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techniques. Inputs such as images of real world objects and scenes are not only expensive to collect but also difficult to randomly
sample. Consequently, current testing techniques for DNNs tend to apply small local perturbations to existing inputs to generate new
inputs. We propose SINVAD, a way to sample from, and navigate over, a space of realistic inputs that resembles the true distribution
in the training data. Our input space is constructed using Variational AutoEncoders (VAEs), and navigated through their latent
vector space. Our analysis shows that the VAE-based input space is well-aligned with human perception of what constitutes realistic
inputs. Further, we show that this space can be effectively searched to achieve various testing scenarios, such as boundary testing of
two different DNNs or analyzing class labels that are difficult for the given DNN to distinguish. Guidelines on how to design VAE
architectures are presented as well. Our results have the potential to open the field to meaningful exploration through the space of
highly structured images.

CCS Concepts: • Software and its engineering→ Search-based software engineering.

Additional Key Words and Phrases: Test Data Generation, Deep Neural Network, Search-based Software Engineering

ACM Reference Format:
Sungmin Kang, Robert Feldt, and Shin Yoo. 2018. Deceiving Humans and Machines Alike: Search-based Test Input Generation for
DNNs using Variational Autoencoders. 1, 1 (December 2018), 25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Over the past decade, Deep Neural Networks (DNNs) have risen as the dominant scalable function approximators,
starting with image classification [23]. As such, they were employed over a diverse range of disciplines, from music
generation [1] to board game play [25]. The seeming accuracy of DNNs in perception problems in turn led to use in
safety-critical domains: one prominent example being autonomous driving [7, 8].

However, one has reason to be concerned about widespread use of DNNs in safety-critical systems: their properties
are difficult to determine, and even if a fault is uncovered, it is unclear what one can do to fix them. Adversarial
examples [6, 13, 24, 29] provide a good demonstration of this: sophisticated noise is added to inputs, inducing incorrect
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behavior in DNNs. Adversarial examples are both widespread (appearing in multiple domains, including speech
recognition [36] and natural language processing [17]) as well as physically feasible [3].

This has made it increasingly clear that neural networks must be thoroughly tested; indeed, much work has been
dedicated to propose adequacy criteria for DNN testing. Pei et al. [30] check the activation status of neurons over a
test suite; they argue that a test suite should activate as many of the neurons as possible. Ma et al. [27] suggest that a
test suite should elicit a diverse range of activations in the neurons. Kim et al. [20] approximate the distribution of
activation values in the training dataset, and posit that a test suite should have a balanced amount of inputs that elicit
in-distribution activations and out-distribution activations.

While some of the aforementioned work also suggests how to generate new tests based on their adequacy criteria,
a problem that has seen less light is that of generating realistic tests. We argue that for DNNs, the utility of testing
hinges on the realism of the generated tests. Recalling the adversarial examples from above, there are two issues that
are in need of answers. One issue is that it is unclear what one can do to fix discovered erroneous behavior. The other,
more important issue is whether such falsifying inputs are important for DNN testing at all; it is unlikely the carefully
crafted noise that is used in adversarial images would appear in practice. The ultimate goal of testing is to find realistic
situations in which the system under test fails, which is a fundamental principle that should also apply to DNNs. This is
why we believe that when making new test inputs, we should specifically search over the space of realistic images,
instead of over a space that encourages small perturbations. Such a search technique would allow us to focus our testing
resources on plausible usage scenarios that reflect the actual usage of our system.

To this end, we present SINVAD (Search-based Input space Navigation using Variational AutoencoDers). SINVAD first
learns the space of realistic images through Variational Autoencoders (VAEs) [21], an approach that can approximate
the distribution of training images. Once trained, we use the latent vector space of the trained VAE to navigate within
the space of realistic images. The aim of doing so is to be able to generate test data that is realistic to the human eye,
and by virtue of being so relevant to the task on hand. To motivate our approach, we perform qualitative experiments
demonstrating that optimization over the entire image space yields uninterpretable images that look like static noise;
meanwhile optimization with SINVAD results in realistic images, which are thus more relevant to the target dataset.

The fact that SINVAD searches a space of realistic images is central to our academic contribution. Therefore, we
perform a large-scale human study to verify that SINVAD is capable of searching the space of realistic images. To
demonstrate that SINVAD’s search space is aligned with the realistic image space throughout, we ask human evaluators
to rate images that were specifically designed to be confusing to a DNN, and check whether they are also confusing to the
human eye. Specifically, we devise a questionnaire that asks whether the presented image looks like a pair of categories.
This is to verify that SINVAD encodes a realistic space and is not simply memorizing images. The questionnaire’s
results indicate that humans rate SINVAD-generated images as more confusing than other image generation techniques.
Specifically, they are identifiable as more than one class of a given classification task, and are realistic in the sense that
they would be identified with both classes simultaneously. Furthermore, humans would take a longer time to process
SINVAD-generated images, as another indicator of their confusion. These results support the hypothesis that SINVAD
is indeed well-aligned with the realistic image space.

Knowing that SINVAD is capable of generating realistic images, more so than other image generation techniques, we
demonstrate the flexibility of SINVAD by searching for inputs proximate to the decision boundary of the DNN. Our
results establish that SINVAD can aid the boundary testing of DNNs by generating images on the semantic boundary of
labels.
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We discuss a specific case that demonstrates the usefulness of modelling realistic images. Noting that abstract classes
have a "perceptual distance" in practice (for example, one may have a difficult time drawing a 3 that looks like a 4, but it
is easier to draw a 4 that looks like a 9), and that search using SINVAD can capitalize on such characteristics, a test
generation technique that finds pairs of labels that are prone to confusion by the DNN under test is presented. Our
experiments verify that the pairs that it finds roughly match the perceptual similarity between categories. Further, we
quantitatively find that when training data labels are mixed, the provided technique using SINVAD can identify such
issues more quickly than the default test dataset.

Additionally, we present SINVAD-generated results when the VAE architecture is varied, and provide practical
guidelines for how to construct VAEs when doing test generation for DNNs. We conclude our paper by providing a
discussion of threats to validity and limitations of our work.

The contribution of the paper is as follows:

• We introduce SINVAD, a novel method to search through the space of realistic images using a VAE-based
representation, and show it to be a valid way of searching for new inputs with desirable properties while
maintaining realism;
• We perform a large-scale human study to show that images made by SINVAD are realistic and semantically
confusing to people, indicating that the space SINVAD searches is close to the realistic image space;
• We demonstrate the capability of SINVAD to perform boundary testing, illustrating the flexibility of SINVAD as
a space to help test generation;
• We present a technique using SINVAD that produces tests capable of identifying training problems earlier than
the provided test set;
• We propose guidelines on VAE architecture for test generation use.

This paper is an extension of our workshop paper [18] that introduced SINVAD. It has been extended with the
following contributions:

• We have performed a large-scale human study to verify that the images generated by SINVAD are indeed realistic
and meaningful to human perception, evaluating 800 images with more than 500 human evaluators and 18,000
evaluations.
• We extend the existing results under different settings to verify that SINVAD can reliably perform, in particular
by performing experiments on the complex ImageNet-32 dataset of down-scaled real-world images.
• We perform a study of how different VAE architectures can influence image generation results.

The remainder of this paper is organized as follows. Section 2 introduces the related literature, providing background
to this paper. Section 3 presents nomenclature, and defines the problem of searching the space of realistic inputs in a
formal way. How SINVAD performs search in the realistic input space is subsequently explained. Section 4 presents the
research questions we aim to answer, with experiments that are described in Section 5. Section 6 presents threats to
validity, Section 7 provides limitations and future directions of our work, and Section 8 concludes.

2 BACKGROUND

2.1 Testing of DNNs

As emphasized in the introduction, the increasingly widespread use of DNNs in safety-critical domains has necessitated
testing and verification algorithms that handle them. Much work has focused on providing adequacy criteria, and
identifying which inputs are likely to reveal erroneous behavior. The first work in this line introduced Neuron
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Coverage [30], in which the activation status of each neuron in a DNN is measured. The authors go on to introduce
various test generation strategies that can hopefully increase the neuron coverage. While neuron coverage used a
single threshold over all neurons, Ma et al. [27] argue that a good test suite would elicit diverse activation values for
each neuron; this is measured using their kMNC measure. Moving away from pre-set threshold values, Kim et al. [20]
suggest using the activation distribution caused by the training dataset, and to use it to evaluate test suites. Specifically,
the argument is that a test suite should contain inputs of diverse levels of surprise, defined by the likelihood in the
training activation distribution. All such work is different from ours, as they primarily use the raw pixel space to search
over images. Meanwhile, Zhang et al. [43] introduce DeepRoad, in which style transfer techniques are used to generate
new test images. Their approach requires separate datasets for each situation to model. Another branch of work aims
to augment inputs based on a certain set of rules to enhance the training process. One example is Cubuk et al. [10]
who describe AutoAugment, which uses reinforcement learning and a set of image augmentation rules to discover
which set of image rules leads to the best validation performance. A key difficulty with applying AutoAugment is that
a (potentially large) network needs to be trained hundreds to thousands of times to yield good data augmentation
results. Furthermore, for AutoAugment, a set of manually defined image transformations must be provided, from which
a reinforcement learning algorithm will choose which transformations are most effective in improving neural network
performance, unlike SINVAD, which does not require such manual components.

More recently, Byun et al. [4, 5] propose a VAE-based framework to facilitate the testing of DNN systems. While
their work and ours share many components, there are key differences. Most importantly, while Byun et al. [5] focus on
generating tests using the VAE space and Byun et al. [4] focus on how we can use the characteristics of the vector space,
our focus is on how we can use the VAE latent space as a search space. For example, Byun et al. [5] use conditional VAEs
(like Song et al. [38]’s AC-GAN use) that generate images of a specific class; thus it is difficult to make semantically
confusing images as SINVAD does. Further, Riccio and Tonella [32] use Bezier curves to model image space and evaluate
how well neural networks perform. While they also attempt to model the realistic image space, we implement that
space with VAEs and they implement it with Bezier curves. We argue that SINVAD does not require complex rule-based
models of the underlying data, and hence has the potential to be more general - e.g. it would be difficult to model
complex datasets such as ImageNet with manually specified models, whereas SINVAD can operate on such datasets
with the appropriate selection of generative model.

In addition to the dynamic techniques introduced above, there are several methods that aim to verify properties of
neural networks. Katz et al. [19] introduce ReluPlex, which utilizes SMT solvers to provide theoretic guarantees for
DNN properties. Huan et al. [16] suggest a technique to prove that all images within an 𝜖-ball of a certain image are
classified in the same manner. More general discussion of DNN verification techniques can be found in Zhang et al. [42].

2.2 Difficulties of Input Search for DNNs

Among the greatest obstacles to DNN test generation is the semantic manifold problem [41]. In short, the problem
is due to the relatively miniscule valid input space when compared to the possible image space: if one samples an
image from random from the full image space, the probability that it will be a recognizable image of a 2, for example, is
exceedingly small. This issue is further exacerbated by the difficulty of defining a "boundary" of acceptable inputs in a
rule-based manner, making it difficult to use search-based techniques to find inputs with desirable properties. Then
how does existing work search for novel test inputs? By utilizing the metamorphic principle: most test generation work
starts from a seed image, and adds a certain perturbation that is assumed to keep the semantic meaning of the image as
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is [20, 30, 39, 43]. In SINVAD, we take a different path: by training and using a VAE that approximates the distribution
of realistic images, we aim to navigate the space of realistic images directly.

2.3 Generative Models

As universal function approximators, DNNs can be used to approximate distributions, i.e. act as generative models.
Generative models allow one to calculate the probability of each input, and further sample from the distribution. In our
case, we can use the sampling to generate realistic images. One example is Generative Adversarial Networks [14], in
which a generator network tries to generate samples as close to the target distribution as possible, while a discriminator
network tries to find the discrepancies between the generator-made distribution and the true distribution. Such a
process guides the generator to generate samples as close to the true distribution as possible. Variational Autoencoders
(VAEs) [21] maximize the evidence lower bound (ELBO), which is the lower bound of the odds of an image, to approximate
the target distribution. The family of deep generative models is too large to describe in full here; Foster [12] provides
many examples. For our purpose, any generative model with latent variables (e.g. GANs or VAEs) that can function as a
condensed search space may be used.

Select

Generate

E D

Search-based Optimization

Fig. 1. Diagram of SINVAD. SINVAD uses the VAE encoder (E) to encode images into a latent space (bars). Search-based optimization
is performed not on raw pixels, but on latent representations. A representation is transformed back to an image using the VAE decoder
(D). The use of VAE networks before and after keeps search within the subset of realistic images.

3 SINVAD: SEARCH-BASED INPUT SPACE NAVIGATION USING VAES

This section presents the formal definition of the search-based input generation problem for DNN and subsequently
introduces SINVAD.

3.1 Problem Statement

A common application of DNNs is as image classifiers. In such applications, a neural network 𝑁 acts as a function
that maps the space of images I = [0, 1]𝑐×𝑤×ℎ to a space representing the probability of each class P = {𝑣 ∈ [0, 1]𝑛 :∑𝑛
𝑖=1 𝑣𝑖 = 1}, where there are 𝑛 categories. Formally, the DNN is a mapping 𝑁𝑝 : I → P, and a categorical mapping

𝑁𝑐 (𝑖) = argmax𝑁𝑝 (𝑖) is derived from an image 𝑖 ∈ I.
In practice, the semantic meaning of most images is unclear, so the neural network is trained on a subset of images

from the space of realistic imagesD and maps to P. When we say ‘realistic images’, we mean that for any image inD, a
reasonable person could identify that the image would naturally be part of a certain dataset. While this definition is not
the most rigorous, generally there is a boundary ofD that people agree upon (see the human study results of Riccio and
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Tonella [32]), albeit being difficult to pin down and somewhat subjective. In test generation, this becomes a problem;
the space of all images of a certain resolution is usually much larger than the space of all such images that are withinD.
If one looks at the MNIST dataset for example, the space of grayscale 28 by 28 images is clearly larger than the space
of digit images, for most random grayscale images look more like static noise than recognizable numbers [41]. Then,
due to the vast size difference between I and D and the complexity of the neural networks, it is often easy to obtain
images that meet a certain criteria, but at the same time are not particularly interesting or meaningful. For example, it
is relatively easy to construct an image that resembles noise, but is classified with high confidence as a cheetah [28].
This points to an important factor regarding neural network robustness: in general, we are less interested in robustness
of the neural network over the entire image space, and are more curious of the robustness over the realistic image space

D. Test generation techniques for DNNs not appreciating this factor will likely generate pixel-level perturbations. To
emphasize, our concern in this paper is on the implications of when neural networks are released in the wild, e.g. in
what situations would there be a risk of failure? For such a goal, we believe that there is much benefit to identifying
and generating realistic test cases.

3.2 SINVAD

We propose to use DNN based generative models, such as VAEs or GANs, to solve this problem. A schema of our
approach SINVAD is provided in Figure 1. Generative models estimate the distribution of a provided dataset over the
space of all images I. In particular, VAEs effectively try to find a mapping between R𝑑 andD (where 𝑑 is the dimension
of the latent space); the encoder (𝐸 : D → R𝑑 ) maps from images to latent representations, and decoders (𝐷 : R𝑑 → D)
operate vice versa. By executing traditional search-based optimization algorithms, but within the latent representation
space, we can effectively restrict our search space to D, instead of the full image space I. Hence the result of search
will mostly be images that closely resemble true images from D. Note that since the VAE itself has only been trained
on a small sub-sample of D, i.e. the training set, it may or may not be a good mapping to/from the actual D. We thus
have to investigate the practical value of our approach empirically.

As for the search algorithm used, depending on the objective, we use either hill climbing or a genetic algorithm. In hill
climbing, we attempt to obtain images that have a target Surprise Adequacy [20]. In our hill climbing algorithm, SINVAD
adds a random value sampled from the standard normal distribution to a single element in the vector representation.
The concrete algorithm is described in Figure 2. Given S, a random sampling function, rep2img, a function that
transforms an image representation to an actual RGB image, and finally a fitness function, the algorithm performs
hill climbing and returns an image. In essence, a random neighbor is visited by modifying one element of the vector
image representation by adding noise 𝜖 ∼ 𝑁 (0, 1). The fitness of this neighbor is evaluated; if it has better fitness
than the original representation, the neighbor is selected. The sampling function S is either one that samples N(0, 1)
element-wise, or one that samples one of the test images, seen by neither the VAE nor the classifier.

Meanwhile, to construct images that look like one category, but are classified as a different category, as in adversarial
examples, we used the genetic algorithm, as it experimentally yielded smaller changes. Using the fitness function in
Equation 1 and starting from a seed image 𝑖0,

𝑓 (𝑖) =

∞ 𝑁𝑐 (𝑖) = 𝑁𝑐 (𝑖0)

|𝐸 (𝑖) − 𝐸 (𝑖0) | 𝑒𝑙𝑠𝑒
(1)
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Hill Climbing Algorithm
Input: sampling function S, representation to image function rep2img, fitness function fit
Output: optimized image
1: 𝑅 ← S()
2: 𝐼 ← rep2img(𝑅)
3: 𝑓 ← fit(𝐼 )
4: count← 0
5: while count < limit do
6: for 𝑖 = 1 to 𝑖 = dim(𝑅) do
7: 𝜖 ∼ 𝑁 (0, 1)
8: 𝑅′ ← 𝑅

9: 𝑅′ [𝑖] ← 𝑅 [𝑖] + 𝜖
10: 𝐼 ′ ← rep2img(𝑅′)
11: 𝑓 ′ ← fit(𝐼 ′)
12: if 𝑓 < 𝑓 ′ then
13: 𝑅 ← 𝑅′; 𝐼 ← 𝐼 ′; 𝑓 ← 𝑓 ′

14: end if
15: end for
16: end while
17: return 𝐼

Fig. 2. Hill-climbing algorithm used to generate images for Figure 5.

the genetic algorithm could lead to images that are semantically ambiguous. The upper case denotes the case in which
the new image’s classification has not changed; we do not want to accept such images. The lower case is when the
classification of the new image is different from the original image; in such cases we want the image to look as similar
to the original image as possible. Using the fitness function defined above, we employ a genetic algorithm to find images
that satisfy our criteria. The algorithm is described in Figure 3. The seed representation R is obtained by first sampling a
random image from the test dataset, and passing it through the VAE encoder to get the latent representation of the image.
The rep2img function is the VAE decoder, as was in the hill climbing case. In line 3, the initial population is constructed;
in our experiment, we simply sampled random vectors from 𝑁 (0, 𝐼dim(R)) and added them to R. Lines 6-9 describe the
population evaluation; lines 10-24 describe how the next generation’s population is constructed. Single-point crossover
is used (line 18); mutation is performed by adding a small noise vector on each genome (line 19). The dimensions
that have the most impact are iteratively identified, and mutations are only applied to those dimensions (lines 19-22).
Here elementCompare compares two vectors element-wise and returns 0 if they are different, 1 if they are equal (line
19), while we randomly choose which dimensions to reset to the original representation R (lines 21-22). We find this
significantly speeds up convergence. Individuals with smaller fitness are selected for the next generation.

3.3 Feasibility Study

Using the hill climbing and genetic optimization algorithms that we described, we first qualitatively demonstrate that
VAE-based optimizations yield more realistic images through qualitative analysis.

To contrast the results of using different image representations (i.e., whether to use the raw pixels or the VAE latent
vector), we first show interpolation results in two representations. Specifically, given two images, we interpolate over
both raw pixels and the latent space of SINVAD; specifically, we obtain raw pixel interpolations for a certain pixel [𝑖, 𝑗]
for images 𝑖0 and 𝑖1 through 𝑖𝑡 [𝑖, 𝑗] = (1 − 𝑡) × 𝑖0 [𝑖, 𝑗] + 𝑡 × 𝑖1 [𝑖, 𝑗], where 𝑡 is the degree of mixture between the two
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Genetic Algorithm
Input: seed representation R, representation to image function rep2img, fitness function fit
Output: optimized image
1: 𝐼 ← rep2img(𝑅)
2: prevBest← fit(𝐼 )
3: population← InitializePop(𝑅)
4: count← 0
5: while count < genNum do
6: popPhenotypes← map(rep2img, population)
7: popScores← map(fit, popPhenotypes)
8: bestIndividuals← top10(population, popScores)
9: currBest← best(popScores)
10: if prevBest = currBest then
11: mutSize← 0.7 ×mutSize
12: else
13: mutSize← 0.1
14: end if
15: children← []
16: for 𝑖 = 1 to 𝑖 = childNum do
17: parents← randomChoose(bestIndividuals, 2)
18: child← pointCrossover(parents)
19: diff← elementCompare(child, R)
20: child← diff · 𝑁 (®0, 𝐼dim(𝑅) ) + child
21: mask← Binomial(dim(𝑅))
22: child← mask · 𝑅 + (1 −𝑚𝑎𝑠𝑘) · 𝑐ℎ𝑖𝑙𝑑
23: Add child to children
24: end for
25: population← bestIndividuals + children
26: count← count + 1
27: end while
28: bestImage← best(popPhenotype, popScores)
29: return bestImage

Fig. 3. Genetic algorithm used to generate images for Figure 6.

images: for 𝑡 = 0, the image is the same as 𝑖0, while for 𝑡 = 1 vice versa. Meanwhile, VAE interpolated images for image
𝑖0 and 𝑖1 are obtained with: 𝑖𝑡 = 𝐷 ((1 − 𝑡) × 𝐸 (𝑖0) + 𝑡 × 𝐸 (𝑖1)). We compare these interpolated images side by side in
Figure 4. Note that the raw representation has no understanding of semantics, hence it mixes the images unnaturally.
On the other hand, SINVAD tries to naturally interpolate between the images, keeping intermediate images realistic.
This suggests that SINVAD can generate realistic images more consistently.

This difference manifests in optimization results as well. Specifically, using hill climbing we optimized images to
have a target surprise adequacy with different starting conditions, as in Figure 5. Images in Figure 5 (a, b) used ‘raw’
pixel representations, where the precursor representation 𝑟 has the same dimension as normal images. Meanwhile,
images from SINVAD-based optimization are presented in Figure 5 (c), and real test images are presented in (d). Notice
the contrast between Figure 5(a, b) and (c, d): while images using pixel search look like some noise has been added to an
image (or the image itself looks like noise), SINVAD-generated images and naturally occurring data images both look
Manuscript submitted to ACM
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VAE

Raw

t=0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Example of interpolation by SINVAD, done in the VAE latent space.

like natural digits. This qualitatively suggests that the representation used when optimizing images has a significant
impact on the quality of the results of the search algorithm.

(a) Random seed, pixel search (b) test seed, pixel search (c) Random seed, SINVAD (d) Test dataset images

Fig. 5. Images produced by optimization either at the pixel level (a, b) or using SINVAD (c). For comparison, real images sampled
from the MNIST test dataset are provided (d). Despite having the same fitness value, SINVAD-generated images resemble real dataset
images to a greater extent.

Finally, using the genetic algorithm, we could generate semantically ambiguous images that represented the edge
cases of classification, and which can thus play an important role when testing neural network classifiers, as shown in
Figure 6. Observe that while the images resemble digits, precisely which digit they are is slightly ambiguous. On the
other hand, raw pixel search does not yield realistic results as in Figure 5, reducing the utility in terms of analyzing and
reasoning about the network.

4 RESEARCH QUESTIONS

We evaluate SINVAD via the five research questions below.
RQ1. Human Perception: How confused are humans when SINVAD generated images are presented,

relative to other image generation techniques? To support our hypothesis that SINVAD restricts the search space
so that it resembles the true data distribution D, we perform a human study. In particular, we perform search using
both SINVAD and pixel-based methods to find images close to a trained neural network’s decision boundary. We then
ask human evaluators how much the image resembles the class on each side of the decision boundary; the difference
between these two scores indicates the level of evaluator confusion. The underlying assumption is that well-constructed
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Fig. 6. Ambiguous images generated through GA optimization using Eq. 1 as the fitness function.

search spaces resemblingD will generate images that are confusing to humans as well, while uninformed search spaces
will not, because when search is performed on unrestricted search spaces, optimization techniques find a way to fool
neural network classifiers without actually changing the semantics of the image; on the other hand, when search is
restricted to a well-constructed space that is similar to D, the only way to generate an image confusing to a neural
network classifier is to generate a semantically confusing image. For example, pixel-based search techniques would
mostly fool the neural network without changing the image semantics, while SINVAD, which search space resembles
D, would generate images that are recognizable but confusing.

RQ2. Boundary Testing: How close are SINVAD generated images to the decision boundaries of neural
networks, as measured by class probability similarity? We employ the classifier probabilities of the two most
likely classes of an input to confirm that SINVAD is capable of generating images close to the decision boundary of a
neural network. If the probabilities of the top two classes have little difference, then an image can be rightfully said to
be on or near the decision boundary, as the classifier is not ‘confidently’ declaring that an image is of a certain class; on
the other hand, if the class probabilities are significantly different, the image is likely far from the decision boundary.
We explore this property to check whether SINVAD can indeed generate images on the boundary of neural networks,
enabling boundary testing.

RQ3. Problem Detection: How much more quickly does SINVAD identify problems in training data when
compared to dataset-provided test data? We find pairs of categories that a given DNN image classifier is potentially
vulnerable to using the semantic approximation that SINVAD provides. For example, given an image classifier, is it
more prone to errors between categories 0 and 1, or 4 and 9? By identifying these ‘weak spots’ of a neural network, a
developer could perform next steps, such as gathering more data or training the classifier further. To find these pairs,
we use SINVAD and attempt to find images that look like class A but are classified as class B. The success rate of such
an operation differs based on the (A, B) pair, and we suggest that this success rate is related to the risk of a classifier
making this type of error. We experimentally verify this point by generating a ‘polluted’ training dataset in which some
images are purposely mislabeled, and check if SINVAD finds these issues more quickly than the test error rate.

RQ4. VAE Architecture: How does the architecture of the VAE influence input realism?Meanwhile, the VAE
architecture can have significant impact on the realism of an input. We investigate the impact that two architectural
factors have on the output quality: the size of the latent space, 𝑑 , and the choice of VAE layer (fully connected or
convolutional). As a means of evaluation, we focus on how well a VAE can reconstruct an image. Reconstruction
results are evaluated both qualitatively (via showing actual output images) as well as quantitatively, by measuring
classifier accuracy on reconstructed images. While we could not retrain the VDVAE models used for the generation of
ImageNet-32 images due to their high training cost (requiring up to 99GB of GPU memory [15]), we compare them
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with linear VAEs to suggest and compare VAE architectures. We hope to provide guidelines on how to construct VAEs
for SINVAD via this research question.

5 EMPIRICAL ANALYSIS

5.1 Experimental Setup

Four datasets are used throughout the paper. MNIST [26] is a grayscale digit image dataset, each 28 × 28 pixels large.
There are 50,000 training, 10,000 validation, and 10,000 test images, but in this paper all training and validation images
are used for training. Two closely related datasets are also used: Extended MNIST [9] (EMNIST) for alphabet letters,
and Fashion-MNIST [40] (FMNIST) for various fashion items. Both have the same image size and a similar data size to
MNIST. ImageNet-32 is a widely-used dataset containing RGB real-world images derived from the ImageNet [11] image
classification benchmark, which has 1,000 categories, with images downscaled to a 32 × 32 pixel size from the original
ImageNet data. There are 1,281,167 training images and 50,000 test images.

For MNIST, a VAE that has one hidden layer of size 1,600 for both encoder and decoder structures is used. The
encoding vector size is 400. For our VAE architecture experiment in RQ4, we also employ a network with 8 hidden
convolutional layers and encoding vector size 800 in both the encoder and decoder. VAEs for both datasets are trained
for 50 epochs, which was sufficient for training to convergence. Finally, we use a pre-trained Very-Deep VAE (VDVAE)
model [15] for the ImageNet-32 dataset that we use, as the ImageNet dataset is structurally complex and consequently
requires significant more complexity to model using a VAE.

Regarding the neural networks to emulate the DNNs under test, a convolutional neural network with 6 hidden
layers is used for MNIST, EMNIST, and FMNIST. Meanwhile, we use the AlexNet [23] architecture as a classifier for the
ImageNet-32 dataset. The likelihood-based surprise adequacy (LSA) metric is calculated using the activation traces of
the penultimate layer, i.e. the input vector to the final neural network layer which produces softmax logits.

SINVAD is implemented in Python version 3.6, using PyTorch version 1.5.1 to implement all neural networks.
Code and model data are available from https://github.com/coinse/SINVAD. Any experiment requiring computational
resources was done on machines with Intel Core i7 3.4GHz CPU, 32GB RAM, and a NVIDIA Titan X GPU.

5.2 Human Perception (RQ1)

It is important to thoroughly investigate whether SINVAD can actually induce a search space that resembles the realistic
image distribution. To this end, we perform a quantitative human study to verify that SINVAD’s search space resembles
the realistic image space more than pixel-based methods. To do so, we evaluate how much each image generation
technique is confusing to human evaluators, instead of directly asking users how realistic an image is.

The rationale behind this experiment setting is as follows. When one performs search over the unrestricted pixel
space (or for that matter, a space that does not resemble D), the search process simply exploits the inner workings of a
neural network to generate an image that does not resemble any image in D and hence looks semantically unchanged
(i.e., is clearly the same class identity with some noise added), while the subject neural network will classify it incorrectly.
Such problems have been explored by Nguyen et al. [28], who demonstrate that unrestricted optimization can yield
images meaningless to humans. Meanwhile, a search space that is closely tied to the underlying data distributionD will
yield images that are confusing to humans as well, as the search process cannot simply find shortcuts to fool the neural
network, assuming the neural network performs well enough on images fromD. Determining whether a technique can
generate a recognizable image that is also confusing to humans also testifies to the robustness of the search space: the
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Fig. 7. Screenshot of a question posed to the human evaluators.

fact that a technique can generate such realistic confusing images that are clearly not in the original dataset suggests
that the technique is a robust representation of the realistic data distribution D and not simply memorizing images. In
turn, such a technique should be able to provide test cases that data-agnostic pixel-based techniques could not easily
find.
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Fig. 8. Diagram of the human study performed.

A diagram explaining how the human study was performed is presented in Figure 8. The images used in the survey
are constructed as follows. First, we sample a seed image (Figure 8 (a)). The original class of this image is called the
source class (7 for the example in Figure 8 (a)). Next, we use SINVAD and the fitness function from Eq. 1 to generate
an image that is on the decision boundary of a certain trained network. After doing so, the image will have a most
probable class and a second most probable class based on the confidence of the classifier; we keep the record of these
(the final optimized image and the two most probable categories (7 and 9) are depicted in Figure 8 (b)). Among these
two, the one that was not the source class is called the target class. We now employ two adversarial attack techniques,
FGSM [13] and C&W [6], that start from the same seed image as SINVAD and generate images that are on the decision
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boundary of the same source and target classes, as shown in Figure 8 (c). We repeat this process 100 times to obtain 400
images overall (Figure 8 (c)). Each image is shown to a human evaluator, and the human will evaluate how much each
image resembles the source and target class, respectively, answering on a Likert scale from one to five (Figure 8 (e)). An
example screenshot of the question form, as shown to users, is provided in Figure 7. Each participant was asked to
evaluate a total of 33 images, which were randomly assigned. Specifically, we took 10 random images from SINVAD,
FGSM, and C&W, while 3 test images are used to verify that the workers understood the task.

We use two datasets, MNIST and EMNIST, for these experiments, as it is relatively easy from the human perspective
to imagine confusing images for these datasets, while it is difficult to grasp what constitutes confusing images in some
other datasets (if we think of FashionMNIST for example, it is difficult to think of an image that is plausibly both a
sneaker and a t-shirt). 300 participants were recruited, and combined with the fact that each participant evaluates 3
real images and 30 potentially confusing images, each real image was evaluated about 10 times on average, while the
confusing images were evaluated 30 times on average. The survey was performed via the Amazon MTurk platform1.
Our human study was approved to be exempt from review by KAIST Institutional Review Board as it poses minimal
risk for participants (IRB-21-208).

Images that are perceptually ‘in between’ the classes, and thus confusing, should have little absolute difference in
their user-rated resemblance. We call the maximum score minus the absolute difference in the ratings of the categories
the confusion score:

Confusion score = 5 − |target score − source score| (2)

Using the images provided in Figure 8 (a-c) as examples, we show how the confusion score is calculated. A user
presented with the sample image from Figure 8 (a) will be asked whether this image looks like a 7 or a 9. Suppose
the user gave a score of five to class 7 and a score of one to class 9. The confusion score is then 5 − |5 − 1| = 1, its
lowest possible value - for the participant was sure that the image was a 7 and not a 9. On the other hand, suppose
the participant saw the image in Figure 8 (b) and gave a score of three to class 7 and a score of three to class 9. The
confusion score is then 5 − |3 − 3| = 5, its highest value, as the participant was not sure of the image’s identity.

Note that confusion score measures the interclass confusion, as opposed to semantic confusion, i.e. it measures how
confusing an image is between two valid categories, and is not directly measuring whether an image is within the realm
of semantic validity or not.

Figure 9 shows the distribution of the average confusion score for the 100 evaluated images of each technique. As
these results show, SINVAD’s confusion score distribution is shifted more toward the confusing side than any other
image generation technique. This shows SINVAD’s search space is more closely coupled with human perception of valid
images when compared to other techniques. Statistical tests also back this point: by performing the Welch’s test on the
confusion score data, we could find that the difference with the second most confusing compared approach (FGSM)
was statistically significant for both datasets (𝑝 < 0.001). Measuring the effect size of using SINVAD over FGSM using
Cliff’s delta, we found an effect size of 0.259 and 0.297 for MNIST and EMNIST, respectively, corresponding to a small
to medium effect size [34]. Ultimately, these results demonstrate that SINVAD is indeed providing a better alternative
to the pixel-based search space.

Meanwhile, we analyze how much influence the seed image has on human perception of the appropriate category.
Recall that we started with the same seed image for SINVAD, FGSM, and C&W to generate images that are on the
decision boundary of a given neural network. A method that indeed well models the perceptual space of the data, when

1https://www.mturk.com/
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Fig. 9. Confusion score distribution by image generation method.
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Fig. 10. Boxplots for the target score subtracted from the source score. A high value means that the image significantly resembles the
original label; a lower value means that the image more closely resembles the target label.

making confusing images, would not be biased toward either the seed image category or the target category. On the
other hand, a method that has a similar average confusion score might still only be inching toward the semantics of a
target class, mostly retaining the characteristics of the seed image. To investigate this issue, for each generated image,
we subtract the target image score from the source image score. The closer the average value of this is to zero, the closer
the image is to be truly perceptually confusing.

As the results depicted in Figure 10 show, SINVAD can generate images that are less likely to be skewed toward the
seed image that it started with. Again, this shows that SINVAD indeed defines a search space that is closer to human
perception, generating images that are more perceptually balanced than other methods.

It is also illuminating to compare how confusing images from different techniques are when they started with the
same seed image. Using the confusion score we compare the evaluation results of images starting from the same seed
Manuscript submitted to ACM
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Fig. 11. For each quadruple of images starting from the same seed image (Figure 8(a-c)), a colored square is presented signifying
which method’s image was the most confusing within that quadruple. Boldly colored/outlined results signify that the difference in
confusion was statistically significant.

(a) MNIST (b) EMNIST

Fig. 12. Example real images rated as ‘most confusing’.

Dataset Test C&W FGSM SINVAD

MNIST 6.24 6.24 6.15 6.12
EMNIST 6.44 6.49 6.38 6.55

Table 1. The average acceptability of images for each method.

image for each of the 100 seed images. The results are presented in Figure 11. The dotted red squares represent seed
images in which SINVAD was the most confusing method; as one can see, controlling for seed images, we find that
SINVAD was again the most confusing method. While some real images were rated as most confusing, this is not due to
a flaw in the experiment, as some of these real images had an actually dubious identity, as presented in Figure 12. To
establish the significance of these results, we performed a two-sided Welch’s unequal variances t-test on the confusion
score results of each technique with a power of 0.05 and colored them darker in Figure 11. While the standard student’s
t-test assumes the sample means of each population would have equal variance, in our case (i) the number of evaluations
for each image in the sample could differ, and (ii) we had no reason to think a priori the evaluation variance would be
similar between methods: hence our use of Welch’s test, which is suggested in these circumstances. Note that in over
half of the cases, the difference in the confusion score between categories was statistically significant.
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Dataset Test C&W FGSM SINVAD

MNIST 6.13 6.69 6.90 7.20
EMNIST 6.64 6.93 7.19 7.35

Table 2. The average time in seconds respondents took to evaluate an image from each method.

One may argue that using the confusion score alone would be a misleading measure. For example, simply showing
static noise-like images would get a low rating for both classes, and thus the confusion score would be high. This can
be mitigated by looking at the sum of the responses to the questions instead of just looking at the difference between
the scores: we call this the acceptability of the image. The acceptability of all responses, averaged over each method, is
presented in Table 1. The results show that SINVAD is comparable to other techniques and indeed real test images
when it comes to image acceptability, demonstrating that SINVAD is not just making meaningless images, but rather
is making meaningful images that are more confusing than baseline techniques while remaining semantically valid.
Meanwhile, the difference between SINVAD and real images in terms of acceptability was not statistically significant
under Welch’s test in both datasets (𝑝 > 0.05).

Finally, we present indirect evidence that human evaluators found SINVAD’s images confusing: the image evaluation
time. One can assume that for confusing images, participants would generally take longer to answer, as they are
presented with a difficult situation. The average time it took to evaluate images from each generation technique is
presented in Table 2. SINVAD, on average, took more time than any other method to evaluate, providing indirect
evidence that SINVAD could generate more confusing images. Statistical tests indicate that for MNIST, there is a
statistically significant difference between SINVAD and FGSM processing time (𝑝 < 0.05), with an effect size of 0.045.
On the other hand, for the EMNIST dataset, while SINVAD-generated images took longer to evaluate on average, the
difference is no longer statistically significant (𝑝 > 0.05), and the effect size is lesser than that for MNIST (0.036). While
it is difficult to clearly ascertain the reason behind this, we note that the EMNIST dataset is slightly more ambiguous
than MNIST (note the number of real images labeled most confusing is greater in EMNIST), which causes all derivative
images to be confusing and thus reduces their overall difference.

To conclude, the results of the human studies show both directly and indirectly that the images that SINVAD generates
are perceptually the most confusing to humans. This in turn implies that the search space that SINVAD induces is more
closely aligned to human perception than the pixel search space, supporting the conjecture that existing test generation
techniques would benefit from searching in this space, rather than operating in the pixel space.

Answer to RQ1: A human study comparing human judgment on images reveals that SINVAD generates perceptually
confusing images; SINVAD-generated images were evaluated as most confusing in 55% and 58% MNIST and EMNIST
evaluations, respectively. This suggests that SINVAD is indeed searching using a search space that is aligned to
human understanding of what constitutes a valid image.

5.3 Boundary Testing (RQ2)

The objective of the function provided in Eq. 1 was to obtain images close to the decision boundary of corresponding
neural networks. To verify whether this is actually the case, we compare the prediction probabilities of the top two most
likely classes. If an image is actually at the decision boundary, the final prediction probabilities should be similar; in
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Dataset SINVAD Test set p-value Cliff’s Delta

MNIST 0.0638 0.9957 𝑝 < 10−4 -0.98
FashionMNIST 0.1330 0.9186 𝑝 < 10−4 -0.92
ImageNet-32 0.0423 0.1953 𝑝 < 10−4 -0.56

Table 3. A comparison of the difference in top-two category probabilities between provided test images and SINVAD-generated
‘boundary’ images. The SINVAD-generated images have smaller differences, suggesting that they are closer to the decision boundary.

contrast, an image that the classifier deems very likely to be in one specific class is likely not at the decision boundary
of the classifier. Using the objective function in Eq. 1, we first sample 10,000 images for MNIST and FashionMNIST
datasets, and 200 for ImageNet, as inference takes a significantly longer time. Subsequently, we measure the prediction
variability using the following metric:

𝑈 (𝑥∗) = max(𝑦∗) −max(𝑦∗\{max(𝑦∗)}) (3)

where 𝑦∗ is the set of the network’s confidence values for each class on image 𝑥∗. We use this metric as it continuously
measures how close an image is to the decision boundary of a neural network; when the difference is smaller, the image
is closer to the decision boundary. Table 3 shows the comparison results for this experiment, conducted on MNIST,
FMNIST, and the ImageNet-32 dataset.

As the table shows, the boundary images cause the probabilities of the top two classes to be more similar than
when the same neural network is exposed to the default test images of each dataset. In turn, this shows that the
SINVAD-generated images are close to the neural network’s decision boundary itself. It is noteworthy that the images
in the ImageNet-32 dataset are in general closer to the decision boundary. This is likely due to the greater complexity of
the ImageNet dataset, as well as the greater number of categories (1,000). Consequently, the difference in boundary
proximity between test set images and SINVAD-generated images is lesser than in the simpler MNIST-based datasets.
Nonetheless, SINVAD can consistently generate images that are on the boundary of this more complex dataset as well.
When using Welch’s t-test to determine the significance of these differences, for all three datasets the difference was
statistically significant (𝑝 < 10−4). The effect size was large as well: for the ImageNet dataset, the difference was a
large -0.56 (the minus indicating that SINVAD generated images that have a smaller probability difference between
the top-two predictions); for MNIST and FashionMNIST, the effect size was even more substantial at -0.98 and -0.92,
respectively.

Using the PCA dimensionality reduction technique, we can also qualitatively assess that the images that SINVAD
makes are close to the decision boundary. We first gather the activation vectors of the test images of a chosen class
pair. We use PCA to generate a projection that maximizes the projected variance of these vectors. Next, we obtain the
activation vectors of the images that are between the selected class pair, and use the same PCA projection to see where
the intermediate images are with respect to the test images. The projection results of a few example pairs are presented
in Figure 13. Observe that the boundary images are indeed between the two clusters of each class in all cases, implying
that the images that SINVAD generated are indeed nearby the decision boundary of the neural network.
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(a) Images on 1 and 6. (b) Images on 2 and 8. (c) Images on 3 and 5. (d) Images on 4 and 9.

Fig. 13. PCA-projected location of SINVAD-generated boundary images in the activation vector space. Red and green dots are vectors
of each image class, while blue dots are SINVAD-generated boundary images.

Answer to RQ2: The images generated by SINVAD were closer to the decision boundaries of DNNs than default
test set images by a statistically significant degree (𝑝 < 10−4). Thus, SINVAD can indeed generate images that are
difficult for neural networks to classify by being on their decision boundary.

5.4 Problem Detection (RQ3)

To answer RQ3, we use SINVAD to identify pairs of classes that a given neural network finds particularly difficult to
distinguish. We design a targeted fitness function shown in Equation 4, where 𝑖0 is a seed image and 𝑡 is a target class
different from that of 𝑖0.

𝑓 (𝑖) =

∞ if 𝑁𝑐 (𝑖) ≠ 𝑡

|𝐸 (𝑖) − 𝐸 (𝑖0) | otherwise
(4)

The results show that this optimization quite often fails to find an image of target class 𝑡 starting from the seed
image 𝑖0, which is what we actually anticipate in this research question. Our focus is not on whether it succeeds or
fails, but how often it succeeds, i.e., the proportions of successes. We posit that attacks on potentially confusing image
pairs have a higher success rate, while image pairs that are clearly distinguished have a lower success rate. Concretely,
we define a GA class escape rate as the number of times an attack successfully finds a solution that causes the DNN to
classify an image as the target class divided by the number of all attempts. We can compare this to the targeted error
rate which is the number of times an image in the dataset test set with the source class is classified as the target class.
The change in GA class escape cases for MNIST is more pronounced than the targeted error cases of the test cases, as is
showcased in Figure 14, which shows the number of successful “escape attempts” by the optimization technique out of
1000 attempts. It juxtaposes the confusion matrix using provided test cases and the GA class escape count for a simple
neural network classifier.

To show the effectiveness of the GA class escape rate in detecting weaknesses of a given neural network, target
labels are artificially mixed during the training phase according to a proportion 𝛼 . For each 𝛼 , a corresponding neural
network is trained. For each such neural network, we measure the error rate between the mixed pair and the GA class
escape rate. For the MNIST dataset, data between three pairs that are usually not confused per Figure 14(b) (Specifically,
(0, 1), (2, 5), and (6, 7)) are mixed with varying 𝛼s; we use a similar procedure to identify pairs to mix in the ImageNet-32
dataset, namely (spider, Siamese cat), (jellyfish, maze), and (airliner, dog). The detection rate is defined as follows: for the
SINVAD-led method, we calculate the success rate when there was no mixture 𝑠0. For the success rate at mixture level 𝛼
Manuscript submitted to ACM



Deceiving Humans and Machines Alike: Test Input Generation for DNNs 19

0 2 4 6 8
Classified As...

0

2

4

6

8

Is.
..

978

0

2

0

0

1

2

0

1

0

0

1130

1

0

0

0

1

3

0

0

0

0

1025

1

1

0

1

4

1

0

0

3

1

1007

0

4

0

1

3

4

0

0

1

0

971

0

2

0

0

6

0

0

0

2

0

883

2

0

0

4

1

1

0

0

2

2

950

0

1

0

1

0

2

0

0

1

0

1019

0

2

0

1

0

0

1

0

0

0

967

4

0

0

0

0

7

1

0

1

1

989

(a)

0 2 4 6 8
Classified As...

0

2

4

6

8

Lo
ok

s l
ik

e.
..

1000

172

541

501

492

696

803

471

500

525

182

1000

667

660

585

463

700

607

634

543

788

893

1000

755

797

484

843

705

922

518

805

925

947

1000

674

974

615

915

987

937

578

607

451

337

1000

474

843

605

656

975

879

514

405

872

667

1000

803

508

881

647

861

685

620

365

697

714

1000

166

663

585

785

825

671

630

921

594

375

1000

712

980

672

776

602

563

664

764

695

424

999

768

745

557

436

491

940

668

647

847

831

1000

(b)

Fig. 14. Comparison between (a) the error matrix of the provided MNIST test set and (b) the number of successful optimizations of
the GA algorithm out of 1000 attempts. Note that the differences are more pronounced in the GA algorithm’s matrix.

𝑠𝛼 , the detection rate is defined as 𝑠𝛼 − 𝑠0. Meanwhile, the detection rate for test accuracy is defined as errors
number of images .

The ensuing detection rate results are presented in Figure 15.
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Fig. 15. Performance change when labels are mixed. GA class escape rate increases more rapidly than error rate when labels are
mixed.

As evident from the figure, SINVAD-led detection rate has a tighter correlation relationship with the gradual mixing
of labels in both the MNIST and ImageNet datasets; default test cases only pick up this change when labels have been
polluted a great deal. This shows the effectiveness of SINVAD-generated test cases in finding potential flaws in neural
networks. Further inspection reveals that while specific scale in escape rate may differ by class pair, the pattern in
which escape rate is more sensitive to polluted data than usual test accuracy is clear. This is not just an issue of the
detection rates being at a different scale; the average Pearson correlation coefficient for the MNIST dataset between
SINVAD-led detection rate and 𝛼 at the earlier stages of up to 𝛼 ≤ 0.1 is 0.877, while the correlation between test error
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rate is 0.525; for the ImageNet-32 dataset, SINVAD-led detection had a correlation of 0.829, while test error rate had a
correlation of 0.454. Test error rate only catches up when the dataset is extremely polluted (𝛼 ≥ 0.2), after which the
correlations between SINVAD-led detection rate and test error rate and 𝛼 become similar (in MNIST, SINVAD’s 0.977 to
test error rate’s 0.952; in ImageNet-32, SINVAD’s 0.911 to test error rate’s 0.930).

One can imagine this property being used in many contexts; for example, when there are many categories and it is
difficult to think of all potentially confusing cases, one can use SINVAD to identify which category pairs are particularly
at risk, and verify whether there may be any safety-critical confusions in each case. As such, we can conclude through
this study that SINVAD can indeed be useful in testing and can reveal important properties of neural networks under
test.
Answer to RQ3: Using images generated from SINVAD, problems in the network caused by inaccuracies of training
data labels could be more consistently detected in weaker (𝑎𝑙𝑝ℎ𝑎 ≤ 0.1) levels of pollution, as indicated by the
correlation (0.877 for SINVAD versus 0.525 for test images in MNIST). This highlights the potential of SINVAD to
identify problems in neural networks.

5.5 VAE Architecture (RQ4)

To answer RQ4, we evaluate the output quality of VAEs when the dimension 𝑑 of the latent space or the layer type (fully
connected or convolutional) is changed, we consider the reconstruction performance of different VAEs. We first present
qualitative reconstruction results in Figure 16, with (a) and (b) being images from the MNIST dataset, while (c) and
(d) are from the FashionMNIST dataset. For typical images, the VAEs will usually successfully reconstruct the image
successfully even with very small latent spaces, as can be seen in Figure 16 (a) and (c). On the other hand, for atypical
images, VAEs with smaller latent spaces struggle to capture the characteristics of the image. For example, in Figure 16
(b), the original image is a 7, but VAEs with smaller latent spaces reconstruct it as a 3 (Linear-1), 9 (Conv.-1), or 4
(Linear-2). However, we do not find a significant quality difference between linear and convolutional VAEs qualitatively.
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Original z=1 z=4 z=10 z=40 z=100 z=400 z=1000 z=2000

Linear
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Fig. 16. Reconstruction examples by VAE architecture and latent dimension size.

These qualitative observations are further validated by our quantitative results, in which we evaluate how often a
DNN classifier could recognize an image after the VAE reconstructs it from the latent space, in Figure 17. At smaller
latent space sizes, VAEs fail to effectively reconstruct images, and consequently the classifier accuracy drops significantly.
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As the latent space becomes larger, VAEs can capture more details of the image, and consequently reconstruction
accuracy increases and plateaus, until the dimension of the VAE becomes larger than the dimension of the image
itself (𝑑 > 784), at which point the reconstruction accuracy starts to drop. It is worth noting that smaller latent spaces
may have benefits, as computation is quicker on smaller spaces and they are less likely to suffer from the curse of
dimensionality [2]. Thus, provided reconstruction accuracy has plateaued, it may be advantageous to use VAEs with
low-dimensional latent spaces when exploring the space with SINVAD. Meanwhile, we note that linear VAEs were
slightly better at reconstructing images than convolutional VAEs for these datasets.
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Fig. 17. Classifier accuracy on original test set and a ‘reconstructed’ test set that went through the VAE.

However, for more complex datasets, different VAE architectures can lead to substantially different results. While
we could not perform similar retraining experiments with the VDVAE architecture due to its high training cost, on
the ImageNet-32 dataset, we find that the VDVAE architecture that we used for our experiments leads to qualitatively
superior reconstruction results (Figure 18). In addition, when evaluating the accuracy of our 10-class ImageNet classifier
from RQ3, we find that its accuracy on the original test images was 67.4%, while the reconstructed image accuracy using
VDVAE and linear VAEs was 59.5% and 32.6%, respectively. Thus, we can conclude that for more complex datasets,
using more advanced and complex VAE architectures is recommended.

spider cat jellyfish dog airliner fish newt ant maze stingray

Original

VDVAE

Linear

Fig. 18. Reconstruction of the ImageNet-32 dataset using linear VAE and VDVAE architectures.
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Answer to RQ4: For simpler image datasets like MNIST, it is sufficient to use simple VAE architectures consisting
of fully connected layers. As long as the latent vector size is not excessively small (𝑑 < 10), VAEs appear robust
to different latent vector space sizes as well - reconstruction accuracy did not differ by more than 10%. For more
complex datasets like ImageNet-32, the use of complex VAE architectures that can sufficiently model the inputs,
such as the VDVAE architecture, is recommended.

6 THREATS TO VALIDITY

Internal validity is threatened when there are alternative factors that could explain our experimental results. One
possible threat to our feasibility study is that optimization over raw pixels is perhaps not the best representation of all
images. While this is possible, to construct better representations of images that incorporate global structures, one may
need increasingly complex models, which may end up to being similar to search in the VAE latent space eventually. The
human study results in RQ1 may be due to individual evaluator perception difference or mistakes. To mitigate such
concerns, we performed the study on a large number of participants (ca. 300 for each dataset). The results presented in
RQ2 and RQ3 are based on stochastic experiments; to ensure that these results are not from pure chance, we ran the
corresponding experiments over a large number of images (𝑛 ≥ 100).

External validity is threatened when the findings of a study may not generalize. In this work, we used a fixed number
of neural network architectures for convenience; whether the results presented in this work will generalize to other
neural networks is a question that requires further research. Meanwhile, the datasets used in this study were chosen as
it was easier to discern the semantics of them, against datasets with a large number of categories that may be confusing
to untrained humans. The results of SINVAD on other datasets must be verified with further experimentation.

7 DISCUSSION

7.1 Limitations

While SINVAD has demonstrated its capability to generate tests and help understand/diagnose the behavior of neural
networks, it does not come without its own limitations. For one, there is the risk that SINVAD may be sensitive to
the particular architectural details of the underlying VAE. As shown in RQ4, SINVAD is resilient to different values of
hyperparameters such as the dimensionality of the latent layer. Nonetheless, as we recommend in RQ4, one may try
changing the VAE architecture depending on the complexity of the underlying data. A related limitation is the capacity
of the VAE; our experience indicates that as more complex datasets must be modeled, more complex VAE architectures
must be used. In our paper, we used multi-layer perceptron-based simple VAEs for the simpler MNIST-related datasets,
while we used more complex VDVAE architectures for the more complex datasets (ImageNet-32). As complex VAEs
often are more expensive to train, it may take some time to find the appropriate architecture for a target dataset.

As VAEs must be trained and thus learn from a given dataset, they may reflect any bias or problem that the original
dataset may have. For example, if a face recognition dataset has only a small proportion of faces from a certain ethnicity
or gender, the VAE will reflect that distribution, and only rarely make such images. As such, it may be difficult to use
SINVAD to identify such fairness issues. Nonetheless, there is a wide field of literature that deals with this issue [22],
and we believe SINVAD can provide a complementary role with these techniques.
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7.2 Future Directions

While our work focuses on DNNs that classify images, future work could potentially explore different modalities and
different generative models. The generative model used in our work, Variational Autoencoders, are also capable of
modeling non-image data such as text [33]. Indeed, work that uses VAEs in the context of multi-modal datasets [35] or
test suites [31] have also been proposed. As such, a promising venue of future work would be to investigate whether
performing search on generative models that induce a latent space is a general method for synthesizing meaningful
software input and data, as other and more powerful generative models are introduced they can also be used. Extending
further, one could investigate how SINVAD could be used to test non-DNN machine learning techniques. As long as
the fitness function we use in our search is agnostic to the model under test (as was generally the case in our studies),
i.e. the results do not rely on internal computations of the model, our method should be able to generalize without
modification.

While we have demonstrated the ability to make confusing inputs (RQ1), the VAEs we experimented with are not
producing labeled inputs. That is, we cannot directly ask the model to produce an image of a certain label. However,
there are different VAE architectures that can tackle this problem, such as conditional variational autoencoders [37],
and such architectures could be applied to SINVAD depending on the specification of the problem. Such an ability could
lead to other interesting ways of probing the capabilities of neural networks.

8 CONCLUSION

This paper introduces SINVAD, a technique that uses generative models to focus the search for images so that more
realistic tests can be generated. Our qualitative analysis and quantitative human study verify that the space induced by
our method is indeed similar to human perception of acceptable input space for neural networks.

Along with the results of the human study, our quantitative and qualitative experiments suggest that SINVAD is
capable of generating inputs that are more likely to provide guidance to DNN developers under a variety of testing
scenarios. Specifically, we also show that SINVAD can find images close to decision boundaries, which can be used for
boundary value testing and for diagnosing whether the boundary is actually where it is expected to be; experiments
also show that SINVAD is capable of providing unique insights into the behavior of DNNs by providing interpretable
results through targeted class escape rate analysis. Finally, we experiment with VAEs of different architectures, and
provide a few guidelines on how to select the appropriate VAE architecture for a given domain.

In summary, we believe that the shifting of focus from the low-level, “syntactic”, here pixel-level, perturbations
to semantically meaningful changes that search coupled with SINVAD allows can benefit many interesting software
engineering and testing applications.
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