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Abstract. We present CAVM (pronounced “ka-boom”), a new search-
based test data generation tool for C. CAVM is developed to augment
an existing commercial tool, XYZXYZ (hidden for double blind), which
uses static analysis and input partitioning to generate test data. Unlike
the current state-of-the-art search-based test data generation tool for
C, Austin, CAVM handles dynamic data structures using purely search
based techniques. We compare CAVM against XYZXYZ and Austin using 49
C functions, ranging from small anti-pattern case studies to real world
open source code and commercial code. The results show that CAVM can
cover branches that neither XYZXYZ nor Austin can, while also exclusively
achieving the highest branch coverage for 20 of the studied functions.

1 Introduction

Search-based automatic test data generation has been of interest to researchers
for several decades [4, 12, 16, 17, 19, 21, 25], yet there is little evidence that this
research has made the transition into industrial practice. Furthermore, most
recent research developments have centred on test data generation for object-
oriented code written in Java [4–6], to the neglect of other languages in prevalent
use, for example C, which is still the second most popular language according to
ratings websites (e.g., [1]).

In this paper, we find that there are challenges for search-based test data gen-
eration for C programs that remain unsolved. These challenges primarily relate to
the generation of inputs consisting of dynamic data structures. In order to test C
functions with pointer inputs, a data structure has to be found that is of the right
“shape”. The same problem does not exist for Java programs, because in general,
the required structures of objects needed to adequately test a method can be
generated by using the constructor and method calls that exist the code base un-
der test. Solving these challenges is of high importance: As this paper evidences,
industry-strength automated test data generators for C are still lacking, while
robust techniques are required for other fields of research whose tools focus on
the C language — for example automatic program repair [7,26], automatic fault
localization [14,27], and genetic improvement [2,10]. Many of these applications
either adopt multi-objective optimisation or concern non-functional properties
of the target software system, which are more easily dynamically optimized and
incorporated into search-based test data generators rather than those that rely
on full or partial static analysis (such as Dynamic Symbolic Execution [3]).



Our analysis begins with two existing tools for generating inputs to test
functions written in the C language: XYZXYZ, an industrial tool; and a search-
based test data generation tool, Austin. XYZXYZ adopts a simple yet effective
heuristic to generate inputs consisting of dynamic data structures. Austin, in
contrast, performs a lightweight symbolic analysis to generate the shape of the
dynamic data structure, which is subsequently filled using the Alternating Vari-
able Method (AVM) [20]. Although, hitherto, Austin represents the current state
of the art for search-based test data generation for C code, it is no longer actively
maintained [18].

We therefore introduce and evaluate CAVM (pronounced “ka-boom”), a new
search-based test data generation tool for C. CAVM is also based on the AVM,
but differs from Austin in that it generates inputs consisting of dynamic data
structures using purely a search-based technique: growing the appropriate shape
of the dynamic data structure, as well as filling it with data, is part of the
metaheuristic search performed. It also supports generation of string input (i.e.,
char array) for strcmp using code rewriting.

We compare CAVM against XYZXYZ and Austin with respect to their relative
effectiveness for C code involving dynamic data structures. The empirical evalu-
ation studies small anti-pattern case studies, which are known to be challenging
for XYZXYZ, as well as real world open source and commercial code. The results
show that our new algorithms implemented into CAVM can cover branches that
neither XYZXYZ nor Austin can.

The contributions of this paper are therefore as follows:

1. A new search-based algorithm for generating test inputs consisting of dy-
namic data structures for functions written in the C language, implemented
into a test data generation tool called CAVM (Section 3).

2. An empirical study that compares CAVM, XYZXYZ, and Austin with respect
to their ability to generate test input consisting of dynamic data structures,
using 49 C functions ranging from small anti-pattern case studies to modules
in commercial C++ front-end (Section 4).

3. Results that illustrate types of branches for which CAVM can generate test
data where neither the existing state-of-the-art tool, Austin, nor the com-
mercial tool, XYZXYZ, cannot (Section 5).

We begin by detailing background important to the XYZXYZ and Austin tools.

2 Background

In this section, we introduce two tools for generating test data for C functions.
The first, XYZXYZ, is a commercial tool that derives inputs through static analy-
sis. The second, Austin, combines dynamic search for numeric inputs while de-
riving information about the required shape of dynamic data structures through
a lightweight symbolic execution routine. Until now, Austin has represented the
state of the art in terms of search-based test data generation for C code.



1 void foo() { return 10; }
2

3 void testMe(int a, int b, int c) {
4 if(a < 42)
5 if(b == c)
6 if(c == foo())
7 // target
8 }

(a) Example with numeric inputs

1 typedef struct _data {
2 int* internal;
3 int a, b;
4 struct _data* next;
5 } Data;
6

7 void testMe(Data *d) {
8 if (d != NULL) {
9 Data *d_in;

10 d_in = d->next;
11 if (d_in != NULL)
12 if (d_in ->a == 2)
13 // target
14 }
15 }

(b) Example with a pointer input

Fig. 1: Example code for explaining the operation of different approaches to
automatic test data generation

2.1 XYZXYZ

XYZXYZ, developed by XYZ Technology Inc., is a commercial test data generation
tool for C and C++. It is used by a variety of industry clients to test and obtain
structural coverage for mission critical software systems in the automotive, de-
fence, and aerospace domains1. XYZXYZ adopts a number of techniques including
periodic value generation, random generation, and pairwise input partitioning.
The experiences of XYZXYZ engineers with respect to their clients suggest that
the pairwise partitioning is the most effective method.

Let us use the example of Figure 1a to illustrate how the pairwise input
partitioning of XYZXYZ works, as well as its weaknesses. It adopts lightweight
static analysis to identify boundary values and the resulting input partitions.
For branches with fixed concrete boundary values, such as the one in Line 4 in
Figure 1a, XYZXYZ can generate values for the variable a efficiently. For example,
given the predicate a < 42, it will try, for a, 41, 42, 43 (the boundary value as
well as its neighbours), values from the intervals (i.e., values that are sufficiently
higher and lower than 42), as well as so called type partitions: the minimum, the
maximum, and the median value for the given primitive type.

Subsequently, XYZXYZ will attempt to achieve pairwise interaction coverage,
similar to those used in Combinatorial Interaction Testing (CIT) [23], between
possible values for each variable. Note that this process does not involve any
actual execution of the target function: most of the execution time is consumed
by the static analysis. While effective for certain branches, the pairwise approach
of XYZXYZ does have weaknesses. For example, if the boundary is set by param-
eters (Line 5 of Figure 1a) or function calls (Line 6 of Figure 1a), the dynamic
boundary values elude the static analysis, resulting in low branch coverage.

XYZXYZ adopts a simple yet effective heuristic for generating dynamic data
structures. First, pointers are regarded as an array containing a single item: if
the item is of a composite type (e.g., struct), the values of its members that
are used in the target function are populated using the pairwise method; others
are assigned with 0. Second, if the composite type includes a recursive pointer

1 Please refer to [redacted for double blind review]



(i.e., a pointer that points to its own type), the pointer is instantiated by depth
of 1, but not its members. For example, given the code snippet in Figure 1b,
XYZXYZ will instantiate the parameter d and d->next, but it will not assign any
values to the d->next->a variable. This is to avoid the explosion of the number
of test cases due to the pairwise combinations.

2.2 Austin

Austin is a search-based test data generation tool for C that incorporates the
use of dynamic symbolic evaluation techniques and constraint solving. Values for
numerical inputs are sought using the AVM, while pointer inputs are assigned
by “solving” a pointer equivalence graph (inspired by a similar mechanism used
by CUTE [24]).

Austin utilises these approaches as follows. Given a C function under test,
Austin selects an uncovered branch as the “target”. Given an initial, randomly-
generated input, Austin’s instrumentation detects whether the branch was cov-
ered, or whether execution flow diverged from the target. If execution flow di-
verged from the target, then the program evaluated a condition at some “critical”
decision statement in the function that led to the target branch being missed.
This decision statement corresponds to a node in the control flow graph of the
function on which the target branch is control dependent, for example an “if”
statement in which the branch is nested (e.g., the false branches from the deci-
sions at lines 8, 11 and 12 for Figure 1b and the target true branch from line 12).

At this point, Austin invokes its dynamic symbolic execution engine to derive
a path condition, a constraint over the inputs of the function describing when
a path through the function will be executed. The path condition is derived for
the path executed by the current input up to and including the critical decision
node. The condition corresponding to that of the critical node is then inverted,
so that the overall path condition now describes the path that needs to be taken
to “correct” execution flow so that the target is reachable.

Austin analyses the path condition to decide whether it needs to invoke
the AVM to find numerical inputs to the function, or whether the problem is a
result of pointer inputs. If the latter, Austin works to create the aforementioned
pointer equivalence graph. The path condition is simplified to refer to pointer
constraints of the form x = y and x 6= y, where x and y may be NULL or a symbolic
variable corresponding to a pointer input. Austin derives a pointer equivalence
graph from the path condition by grouping pointers that are equivalent to one
another into nodes of the graph, with edges added between nodes to capture non-
equivalence. This graph is then “solved” to generate pointer inputs as follows.
For each node n, if n does not have an edge to the node containing “NULL”,
Austin sets all concrete pointer inputs represented by the symbolic variables
represented by the node to NULL. If, however, n represents the address of another
symbolic variable s, Austin assigns all concrete pointer inputs to the location
pointed at by s. Otherwise, Austin creates a new memory location, assigning
all concrete pointer inputs in n to that location.

For example, in Figure 1b the target is the true branch from line 12. Although
the branching condition involves satisfying a numerical constraint, there is a



dynamic data structure involved that must be initialised correctly. Austin infers
three nodes in the pointer equivalence graph, one involving d (n1), one involving
both d->next (n2) and one for NULL (n3). There is an edge between n3 and n1,
inferred from the branching condition on line 8 that must be executed as true,
since d must not be NULL. The results of the symbolic execution also reveal that
the assignment of d->next to d_in on line 10 — and the subsequent need to
execute line 11 as true — mean that there is also an edge between n3 and n2.
The result of solving this graph therefore means that d is initialised to a new
memory location, while d->next is also initialised to a separate location. The
AVM search then solves the condition on line 12 that d_in->a (i.e., d->next->a)
must be set to 2.

Austin is no longer actively maintained (the last commit to its open source
repository was in 2011 [18]) and fails to cover certain types of branches — as we
show in Section 5 — therefore motivating a new tool, which we introduce next.

3 CAVM: A New C Test Data Generation Tool

CAVM is an open source byproduct of an industry collaboration, the aim of which
is to augment XYZXYZ with a search-based software testing technique so that it
can deal with challenging branches more effectively.
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Fig. 2: Overall Architecture of CAVM

3.1 Overall Architecture

The overall architecture of CAVM is depicted in Figure 2. First, CAVM starts by
instrumenting the given source code. Instrumentation is performed directly to
the source code in C through Clang. After replacing the original source code with
the instrumented version, the target program is built as a shared library, so that
CAVM can import and call the target function directly without having to add an
extra entry point. Subsequently, CAVM applies an extended version of AVM to
the target program to search for the test input that covers a specific branch.

3.2 Extending the AVM for Dynamic Data Structures

Algorithm 1 presents the pseudocode for the search algorithm used by CAVM.
For the sake of brevity, the pseudocode assumes that whenever fitness reaches



Algorithm 1: Local Search Algorithm of CAVM

LocalSearch(−→x , current)
Input: An input vector, −→x , and the current search target, current
Output: The minimum fitness value found, fitness, and the input
vector that corresponds to the value, −→x
(1) while budget > 0 and fitness > 0
(2) e = next(−→x , current)
(3) if IsPrimitive(e)
(4) fitness← IterativePatternSearch(−→x , e)
(5) else if IsStruct(e)
(6) fitness← LocalSearch(−→x , e.members)
(7) else if IsPointerToPrimitives(e)
(8) foreach i in e
(9) fitness← IterativePatternSearch(−→x , i)
(10) e′ ← Grow(e)
(11) −→x ← −→x (e← e′)
(12) fitness← Evaluate(−→x )
(13) else if IsPointerToStruct(e)
(14) if e is NULL
(15) e′ ← instantiate(e)
(16) −→x ← −→x (e← e′)
(17) fitness← Evaluate(−→x )
(18) else
(19) fitness← LocalSearch(−→x , ∗e)
(20) return −→x , fitness

the optimum, the control flow breaks from the main loop. We also leave out the
check for whether fitness improved during the last full iteration over elements
of the input vector −→x . For primitive data types, line 4 invokes Iterated Pattern
Search (IPS) [15, 20]. The remaining cases deal with dynamic data structures.
Note that CAVM initialises all pointers in the input vector −→x to NULL.

Lines 5 and 6 handle struct by flattening the members of the current struct

elements in −→x , recursively when presented with nested struct elements. Lines 7
to 19 handle pointers. CAVM considers pointers to primitive types as arrays: Lines
7 to 12 apply IPS to each element of the current array, and grows the array by
one if the search does not finish.

Finally, lines 13 to 19 deals with pointers to struct. If the pointer is currently
NULL, CAVM checks if instantiating the current pointer (line 15) improves the
fitness (primitive members are randomly initialised). If not, CAVM tries to search
for the values of *e, that is, the members of the pointed struct (lines 18 and 19).

Let us consider the code in Figure 1b as an example. CAVM starts with the
input d being NULL. Since this input does not reach the target, CAVM instantiates
d, which will cover the true branch from line 8. Subsequently, CAVM will apply IPS
to d->a and d->b but without improving the fitness. Eventually CAVM instantiates



d->internal as well as d->next: while applying IPS again to primitive elements,
CAVM will change the value of d->next->a to 2 and reach the target.

3.3 String Comparison

Since strings are represented as an array of characters in the C language, CAVM
treats searching for a string test input as searching for a specific character array.
While CAVM can search for primitive arrays with specific contents, the use of
strcmp presents an additional challenge because its return value does not easily
translate to fitness value that provides good guidance: strcmp returns a single
integer, representing whether the two input strings are identical, or one is al-
phabetically higher (i.e., is after the other in alphabetical order) than the other.
The lack of “distance” information between two strings makes it hard for CAVM

to determine the search direction.

To provide string distances, CAVM’s instrumentation process replaces usages
of strcmp in predicates with strcmp2, which is our wrapper for strcmp. This is
essentially the same approach as Fraser and Arcuri [4], which replaces the String

.equals() method in Java. However, none of the existing search-based test data
generation tools for C implement this idea.

The strcmp2 returns signed string distances instead of signed integers: the
string distance is defined as lengthDiff + norm(charDiff). The lengthDiff is
the difference in length between two input strings, whereas the charDiff is the
sum of character distances between two input strings, up to the shorter length.
We use the standard norm(x) = 1− 1.001−x for normalisation [11].

4 Experimental Setup

4.1 Research Questions

We seek to answer the following research questions with the empirical study.

– RQ1. Effectiveness: Among XYZXYZ, Austin, and CAVM, which tool achieves
the highest branch coverage against the studied target subjects?

– RQ2. Efficiency: Among XYZXYZ, Austin, and CAVM, which tool achieves
branch coverage the most efficiently?

We answer RQ1 and RQ2 by applying all studied tools to the target subject
functions in C. Since Austin and CAVM adopt stochastic approaches, we will re-
port the average coverage for RQ1 over 20 runs, the average number of fitness
evaluations, as well as the average wall clock time required for test data gen-
eration for RQ2 over 20 runs. We only evaluate the deterministic heuristic of
XYZXYZ, and therefore we do not repeat runs with this tool.



4.2 Subjects

Table 1 contains the list of subject functions that we study in this paper: they
are from a variety of sources, ranging from small toy examples to a commer-
cial C++ frontend. The anti-pattern subject is a set of branches that XYZXYZ is
known to be unable to cover: these are the minimum working examples that con-
tain only the problematic structural patterns. Line, Calendar, Triangle, and
AllZeros examples are ported to C from McMinn and Kapfhammer [20] and
constitute the baseline examples. LinkedList is a collection of utility function
implementations for the singly linked list in C, taken from an on-line tutorial,
whereas BinaryTree contains seven functions from the textbook by Horowitz et
al. [13]. Finally, busybox-ls contains five functions from the open source imple-
mentation of ls utility for the busybox package, whereas decode.c contains 24
functions chosen from a name demangler module for C++ frontend, developed by
the Edison Design Group. In total, we study 482 branches in 49 functions.

Table 1: Subject C Functions Studied

Subject Description Branches * Rec. * struct strcmp

AllZeros

Examples from AVMf [20]
6 3 - - -

Calendar 46 - - - -
Line 14 - - 3 -
Triangle 16 - - - -

XYZXYZ An-
tipatterns

Set of branches that XYZXYZ cannot cover 16 3 3 3 3

LinkedList 5 utility functions for singly linked list2 26 3 3 3 -

BinaryTree 7 tree-related functions from a textbook by
Horowitz et al. [13]

30 3 3 3 -

busybox-ls 5 functions from ls in Busybox 1.2.03 32 3 - - -

decode.c 22 functions from decode.c4 296 3 - 3 -

Total 49 C functions 482

The column denoted by “*” shows whether any function contains a pointer
type parameter, whereas the column “Rec. *” shows whether some of those
contain recursive data structures (e.g., a pointer to a struct, which in turn
contain a pointer to its own type). Similarly, the column struct shows whether
any parameter is of a C structure type (struct), and the column strcmp shows
whether any input parameter is being compared as a string using strcmp.

Note that the intention behind choosing these functions is actually not to
perform an empirical study based on an unbiased sample of arbitrary C functions
in the wild. Rather, we wanted to make a focused selection of functions, around
the particular features and usages of C language, against which we compare the

2 Taken from an on-line tutorial: http://milvus.tistory.com/17
3 BusyBox is a collection of common UNIX utilities in a single small executable:
https://busybox.net.

4 https://www.edg.com/c

http://milvus.tistory.com/17
https://busybox.net
https://www.edg.com/c


studied tools: namely, the use of pointers, arrays, and dynamic data structures,
as well as the specific current weaknesses of XYZXYZ. Source code for all studied
subjects are available at: [redacted for double blind].

4.3 Configurations

While CAVM allows the user to set the search range for each input parameter of the
target function, Austin lacks such control. Consequently, we do not narrow down
the input range and use the default range for each primitive type, so that both
tools search in the same space. For both Austin and CAVM, we set the maximum
number of fitness evaluations for each target branch to 1,000, and the timeout
duration for each target function to five minutes. Note that both tools collect
“collateral” coverage [8] (i.e., coverage of branches that are not the target but
nonetheless covered by a test case generated by a tool5). Any collateral coverage
achieved within five minutes counts in the final results. However, if a tool does
not terminate within the five minute timeout, we record 0% coverage.

XYZXYZ implements multiple test input generation techniques, but we only use
the pairwise approach because it is known to be the most effective, as discussed
in Section 2.1. Note that, unlike Austin and CAVM, XYZXYZ does not require any
actual execution of the target function in order to generate the test data, due
to the way its heuristic works (see Section 2.1). Furthermore, because XYZXYZ

can only be operated via GUI, direct comparison of execution time is infeasible.
Consequently, we do not report the execution time of XYZXYZ: however, we do
report approximate wall clock execution time for representative cases.

Since Austin relies on the C Intermediate Language (CIL) [22], the number
of branches Austin attempts to cover can be different from those for XYZXYZ

and CAVM. For example, Austin breaks down composite predicates into nested
if statements. We therefore manually inspected the results of Austin for the
affected functions and matched the branches attempted with those for XYZXYZ

and CAVM.

4.4 Environments

CAVM is written in C/C++ as well as Python. The target code instrumentation is
written in C/C++ and depends on clang version 3.9.0 and GNU gcc version 4.9 or
higher. The AVM search is written in Python 3 and depends on CFFI6 as well
as Python runtime version 3.5 or higher.

For the experiment, CAVM is executed on a machine with Intel Core i7-6700K
4.0GHz and 32GB RAM running Ubuntu 14.04 LTS. Due to specific depen-
dencies, Austin is executed on the same machine running Ubuntu 12.04.5 LTS.
XYZXYZ is executed on a machine with Intel Core i5-6600 3.9GHz and 16GB RAM
running Windows 7. We allow the different hardware environment because we do
not compare the execution time directly for the reasons described in Section 4.3.

5 Here, we define collateral coverage as branches that are covered in addition to the
original target by the final, generated test cases.

6 C Foreign Function Interface: http://cffi.readthedocs.io

http://cffi.readthedocs.io


Table 2: Average branch coverage (µ) and standard deviation (σ) from XYZXYZ,
Austin, and CAVM over 20 runs: the highest coverage for each function is typeset
in bold. Br. contains number of branches; XY stands for XYZXYZ.

Function Br. XY
Austin CAVM

Function Br. XY
Austin CAVM

µ σ µ σ µ σ µ σ

AVMf AVMf

allzeros� 6 0.00 0.00 0.00 83.33 0.00 line† 14 100.00 0.00 0.00 28.57 0.00

calendar∗ 46 100.00 0.00 0.00 0.00 0.00 triangle‡ 16 93.75 0.00 0.00 89.06 5.32
Antipatterns decode.c

case1 4 0.00 100.00 0.00 100.00 0.00 func1 2 100.00 0.00 0.00 100.00 0.00
case2 4 75.00 100.00 0.00 100.00 0.00 func2 2 100.00 0.00 0.00 100.00 0.00
case3 2 50.00 100.00 0.00 100.00 0.00 func3 48 10.42 0.00 0.00 29.90 5.63

case4§ 2 0.00 0.00 0.00 100.00 0.00 func4 14 21.43 0.00 0.00 71.07 6.34
case5 2 50.00 100.00 0.00 100.00 0.00 func5 14 21.43 0.00 0.00 0.00 0.00
case6 2 50.00 100.00 0.00 100.00 0.00 func6 16 18.75 0.00 0.00 27.14 9.44

LinkedList func7 30 6.67 0.00 0.00 11.56 1.79

delete♦ 6 100.00 100.00 0.00 16.67 0.00 func8 6 50.00 0.00 0.00 75.83 12.65

insert♦ 8 87.50 100.00 0.00 50.00 0.00 func9 44 4.55 0.00 0.00 69.66 7.31

modify♦ 4 75.00 100.00 0.00 38.75 12.76 func10 28 7.14 0.00 0.00 62.32 10.20
print list 2 100.00 100.00 0.00 100.00 0.00 func11 2 100.00 0.00 0.00 100.00 0.00
search 6 100.00 0.00 0.00 100.00 0.00 func12 4 25.00 0.00 0.00 27.50 7.69

busybox-ls func13 4 50.00 0.00 0.00 73.75 5.59
bold 2 50.00 100.00 0.00 100.00 0.00 func14 2 50.00 0.00 0.00 52.50 11.18
dnalloc 2 100.00 100.00 0.00 100.00 0.00 func15 2 50.00 0.00 0.00 97.50 11.18
fgcolor 2 100.00 100.00 0.00 100.00 0.00 func16 12 8.33 0.00 0.00 22.50 18.56
my stat 10 0.00 0.00 0.00 0.00 0.00 func17 4 25.00 0.00 0.00 27.50 11.18
scan one dir 16 6.25 0.00 0.00 0.00 0.00 func18 4 50.00 0.00 0.00 64.17 6.11

BinaryTree func19 28 3.57 0.00 0.00 8.75 3.57
inorder 2 100.00 100.00 0.00 100.00 0.00 func20 8 87.50 0.00 0.00 100.00 0.00
iter inorder 4 0.00 0.00 0.00 100.00 0.00 func21 4 100.00 0.00 0.00 100.00 0.00
iter search 6 100.00 0.00 0.00 100.00 0.00 func22 18 100.00 0.00 0.00 100.00 0.00
level order 8 62.50 0.00 0.00 100.00 0.00 Section 5.1 discusses the following issues.
postorder 2 50.00 100.00 0.00 100.00 0.00 �: indirect dependency. ∗: large search space.
preorder 2 50.00 100.00 0.00 100.00 0.00 †: low success rates. ‡: infeasible branches.
search 6 100.00 0.00 0.00 100.00 0.00 ♦: imprecise dependency analysis. §: strcmp.

5 Results

5.1 Effectiveness

Table 2 contains the coverage results from 20 repetitive runs of Austin and
CAVM, as well as the single run of XYZXYZ. Note that the functions in decode.c

have been renamed in the table to save space: their full names, as well as their
source code and the box plots of the coverage results will be available from the
accompanying web page. For Austin and CAVM, we report mean (µ) and standard
deviation (σ): the highest coverage is typeset in bold. Out of 49 functions, there
are 5 functions for which XYZXYZ alone achieves the highest branch coverage, and
two functions for which Austin does the same. CAVM alone achieves the highest
branch coverage for 20 functions. Notably, Austin fails to cover any branch of
functions in decode.c within five minutes.

We manually analysed the hard-to-cover branches in the smaller benchmarks
and identified the following common issues (each issue can be cross-referenced
to Table 2 through the symbols):



– Indirect control dependency (�): one of the branches in the allzeros func-
tion requires the number of zeros in the input array to be equal to the size
of input: CAVM fails to cover this branch. CAVM does not receive any guidance
through the fitness function because the counter for the number of zeros is
changed in another branch that does not depend on the target branch, sim-
ilar to the flag problem [9]. This results in CAVM repeating random restarts.

– Large search spaces (∗): a for loop in calendar consumes a large amount of
time when inputs are initialised from a large range. Since the loop iterates
over the range between two integer inputs, the number of iterations can
be up to the range of integers in C. This leads to frequent timeouts and,
consequently, 0% coverage. When the input variable range is set to [-100,
100], CAVM consistently achieves 100% coverage.

– Low success rate (†): some branches in the line function are simply hard to
cover under the given timeout and evaluation budget. While CAVM sometimes
succeeds to cover all branches in line, the average coverage suffers from runs
that failed to cover the hard branches.

– Infeasible branches (‡): the function triangle contains an infeasible branch.
Consider the following code snippet from triangle:

if(a == b) { ... } else { if(a == b) { ... }}

The true branch of second predicate is logically infeasible because of the
first one. Apart from this branch, CAVM and XYZXYZ cover all branches in
triangle.

– Use of strcmp (§): case4 in Antipatterns contains a call to strcmp, which
neither XYZXYZ nor Austin supports.

– Imprecise control dependency analysis (♦): currently CAVM suffers from im-
precise control dependency analysis; it cannot detect implicit control depen-
dencies between branches caused by, for example, a return in the middle of
a function. Consider the following code snippet:

if(x > 42) return; if(y == 7)...

Both the true and the false branch of the second if statement depend on
the false branch of the first one. However, this dependency is implicit, i.e.
it is not expressed in the nested structure. The current control dependency
analysis of CAVM fails to capture this. Consequently, CAVM cannot compute
the fitness values correctly for these branches and cannot cover them. When
we manually made the control dependency explicit (by inserting else appro-
priately), CAVM achieves an average of approximately 60% branch coverage
for functions delete, insert, and modify in the LinkedList subject, with
some individual runs achieving 100% coverage. Precise control dependency
analysis for the full set of structural constructs of C is an item of future work.

Finally, let us discuss the performance of Austin. Austin requires an explicit
pointer constraint in the source code of the target function in order to instantiate
any pointer. If the code does not compare a given pointer to NULL, the pointer will
not be instantiated. After confirming this behaviour to be intended with the main



developer of Austin, we inserted explicit NULL checks to smaller benchmarks
(Antipatterns, AVMf, LinkedList, and BinaryTree), but opted not to modify
the real world subjects (ls and decode.c). This results in the consistent 0%
coverage for functions in decode.c, as they all require pointer parameters.

Based on the results in Table 2, we answer RQ1: CAVM can cover branches that
neither XYZXYZ nor Austin can. In particular, Austin has a significant limitation
regarding pointer instantiation.

Table 3: Average execution time (µ) in seconds and standard deviation (σ) re-
quired by Austin and CAVM over 20 runs: the shortest time for each function is
denoted in bold, whereas timeouts are marked with a dash.

Function
Austin CAVM

Function
Austin CAVM

µ σ µ σ µ σ µ σ

AVMf AVMf

allzeros� - - 3.62 0.34 line† - - 43.75 1.16

calendar∗ - - - 6.66 triangle‡ - - 12.04 2.28
Antipatterns decode.c

case1 2.01 1.20 1.30 0.58 func1 - - 0.98 0.02
case2 1.85 0.20 0.43 0.02 func2 - - 0.59 0.01
case3 0.76 0.11 0.74 0.18 func3 - - 196.48 17.38
case4 - - 0.75 0.11 func4 - - 16.61 3.01
case5 0.72 0.19 0.79 0.19 func5 - - - -
case6 0.99 0.17 1.18 0.02 func6 - - 41.46 5.69

LinkedList func7 - - 150.08 4.83

delete♦ 2.44 0.79 24.68 4.71 func8 - - 8.18 1.31

insert♦ 2.55 0.87 17.11 0.36 func9 - - 77.69 15.59

modify♦ 1.81 0.26 13.67 4.93 func10 - - 54.38 10.44
print list 0.15 0.01 0.33 0.01 func11 - - 0.67 0.06
search - - 1.02 0.19 func12 - - 11.21 1.38

busybox-ls func13 - - 5.68 0.97
bold 0.88 0.89 0.31 0.15 func14 - - 3.82 0.81
dnalloc 32.31 17.54 62.82 37.86 func15 - - 2.05 0.90
fgcolor 1.01 0.75 0.36 0.22 func16 - - 37.74 9.25
my stat - - - - func17 - - 10.98 1.66
scan one dir - - - - func18 - - 9.99 1.21

BinaryTree func19 - - 123.74 6.86
inorder 0.14 0.02 0.19 0.01 func20 - - 1.51 0.06
iter inorder - - 71.08 0.34 func21 - - 0.73 0.01
iter search - - 0.86 0.22 func22 - - 12.07 0.71
level order - - 143.82 0.49 Section 5.2 discusses the following:
postorder 0.13 0.01 0.19 0.00 �: indirect dependency. ∗: large search space.
preorder 0.14 0.01 0.19 0.00 †: low success rates. ‡: infeasible branches.
search - - 0.83 0.22 ♦: imprecise dependency analysis.

5.2 Efficiency

Table 3 contains the execution time required by Austin and CAVM to generate
test data for studied functions. The dash (-) symbol denotes a complete timeout,
that is, all 20 runs did not terminate within the timeout limit of 300 seconds
(i.e., five minutes). In cases where neither tool reports a time out, the one with
the shorter mean execution time is typeset in bold. Most of the factors that
affected the branch coverage in Section 5.1 also affect the execution time:



– Indirect control dependency (�), low success rate (†), and infeasible branches
(‡): repeated random restarts and timeouts caused by these add to the exe-
cution time, without contributing to the branch coverage.

– Large search spaces (∗): when the input variable range is reduced as in the
Effectiveness study (Section 5.1), the average execution time of CAVM drops
to about seven seconds, while retaining 100% branch coverage.

– Imprecise control dependency analysis (♦): with the explicit control depen-
dency manually inserted, the average execution time of CAVM for the func-
tions delete, insert, and modify in the LinkedList subject comes down
to an average of 19 seconds. However, note that Austin can cover branches
in LinkedList only after explicit NULL checks are added.

In comparison, a typical execution of XYZXYZ against all 22 functions from
decode.c takes five seconds for static analysis and three seconds for pairwise
test data generation. Similarly, functions in both LinkedList and BinaryTree

take five and two seconds for each stage respectively.
Based on the results in Table 3, we can therefore answer RQ2: both Austin

and CAVM take longer than XYZXYZ, whose execution time can be shorter by
orders of magnitude. However, the speed of XYZXYZ comes at a trade-off with
the coverage: while CAVM takes longer, it also covers more branches. Apart from
its inability to cover decode.c functions, Austin can be slower than XYZXYZ

despite using the same AVM technique.

6 Discussion: Insights and Experience Gained

We make the following observations based on our experience of the studied tools.

– Hybridisation can pay off: XYZXYZ is simple and fast, yet can be surprisingly
effective for certain branches, including pointers. We expect many opportuni-
ties to hybridise this heuristic with more expensive techniques, such as AVM.
The future integration of CAVM into XYZXYZ will follow a cascade model: CAVM
will be applied only to the branches XYZXYZ misses.

– Direct source code instrumentation is not only possible but perhaps desir-
able: CAVM intentionally chose clang as the tool for instrumentation, because
it is strong enough to be the frontend for a very widely used compiler. Com-
pared to CAVM, the CIL transformation required by Austin often introduced
build related issues, resulting in reduced usability.

– Pure search-based handling of dynamic data structures is possible: CAVM

can instantiate dynamic data structures for test data generation. While the
grow-and-search approach currently adopted by CAVM is not complete (e.g.,
backward pointers in doubly linked lists should not be grown), this paper
shows that a pure search-based technique can be feasible.

7 Threats to Validity

Threats to internal validity includes the extent to which the results of the study
supports the claims, such as the correctness of the tools used. Clang is the



frontend to one of the most widely used C compilers, LLVM-based gcc and
withstood extensive public scrutiny. XYZXYZ is a commercial tool, and Austin

is an open source tool based on peer-reviewed research outcome. CAVM itself will
be publicly open sourced for further inspection.

Threats to external validity includes factors that may affect how well the
conclusions generalise. Our conclusions are certainly limited by the choice of
subjects and functions studied, and further generalisation is only possible based
on wider empirical study. However, the current study provides sufficient evidence
for the comparison of studied tools regarding specific and focused features of C,
such as pointers and dynamic data structures.

8 Conclusion

We present CAVM, an AVM-based test data generation tool that handles dynamic
data structures using a purely search-based approach. Unlike the current state of
the art tool, Austin, which determines the shape of the required data structure
using symbolic analysis, CAVM simply grows the data structure by successive
pointer instantiations. The empirical comparison of CAVM against Austin and a
commercial test data generation tool, XYZXYZ, shows that CAVM can cover many
branches that neither of the other tools can. Future work include improvement
of CAVM as well as its integration to XYZXYZ.
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