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ABSTRACT

Test data generation is a tedious and laborious process. Search-
based Software Testing (SBST) automatically generates test data
optimising structural test criteria using metaheuristic algorithms.
In essence, metaheuristic algorithms are systematic trial-and-error
based on the feedback of fitness function. This is similar to an agent
of reinforcement learning which iteratively decides an action based
on the current state to maximise the cumulative reward. Inspired
by this analogy, this paper investigates the feasibility of employing
reinforcement learning in SBST to replace human designed meta-
heuristic algorithms. We reformulate the software under test (SUT)
as an environment of reinforcement learning. At the same time, we
present GunPowder, a novel framework for SBST which extends
SUT to the environment. We train a Double Deep Q-Networks
(DDQN) agent with deep neural network and evaluate the effective-
ness of our approach by conducting a small empirical study. Finally,
we find that agents can learn metaheuristic algorithms for SBST,
achieving 100% branch coverage for training functions. Our study
sheds light on the future integration of deep neural network and
SBST.
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1 INTRODUCTION

Search-Based Software Testing (SBST) has been shown to be ef-
fective in automatic test data generation, in particular, for struc-
tural coverage. Various metaheuristic techniques were employed
in software test data generation, including hill climbing, simulated
annealing, and evolutionary algorithms [14].

Metaheuristic algorithms solve problems essentially by trial-
and-error. Algorithms iteratively evaluate candidate solutions and
generate better solutions based on the feedback from the fitness
function. This iterative process can be viewed as algorithms mak-
ing a series of decisions based on the rewards (i.e. improvements
of fitness values). If a decision improves the fitness value, it can
be considered as getting rewards. Consequently, we can think of
metaheuristic algorithm as agents following certain policy to make
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decisions. In this context, problem instance of metaheuristic algo-
rithm can be described as an environment for the agent.

Reinforcement Learning (RL) is a machine learning technique
that seeks to learn the optimal control policy for agents interacting
with an unknown environment. In RL, agents try and evaluate an
action, and make the next decision based on the observation of the
feedback from the environment. Playing video games is one of the
most widely known examples of decision-making environment in
terms of RL, and recent advances in deep learning and RL have
been shown to be capable of training the human level agents for a
series of Atari 2600 games [16].

The analogy between the metaheuristic algorithm and RL leads
us to raise an interesting question: can we train the agent to solve
SBST problem? Yoo [24] proposed the idea of reformulating SBST
as gaming. Considering SBST as gaming, we may learn the con-
trol policy, that is a new metaheuristic algorithm, for SBST. Most
existing metaheuristic algorithms are designed manually: RL may
enable us to automate the designing of a new algorithm through
training of RL agents.

To answer the question about the feasibility of using RL for
SBST, we formulate search-based test data generation problem as
an RL environment, and subsequently train and test a Double Deep
Q-Networks (DDQN) [21] on various branch predicates that take
numerical inputs. We note that, to the best of our knowledge, this
is the first attempt to use an RL agent in the context of SBST.

The contributions of this paper are as follows:
(1) We introduce a general, open-source framework, GunPow-

der, which instruments the software under test (SUT) and
calculates the fitness value for given structural testing crite-
ria. It provides a platform to apply different search methods
to SBST including RL algorithms. GunPowder is compatible
with the widely used RL platform OpenAI Gym [2].

(2) We reformulate SBST as a reinforcement learning environ-
ment, and subsequently train and evaluate an RL agent which
can replace the metaheuristic algorithms designed by a hu-
man. We present a small empirical study that evaluates the
effectiveness of our approach.

While the results are not immediately practical, we hope that
our study sheds light on the future use of reinforcement learning
and deep neural networks in SBST. Let us begin with the basic
background on reinforcement learning.

2 BACKGROUND

2.1 Reinforcement Learning

RL aims to learn the optimal control policies for agents that inter-
act with an unknown environment, E. The goal of an agent is to
choose a sequence of actions, by observing E, that maximises the
cumulative reward over all time steps.
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This process is formally represented as a Markov Decision Pro-
cess (MDP), defined by tuple (S,A,P,R), where S is the set of
states, and A is the set of actions. At each time step t , the agent
takes an action at ∈ A based on observation of a state st ∈ S and
moves to next state st+1 ∼ P(st ,at ) receiving feedback which is a
scalar reward, rt ∼ R(st ,at ). P(st ,at ) denotes the transition prob-
ability from st to st+1 due to action at . R(st ,at ) is the immediate
reward after taking action at at state st . The return at time step t is
defined as Rt =

∑T
t ′=t γ

t ′−t rt ′ , where T is the time-step when the
game terminates. The future rewards are discounted by a factor of
γ ∈ [0, 1]. The objective of RL is to learn a policy π which maps
states to a probability distribution over the actions. A policy defines
the behaviour of an agent and optimal policy π∗ maximises the
expected return from start R0.

The action-value functionQ is the expected return starting from
state st , after taking action at and thereafter following policy π :

Qπ (st ,at ) = E[Rt |st ,at ]

Bellman equation expresses the action-value function in recursive
form:

Qπ (st ,at ) = E[r (st ,at ) + γQ
π (st+1,π (st+1)]

Q-Learning [22] is a model-free, off-policy algorithm that is
widely used. It uses a function approximator to estimate the action-
value function, Q(s,a;θ ) ≈ Q(s,a). Deep Q Networks (DQN) em-
ploys a large neural network as a function approximator, which is
referred to as the Q-network [16]. A Q-network is trained by min-
imising the loss, which is defined as follows, where yt = r (st ,at ) +
γ maxa Q(st+1,a;θ ):

L(θ ) = E[(yt −Q(st ,at ;θ ))2]

The use of Q-function approximation may result in unstable
behaviours, as the same network that generates the target Q-values
is also used in updating its Q-values [20]. Another problem is con-
secutive data samples are highly correlated, making Q-networks
diverge when learning from them. To alleviate these problems, Deep
Q Networks introduce two major changes: experience replay and a
separate target network for calculating yt .

First, DQN stores the agent’s experience et at each time step,
et = (st ,at , rt , st+1) in a data set Dt = {e1, ..., et } which is called
the replay memory. Then the Q-network is updated with the ran-
dom samples from D, which is called the experience replay tech-
nique. This technique allows us to avoid a strong correlation be-
tween consecutive data samples. Second, DQN uses a separate
target network for the generation of the targets, yi , in the loss func-
tion. This target network is updated at every fixed step intervals by
cloning the parameter of Q-network, resulting in more stable learn-
ing. With these modifications, DQN showed that stable learning
using the neural network is possible. The big advantage of using
the neural network is that it enables extracting high-level features
from raw data, which can be directly used for RL.

In this paper, we use Double DQN (DDQN) [21], which is an
improved version of DQN. The overestimation is the problem of
learning unrealistic high action values. Q-learning is known to
have this problem in some cases [19]. DDQN solves this problem

by using a different network to select and evaluate an action. The
target used by DQN is

yt = r (st ,at ) + γ max
a

Q(st+1,a;θ )

It uses same weight θ to select an action and evaluate chosen action.
Instead of it the target of DDQN is defined as

yt = r (st ,at ) + γ max
a

Q(st+1, argmax
a

Q(st+1,a;θ ′);θ )

where θ is the weights of the target network, and θ ′ is the weights
of the online network. As in DQN, the target network is periodically
copied from the online network. Note that the weights θ ′ is used
to select an action, while θ evaluates the value of this policy. As a
result, DDQN avoids overestimation of Q-learning.

2.2 GunPowder: A General Framework for

SBST

Search based test data generation is a dynamic technique that in-
volves program instrumentation. We summarise general instru-
mentation and analysis requirements for test data generation as
follows:

(1) Instrumenting SUT to measure structural test criteria
(2) Executing SUT with candidate input generated from search

algorithms
(3) Calculating the fitness value
A general framework satisfying these requirements would en-

able effective and efficient comparison of different search meth-
ods, which can be implemented on top of the framework. While
IGUANA [15] provided a general framework for C, it is no longer
actively maintained. We present GunPowder, a general framework
for search-based test data generation for structural testing for C,
written in Python.

2.2.1 Framework. GunPowder consists of three parts: instru-
mentation, execution, and fitness evaluation. First, GunPowder
instruments the source code of SUT to allow fitness values for a
specific test adequacy criterion: currently GunPowder supports
C programs and branch coverage. Instrumentation is performed
at the source code level using Clang front-end from LLVM frame-
work [10]. Compared to javacc used by IGUANA, Clang provides
more robust analysis and manipulation of C code.

Second, GunPowder runs SUT with a given input. In case of C
programs, GunPowder builds the SUT as a shared library to save
the effort of making additional driver codes. This library is invoked
directly through foreign function interface of Python; GunPowder
is implemented in Python. When instrumented SUT is executed,
it returns the trace of execution. The trace is passed to the fitness
function, which can be any user-defined Python function computed
from the execution trace and the control structure of the SUT.

GunPowder is designed to be extendible. By providing the con-
trol structure analysis and instrumentation for new languages, we
can extend GunPowder for languages other than C. Additionally,
new search algorithms for SBST can be implemented and evaluated
using its Python interface.

2.2.2 Fitness Function. Currently GunPowder supports the
standard fitness function for branch coverage that consists of the
approach level, A, and the branch distance, ∆. The fitness value
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is obtained using the execution trace of a candidate solution and
control dependency information. When a node ni in instrumented
SUT is executed, a trace record ti = (i, ci (X ),∆(X , ci ),∆(X ,¬ci )) is
stored at trace T (X ) = {ti |ni ∈ P} where P is the list of executed
nodes and ci is the predicate for node ni .

When instrumenting the SUT, GunPowder also analyses its
control structures. Based on the analysis, we can obtain the desired
execution path Pd for any target branch. By comparing the exe-
cution trace T and the desired path Pd , we then count how many
nodes in Pd are not in actual execution path P . The number of these
un-encountered nodes are assigned to approach level A for input
X . At the same time, the diverging node nc can be identified com-
paring T and Pd . The value ∆(X , cc ) in trace record tc are assigned
to branch distance ∆ for input X . The combination of A and ∆ is
returned as fitness value.

3 QTIP: TEST DATA GENERATION USING

Q-LEARNING

We present Qtip, a test data generation technique based on Q-
learning. Qtip consists of Qtip environment which converts SUT
to RL environment and Qtip agent trained with Qtip environment
using Q-learning. In this paper, we use DDQN to train Qtip agent.

3.1 Formulating SBST as a Reinforcement

Learning Problem

SBST considers the test data generation as optimisation problem and
adopts the metaheuristic algorithms to solve it. Through iterative
trial-and-error, algorithms try to find a qualifying solution following
the feedback from the fitness function. This can be viewed as a
continuous decision process. An algorithm, which is mapped to
an agent, makes an action by creating a new candidate solution.
After that, it receives a reward expressed as the improvement of
the fitness value from the fitness function.

In this framework, test data generation remains an optimisation
problem, but the metaheuristic algorithm is replaced by an agent
trained using RL. Accordingly, an SBST problem is mapped to an en-
vironment and represented as an instance of MDP, which is a formal
representation of RL problem defined by a tuple (S,A,P,R).

Depending on how we define st ∈ S, at ∈ A, and rt ∼ R(st ,at ),
the performance of agent will change. In this paper, we propose
the following formulations.

3.1.1 State and Action. Most search based test data generation
depends on the concept of approach level, A, and branch distance,
∆. The fitness function is defined as:

F (X ) = A(X ) +N(∆(X , cc ))

where N : R→ [0, 1) is a normalisation function.
The information used by a metaheuristic algorithm is the current

approach level and branch distance. Similarly, we formulate the
state at time step t in an RL environment as:

st = {A(Xt ),N(∆(Xt , cc ))}

where Xt is the input vector at time step t . This formulation
means that an agent gives an input vector to the SBST environ-
ment then the environment evaluates the given input and returns

the approach level, A, and the branch distance, ∆. The agent ob-
serves those responses and considers it as the current state of the
environment.

At every time step t , an agent has to provide a candidate solution
which is an input vector for SUT. It corresponds to an action from
the perspective of a decision process. Therefore, an action should
result in a new candidate solution. In case of hill climbing, a new
solution is generated by modifying the current solution, a process
that is described as moving to a neighbouring solution in the search
landscape. Similarly, we define the action space as a set of possible
manipulations for current input vector, X , as follows:

A = {ai |i ∈ [1, 2 · |X |]} ai =

{
xi ← xi + 1 if i is even
xi ← xi − 1 if i is odd

where xi is the i-th element of the input vector X . Since we
defined two possible manipulations for each element of input vector,
the size of action space is twice the length of the input vector.

As a feasibility study, we limit our study to functions with nu-
merical inputs only. However, we believe that the action-based
formulation can be subsequently extended to cater for other input
types. For example, generating dynamic data structures and pointer
inputs for C programs has been a challenge in SBST, for which
various approaches have been proposed [5, 9]. The action based
formulation allows defining various actions for different data types,
including memory allocations or even invocations of other search
heuristics.

3.1.2 Partial Observability. One inherent limitation in the above
formulationm (i.e., the one based on the fitness of the current can-
didate input) is that the agent only has partial observation of the
trajectory of the search. Consider the hill climbing algorithm: the
algorithm is equipped with a (simple) memory mechanism, i.e., a
variable that stores the fitness value of the previous candidate solu-
tion, to guide the search. Compared to this, in our decision process
formulation, the agent has no information about the previous state.
While it may be possible to learn to minimise the fitness function in
an absolute (i.e., the current fitness should be as small as possible)
rathern than relative (i.e., the current fitness should be smaller than
the previous one) fashion, we posit that the information about the
search trajectory may improve the performance of our RL agent.

To evaluate this hypothesis, we present an alternative formula-
tion that includes previous observations of fitness values as part of
the state. Formally, observation o(t ) at time step t becomes

o(t ) = (at ,A(Xt ),∆(Xt , cc )), st = {o
(t ), ...,o(t−m+1)}

wherem is the size of memory, which is referred to as window
size, and at ∈ A is the action taken at the time step t . We train
agents with both state representations: one with a window size of
200, and one without a window. Section 5.4 discusses the impact of
using this window.

3.1.3 Reward. The last component of the decision process is
the reward. The goal of RL is to maximise the cumulative reward
from the initial time step, Rt =

∑T
t=0 γ

t rt , where T is the time step
when the game terminates. Rewards should be designed to drive
agent to behave in the way expected.
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In SBST, the standard optimisation goal for structural testing is
to minimise the fitness value, i.e., A+N(∆). Similarly, the expected
behaviour for our RL agent is to continuously decrease the fitness
value: we should reward the agent when it decreases the fitness
value. Consequently, the reward rt at step t is defined as the amount
of fitness decrease,

rt = F (Xt−1) − F (Xt )

where Xt is the input vector and F (X ) = A(X ) + N(∆(X , cc )).
With this, the agent gets a positive reward when it decreases the
fitness value.

3.2 OpenAI Gym Compatibility of

GunPowder

OpenAI Gym [2] is an open-source library written in Python, and
aims to support the development and the comparison of different RL
algorithms by providing a standardized set of environments for RL.
We have developed GunPowder to be OpenAI Gym compatible to
open up SBST as a future research topic for various RL algorithms.

The class Env in OpenAI Gym defines a standard interface for
RL environment. Following is the required method of Env1

• reset(self): Resets the environment’s state. Returns ob-
servation.
• step(self, action): Executes the environment by one
time step and returns observation, reward, done, info.
• render(self, mode=’human’, close=False): Renders
one frame of the environment visually, if required.

To make a new OpenAI Gym environment, these methods have
to be implemented. Since SBST has no visual representation, we
only implements reset and step.

In a Qtip environment, stepmethod performs the manipulation
corresponding to the given action for the current input vector X .
Subsequently, it executes SUT with a modified input and calculates
the fitness value, which the agent observes and uses as the reward.
In each episode, the agent can perform a specified number of actions,
which corresponds to the fitness evaluation budget in metaheuristic
algorithms. If the agent uses up all budgets or covers the target
branch, the episode ends.

Both GunPowder and our Qtip environment operate at the
function-level: they instruments a target function of SUT, and eval-
uate fitness for a specific branch in that function. Therefore, one
function consists one instance of a Qtip environment. When the
new episode starts, the environment sets a new target branch in
the target function, which is implemented in the reset method.

4 EXPERIMENTAL SETUP

4.1 Research Questions

We seek to answer following research questions with the empirical
study.
• RQ1. Effectiveness: What is the average level of structural
coverage that a Qtip agent can achieve?
• RQ2. Unseen Structures: Can the Qtip agent cover functions
which is not seen during training?

1https://github.com/openai/gym#basics

• RQ3. Unseen Input Ranges: Can the Qtip agent cover input
in ranges not seen during training?

The goal of our approach is to learn the control policy that
achieves structural coverage. We answer RQ1 by measuring the
branch coverage achieved by a Qtip agent. Due to the stochastic
nature of the RL algorithm, we repeat 30 attempts and report the
average coverage.

To replace metaheuristic algorithms, agents should be generally
effective, i.e., they should be capable of achieving coverage for
unseen arbitrary branches. Additionally, agents should be able to
learn the policy regardless of the size of search space. RQ2 addresses
the issue of generalisability by measuring the achieved branch
coverage for functions that have not been seen during training.
RQ3 focuses on the effect of the input range on the performance.
We repeat 30 runs for both RQ2 and RQ3 for each branch.

4.2 Training

We train Qtip using DDQN algorithm to cover the set of basic
binary relational operators, ==, !=, <, <=, >, and >=, as well as the
unary logical negation, !. Our training program contains a series
of if-statements, each of which contains one of the basic relational
operators. All branches are not nested, resulting in approach levelA
being always zero. The target function takes two integer arguments,
i.e., |X | = 2 and |A| = 4. The default range of both input variables
is set to [−128, 128].

In each episode, a random branch is chosen as the target, to avoid
overfitting to a specific branch type. Input values are initialised with
random numbers that do not cover the target branch. The agent is
given the budget of 2,000 actions, and the episode ends when either
the agent covers target condition or it runs out of the budget. The
reward is discounted by a factor of γ = 0.99 per each step, and the
size of the replay buffer is set to 5,000. As stated in Section 3.1.2, we
use state window of size 200 to keep the information of previous
states.

4.3 Neural Network Architecture

Table 1 shows the architecture of our Q netrowk. To approximate
the Q function, we use three fully-connected layers with 16 nodes.
Apart from the activation_4 layer, all activation layer uses Rectified
Linear Unit (ReLU) [17] activation function.

The network architecture has a significant impact on the perfor-
mance of an agent. For example, DQN has adopted convolutional
layers [11] to extract high-level features from screenshots of Atari
2600 games [16]. However, as an initial feasibnility study, we keep
the architecture of network as simple as possible: the optimisation
of the network architecture is left as future work.

Following Timothy et al. [13], we update the target network with
some delay: θ ′ → τθ + (1 − τ )θ ′ with τ ≪ 1, which is called "soft"
target updates. The online Q-network, however, is updated every
step.

We use the Adam [7] optimisation algorithms with the mini
batch size of 32. The learning rate, lr , is defined the decay as:

lri = lri−1 ×
1

(1 + D × i)

https://github.com/openai/gym#basics
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where lr0 is 10−7 and decay factor D is 10−6. We Learning rate
decay helps fast convergence of optimisation.

4.4 Subjects

As stated in Section 4.2, our training function contains branches
with basic predicates without any nested structure. After training,
we used three small functions to test the performance of Qtip: we
apply the trained agent to these unseen test functions and measure
the branch coverage. Table 2 presents the studied functions. All
functions take two integer as input: GCD and EXP are well known
algorithmic examples, whereas the function Remainder has been
chosen from the IGUANA [15] benchmark.

Currently GunPowder supports only C programs for fully au-
tomated instrumentation. However, we implemented all training
and testing functions in Python: this is because the interprocess
communication overhead became exorbitant, as Qtip requires a
significantly larger number of fitness evaluations compared even
to the random search. Consequently, we manually instrumented
Python implementations of of the training function as well as those
in Table 2, and wrote a small Python driver between GunPowder
and Qtip, to avoid the overhead. Despite this workaround, please
note that 1) GunPowder is still fully compatible with OpenAI Gym
for C targets, and 2) GunPowder can easily extended to instrument
Python target functions as well.

5 RESULTS

5.1 Effectiveness

A common way of monitoring the training of RL is to monitor the
change of total rewards received in each episode. However, in case
of Qtip, the main concern is whether the target branch is covered
or not, rather than the total reward in each episode. Consequently,
to monitor in-training improvements, we measure the number of
branches covered by the agent at every 100 episodes. Figure 1a
shows that Qtip does learn a policy that results in covering more
branches. The training played total 5,700 episodes, and it took 5
hours and 44 minutes.

2https://en.wikipedia.org/wiki/Euclidean_algorithm
3https://en.wikipedia.org/wiki/Exponentiation_by_squaring

Table 1: The summary of architecture of Q network.

Layer (type) Output Shape Number of Parameters

flatten_1 (Flatten) 600 0
dense_1 (Dense) 16 9,616
activation_1 (Activation) 16 0
dense_2 (Dense) 16 272
activation_2 (Activation) 16 0
dense_3 (Dense) 16 272
activation_3 (Activation) 16 0
dense_4 (Dense) 4 68
activation_4 (Activation) 4 0

Total params.: 10,228
Trainable params.: 10,228
Non-trainable params.: 0

Table 2: The summary of subject functions

Name Num. of branches Purpose

Training 10 train
Greatest Common Divisor (GCD)2 8 test
Exponentiation (EXP)3 10 test
Remainder 26 test

0 1000 2000 3000 4000 5000
Episodes

0.5

0.6

0.7

0.8

0.9

1.0

Branch coverage

(a) Branch coverage per 100 episodes during training

qtip random search
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0.6

0.8

1.0

Branch coverage

(b) Branch coverage of Qtip

and random search

qtip random search
0

1000

2000

3000

4000

5000

6000

Number of steps

(c) Number of evaluations of

Qtip and random search

Figure 1: a: TheQtip agent learns to cover more branches in

the training function. b: Left is theQtip and right is the ran-

dom search. Both methods cover all branches in most cases.

c: Compared to random search, Qtip requires more evalua-

tion budgets.

To measure the effectiveness of our approach, we set the random
search as our baseline. Figure 1b shows the branch coverage of the
training function achieved by Qtip and the random search. In most
cases, both methods succeed to cover all branches in the function.
However, to achieve the same branch coverage, Qtip requires more
evaluation budgets compared to random search, as can be seen in
Figure 1c. We suspect both the stochastic behaviour of the agent
during the training, as well as the fact that the agent changes the
input vector by step size of one only, contributes to the higher cost
of Qtip.

5.2 Unseen Structures

Figure 2a shows the boxplot of branch coverage achieved by the
trained Qtip agent against three test functions, over 30 repeated
runs. Although Qtip has never seen those functions during the
training, it achieves 66.03% branch coverage on average. It sug-
gests that Qtip has learnt a metaheuristic behaviour that works for
arbitrary problem instances. Table 3 summarises the results.

In case of the function Remainder, Qtip fails to cover half of the
branches. Manual inspection reavealed that all of these uncovered
branches have control dependency to other branches (i.e. they are
nested). Since we train Qtip agents with branches without any

https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
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Training Remainder Gcd Exp Training Remainder Gcd Exp
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Branch coverage

(a) Branch coverage of Qtip (left) and random search (right)

Training Remainder Gcd Exp Training Remainder Gcd Exp
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20000

Number of steps

(b) Number of evaluations of Qtip (left) and random search

(right)

Figure 2: a: The left half is the branch coverages of Qtip

and the right half is the branch coverage of random search.

Although Qtip can cover some arbitrary branches, random

search is more effective. b: The left half is the number of

evaluations of Qtip and the right half is the number of eval-

uations of random search. As stated in Section 5.1, Qtip re-

quire more evaluation budgets than random search.

depth, the approach level A remains zero during the training. As a
result, Qtip does not learn to use the information of approach level
which is designed to help to solve nested structures in SUT. We
expect that more effective training of Qtip agents in future, with a
more diverse set of branch structures, may produce better results
for these branches.

Table 3: Average branch coverage (µ) and standard deviation

(σ ) fromQtip, and Random Search over 30 runs: the highest

coverage for each function is typeset in bold.

Function Qtip Random
µ σ µ σ

Training 99.00 0.03 99.67 0.02
Remainder 42.69 0.06 99.87 0.01
GCD 73.75 0.09 100.00 0.00
Exp 81.67 0.06 99.67 0.02

Total 74.28 0.21 99.80 0.01

5.3 Unseen Input Ranges

The Qtip is trained with the input range of [−128, 128]. We test
Qtip with varying input ranges, to check whether Qtip is actually
learning the general metaheuristic behaviour, and not overfitting
to the smaller input range. Table 4 is the summary of the size of

Table 4: The summary of the size of input space and corre-

sponding evaluation budgets

Input range Number of evaluations

[−128, 128] 1,000
[−512, 512] 4,000
[−1024, 1024] 8,000

the alternative test input spaces and the corresponding number of
steps allowed.

Figure 3a shows the change of achieved branch coverage with re-
spect to different sizes of input space. Regardless of the input range,
average branch coverage remains consistent. For the input range
of [−512, 512] and [−1024, 1024], Qtip achieves branch coverage of
68.12% and 64.15%, respectively. It means that the effectiveness of
the Qtip does not depend on the size of the input space. Table 5
summarises the results.

Training Remainder Gcd Exp Training Remainder Gcd Exp
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(a) Branch coverage of Qtip (left) and random search (right)
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(b) Number of evaluations of Qtip (left) and random search

(right)

Figure 3: a: The left half is the branch coverages of Qtip and

the right half is the branch coverage of random search. As

the size of search space increases, Qtip fails to cover some

branches. b: The left half is the number of evaluations of

Qtip and the right half is the number of evaluations of ran-

dom search.

5.4 State Window

Figure 4 shows the change of coverage measured at every 100
episodes. When only the current approach level, A, and the branch
distance, ∆, are given as state, the agent learns little. However, if the
state includes the previous approach levels and branch distances
by the window size of 200, the agent covers more branches as
the training continues. Without the window, we observed that the
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Table 5: Average branch coverage (µ) and standard deviation (σ ) from Qtip, and Random Search over 30 runs: the highest

coverage for each function is typeset in bold.

Input range 128 512 1024

Function Qtip Random Qtip Random Qtip Random
µ σ µ σ µ σ µ σ µ σ µ σ

Training 98.33 0.04 99.67 0.02 88.67 0.08 99.33 0.02 81.00 0.12 100.00 0.00
Remainder 43.97 0.06 99.74 0.01 40.13 0.06 99.87 0.01 37.95 0.07 100.00 0.00
Gcd 77.50 0.10 100.00 0.00 63.33 0.10 100.00 0.00 56.67 0.12 100.00 0.00
Exp 84.00 0.09 98.67 0.03 80.33 0.08 99.67 0.02 81.00 0.08 99.67 0.02

Total 75.95 0.21 99.52 0.02 68.12 0.20 99.72 0.02 64.15 0.21 99.92 0.01

agent tends to repeat only one action for any state. It suggests
the possibility that the Q-network is diverging, due to the lack of
sufficient reward feedback. Based on this observation, we posit that
our assumption about partial observability is valid.
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Episodes
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Figure 4: Solid line isQtipwith window size 200 and dashed

line with window size 1. The branch coverage is measured at

every 100 episodes. Although solid line increases as training

continues, dashed line show no improvement at all.

6 THREATS TO VALIDITY

Threats to internal validity include the correctness of the tools
used. We trained Qtip using keras-rl [18], which is an actively
maintained open-source RL library. GunPowder is based on Clang,
which is the C front-end in the widely used LLVM framework. Both
withstood extensive public scrutiny. GunPowder itself is open
sourced for further public inspection.

Threats to external validity include factors that may affect how
well the conclusion generalises, such as the size of the empirical
study. Although our conclusion may be limited by the size and
choice of subject functions, we believe it provides sufficient evi-
dence for the feasibility of formulating SBST as an RL problem. A
more through cost-benefit analysis would require a larger empirical
study with more target functions, as well as application of different
learning algorithm.

7 RELATEDWORK

Search based test data generation has been studied for decades
now [14]. Korel [8] proposed the idea of using hill climbing for test
data generation; later, Xanthakis et al. [23] applied global search
algorithms, in particular genetic algorithm. Genetic algorithm is
used by one of the most successful search based test data generation

technique, EvoSuite, to generate whole test suites for Java [3]. We
try to learn the behaviour of local search algorithms using RL: local
search heuristics have been shown to be more effective than genetic
algorithms for specific targets [4], and has been used to generate
dynamic data structures as well as primitive inputs [6, 9].

Reinforcement learning has been shown to be capable of learning
sophisticated control policies. Mnih et al. [16] have shown deep
neural network is capable of learning human-level control policy
directly from high-level observations. Li and Malik [12] proposed
the idea of learning optimisation algorithm using RL. Andrychowicz
et al. [1] automatically designed optimisation algorithm using a
Recurrent Neural Networks (RNNs).

8 CONCLUSION AND FUTUREWORK

We formulate search based test data generation as a decision process
to apply reinforcement learning. We also present GunPowder, a
general framework for SBST that is compatible to the standard rein-
forcement learning environment, OpenAI Gym. UsingGunPowder,
we present a feasibility study of RL-based test data generation with
a small empirical study. Our technique, Qtip, achieves 100% branch
coverage for the training function, and 60.06% branch coverage
for unseen arbitrary functions. The results suggest that learning
behaviours of metaheuristic algorithm is feasible.
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