
to detect adversarial examples [14]. To reduce dimensionality
and computational cost, we only consider the neurons in a
selected layer NL ⊆ N, which yields a set of activation
traces, ANL

(X). To further reduce the computational cost,
we filter out neurons whose activation values show variance
lower than a pre-defined threshold, t, as these neurons will not
contribute much information to KDE. The cardinality of each
trace will be |NL|. Given a bandwidth matrix H and Gaussian
kernel function K, the activation trace of the new input x, and
xi ∈ T, KDE produces density function f̂ as follows:

f̂(x) =
1

|ANL
(T)|

∑
xi∈T

KH(αNL
(x)− αNL

(xi)) (1)

3For the sake of simplicity, we assume that it is possible to get the
complete activation traces from all the neurons in a DL system. For network
architectures with loops, such as Recurrent Neural Nets (RNNs) [18], it is
possible to unroll the loops up to a predefined bound [40].

4However, the main idea is general and other, specific variants would result
if using other similarity functions.

Since we want to measure the surprise of the input x, we
need a metric that increases when probability density decreases
(i.e., the input is rarer compared to the training data), and
vice versa (i.e., the input is similar to the training data).
Adopting common approach of converting probability density
to a measure of rareness [26], [39], we define LSA to be the
negative of the log of density:

LSA(x) = −log(f̂(x)) (2)

Note that extra information about input types can be used
to make LSA more precise. For example, given a DL classifier
D, we expect inputs that share the same class label will have
similar ATs. We can exploit this by computing LSA per class,
replacing T with {x ∈ T | D(x) = c} for class c. We use
per-class LSA for DL classifiers in our empirical evaluation.

C1

C2
Boundary

Learnt by DLx1

x2
a1

b1

a2

b2

x1a

x2a

x1b x2b

Fig. 1: An example of Distance-based SA. Black dots represent
ATs of training data inputs, whereas grey dots represent ATs
of new inputs, x1 and x2. Compared to distances from x1a and
x2a to class c2, AT of x1 is farther out from class c1 than that
of x2, i.e., a1

b1
> a2

b2
(see Equations 3, 4, and 5). Consequently,

we decide that x1 is more surprising than x2 w.r.t. class c1.

C. Distance-based Surprise Adequacy

An alternative to LSA is simply to use the distance between
ATs as the measure of surprise. Here, we define Distance-
based Surprise Adequacy (DSA) using the Euclidean distance
between the AT of a new input x and ATs observed during
training. Being a distance metric, DSA is ideally suited to
exploit the boundaries between inputs, as can be seen in the
classification example in Figure 1. By comparing the distances
a1 and a2 (i.e., distance between the AT of a new input and
the reference point, which is the nearest AT of training data in
c1) to distances b1 and b2 (i.e., distance to c2 measured from
the reference point), we get a sense of how close to the class
boundary the new inputs are. We posit that, for classification
problems, inputs that are closer to class boundaries are more
surprising and valuable in terms of test input diversity. On
the other hand, for tasks without any boundaries between
inputs, such as prediction of appropriate steering angle for
autonomous driving car, DSA may not be easily applicable.
With no class boundaries, an AT of a new input being far from
that of another training input does not guarantee that the new
input is surprising, as the AT may still be located in crowded
parts of the AT space. Consequently, we only apply DSA for
classification tasks, for which it can be more effective than
LSA (see Section V-A and V-B for more details).

Let us assume that a DL system D, which consists of a
set of neurons N, is trained for a classification task with a
set of classes C, using a training dataset T. Given the set of
activation traces AN(T), a new input x, and a predicted class
of the new input cx ∈ C, we define the reference point xa to
be the closest neighbour of x that shares the same class. The
distance between x and xa follows from the definition:

xa = argmin
D(xi)=cx

‖αN(x)− αN(xi)‖,

dista = ‖αN(x)− αN(xa)‖
(3)

Subsequently, from xa, we find the closest neighbour of xa
in a class other than cx, xb, and the distance distb, as follows:

xb = argmin
D(xi)∈C\{cx}

‖αN(xa)− αN(xi)‖,

distb = ‖αN(xa)− αN(xb)‖
(4)

Intuitively, DSA aims to compare the distance from the AT
of a new input x to known ATs belonging to its own class,
cx, to the known distance between ATs in class cx and ATs
in other classes in C \ {cx}. If the former is relatively larger
than the latter, x would be a surprising input for class cx to
the classifying DL system D. While there are multiple ways
to formalise this we select a simple one and calculate DSA
as the ratio between dista and distb. Investigation of more
complicated formulations is left as future work.

DSA(x) =
dista
distb

(5)

D. Surprise Coverage

Given a set of inputs, we can also measure the range of SA
values the set covers, called Surprise Coverage (SC). Since
both LSA and DSA are defined in continuous spaces, we
use bucketing to discretise the space of surprise and define
both Likelihood-based Surprise Coverage (LSC) and Distance-
based Surprise Coverage (DSC). Given an upper bound of U ,
and buckets B = {b1, b2, ..., bn} that divide (0, U] into n SA
segments, SC for a set of inputs X is defined as follows:

SC(X) =
|{bi | ∃x ∈ X : SA(x) ∈ (U · i−1n , U · i

n]}|
n

(6)

A set of inputs with high SC is a diverse set of inputs
ranging from similar to those seen during training (i.e., low
SA) to very different from what was seen during training
(i.e., high SA). We argue that an input set for a DL system
should not only be diversified, but systematically diversified
considering SA. Recent results also validate this notion by
showing that more distant test inputs were more likely to lead
to exceptions but might not be as relevant for testing [35].

While we use the term cover and coverage, the implications
of SA based coverage is different from the traditional structural
coverage. First, unlike most of the structural coverage criteria,
there is no finite set of targets to cover, as in statement or
branch coverage: an input can, at least in theory, be arbitrarily

surprising. However, an input with arbitrarily high SA value
may simply be irrelevant, or at least less interesting, to the
problem domain (e.g., an image of a traffic sign will be
irrelevant to the testing of animal photo classifiers). As such,
SC can only be measured with respect to pre-defined upper
bound, in the same way the theoretically infinite path coverage
is bounded by a parameter [44]. Second, SC does not render
itself to a combinatorial set cover problem, which the test suite
minimisation is often formulated into [43]. This is because a
single input yields only a single SA value and cannot belong
to multiple SA buckets. The sense of redundancy with respect
to SC as a coverage criteria is weaker than that of structural
coverage, for which a single input can cover multiple targets.
While we aim to show that SA can guide the better selection
of inputs, rigorous study of optimisation of test suites for DL
systems remains a future work. However, as we show with our
empirical studies, SC can still guide test input selection.

III. RESEARCH QUESTIONS

Our empirical evaluation is designed to answer the follow-
ing research questions.

RQ1. Surprise: Is SADL capable of capturing the relative
surprise of an input of a DL system?

We provide answers to RQ1 from different angles. First,
we compute the SA of each test input included in the original
dataset, and see if a DL classifier finds inputs with higher
surprise more difficult to correctly classify. We expect more
surprising input to be harder to correctly classify. Second, we
evaluate whether it is possible to detect adversarial examples
based on SA values, as we expect adversarial examples to
be more surprising as well as to cause different behaviours
of DL systems. Using different techniques, multiple sets of
adversarial examples are generated and compared by their
SA values. Finally, we train adversarial example classifiers
using logistic regression on SA values. For each adversarial
attack strategy, we generate 10,000 adversarial examples using
10,000 original test images provided by MNIST and CIFAR-
10. Using 1,000 original test images and 1,000 adversarial
examples, all chosen randomly, we train the logistic regression
classifiers. Finally, we evaluate the trained classifiers using the
remaining 9,000 original test images and 9,000 adversarial
examples. If SA values correctly capture the behaviour of DL
systems, we expect the SA based classifiers to successfully
detect adversarial examples. We use Area Under Curve of
Receiver Operator Characteristics (ROC-AUC) for evaluation
as it captures both true and false positive rates [8].

RQ2. Layer Sensitivity: Does the selection of layers of
neurons used for SA computation have any impact on how
accurately SA reflects the behaviour of DL systems?

Bengio et al. suggest that deeper layers represent higher
level features of the input [5]: subsequent work that introduced
KDE based adversarial example detection technique [14]
assumes the deepest (i.e., the last hidden) layer to contain
the most information helpful for detection. We evaluate this

TABLE I: List of datasets and models used in the study.

Dataset Description DNN Model # of Neuron Synthetic Inputs Performance

MNIST Handwritten digit images composed of
50,000 images for training and 10,000 im-
ages for test.

A five layer ConvNet with
max-pooling and dropout
layers.

320 FGSM, BIM-A, BIM-
B, JSMA, C&W.

99.31% (Ac-
curacy)

CIFAR-10 Object recognition dataset in ten different
classes composed of 50,000 images for
training and 10,000 images for test.

A 12 layer ConvNet with
max-pooling and dropout
layers.

2,208 FGSM, BIM-A, BIM-
B, JSMA, C&W.

82.27% (Ac-
curacy)

Udacity
Self-driving Car
Challenge

Self-driving car dataset that contains
camera images from the vehicle, composed
of 101,396 images for training and 5,614
images for test. The goal of the challenge
is to predict steering wheel angle.

Dave-2 [6] architecture
from Nvidia.

1,560 DeepXplore’s test
input generation via
joint optimization.

0.09 (MSE)

Chauffeur [1] architecture
with CNN and LSTM.

1,940 DeepTest’s combined
transformation.

0.10 (MSE)

assumption in the context of SA by calculating LSA and
DSA of all individual layers, and subsequently by comparing
adversarial example classifiers trained on SA from each layer.

RQ3. Correlation: Is SC correlated to existing coverage
criteria for DL systems?

In addition to capturing input surprise, we want SC to be
consistent with existing coverage criteria based on counting
aggregation. If not, there is a risk that SC is in fact measuring
something other than input diversity. For this, we check
whether SC is correlated with other criteria. We control the
input diversity by cumulatively adding inputs generated by
different method (i.e., different adversarial example generation
techniques or input synthesis techniques), execute the studied
DL systems with these input, and compare the observed
changes of various coverage criteria including SC and four
existing ones: DeepXplore’s Neuron Coverage (NC) [40] and
three Neuron-level Coverages (NLCs) introduced by Deep-
Gauge [27]: k-Multisection Neuron Coverage (KMNC), Neu-
ron Boundary Coverage (NBC), and Strong Neuron Activation
Coverage (SNAC).

For MNIST and CIFAR-10, we start from the original test
data provided by the dataset (10,000 images), and add 1,000
adversarial examples, generated by FGSM, BIM-A, BIM-B,
JSMA, and C&W, at each step. For Dave-2, we start from the
original test data (5,614 images) and add 700 synthetic images
generated by DeepXplore at each step. For Chauffeur, each
step adds 1,000 synthetic images (Set1 to Set3), each produced
by applying random number of DeepTest transformations.

RQ4. Guidance: Can SA guide retraining of DL systems
to improve their accuracy against adversarial examples and
synthetic test inputs generated by DeepXplore?

To evaluate whether SADL can guide additional training
of existing DL systems with the aim of improved accuracy
against adversarial examples, we ask whether SA can guide the
selection of input for additional training. From the adversarial
examples and synthesised inputs for these models5, we choose
four sets of 100 images from four different SA ranges. Given

5We could not resume training of Chauffeur model for additional five
epochs, which is why it is absent from RQ4.

U as the upper bound used in RQ3 to compute the SC, we
divide the range of SA [0, U] into four overlapping subsets:
the first subset including the low 25% SA values ([0, U4]), the
second including the lower half ([0, 2U4]), the third including
the lower 75% ([0, 3U4]), and finally the entire range, [0, U].
These four subsets are expected to represent increasingly more
diverse sets of inputs. We set the range R to one of these four,
randomly sample 100 images from each R, and train existing
models for five additional epochs. Finally, we measure each
model’s performance (accuracy for MNIST and CIFAR-10,
MSE for Dave-2) against the entire adversarial and synthetic
inputs, respectively. We expect retraining with more diverse
subset will result in higher performance.

IV. EXPERIMENTAL SETUP

We evaluate SADL on four different DL systems using (a)
the original test sets, (b) adversarial examples generated by
five attack strategies, and (c) synthetic inputs generated by
DeepXplore [34] and DeepTest [40]. This section describes
the studied DL systems and the input generation methods.

A. Datasets and DL Systems

Table I lists the subject datasets and models of DL systems.
MNIST [25] and CIFAR-10 [21] are widely used datasets
for machine learning research, each of which is a collection
of images in ten different classes. For MNIST, we adopt
the widely studied five layer Convolutional Neural Network
(ConvNet) with max-pooling and dropout layers and train it to
achieve 99.31% accuracy on the provided test set. Similarly,
the adopted model for CIFAR is a 12-layer ConvNet with
max-pooling and dropout layers, trained to achieve 82.27%
accuracy on the provided test set.

For evaluation of SADL for DL systems in safety criti-
cal domains, we use the Udacity self-driving car challenge
dataset [2], which contains a collection of camera images
from the driving car. As its aim is to predict steering wheel
angle, the model accuracy is measured using Mean Squared
Error (MSE) between actual and predicted steering angles.
We use a pre-trained Dave-2 model [6], which is a public
artefact provided by DeepXplore6, and a pre-trained Chauffeur

6DeepXplore is available from: https://github.com/peikexin9/deepxplore.

model [1], made publicly available by the Udacity self-driving
car challenge. Dave-2 consists of nine layers including five
convolutional layers, and achieves 0.09 in MSE. Chauffeur
consists of both a ConvNet and an LSTM sub-model, and
achieves 0.10 in MSE.

B. Adversarial Examples and Synthetic Inputs

SADL is evaluated using both adversarial examples and
synthetic test inputs. Adversarial examples are crafted by ap-
plying, to the original input, small perturbations imperceptible
to humans, until the DL system under investigation behaves
incorrectly [16]. We rely on adversarial attacks to generate in-
put images for MNIST and CIFAR-10: these generated images
are more likely to reveal robustness issues in the DL systems
than the test inputs provided by the original datasets. We use
five widely studied attack strategies to evaluate SADL: Fast
Gradient Sign Method (FGSM) [16], Basic Iterative Method
(BIM-A, BIM-B) [23], Jacobian-based Saliency Map Attack
(JSMA) [33], and Carlini&Wagner (C&W) [9]. Our imple-
mentation of these strategies is based on cleverhans [32]
and a framework of Ma et al. [30].

For Dave-2 and Chauffeur, we use the state-of-the-art
synthetic input generation algorithms, DeepXplore [34] and
DeepTest [40]. Both algorithms are designed to synthesise new
test input from existing ones with the aim of detecting erro-
neous behaviours in autonomous driving vehicle. For Dave-2,
we use DeepXplore’s input generation via joint optimization
algorithm, whose aim is to generate inputs that lead multiple
DL systems trained independently, but using the same training
data, to disagree with each other. Using Dave-2 and its two
variants, Dave-dropout and Dave-norminit, we collect syn-
thetic inputs generated by lighting effect (Light), occlusion by
a single black rectangle (SingleOcc), and occlusion by multiple
black rectangles (MultiOcc). For Chauffeur, we synthesise
new inputs by iteratively applying random transformations
provided by DeepTest to original input images: translation,
scale, shear, rotation, contrast, brightness, and blur.7

TABLE II: Configurations for RQ3.

DNN NC NLCs LSC DSC
Model th k layer n ub n ub

MNIST 0.5 1,000 activation 3 1,000 2,000 1,000 2.0
CIFAR-10 0.5 1,000 activation 3 1,000 100 1,000 2.0
Dave-2 0.5 1,000 block1 conv2 1,000 150 N/A
Chauffeur 0.5 1,000 convolution2d 11 1,000 5 N/A

C. Configurations

For all research questions, the default activation variance
threshold for LSA is set to 10−5, and the bandwidth for
KDE is set using Scott’s Rule [36]. The remaining of this
Section details RQ specific configurations. For RQ1, we use
the activation 2 layer for MNIST, and activation 6 for CIFAR-
10, when computing LSA values. Computation of LSA based

7At the time of our experiments, the publicly available version of DeepTest
did not internally support realistic image transformations such as fog and rain
effects.

on all neurons is computationally infeasible due to precision
loss. For RQ2, we set the activation variance threshold for
layers activation 7 and activation 8 of CIFAR-10 to 10−4,
which reduces the number of neurons used for the computa-
tion of LSA and, consequently, the computational cost. For
computation of other coverage criteria in RQ3, we use the
configurations in Table II. The threshold of NC is set to 0.5.
For NLCs, we all set the number of sections (k) to 1,000. For
LSC and DSC, we manually choose the layer, the number
of buckets (n), and the upper bound (ub). For RQ4, the
layers chosen for MNIST and CIFAR-10 are activation 3 and
activation 5 respectively. We perform 20 runs of retraining for
each subject and report the statistics.

All experiments were performed on machines equipped with
Intel i7-8700 CPU, 32GB RAM, running Ubuntu 16.04.4 LTS.
MNIST and CIFAR-10 are implemented using Keras v.2.2.0.

V. RESULT

Due to the space limit, we cannot include all plots and tables
and make them available online: https://coinse.github.io/sadl.

A. Input Surprise (RQ1)

Figure 2 shows how the classification accuracy changes
when we classify sets of images of growing sizes from the
test inputs included in the MNIST and CIFAR-10 dataset.
The sets of images corresponding to the red dots (Ascending
SA) start with images with the lowest SA, and increasingly
include images with higher SA in the ascending order of SA;
the sets of images corresponding to the blue dots grow in
the opposite direction (i.e., from images with the highest SA
to lower SA). As a reference, the green dots show the mean
accuracy of randomly growing sets across 20 repetitions. It
is clear that including images with higher LSA values, i.e.,
more surprising images, leads to lower accuracy. For visual
confirmation on another dataset, we also chose sets of inputs
synthesised for Chauffeur by DeepTest, from three distinct
levels of LSA values: Figure 3 shows that the higher the LSA
values are, the harder it is to recognise images visually. Both
quantitatively and visually, the observed trend supports our
claim that SADL captures input surprise: even for unseen
inputs, SA can measure how surprising the given input is,
which is directly related to the performance of the DL system.

Figure 4 shows plots of sorted DSA values of 10,000 adver-
sarial examples, generated by each of the five techniques, as
well as the original test inputs. Figure 5 contains similar plots
based on LSA values of 2,000 randomly selected adversarial
examples and the original test set, from different layers of
MNIST and CIFAR-10. For both MNIST and CIFAR-10, the
test inputs provided with the datasets (represented in blue
colour) tend to be the least surprising, whereas the majority
of adversarial examples are clearly separated from the test
inputs by their higher SA values. This supports our claim that
SADL can capture the differences in DL system’s behaviours
for adversarial examples.

Finally, Table III shows the ROC-AUC results of DSA-
based classification using all neurons in MNIST and CIFAR-

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Images

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Ascending LSA
Descending LSA
Random

(a) Selected test inputs based on LSA in MNIST

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Images

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Ascending DSA
Descending DSA
Random

(b) Selected test inputs based on DSA in MNIST

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Images

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Ascending LSA
Descending LSA
Random

(c) Selected test inputs based on LSA in CIFAR-10

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Images

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Ascending DSA
Descending DSA
Random

(d) Selected test inputs based on DSA in CIFAR-10

Fig. 2: Accuracy of test inputs in MNIST and CIFAR-10
dataset, selected from the input with the lowest SA, increas-
ingly including inputs with higher SA, and vice versa (i.e.,
from the input with the highest SA to inputs with lower SA).

10.8 The results show that the gap in DSA values observed in
Figure 4 can be used to classify adversarial examples with high
accuracy. For the relatively simpler MNIST model, the DSA-
based classifier can detect adversarial examples with ROC-
AUC ranging from 96.97% to 99.38%. The DSA-based clas-
sification for the more complicated CIFAR-10 model shows
lower ROC-AUC values, but answers to RQ2 suggest that DSA
from specific layers can produce significantly higher accuracy
(see Section V-B).

Based on three different analyses, the answer to RQ1 is that

8LSA-based classification is only possible for subsets of neurons due to
the computational cost of KDE; hence we introduce the results of LSA-based
classification when answering the impact of layer selection for RQ2.

(a) Low LSA

(b) Medium LSA

(c) High LSA

Fig. 3: Synthetic images for Chauffeur model generated by
DeepTest. Images with higher LSA values tend to be harder
to recognise and interpret visually.

0 2000 4000 6000 8000 10000
Images

0.0

0.5

1.0

1.5

2.0

2.5

DS
A

MNISTTest
FGSM
BIM-A
BIM-B
JSMA
C&W

0 2000 4000 6000 8000 10000
Images

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DS
A

CIFAR-10Test
FGSM
BIM-A
BIM-B
JSMA
C&W

Fig. 4: Sorted DSA values of adversarial examples for MNIST
and CIFAR-10.

SADL can capture the relative surprise of inputs. Inputs
with higher SA are harder to correctly classify; adversarial
examples show higher SA values and can be classified based
on SA accordingly.

B. Impact of Layer Selection (RQ2)

Table IV shows the ROC-AUC of classification of adver-
sarial examples, resulting in each row corresponding to a
classifier trained on LSA and DSA from a specific layer in
MNIST, respectively. Rows are ordered by their depth, i.e.,
activation 3 is the deepest and the last hidden layer in MNIST.
The highest ROC-AUC values for each attack strategy are
typeset in bold. For MNIST, there is no clear evidence that
the deepest layer is the most effective.

0 250 500 750 1000 1250 1500 1750 2000
Images

0

1000

2000

3000

4000

5000

LS
A

MNIST: activation_1

Test
FGSM
BIM-A

BIM-B
JSMA
C&W

0 250 500 750 1000 1250 1500 1750 2000
Images

0

200

400

600

800

1000

LS
A

MNIST: activation_2

Test
FGSM
BIM-A

BIM-B
JSMA
C&W

0 250 500 750 1000 1250 1500 1750 2000
Images

0

250

500

750

1000

1250

1500

1750

2000

LS
A

MNIST: activation_3

Test
FGSM
BIM-A

BIM-B
JSMA
C&W

0 250 500 750 1000 1250 1500 1750 2000
Images

100

50

0

50

100

LS
A

CIFAR-10: activation_1

Test
FGSM
BIM-A

BIM-B
JSMA
C&W

0 250 500 750 1000 1250 1500 1750 2000
Images

100

50

0

50

100

150

200

250

300

LS
A

CIFAR-10: activation_5

Test
FGSM
BIM-A

BIM-B
JSMA
C&W

0 250 500 750 1000 1250 1500 1750 2000
Images

100

50

0

50

100

150

LS
A

CIFAR-10: activation_8

Test
FGSM
BIM-A

BIM-B
JSMA
C&W

Fig. 5: Sorted LSA of randomly selected 2,000 adversarial examples for MNIST and CIFAR-10 from different layers

TABLE III: ROC-AUC of DSA-based classification of adver-
sarial examples for MNIST and CIFAR-10

Dataset FGSM BIM-A BIM-B JSMA C&W

MNIST 98.34% 99.38% 96.97% 97.10% 99.04%
CIFAR-10 76.81% 72.93% 71.66% 88.96% 92.84%

TABLE IV: ROC-AUC results of SA per layers on MNIST.

SA Layer FGSM BIM-A BIM-B JSMA C&W

LSA

activation 1 100.00% 99.94% 100.00% 98.17% 99.48%
activation 2 100.00% 99.46% 100.00% 94.42% 99.23%
pool 1 100.00% 99.73% 100.00% 99.08% 99.61%
activation 3 93.29% 81.70% 86.73% 94.45% 37.96%

DSA

activation 1 100.00% 99.85% 100.00% 97.79% 99.39%
activation 2 100.00% 99.39% 99.99% 97.59% 99.69%
pool 1 100.00% 99.32% 99.99% 98.21% 99.69%
activation 3 98.45% 99.43% 97.40% 97.07% 99.10%

The cases for which ROC-AUC is 100% can be explained
by Figure 5: LSA values from activation 1 of MNIST, for
example, show a clear separation between the original test
inputs and FGSM, BIM-A, or BIM-B: by choosing an appro-
priate threshold, it is possible to completely separate test inputs
from adversarial examples. Similarly, the plot of LSA from
activation 3 of MNIST shows that C&W LSA line crossing
with that of the original test data (i.e., C&W adversarial
examples are less surprising than the original test data): this
results in the low ROC-AUC value of 37.96%.

Table V contains the ROC-AUC values of LSA- and DSA-
based classifiers, trained on each layer of the CIFAR-10 model:
for each attack strategy, the highest ROC-AUC values are
typeset in bold. Interestingly, LSA and DSA show different
trends with CIFAR-10. With LSA, there is no strong evidence
that the deepest layer produces the most accurate classifiers.
However, with DSA, the deepest layer produces the most
accurate classifiers for three out of five attack strategies (BIM-
B, JSMA, and C&W), while the second deepest layer produces

the most accurate classifier for BIM-A. More importantly, per-
layer DSA values produce much more accurate classification
results than all neuron DSA values, as can be seen in the
comparison between Table III and Table IV & V. Identical
models have been used to produce results in Tables above.

TABLE V: ROC-AUC results of SA per layers on CIFAR-10.

SA Layer FGSM BIM-A BIM-B JSMA C&W

LSA

activation 1 72.91% 61.59% 63.30% 76.85% 74.01%
activation 2 89.59% 62.17% 73.20% 80.33% 75.98%
pool 1 93.31% 61.79% 78.89% 82.64% 73.48%
activation 3 86.75% 62.69% 76.93% 80.33% 79.02%
activation 4 83.31% 62.73% 86.15% 80.86% 80.42%
pool 2 82.82% 61.16% 89.69% 80.61% 73.85%
activation 5 83.80% 60.64% 96.31% 79.56% 64.60%
activation 6 63.85% 51.90% 99.74% 66.99% 60.40%
pool 3 63.46% 51.86% 99.77% 67.62% 56.21%
activation 7 67.96% 61.09% 92.18% 83.02% 76.85%
activation 8 59.28% 52.66% 99.60% 73.26% 62.15%

DSA

activation 1 65.00% 62.25% 61.57% 73.85% 79.09%
activation 2 77.63% 64.73% 67.95% 78.16% 81.59%
pool 1 80.22% 64.89% 70.94% 78.96% 82.03%
activation 3 83.25% 68.48% 73.49% 79.89% 84.16%
activation 4 81.77% 68.94% 77.94% 80.55% 84.62%
pool 2 82.51% 69.28% 81.43% 80.92% 84.81%
activation 5 81.45% 70.29% 83.28% 82.15% 85.15%
activation 6 71.71% 70.92% 71.15% 84.05% 85.42%
pool 3 71.75% 70.35% 74.65% 83.57% 85.17%
activation 7 71.04% 71.44% 81.46% 89.94% 92.98%
activation 8 70.35% 70.65% 90.47% 90.46% 94.53%

Based on these results, we answer RQ2 that DSA is
sensitive to the selection of layers it is computed from,
and benefits from choosing the deeper layer. However,
for LSA, there is no clear evidence supporting the deeper
layer assumption. The layer sensitivity varies across different
adversarial example generation strategies.

C. Correlation between SC and Other Criteria (RQ3)
Table VI shows how different coverage criteria respond to

increasing diversity levels9. Columns represent steps, at each

9See https://coinse.github.io/sadl for plots.

of which more inputs are added to the original test set. If the
increase in coverage at a step is less than 0.1 percentage point
when compared to the previous step, the value is underlined.
The threshold of 0.1 percentage point is based on the finest
step change possible for LSC, DSC, as well as KMNC, as all
three use bucketing with k = 1, 000. We acknowledge that the
threshold is arbitrary, and provide it only as a supporting aid.
Note that DSC cannot be computed for these two DL systems,
as they are not classifiers (see Section II-C).

Overall, most of the studied criteria increase as additional
inputs are added at each step. The notable exception is NC,
which plateaus against many steps. This is in line with results
in existing work [27]. There exists an interplay between
the type of added inputs and how different criteria respond:
SNAC, KMNC, and NBC show significant increases with the
addition of BIM-B examples to CIFAR-10, but change little
when C&W inputs are added. However, only SNAC and NBC
exhibit a similar increase with the addition of input Set 1 for
Chauffeur, while KMNC increases more steadily. Overall, with
the exception of NC, we answer RQ3 that SC is correlated
with other coverage criteria introduced so far.

DNN Criteria Test Step 1 Step 2 Step 3 Step 4 Step 5
+ FGSM + BIM-A + BIM-B + JSMA + C&W

MNIST

LSC 29.50 34.90 37.10 56.30 61.90 62.00
DSC 46.00 56.10 65.00 67.20 70.90 72.30
NC 42.73 42.73 43.03 43.03 43.03 45.45
KMNC 68.42 70.96 72.24 75.82 77.31 77.37
NBC 6.52 14.55 16.36 36.06 38.03 43.48
SNAC 10.91 19.39 19.39 53.33 57.27 57.27

CIFAR-10

LSC 46.20 54.70 55.8 57.70 61.10 63.20
DSC 66.20 70.10 70.6 80.90 83.40 84.10
NC 26.15 26.28 26.28 26.28 26.33 27.01
KMNC 28.77 29.30 29.51 34.09 34.31 34.41
NBC 6.56 7.26 7.30 23.96 24.01 24.84
SNAC 12.58 13.71 13.8 47.11 47.2 47.70

DNN Criteria Test + SingleOcc + MultiOcc + Light

Dave-2

LSC 30.00 42.00 42.00 76.00
NC 79.55 80.26 80.45 83.14
KMNC 33.53 35.15 35.91 37.94
NBC 0.51 5.29 5.32 6.60
SNAC 1.03 10.58 10.64 13.21

DNN Criteria Test + Set 1 + Set 2 + Set 3

Chauffeur

LSC 48.90 53.50 56.10 58.40
NC 22.14 22.65 22.70 22.83
KMNC 48.08 50.79 52.20 53.21
NBC 3.05 16.88 17.96 19.13
SNAC 3.93 18.37 19.41 20.93

TABLE VI: Changes in various coverage criteria against
increasing input diversity. We put additional inputs into the
original test inputs and observe changes in coverage values.

D. Retraining Guidance (RQ4)

Table VII shows the impact of SA-based guidance for
retraining of MNIST, CIFAR-10, and Dave-2 models. The
column R from 1

4 to 4
4 represents the increasingly wider

ranges of SA from which the inputs for additional training
are sampled; rows with R = ∅ show performance of the
DL system before retraining. Overall, there are 23 retraining
configurations (2 SA types × 2 DL systems × 5 adversarial
attack strategies, and 1 SA type × 1 DL system × three input
synthesis methods), each of which is evaluated against four SA
ranges with 20 repetitions. Columns µ and σ contain the mean
and standard deviation of observed performance metric (i.e.,

the highest accuracy for MNIST and CIFAR-10, the lowest
MSE for Dave-2). The best performance is typeset in bold.

The full range, 4
4 , produces the best retraining performance

for 13 configurations, followed by 2
4 (5 configurations), 3

4 (3
configurations), and 1

4 (3 configurations). Note that for the
configuration of CIFAR-10 and BIM-B, both ranges 2

4 and
3
4 produces the same and the best retraining performance.
The largest improvement is observed when retraining MNIST
against FGSM using DSA: the accuracy of the 4

4 range shows
77.5% increase from that of 1

4 (i.e., from 15.60% to 28.69%).
While retraining MNIST against BIM-B using DSA shows
even greater improvement (from 9.40% to 40.94%), we suspect
this is an outlier as the accuracy for ranges 1

4 and 2
4 are

significantly smaller when compared to other configurations.
While our observations are limited to the DL systems and

input generation techniques studied here, we answer RQ4 that
SA can provide guidance for more effective retraining
against adversarial examples based on our interpretation
of the observed trend.

DNN SA R FGSM BIM-A BIM-B JSMA C&W
Model µ σ µ σ µ σ µ σ µ σ

M
N

IS
T

∅ 11.65 - 9.38 - 9.38 - 18.88 - 8.92 -

LSA

1/4 25.81 1.95 95.14 0.69 41.00 0.01 72.67 3.09 92.51 0.51
2/4 28.45 2.91 95.71 0.41 40.98 0.12 75.03 2.68 92.55 0.67
3/4 29.66 3.63 95.87 0.98 40.97 0.10 75.48 2.60 92.41 1.03
4/4 23.70 4.98 95.90 0.79 40.93 0.18 77.37 1.75 92.56 0.77

DSA

1/4 15.60 2.12 93.67 3.42 9.90 1.05 74.56 2.62 12.80 0.96
2/4 19.67 4.32 95.78 0.70 9.40 0.05 76.16 2.69 12.46 1.00
3/4 26.37 6.15 95.37 0.93 40.81 0.22 78.01 1.87 12.37 1.14
4/4 27.69 5.59 95.31 0.98 40.94 0.04 76.60 2.38 13.61 1.19

C
IF

A
R

-1
0

∅ 6.13 - 0.00 - 0.00 - 2.68 - 0.31 -

LSA

1/4 11.07 1.20 32.34 1.70 0.59 1.76 32.80 2.05 34.38 2.83
2/4 12.96 2.18 32.68 2.07 0.89 2.10 33.84 2.52 42.99 2.78
3/4 12.79 2.17 32.14 2.40 0.89 2.10 35.81 2.81 45.58 2.23
4/4 12.53 1.19 32.79 2.29 0.60 1.76 35.83 2.54 45.74 2.04

DSA

1/4 14.86 2.16 25.94 2.99 0.01 0.00 34.92 2.01 44.21 2.02
2/4 14.64 1.95 29.59 3.52 0.01 0.00 34.49 1.89 44.79 2.32
3/4 13.81 1.85 31.93 2.77 0.01 0.00 35.61 2.40 46.16 2.45
4/4 13.12 1.41 32.17 2.36 0.60 1.76 37.32 1.58 46.21 2.72

(a) MNIST and CIFAR-10

DNN SA R SingleOcc MultiOcc Light
Model µ σ µ σ µ σ

Dave-2

∅ 0.4212 - 0.0964 - 0.3822 -

LSA

1/4 0.0586 0.0142 0.0539 0.0003 0.0573 0.0057
2/4 0.0540 0.0012 0.0562 0.0060 0.0560 0.0042
3/4 0.0554 0.0041 0.0544 0.0009 0.0570 0.0133
4/4 0.0553 0.0028 0.0561 0.0042 0.0601 0.0111

(b) Dave-2

TABLE VII: Retraining guided by SA: we sample 100 inputs
from four increasingly wider ranges of SA: [0, U4], [0, 2U4],
[0, 3U4], and [0, U], and retrain for five additional epochs using
the samples as the training data, and measure the accuracy
and MSE against the entire adversarial and synthetic inputs.
Sampling from wider ranges improves the retraining accuracy.

VI. THREATS TO VALIDITY

The primary threat to internal validity of this study is the
correctness of implementation of the studied DL systems, as
well as the computation of SA values. We have used publicly
available architectures and pre-trained models as our subjects
to avoid incorrect implementation. SA computation depends
on a widely used computation library, SciPy, which has

stood the public scrutiny. Threats to external validity mostly
concerns the number of the models and input generation
techniques we study here. It is possible that SADL is less
effective against other DL systems. While we believe the core
principle of measuring input surprise is universally applicable,
only further experimentations can reduce this particular risk.
Finally, threats to construct validity asks whether we are
measuring the correct factors to draw our conclusion. For all
studied DL systems, activation traces are immediate artefacts
of their executions and the meaning of output accuracy is well
established, minimising the risk of this threat.

VII. RELATED WORK

Adversarial examples pose significant threats to the perfor-
mance of DL systems [7]. There are existing work in the
machine learning community on detection of such inputs.
Feinman et al. [14] first introduced the KDE as a means of
similarity measurement, with the aim of detecting adversarial
examples. SADL improves upon the existing work by a
number of different ways. First, we generalise the concept
of Surprise Adequacy (SA) and introduce Distance-based SA.
Second, our evaluation is in the context of DL system testing.
Third, our evaluation of SADL includes more complicated and
practical DL systems, as well as testing techniques such as
DeepXplore and DeepTest. Finally, we show that the choice
of neurons has limited impact on LSA.

A range of techniques has been recently proposed to test and
verify DL systems. The existing techniques are largely based
on two assumptions. The first assumption is a variation of
metamorphic testing [11], [31], [42]. Suppose a DL system N
produces an output o when given i as the input, i.e., N(i) = o.
Then we expect N(i′) ' o when i′ ' i . Huang et al. [19]
proposed a verification technique that can automatically gen-
erate counter-examples that violate this assumption. Pei et
al. introduced DeepXplore [34], a white-box technique that
generates test inputs that cause disagreement among a set of
DL systems, i.e., Nm(i) 6= Nn(i) for independently trained
DL systems Nm and Nn. Tian et al. presented DeepTest,
whose metamorphic relations include both simple geometric
perturbations as well as realistic weather effects [40]. The
second assumption is that the more diverse a set of input is, the
more effective it will be for testing and validating DL systems.
Pei et al. proposed Neuron Coverage (NC), which measures
the ratio of neurons whose activation values are above a
predefined threshold [34]. It has been shown that adding test
inputs that violate the first assumption increases the diversity
measured through NC. Similarly, DeepGauge introduced a
set of multi-granularity coverage criteria that are thought to
reflect behaviours of DL systems in finer granularity [27].
While these criteria capture input diversity, all of them are
essentially count of neurons unlike SA, and therefore cannot
be directly linked to behaviours of DL systems. We show that
SA is closely related to the behaviours by training accurate
adversarial example classifiers based on SA.

Apart from coverage criteria, other concepts in traditional
software testing have been reformulated and applied to testing

of DL systems. Ma et al. proposed DeepCT, which views
ranges of neuron activation values as parameter choices and
applies Combinatorial Interaction Testing (CIT) to measure in-
teraction coverage [29]. SC is different from DeepCT as SADL
aims to quantify the amount of surprise, rather than simply to
detect surprise via increase in coverage. DeepMutation applies
the principle of mutation testing to DL systems by mutating
training data, test data, as well as the DL system itself, based
on source and model level mutation operators [28].

VIII. CONCLUSION

We propose SADL, a surprise adequacy framework for DL
systems that can quantitatively measure relative surprise of
each input with respect to the training data, which we call
Surprise Adequacy (SA). Using SA, we also develop Surprise
Coverage (SC), which measures the coverage of discretised
input surprise ranges, rather than the count of neurons with
specific activation traits. Our empirical evaluation shows that
SA and SC can capture the surprise of inputs accurately and
are good indicators of how DL systems will react to unknown
inputs. SA is correlated with how difficult a DL system finds
an input, and can be used to accurately classify adversarial
examples. SC can be used to guide selection of inputs for more
effective retraining of DL systems for adversarial examples as
well as inputs synthesised by DeepXplore.

ACKNOWLEDGEMENT

This work was supported by the Engineering Research
Center Program through the National Research Foundation
of Korea funded by the Korean Government (MSIT) (NRF-
2018R1A5A1059921), Institute for Information & commu-
nications Technology Promotion grant funded by the Ko-
rean government (MSIT) (No.1711073912), and the Next-
Generation Information Computing Development Program
through the National Research Foundation of Korea funded
by the Korean government (MSIT) (2017M3C4A7068179).
Robert Feldt acknowledges the projects TOCSYC (Swedish
Knowledge Foundation, KKS, num. 20130085) and BaseIT
(Swedish Science Council, VR, num. 2015-04913) for funding
parts of the work of this paper.

REFERENCES

[1] Autonomous driving model: Chauffeur. https://github.com/udacity/
self-driving-car/tree/master/steering-models/community-models/
chauffeur.

[2] The udacity open source self-driving car project. https://github.com/
udacity/self-driving-car.

[3] Google accident 2016: A google self-driving car caused a crash
for the first time http://www.theverge.com/2016/2/29/11134344/
google-self-driving-car-crash-report, 2016.

[4] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, 2016.

[5] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. Better
mixing via deep representations. CoRR, abs/1207.4404, 2012.

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[7] Nicholas Carlini and David Wagner. Adversarial examples are not
easily detected. Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security - AISec ’17, 2017.

[8] Nicholas Carlini and David Wagner. Adversarial examples are not
easily detected: Bypassing ten detection methods. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, pages
3–14. ACM, 2017.

[9] Nicholas Carlini and David A. Wagner. Towards evaluating the robust-
ness of neural networks. CoRR, abs/1608.04644, 2016.

[10] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2722–2730, 2015.

[11] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Zhi Quan Zhou. Metamorphic
testing and beyond. In Proceedings of the International Workshop on
Software Technology and Engineering Practice (STEP 2003), pages 94–
100, September 2004.

[12] Zhihua Cui, Fei Xue, Xingjuan Cai, Yang Cao, Gai-ge Wang, and Jinjun
Chen. Detection of malicious code variants based on deep learning.
IEEE Transactions on Industrial Informatics, 14(7):3187–3196, 2018.

[13] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun.
Learning hierarchical features for scene labeling. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1915–1929, 2013.

[14] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B
Gardner. Detecting adversarial samples from artifacts. arXiv preprint
arXiv:1703.00410, 2017.

[15] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. Test set
diameter: Quantifying the diversity of sets of test cases. In Proceedings
of the IEEE International Conference on Software Testing, Verification,
and Validation, ICST 2016, pages 223–233, 2016.

[16] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. In International Conference on
Learning Representations, 2015.

[17] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[19] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety
verification of deep neural networks. In Rupak Majumdar and Viktor
Kunčak, editors, Computer Aided Verification, pages 3–29, Cham, 2017.
Springer International Publishing.

[20] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Ben-
gio. On using very large target vocabulary for neural machine translation.
In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), volume 1,
pages 1–10, 2015.

[21] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10
dataset. online: http://www.cs.toronto.edu/kriz/cifar.html, 2014.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[23] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. CoRR, abs/1607.02533, 2016.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436, 2015.

[25] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten
digit database. AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2, 2010.

[26] Stijn Luca, Peter Karsmakers, Kris Cuppens, Tom Croonenborghs,
Anouk Van de Vel, Berten Ceulemans, Lieven Lagae, Sabine Van Huffel,
and Bart Vanrumste. Detecting rare events using extreme value statistics
applied to epileptic convulsions in children. Artificial Intelligence in
Medicine, 60(2):89 – 96, 2014.

[27] Lei Ma, Felix Juefei-Xu, Jiyuan Sun, Chunyang Chen, Ting Su, Fuyuan
Zhang, Minhui Xue, Bo Li, Li Li, Yang Liu, Jianjun Zhao, and
Yadong Wang. Deepgauge: Comprehensive and multi-granularity testing
criteria for gauging the robustness of deep learning systems. CoRR,
abs/1803.07519, 2018.

[28] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu,
Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al. Deepmutation: Mutation
testing of deep learning systems. arXiv preprint arXiv:1805.05206,
2018.

[29] Lei Ma, Fuyuan Zhang, Minhui Xue, Bo Li, Yang Liu, Jianjun Zhao,
and Yadong Wang. Combinatorial testing for deep learning systems.
arXiv preprint arXiv:1806.07723, 2018.

[30] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wi-
jewickrema, Michael E Houle, Grant Schoenebeck, Dawn Song, and
James Bailey. Characterizing adversarial subspaces using local intrinsic
dimensionality. arXiv preprint arXiv:1801.02613, 2018.

[31] Christian Murphy, Kuang Shen, and Gail Kaiser. Automatic system
testing of programs without test oracles. In Proceedings of the 18th
International Symposium on Software Testing and Analysis, ISSTA 2009,
pages 189–200. ACM Press, 2009.

[32] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow,
Reuben Feinman, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom
Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan, Karen Ham-
bardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley,
Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng Dong, David
Berthelot, Paul Hendricks, Jonas Rauber, and Rujun Long. Technical
report on the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768, 2018.

[33] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami. The limitations of deep
learning in adversarial settings. CoRR, abs/1511.07528, 2015.

[34] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, pages
1–18, New York, NY, USA, 2017. ACM.

[35] Simon Poulding and Robert Feldt. Generating controllably invalid and
atypical inputs for robustness testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2017 IEEE International Confer-
ence on, pages 81–84. IEEE, 2017.

[36] David W Scott. Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons, 2015.

[37] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–
9, 2015.

[39] L. Tarassenko. BioSign™ : multi-parameter monitoring for early
warning of patient deterioration. IET Conference Proceedings, pages
71–76(5), January 2005.

[40] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest:
Automated testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th International Conference on Software Engineer-
ing, pages 303–314. ACM, 2018.

[41] Matt P Wand and M Chris Jones. Kernel smoothing. Chapman and
Hall/CRC, 1994.

[42] Shin Yoo. Metamorphic testing of stochastic optimisation. In Pro-
ceedings of the 3rd International Workshop on Search-Based Software
Testing, SBST 2010, pages 192–201, 2010.

[43] Shin Yoo and Mark Harman. Regression testing minimisation, selection
and prioritisation: A survey. Software Testing, Verification, and Relia-
bility, 22(2):67–120, March 2012.

[44] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366–427, December
1997.

