
A Bayesian Framework for Automated Debugging
Sungmin Kang∗

sungmin.kang@kaist.ac.kr
KAIST

Daejeon, South Korea

Wonkeun Choi∗
anders@kaist.ac.kr

KAIST
Daejeon, South Korea

Shin Yoo
shin.yoo@kaist.ac.kr

KAIST
Daejeon, South Korea

ABSTRACT
Debugging takes up a significant portion of developer time. As a re-
sult, automated debugging techniques including Fault Localization
(FL) and Automated Program Repair (APR) have garnered signifi-
cant attention due to their potential to aid developers in debugging
tasks. With the recent advance in techniques that treat the two
tasks as closely coupled, such as Unified Debugging, a framework
to formally express these two tasks together would heighten our
understanding of automated debugging and provide a way to for-
mally analyze techniques and approaches. To this end, we propose
a Bayesian framework of understanding automated debugging. We
find that the Bayesian framework, along with a concrete statement
of the objective of automated debugging, can recover maximal fault
localization formulae from prior work, as well as analyze existing
APR techniques and their underlying assumptions. As a means
of empirically demonstrating our framework, we further propose
BAPP, a Bayesian Patch Prioritization technique that incorporates
intermediate program values to analyze likely patch locations and
repair actions, with its core equations being derived by our Bayesian
framework.We find that incorporating program values allows BAPP
to identify correct patches more precisely: the rankings produced
by BAPP reduced the number of required patch evaluations by 68%
and consequently reduced the repair time by 34 minutes on average.
Further, our Bayesian framework suggests a number of changes to
the way fault localization information is used in program repair,
which we validate is useful for BAPP. These results highlight the
potential of value-cognizant automated debugging techniques, and
further verifies our theoretical framework.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement.

KEYWORDS
automated program repair, fault localization, automated debugging,
bayesian statistics

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598103

ACM Reference Format:
Sungmin Kang, Wonkeun Choi, and Shin Yoo. 2023. A Bayesian Framework
for Automated Debugging. In Proceedings of the 32nd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA ’23), July
17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3597926.3598103

1 INTRODUCTION
Debugging plays a crucial role in the development process, as it is
difficult to write a correct program on the first attempt, particularly
when the program is large. As a result, significant resources are
spent on debugging: Tassey notes that manual debugging can be
tedious and demanding [33]. To aid developers in the debugging
process, automated debugging tasks such as Fault Localization
(FL) [10] or Automated Program Repair (APR) [15] were proposed to
reduce developer burden when debugging issues. These techniques
have matured enough to be applied in corporations and actively
help developers [12, 23].

While FL and APR have been studied as separate research topics,
they are in fact closely coupled activities. Most APR techniques
require the guidance of an FL technique so that they can focus
their repair efforts in specific locations within the program [18].
Some of the existing Mutation-Based Fault Localization (MBFL)
techniques rely on discovering partial fixes to localize faults [9,
26]. More recently, Unified Debugging [5, 21] uses information
from APR to refine and enhance FL accuracy. These efforts raise
the following question: can we fuse FL and APR under a single
framework to express them using a common language, and to derive
future techniques?

This paper presents a novel Bayesian framework of automated
debugging that incorporates both FL and APR. We posit that the
purpose of automated debugging techniques is ultimately to jointly
infer the likely location and repair action for a fix, and suggest that,
by using Bayes’ theorem, our framework can map probabilistic
terms to well-known automated debugging concepts such as FL
or APR. To firmly establish how Bayes’ theorem can be useful in
analyzing automated debugging techniques, we perform a number
of theoretical analyses of existing literature. We start by looking at
a popular family of fault localization techniques: spectrum-based
fault localization (SBFL). Using our framework, we derive SBFL
formulae based on a minimal set of assumptions and find that
the resulting SBFL formulae are equivalent to the ‘maximal’ SBFL
formulae as proven by Yoo et al. [41]. In addition, we analyze the
behavior of well-known APR techniques, and find that they can
also be expressed within our Bayesian framework; furthermore, our
framework can analyze recent Unified Debugging [22] techniques
which combine FL and APR, as well as provide concrete suggestions.

As a way of empirically testing our framework, we choose an
important problem for APR techniques, patch prioritization, and

880

https://doi.org/10.1145/3597926.3598103
https://doi.org/10.1145/3597926.3598103
https://doi.org/10.1145/3597926.3598103
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598103&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sungmin Kang, Wonkeun Choi, and Shin Yoo

derive a solution from our framework. For many generate-and-
validate APR techniques that generate a large number of patches,
prioritizing the validation of promising patches is a key factor for
better performance [14]. Inspired by a recent work that shows
how humans heavily use program values during debugging [6],
we propose BAPP (Bayesian Automated Patch Prioritization), a
patch prioritization technique that incorporates program values.
The core intuition is that patches must lead to program behavior
change (i.e., a change in variable value or control flow) in failing
tests while it is unlikely yet possible that they lead to behavior
change in passing tests. That is, when comparing the value of
the original expression and the new expression after the patch,
there should be a difference. For example, when fixing control-flow
statements, a change in the conditional expression value would lead
to a change in path executed. As an empirical means of verifying our
framework, we express the above principle in the language of our
Bayesian framework, and directly derive precise expressions that
are used by BAPP to rank patches, which at times deviates fromAPR
practice. Using kPAR [18] as the APR tool, we empirically evaluate
whether our approach can identify patches that pass regression
tests efficiently.

Our results indicate that the incorporation of program states in
ranking the patches successfully increased the efficiency from the
original kPAR approach, with the median reduction of the plausible
patch rank measured at 68%. Execution time also saw a significant
improvement, resulting in an average reduction of 34 minutes. A
new scheme for generating an FL ranking of suspicious locations
with the consideration of program states was also shown to perform
better than SBFL in finding the true buggy line; BAPP improved
the identification of the buggy line within five attempts (acc@5)
from SBFL’s 8 to 11. Finally, we find that a slightly higher weight
to the score from program states than to the SBFL score was best
for identifying the plausible patch in our evaluation, indicating the
incorporation of program state information was useful, and that the
predictions made by our theoretic framework indeed contributed,
underscoring the value of our framework.

Overall, our contributions are:
• A Bayesian framework that explains a number of known
automated debugging results and practices;

• A patch prioritization technique, BAPP, which we derive
directly from the Bayesian framework;

• Extensive empirical experiments demonstrating how BAPP
can improve APR efficiency, and validate the theoretic pre-
dictions of our framework;

• A discussion of the possible implications of our theory.
The organization of this paper is as follows. We present our

framework and its relationship to existing automated debugging
literature in Section 2. Our approach is outlined in Section 3, while
our evaluation setup is described in Section 4. Based on this, the
results of our experiments are provided in Section 5. We discuss
future work and threats to validity in Section 6, and related work
in Section 7. Finally Section 8 concludes.

2 FRAMEWORK
We present a unified framework for automated debugging tech-
niques.

2.1 Bayesian Inference
Bayesian inference is a way of updating probabilities or beliefs in
response to new information, based on Bayes’ theorem. In particu-
lar, given evidence or observations E, a hypothesis related to the
evidence H , and the prior belief in the hypothesis P(H), Bayesian
inference postulates that the probability of a hypothesis given evi-
dence, P(H |E), can be calculated as the following:

P(H |E) =
P(E |H)P(H)

P(E)

In Bayesian terminology, P(H) is the prior probability; in con-
trast, P(H |E) is the posterior probability, which is the updated belief
after observing evidence E. To calculate the posterior, one needs a
statistical model that can determine the probability of the evidence
assuming that the hypothesis is correct, P(E |H). The P(E) term is a
normalization term that does not influence the ranking of results,
and thus may be ignored for our purposes.

Priors may be iteratively applied; in the face of new evidence E ′,
the probability of the hypothesis given both pieces of information
(assuming E and E ′ are uncorrelated) , P(H |E,E ′), is given as

P(H |E,E ′) =
P(E ′ |H)P(H |E)

P(E ′)

showing that the previous posterior can be used as the prior when
inferring given new evidence E ′.

2.2 Application on Automated Debugging
We argue that the primary goal of automated debugging techniques
is to find the likely fault location l and the appropriate fix action a.
Stated in probabilistic terms, the objective of automated debugging
techniques is to infer the values of P(l ,a), or the likelihood that if
we perform action a at location l , the bug will be fixed.1 Test-based
automated debugging techniques may use dynamic information
D, such as the results of individual tests, test suites, or (as we later
do) program values to precisely infer the value of P(l ,a). Overall,
we can say automated debugging techniques aim to infer P(l ,a |D),
or the probability of certain patches given data D. As a result, we
argue that the test-based automated debugging scenario can be
effectively modeled using Bayesian inference, as the formula below
denotes:

P(l ,a |D) ∝ P(D |l ,a)P(l ,a) (1)
The formula above is in fact an application of Bayes’ theorem with-
out the denominator term, as the denominator is a normalization
term that is the same for every patch (l ,a), and thus has no effect on
the relative ranking between patches. The formula can be used to
understand automated debugging techniques in various ways. For
example, P(l ,a) can be decomposed to P(l ,a) = P(a |l)P(l); this can
be thought to represent the separation of APR (P(a |l)) and FL (P(l))
techniques, as we describe in later sections. Additionally, we find
that different families of automated debugging techniques differ
in how they model the calculation of P(D |l ,a); concretely stating
their models provides a useful window to inspect and compare
techniques.

Finally, let us now turn to how fault localization fits in this
model of automated debugging. We argue that FL is a special case
1We use P (l, a) as a shorthand for P (l = fault location ∧ a = fix action) throughout
the paper.

881

A Bayesian Framework for Automated Debugging ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

of automated debugging, for if one marginalizes Equation (1) over
actions a, we end up with:

P(l |D) ∝ P(D |l)P(l) (2)

which can be used to derive maximal SBFL formulae, i.e. those
that theoretically dominate other formulae of a particular group,
as demonstrated in the next subsection.

2.3 Fault Localization
As a demonstration of our framework, we construct a statistical
model based on the assumptions of prior theoretic work on FL [41]
and show that, in conjunction with the Bayesian inference formula
for fault localization (Equation (2)), we can recover formulae that
were proven to be maximal, i.e. as close to optimal as an SBFL
formula can get. Specifically, Yoo et al. analyze spectrum-based
fault localization techniques, which use program spectrum. Program
spectrum is a set of numbers that characterize how the test suite
of the program interacts with each program element; in the paper,
they notate spectrum with ef , ep ,nf ,np which denote the number
of failing tests that executed a location, the number of passing
tests that executed a location, the number of failing tests that did
not execute a location, and the number of passing tests that did not
execute a location, respectively. Further, the total number of failing
tests is denoted as F .

Yoo et al. [41] make three assumptions about bugs in their anal-
ysis: (i) that there is a single fault in the code, (ii) that the code is
deterministic, and (iii) that there is at least one failing test case.
These assumptions are reasonable, as (i) even when there are mul-
tiple faults in the code, faults are typically clustered to treat each
fault in isolation [32], and (ii, iii) without these assumptions it is
difficult to start debugging at all. Upon these assumptions, we build
the following statistical model that provides the probability a test
will fail given coverage information and the true fault location:

P(t = fail|l = fault ∧ l ∈c t) = p (3)
P(t = fail|l = fault ∧ l <c t) = 0 (4)

The first equation is simply stating that ‘if the true fault location l
is covered by a test t , the probability that t will fail is a nonzero p.’
The second equation states that ‘if the true fault location l is not
covered by t , it will never fail’. This model naturally follows from
the previously stated assumptions.

Before we proceed further, we must set a prior P(l) probability of
each location being the true fault location. For simplicity we use the
uniform prior: that is, all lines are equally suspicious when there
is no information. Specifically, given the full set of statements L,
P(l) = 1

|L | . We note that one may opt to use different priors, such as
differentiating based on statement type, to more closely represent
the actual bug distribution, which is non-uniform [28].

With the prior and statistical model determined, we may now
perform Bayesian inference. Suppose we observe a test t that fails
and does not cover l ; how likely is it that l is the true bug location?
Bayesian inference asks the reverse question: assuming that l is the
true bug location and t covers l , how likely is it that t fails? Then,
it combines this with the prior to answer our original question, the

probability l actually is the true bug location given that t has failed.

P(l |t = fail ∧ l <c t) ∝ P(t = fail|l = fault ∧ l <c t)P(l)

= 0 ×
1
|L|
= 0

Thus, through Bayesian inference, we can deduce that locations not
covered by the failing test t cannot be related to the bug. Similar
principles can be applied to the other test scenarios as well; thus,
given the first test, we update the probability that each location is
the true fault location as:

P(l |t) ∝

p (t = fail ∧ l ∈c t)

1 − p (t = pass ∧ l ∈c t)

0 (t = fail ∧ l <c t)

1 (t = pass ∧ l <c t)

with the prior dropped because it is the same at every location.
Using the fact that previous posteriors can be used as new priors,
and that the four cases above neatly map to the ef , ep ,nf ,np spectra
described earlier, we can iteratively derive the posterior probability
that a location is a fault given the entire test suite:

P(l = fault|t1, ..., tn) ∝ 0nf 1nppef (1 − p)ep

While the formula above seems to have four variables, in terms
of determining the ranking the formula can be further simplified.
First, if nf , 0, P(l = fault|t1, ..., tn) = 0, so the other factors are
unimportant. For all statements for which nf = 0, ef = F holds as
well, so is irrelevant in terms of ranking; 1np = 1 as well, making ep
the only deciding factor in determining suspiciousness. As a result,
we derive Equation (5):

P(l = fault|t1, ..., tn) ∝

{
0 ef < F

(1 − p)ep ef = F
(5)

As long as 0 < p < 1, the exact value of p becomes irrelevant for
ranking, and this leads to the same rankings as the Naish01 SBFL
formula identified to be one of the maximal formulae [41]. Further,
in the limit when p → 0, this becomes equivalent to another maxi-
mal formula, Binary. Thus, using our framework, one can quickly
arrive at maximal equations under a given set of assumptions. This
also allows one to assess how good a statistical model describes real
behavior of code; for example, if the Binary SBFL formula shows
good performance, it would mean that p ≪ 1, and thus there may
be many tests that are passing due to coincidental correctness.

We close by making a few observations. First, while we make
the single-fault assumption as it greatly simplifies matters, one can
perform inference for multiple faults as well, as done by Barinel [3].
In addition, our framework can be used to derive other fault local-
ization formulae; such as deriving MBFL formulae, e.g. we could
derive a formula bearing similarity to MUSE [26].

2.4 Automated Program Repair
APR techniques can be analyzed using our framework as well.
In our paper, we use the taxonomy of APR techniques proposed
by Le Goues et al. [16], which divides APR techniques into two
groups: heuristic-based and constraint-based. While there is grow-
ing interest in APR techniques that employ deep learning [7], their

882

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sungmin Kang, Wonkeun Choi, and Shin Yoo

principles are largely similar to other heuristics-based techniques,
as we explore through this subsection.

Heuristic-based, or Generate and Validate (G&V), APR techniques
generally first take the list of suspicious statements provided by
a fault localization technique, then use heuristics to generate a
number of patches at each location. Each patch is then evaluated
against the tests that are present in the project: if a patch makes all
tests pass, the patch is deemed plausible and becomes a candidate
for suggestion to the developer. This process is naturally captured
by the Bayesian formulation of automated debugging: along with
the decomposition P(l ,a) = P(a |l)P(l), we may infer the posterior
probability of P(l ,a) as

P(l ,a |D(l,a)) ∝ P(D(l,a) |l ,a)P(a |l)P(l) (6)

where D(l,a) term represents the test execution results after apply-
ing repair action a on location l , while the P(a |l) and P(l) terms
represent the patch generation heuristics and the fault localization
processes, respectively. What, then, is the statistical model being
used to update patch probabilities? We find that the validation pro-
cess of G&V techniques is well-expressed by a simple conditional
probability model. If we denote that a test t passed under patch
(l ,a) as t(l,a) = pass, we can set the following statistical model
which replicates the validation process:

P(∀t .t(l,a) = pass|(l ,a) = fix) = 1 (7)
P(∀t .t(l ′,a′) = pass|(l ,a) = fix) = p (8)

where (l ,a) , (l ′,a′). That is, if the patch is the true fix, it should
make all tests pass; the second row indicates the possibility that a dif-
ferent patch may also lead to all tests passing. Expanding Bayesian
rules as we did in the previous subsection leads to the usual valida-
tion criterion that tries each patch one by one and discards those
that cause test failures. Meanwhile, we note that the statistical
model above has no special cases when the patches are related, e.g.
when l = l ′; one may say that the addition of such special cases is
what characterizes the unified debugging techniques, as explained
later in this section.

If the statistical model is this simple, what are G&V techniques
improving? Particularly with the advent of deep learning-based
techniques, we may say that latest APR techniques are improving
the prior distribution of patches, in particular the P(a |l) term that
describes which repair actions are likely given a specific location.
While this probability is implicit in techniques such as template-
based APR, in deep learning-based APR techniques the probabilistic
nature is explicit, as the neural models will generate probabilities for
each of the patches that they generate.While neural APR techniques
are showing rapid improvements [44], this analysis shows that they
rely on the same dynamic update model as earlier APR work [11].

Constraint-based APR techniques often rely on constructing con-
straints that patches should satisfy in order to fix the patch. Many
techniques use SMT solvers to solve these constraints; as a result,
they rely less on having strong prior distributions P(l ,a). For ex-
ample, Angelix [25] uses SBFL results and has a less restrictive
P(a |l), while DirectFix [24] does not use external FL results at all,
essentially using a uniform prior P(l).

We analyze Angelix as an example to show how constraint-based
techniques can be understood under our framework. To simplify
the operations of Angelix, for each test t an angelic value vt is

derived for fix expression a at a location l ; the values are ‘angelic’
because if the value of the expression a at t becomes equivalent
to vt , the test will pass. For example, Angelix might derive that
a certain predicate must evaluate to true for a previously failing
test to pass. For passing tests, vt is set to maintain the existing
behavior, while for failing tests a value that makes the test pass is
found, e.g. using SMT solvers [25]. The value of the fix expression
when executing test t , [[a]]t , is expected to be vt on all tests,

P([[a]]t = vt |(l ,a) = fix) = 1 (9)

and any patches that deviate from the angelic values at any test
are discarded. Note that there is no distinction between passing
and failing tests in Equation (9), which distinguishes the constraint-
based techniques from the update rules of BAPP introduced in
Section 3.

2.5 Unified Debugging
Recently, unified debugging has been proposed as a way to inte-
grate the FL and APR process [22]. While there are a number of
proposed techniques, we use our Bayesian framework to analyze
the recent SeAPR [5] technique, as it provides an approach in which
our framework can re-derive the core assumptions and make rec-
ommendations on the equation form.

The SeAPR technique defines ‘high-quality patches’ as patches
that make at least one previously failing test pass when applied.
Based on this, SeAPR assigns higher priority to patches that modify
the same locations as high-quality patches. Their assumptions can
be transformed into a statistical model under our framework; adding
the single fault assumption for simplification we can formulate the
model as

P(∃t .(t = fail ∧ t(l,a′) = pass)|(l ,a) = fix) = p1 (10)
P(∃t .(t = fail ∧ t(l ′,a′) = pass)|(l ,a) = fix) = p2 (11)

where l , l ′ ∧ p1 > p2. In particular, Equation (10) describes the
special rule for related patches which was not in the statistical
model of prior G&V approaches. Along with the ‘discard patches
that fail tests’ criterion provided in Equation (7), the statistical
model can be used to derive probabilities of each patch being the
true fix based on our framework. Noteworthy in the statistical model
that we build based on the SeAPR settings is that fail-to-pass tests
can appear in patches unrelated to the true fix (Equation (11)), unlike
in the FL model where tests could not fail without covering the true
fault location, leading to a different suspiciousness formulation. In
fact, after simplification, we find that

log(P((l ,a) = fix|D)) ∝ p+ − γp− (12)

where p+ is the number of high-quality patches at l , while p− is the
number of low-quality patches at l , and γ = log((1−p2)/(1−p1))

log(p1/p2) . This
is in fact equivalent to the Wong2 [37] SBFL formula when γ = 1.
Unfortunately, the SeAPR publication [5] did not experiment with
the Wong2 formula, so it is unclear to what extent the empirical
results presented in that paper support our framework.

Nonetheless, we believe this analysis demonstrates the utility of
our framework. Benton et al. [5] argued that the use of APR results
can be mapped to coverage spectrum analogues and thus made the
assumption that SBFL formulae may be similarly used in unified
debugging. However, our framework allows an inspection of the

883

A Bayesian Framework for Automated Debugging ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

assumptions behind the model, and further shows that the assump-
tions are different from SBFL, where we could confidently exclude
locations not covered by tests. Finally, our framework suggests a
formula not studied in the original work, showing its capability of
making practical suggestions that may not be considered without
the use of a theoretic framework.

3 BAYESIAN PATCH PRIORITIZATION
So far, we have explored various branches of the automated de-
bugging field and shown that a multitude of prior results can be
understood through our Bayesian framework. In this section, dis-
tinctly from the aforementioned approaches, we use our framework
as the theoretic basis to derive a novel, fully automatic patch prior-
itization technique, BAPP, to incorporate values and improve the
efficiency of automated program repair techniques by efficiently
identifying promising patches quickly.

3.1 Assumptions and Derivation
To contribute towards solving the important problem of patch pri-
oritization, we use our Bayesian framework to derive a formula
for our tool, BAPP. First, we construct a statistical model based
on the principle of behavior change. Specifically, we observe that
(i) correct patches must alter the behavior of failing tests, and (ii)
that it is unlikely, yet possible, that they may alter the behavior of
passing tests. For example, when adding the statement if (v ==
null) return; to a location, the behavior would change if there
is at least one test execution in which v == null; otherwise the
patch would not alter the behavior of the test. We note that if a
location is executed multiple times, it is sufficient for the behavior
to be changed at just one point to alter test behavior. Thus, we can
formally specify these assumptions into the following statistical
model, with Ch(t , (l ,a)) denoting that patch (l ,a) would alter the
behavior of program under test t :

P(t = failing|(l ,a) = fix ∧ Ch(t , (l ,a))) = p (13)
P(t = failing|(l ,a) = fix ∧ ¬Ch(t , (l ,a))) = 0 (14)

where 0 < p < 1; namely, if a patch changes failing test behavior it
has a chance to be the true patch, while if a patch does not change
failing test behavior there is no chance it is the true patch.

We denote the following ‘spectrum’ to represent program change
for a specific patch (l ,a), similarly to what was done when using
the Bayesian framework to analyze existing techniques. cf denotes
the number of failing tests for which (l ,a) changes behavior; cp
denotes the number of changed passing tests, nf denotes the num-
ber of unchanged failing tests, and np finally denotes the number
of unchanged passing tests. Further, we use the decomposition
P(l ,a) = P(a |l)P(l), for which P(a |l) and P(l) may be any patch-
generating and FL technique, respectively. From this we can derive:

P((l ,a) = fix|D) ∝ (0nf 1nppcf (1 − p)cp)P(a |l)P(l) (15)

Handling the cf < F case separately and removing terms that
are unrelated to ranking similarly to the SBFL case, we end up with
the following:

P((l ,a) = fix|D) ∝

{
0 (cf < F)

(1 − p)cpP(a |l)P(l) (cf = F)
(16)

This can be more easily calculated in practice using log terms as
follows, where α = −log2(1 − p) (note that α > 0, as 1 − p < 1):

log2P((l ,a) = fix|D) ∝

{
−∞ (cf < F)

log2(P(a |l)P(l)) − αcp (cf = F)
(17)

We later use α to control how much to weigh the dynamic in-
formation: when α is large, cp will have significant sway on the
ranking results, while when α is small, cp will have less influence.
The impact of α corresponds to the strength of the assumption of
the statistical model in Equation (14). Thus, by inspecting whether
test behavior would change (locally) when a patch is applied, we can
obtain a more precise posterior probability regarding which patch
is likely to be correct. This technique may also be used to obtain
more precise fault localization results: we may simply marginalize
over the space of repair actions as follows:

P(l |D) =
∑
a

P((l ,a) = fix|D) (18)

Note that even without considering program values, Equation 17
differs from how existing APR techniques prioritize their patches in
two ways. First, unlike existing template based APR techniques, it
explicitly considers the patch probability at a location, P(a |l); thus
in our case, even if two locations have the same FL score, patches
that are likely as indicated by P(a |l) will be prioritized. Second,
the suspiciousness of a location, P(l), is directly multiplied to the
patch probability, P(a |l), to produce the final ranking. In contrast,
existing APR techniques validate each patch generated at a likely
fault location before moving on to the next likely location, nomatter
how improbable the patch is (as indicated by P(a |l)). Our results in
Section 5 demonstrate that these small tweaks lead to an increase
in performance in our tool.

Up to this point, we have used our Bayesian framework to derive
mathematical principles for the BAPP technique. Based on this, we
describe how program states may be efficiently evaluated for this
technique for practical implementation of BAPP, and about the
specific choices of P(l) and P(a |l).

3.2 Implementation Overview

...
this(A,B,C)
...
if(X>52)
...

if(X>=52) if(X>=52)

a b c

… …

Xt2=52

⨉

📄 ⨉

this(A’,B,C) this(A,B’,C)

this(A,B’,C)

At1≠A’t1

Bt1=B’t1
Bt2≠B’t2

…

✔

✔

⨉

this(A’,B,C)

…
…

this(A,B’,C)✔

Figure 1: Overview of BAPP.

In the rest of this section, we will explain the implementation
details of BAPP, a patch re-ranking tool built upon the derivations

884

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sungmin Kang, Wonkeun Choi, and Shin Yoo

presented in the previous subsection. As shown in Figure 1, BAPP
can be broadly divided into three steps. First is the generation of
all possible patches (Figure 1(a)), the implementation of which is
closely based on kPAR [18], the open-source implementation of the
original pattern-based APR, PAR [11]. In the second step, BAPP uses
the Java debugger, JDB, to extract values of expressions relevant to
the patches generated in the previous step (Figure 1(b)). This step
is our main contribution to the overall technique, as the original
kPAR simply comprises of the first and the third step. As will be
discussed later in the section, this stage also involves the removal
of patches with syntax errors saving the compilation cost from
the original kPAR implementation. Using the extracted values, a
likelihood score is calculated for each possible patch in accordance
with the derivations presented in the previous subsection, and these
scores are used to comprehensively rank the patches for the next
and final step: patch validation (Figure 1(c)).

Listing 1: Abbreviated patch for Chart-8.
public Week (Date time , TimeZone zone) {

- this(time , RTP.DEFAULT_TIME_ZONE , ...);

+ this(time , zone , ...);

}

The following subsections provide further details for each of the
steps: patch generation, value extraction, and validation. In order to
provide a clear picture of the entire process, wewill use the correctly
generated patch for Defects4J Chart-8 as a running example. The
context of the buggy line in the source code is presented in Listing 1.
This simple patch is shown abbreviated in Figure 1 (iii), along with
alternative patches in the same project.

3.3 Patch Generation
Our patch generation shares repair templates with kPAR, as shown
in Table 1. BAPP first generates the AST of all the files covered by
the failing tests using the javalang library [34]. Then, using this
AST, BAPP finds matching templates for each of the lines executed
by the failing tests. The template types and the possible patches
that can be generated for each of the templates are presented in
Listing 1. Looking at the buggy line in our example code in Listing 1,
BAPP would detect a method invocation node in the AST at this
location. Traversing the AST also allows us to detect the zone
variable that can be used to replace the second argument in this
method invocation. Thus, BAPP would be able to conclude that a
Parameter Replacer template could be applied to this location.

After the AST analysis, BAPP generates all possible patches
for each variant of the identified matching templates. In our ex-
ample, in accordance with the description for the Parameter Re-
placer template, a patch will be generated in which the original
argument RegularTimePeriod.DEFAULT_TIME_ZONE would be re-
placed with the variable in the scope with the appropriate type,
zone. Considering a field of type Date declared in this class (not
shown in Listing 1), another Parameter Replacer patch could be gen-
erated as shown in Figure 1 (ii). The output of this stage is the list of
all possible patches for each of the locations under consideration.

3.4 Value Incorporation
To obtain program values, BAPP used JDB to execute tests on the
original unchanged source code, extract both the values of the

original expression and the new expression of each patch generated
in the previous stage. For the patch a2 in Figure 1 (iii), whenever the
breakpoint is triggered at location l1, BAPP extracted the value of
the original argument RegularTimePeriod.DEFAULT_TIME_ZONE,
as well as the value of the new argument zone, illustrated under
Figure 1 (b) as B and B’, respectively. After the execution of each
test, BAPP analyzes these values to either filter out implausible
patches or assign a likelihood score for the remaining patches.
Equation (17) derived in the previous section summarizes how the
values extracted are processed: note that values from failing tests
are processed differently from values of the passing tests.

All failing tests are executed before any of the passing tests
are executed. In accordance with the assumption that the fix must
change the behavior of the failing test, as specified in Equation (17),
the value of the original expression is compared with the value
of the new expression for each patch. Any patch for which the
two values are identical is discarded as implausible. In our running
example, if RegularTimePeriod.DEFAULT_TIME_ZONE and zone
have equal values whenever this particular line is executed in a
failing test, then this particular patch would be removed from the
pool of possible patches after the execution of that failing test.

After all failing tests are executed, passing tests are run in order
to assign a likelihood score to each of the remaining patches after
the implausible patches have been filtered out. In our implementa-
tion, the cp term in Equation (17) is set to the number of passing
tests in which the original value and the replacement value are
different at any instance in which the location in question is exe-
cuted during the passing test. More intuitively, if the patch does
not change the behavior of the passing test, the likelihood score
increases, and vice versa. With the incorporation of normalized
Ochiai SBFL scores represented in Equation (17) as P(l), the final
score is calculated after the execution of passing tests based on the
equation.

Although argument values are evaluated for Parameter Replace-
ment patches as shown in our example, the return values of the
method invocations are not evaluated. We empirically find that
invoking methods for value extraction often leads to various side ef-
fects, threatening the integrity of value extraction in other patches
and thus the accuracy of the tool. For similar reasons, return values
are not evaluated for Parameter Adder, Parameter Remover, and
Method Replacer.

To improve efficiency, we apply the following optimization to
this stage. First, we only consider the top 200 locations in the SBFL
ranking. To prevent JDB stopping at breakpoints within loops at ev-
ery iteration, we limit each breakpoint to 100 hits, before which the
corresponding values are not extracted. Values are only extracted
for the last 100 hits of a statement,2 based on prior work show-
ing that failing values that induce test failures appear in shorter
execution traces [1]. We also impose a 15-minute timeout to the
value-extraction stage, which we found to be reasonable across
all bugs we studied. With the timeout of 15 minutes, BAPP often
cannot execute all passing tests, especially for projects like Closure
which has a large number of test cases. To address this issue, we
prioritize passing test execution based on the current likelihood

2Statement execution counts can be retrieved from coverage profilers, which are used
by the SBFL technique.

885

A Bayesian Framework for Automated Debugging ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 1: Fix templates used in our study.

Template Type Description

Parameter Replacer Replace an argument with another variable of the appropriate type.
Parameter Adder Switch to an overloaded method by adding a variable of the appropriate type as an additional argument.
Parameter Remover Switch to an overloaded method by removing an existing argument.
Method Replacer Replace the method name to another method of the same type from the same class.
Conditional Replacer Replace a conditional expression with another boolean expression.
Conditional Adder Append a new component to a conditional expression using || or &&.
Conditional Remover Remove a component of a conditional expression.
Null Checker Insert a null checker before a referenced variable.
Cast Checker Insert a type checker before a typecasted variable.

score of all the lines covered by each remaining passing test. While
on as a matter of theory prioritization would be better without
these optimizations, as a practical tool BAPP needs to balance anal-
ysis time with performance improvement, which is why we opt to
include these optimizations.

3.5 Patch Validation
Through the previous steps, BAPP has generated all the possible
patches – which essentially means that all the information neces-
sary to apply the patches have been collected – and these patches
have been ranked based on the relevant information including the
program states and the Ochiai SBFL results. The final application
and evaluation of the patches in the specified order is performed
by replacing the original expression in the source code with the
new expression.

For each patch in the ranking, BAPP first applies the patch to
the source code. All the failing tests are run before the passing tests,
and during the runs, if any of the tests fail, the patch in question
is considered as faulty and the next patch is considered. When a
patch is found which passes all the failing and passing tests, the
repair process is terminated, as illustrated under Figure 1(c). It is
important to note that some bugs may have multiple plausible
patches. Because BAPP simply terminates after finding the first
plausible patch, an incorrect plausible patchmight be output instead
of the correct patch.

4 EXPERIMENTAL SETUP
This section describes the settings of our empirical studies.

4.1 Configurations
Asmentioned in the previous sections, we use javalang [34] for the
generation of AST for the source code, and JDB for the extraction
of values of relevant expressions during test executions. During
the implementation of BAPP, we encountered inconveniences that
motivated us to make changes to the javalang and JDB modules,
in order to fix bugs or add features. For instance, we added a feature
to convert a part of the AST tree back into code, which was not
originally provided in javalang. Other changes include adding the
position information to node types for which the information was
originally omitted. When using the JDB, it was necessary to make
changes to the module in order to ensure that JDB has the same

execution semantics as the native Java runtime: for example, JDB
originally lacks support for short-circuit evaluation.

Although BAPP’s patch generation was based on kPAR’s imple-
mentation, our results have several differences with kPAR’s results
that are worth noting. First, while kPAR results obtained by Liu et
al. [19] were based on Defects4J v1, some bugs were modified when
the benchmark was updated to Defects4J v2; the bugs that were
modified were excluded from our study, as this change implies that
the original buggy versions were not correctly captured in the ear-
lier Defects4J version. For the sake of our experiment, we have also
excluded bugs that kPAR was capable of patching via multi-hunk
patches, as they violate the single-fault assumption made earlier;
one could still apply BAPP after fault clusterization [32]. Finally,
kPAR uses information about methods defined in external modules
in order to generate patches for templates such as Method Replacers
and Parameter Replacers. Due to the limitations of javalang, we
omit support for patching invocations to external methods.

We used the Ochiai [27] suspiciousness order for our SBFL rank-
ing (P(l)) as it is one of the most commonly used SBFL formu-
lae [19, 44], and use the uniform distribution for P(a |l); that is,
if the number of patches generated by kPAR at a location is Nl ,
P(a |l) = 1

Nl
. This causes our ranking to be different from that of

kPAR even when there is no dynamic information, as we described
in Section 3.1. Ties in both SBFL and our FL technique were broken
using the max-rank tiebreaker, as is done in prior FL research [31].
To evaluate FL results, we use the acc@k metric, which evaluates
howmany bugs can be localized within k inspections, as this metric
was suggested to be practical by prior work [29]. The α parameter
was set to 0.3 in RQ1 and RQ2 as it empirically showed the best
performance. The experiments were run on machines with Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz and 32GB of DDR4 RAM @
2133MHz.

4.2 Research Questions
We aim to answer the following research questions with our empir-
ical evaluation.
RQ1. Efficiency Improvement:Howmuchmore efficient is BAPP
in comparison to kPAR in finding the first plausible patch? For this
question we consider execution time and the overall patch rank of
the first plausible patch.

886

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sungmin Kang, Wonkeun Choi, and Shin Yoo

RQ2. FL Improvement: How much improvement can be made
to the SBFL ranking of the true buggy line by incorporating the
likelihood score calculated from the value extraction?
RQ3. Configuration:What is the optimal configuration for find-
ing the first plausible patch? For this question we consider different
values of α in Equation (17). We also evaluate patch rankings prior-
itizing SBFL results while using program states only as a tiebreaker,
and vice versa. Finally, we compare the efficiency of runs with and
without the P(a |l) term in Equation (17).
RQ4. Qualitative Analysis: When does BAPP perform well, and
when does it not? We analyze the reasons behind the successes and
failures of BAPP, providing a breakdown of cases.

5 RESULTS
This section presents the results from our empirical evaluation.

5.1 RQ1: Efficiency Improvement
Out of 41 Defects4J bugs successfully patched by kPAR with our
experimental setup, all 41 bugs are successfully patched with BAPP.
This indicates that the patches filtered out during the value incor-
poration stage did not include plausible patches necessary to fix the
bugs. As mentioned in Section 3.4, the patches that do not change
program behavior during the execution of failing tests are filtered
out. Furthermore, when using the debugger to evaluate expressions,
we can filter out expressions that cause syntax errors or out-of-
scope errors, which would only cause compilation errors if applied
to the source code.

100 101 102 103 104

kPAR Ranking

100

101

102

103

104

B
A

P
P

R
an

ki
n

g

BAPP rank better (27) →

kPAR rank better (12) ↑

Ranking Comparison

(a) Raw Ranks.

1/64 1/16 1/4 1 4 16

BAPP/kPAR ranking ratio (log scale)

0

2

4

6

8

10

C
ou

nt

Ratio Distribution

(b) Rank Ratios.

Figure 2: Performance of BAPP at re-ranking patches.

The improvement in patch validation efficiency when using
BAPP to prioritize patches is shown in Figure 2. Figure 2(a) plots
kPAR and BAPP’s ranks of the first plausible patch that was evalu-
ated, illustrating the difference in efficiency for bugs from projects
of different sizes. Overall, we observe consistent improvements
across bugs of all project sizes. This is noteworthy because bugs
from large projects also include a large number of tests that need to
be run during the value-incorporation stage. However, because of
the 15-minute timeout set on the execution of this stage as described
in Section 3.4, only tens or hundreds of tests out of thousands can be
executed to extract the program states. The fact that these bugs saw
significant improvements in efficiency indicates the effectiveness
of the optimization described in Section 3.4.

Of the 41 bugs studied, 13 are related to method invocation
(i.e. Parameter Replacer/Adder/Remover and Method Replacer). As
explained in Section 3.4, we do not extract return values for lines
that fit these templates, because of the side effects from the duplicate
method invocation necessary to extract these values.While onemay
wonder if our techniquewill also show improvements in those cases,
many of these patches in fact show significant improvements in the
rank of the plausible patch. In fact, one of the biggest improvements
that can be seen in Figure 2(a) is for Closure-10, whose patch is of
the Method Replacer type; BAPP improves the rank of the plausible
patch to 83, from kPAR’s 3338. From such examples, we infer that
even if values cannot be extracted for the plausible patch, the value
extraction and processing for the rest of the patches can yield a
ranking that ultimately improves the efficiency for many bugs.

Figure 2(b) plots the BAPP/kPAR ratio for the ranks of plausible
patches: the peak of the distribution is between 1

8 and 1
4 , indicating

that the efficiency improvement with respect to patch ranking for
BAPP is within four- to eight-fold for a large portion of the bugs
under consideration. The median ratio is 0.32.

So far, we have compared the efficiency of BAPP with respect
to kPAR in terms of the rank of the plausible patch. However, ex-
ecution time comparison gives a better picture of the practical
effectiveness of BAPP, as BAPP has a patch analysis overhead, and
there is the possibility that BAPP mostly filters out patches that fail
to compile, which take a smaller time to validate and remove from
the patch list. The mean execution-time reduction across the 41
bugs is 34 minutes, despite the overhead of value extraction which
is on average 11 minutes. Thus, we argue that the improvement
in efficiency outweighed the overhead cost of the extraction and
evaluation of program states.

Answer to RQ1: BAPP could successfully reduce the patch vali-
dation effort by 68% in the median case. The mean execution-time
reduction of 34 minutes demonstrates the practical efficiency im-
provement outweighed the overhead cost of value incorporation.

5.2 RQ2: FL Improvement

100 101 102

Ochiai Ranking

100

101

102

N
ew

R
an

ki
n

g

BAPP rank better (27) →

Ochiai rank better (6) ↑
Ranking Comparison

(a) Raw Ranks.

1 2 3 4 5

k

4

6

8

10

ac
c@
k

acc@k Comparison

Ochiai

BAPP

(b) acc@k .

Figure 3: Performance of BAPP at FL.

In accordance with Equation (18), we built a new FL ranking
of the covered locations for each of the Defects4J bugs under con-
sideration. Figure 3(a) shows the changes in the ranks of the true
buggy line between SBFL and BAPP’s FL across bugs from projects

887

A Bayesian Framework for Automated Debugging ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

of different sizes. The differences in the FL rankings resemble the
differences in patch rankings shown in Figure 2. The median of
the BAPP-FL/SBFL ranking ratio is 0.57, indicating general im-
provements. Additionally, Figure 3(b) shows the acc@k comparison
between SBFL and BAPP-FL: we find that BAPP-FL generally out-
performs SBFL. Existing work has shown that identifying the true
fault location within a few tries is important for the developer trust
in FL techniques [13]. We believe these results indicate that BAPP
shows promise in improving practical fault localization as well,
with a relatively small computational budget of at most 15 minutes.

Answer toRQ2: BAPP’s FL performed better thanOchiai overall,
with the reduction in rank of the true buggy line at a median
of 0.43, and identified the true buggy location at top-k rankings
more often as well.

5.3 RQ3: Configuration

0.1 0.3 1 3 10 ∞
α

1
100

1
10

1

10

B
A

P
P

/k
P

A
R

R
an

k
R

at
io

α Value Comparison

(a) α value comparison.

Original +Dyn.Filter +P (a|l) +Multiply

Models

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
an

k
R

at
io

Ablation Study

(b) Ablation.

Figure 4: Performance of BAPP under different settings.
Lower is better.

Figure 4(a) depicts the patch ranking reduction ratio of BAPP
as α changes. When we evaluated the efficiency of different values
of α up to∞ (which strictly prioritizes the cp term over the SBFL
score), α = 0.3 saw the greatest reduction in the plausible patch
ranking, with the median rank ratio of 0.32. While not in the figure,
we found that FL performance was best when α = 0.3 as well.
Nonetheless, the result distributions over different α values show
little difference, indicating the performance of BAPP is resilient to
specific values of α . Thus, in general the incorporation of program
values is enough to enhance APR and FL performance.

Figure 4(b) isolates the different components of our technique
and demonstrates the contribution of each component to BAPP’s
overall efficiency improvement. The first bar plot represents the
performance of our original kPAR implementation. The second bar
shows the performance of using the dynamic information to filter
out patches that do not change the program states in failing tests;
in the next step, the P(a |l) = 1

Nl
term is introduced, but instead

of the scores being multiplied as described in Equation (17), the
probabilities are used as a tiebreaker among patches that have the
same SBFL score. Finally, instead of prioritizing SBFL score over
patch probability when ranking, we multiply the SBFL score with
the dynamic patch probability using the best α value of 0.3, thus
leading to the full BAPP technique as formally described in Equa-
tion (17). As evident in the figure, the failing test filter significantly

improved the efficiency with a percentage point decrease of 57 in
the median rank ratio. The P(a |l) term and the component multi-
plication further improved the efficiency with a percentage point
decrease of 8 and 3, respectively. This supports our earlier point in
Section 3.1 that each component in our derivation contributes to
the improvement in the performance of locating a plausible patch,
demonstrating that our theoretical derivation can suggest ways to
improve performance.

Answer to RQ3: The α value of 0.3 yielded the highest efficiency
for identifying plausible patches. We verify that multiplying FL
and patch likelihood score is better than prioritizing one over the
other, and that the inclusion of the P(a |l) term also contributed
to the improved efficiency.

5.4 RQ4: Qualitative Analysis
We first present a breakdown of the individual cases in which BAPP
underperformed its counterpart technique. First, when performing
patch ranking, there were two main reasons plausible patches were
ranked lower than the initial ranking from kPAR. In some cases,
the statistical model that we used did not favor the patch: certain
plausible patches would change passing test behavior often, or
even whenever they were executed. For example, we found that
the state would always change for the Chart-8 bug; nonetheless
the patch itself is correct. In other cases, due to the large number
of patches generated at certain locations, the likelihood of patches
at those locations would drop due to the P(a |l) = 1

Nl
term. As

a result, all patches from such locations would be de-prioritized,
leading to worse results. For example, a plausible patch for the
Math-15 bug shared patch location with 205 other patches, and as
a result dropped in ranking. However, as shown in Section 5.3, the
incorporation of the P(a |l) term resulted in an overall improvement
of the efficiency of finding a plausible patch.

Our analysis for FL similarly reveals two reasons our technique
yielded worse results. First, due to the nature of our FL technique
which is closely related to patch templates, our technique could not
suggest statements for which no patch was generated. For exam-
ple, in Closure-22, one of the top-ranked actual buggy locations is
simply a continue; statement, for which our technique generates
no patches, and consequently fails to rank. We believe such issues
can be overcome by adopting patch generation techniques that can
generate a greater variety of patches in future work. A second issue
was that for certain statements with conditions, a large number of
patches that would always change the state would be generated,
and as a result the likelihood of the statement (which is the sum of
the likelihood of patches) would drop. Closure-115 had this issue,
and as a result our technique showed poor performance in both FL
and patch prioritization for this bug.

On the other hand, when such pitfalls are not met, our technique
performs well; in Math-85, for example, the correct patch replaces
the conditional expression fa * fb >= 0.0 with fa * fb > 0.0.
For every instance in which this buggy line was hit during failing
test executions, fa * fb was equal to 0.0, meaning the patch
would change the program behavior. On the other hand, fa * fb
was never equal to 0.0 during the execution of any of the passing

888

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sungmin Kang, Wonkeun Choi, and Shin Yoo

tests in this project, leading BAPP to improve the FL ranking by
76% (91 → 22) and the APR ranking by 81% (820 → 159).

Answer to RQ4: We broadly identify issues hindering better
performance of BAPP, such as patches that do not closely match
the statistical model we use.

6 DISCUSSION
We discuss threats to validity and the limitations of our framework,
and present potential future research directions.

6.1 Threats to Validity
Threats to internal validity concern whether the results presented
in the paper are sound. We have replicated a widely studied APR
technique, kPAR, and verified that it could replicate patches re-
ported to be successfully generated by kPAR in the literature. Our
implementation is also publicly available for further scrutiny. BAPP
depends on javalang, a widely used open source Java parser.

Threats to external validity concern whether the results would
generalize to new subjects. In the case of BAPP, we take account
of the potential idiosyncrasy of different bugs by experimenting
over 41 bugs from the widely-used Defects4J benchmark of real-
world faults. Further, we perform a search over the parameter α in
RQ3, showing that performance gradually changes as the parameter
changes. We have also attempted formulating techniques from a
broad cross-section of the automated debugging literature using our
proposed theoretical framework; as long as a technique shares the
goal of inferring the posterior likelihood of the correct patch P(l ,a)
we believe our frameworkwill continue to be applicable. Meanwhile,
we have presented results of BAPP re-ranking patches generated
by kPAR; while our analysis shows that our simple statistical model
works well for kPAR-generated patches, further experimentation is
needed to decide whether our assumptions work for other patch
generation techniques.

6.2 Limitations & Future Work
A major limitation of our framework is the single fault assumption,
limiting the cases to which our theories can be applied. While it
is possible to overcome these issues by reasoning over sets of so-
lutions instead of single solutions as we have done in our work,
when there are N possible solutions this requires reasoning over
O(2N) combinations of solutions, which quickly becomes impracti-
cal. Barinel [3] uses a heuristic named Staccato [2] to generate a
smaller group of candidates to perform Bayesian inference over;
more experiments are required to determine whether such heuris-
tics would be scalable for automated debugging in general, and not
just fault localization.

Throughout our paper, we assumed that test results are inde-
pendent from each other as well, which can be a problematic as-
sumption: it is undeniable that some tests are more similar to each
other than others (as can be seen in failure clusterization work, for
example [4]). Despite this, our theoretic framework could recreate
formulae and practices from a broad range of automated debugging
techniques, indicating that they make the same ‘test independence’
assumption as well. A strength of our theoretic framework is that
it also provides ways to model test dependence: for example, the

likelihood model provided in Equation (3) could have an adaptive
p based on prior test results, which would increase the complex-
ity of subsequent equations for better modeling of the interaction
between faults and tests.

Our framework also directs us towards future research directions
that we hope to pursue further. To start off, we consider how ex-
isting techniques deal with the prior probability of patches, P(l ,a).
While in almost all APRwork it is decomposed to P(a |l)P(l) and thus
fault localization precedes patch generation, it does not necessarily
need to be this way. Under our framework, one can equally decom-
pose P(l ,a) to P(l |a)P(a) instead, identifying the repair operation
prior to performing fault localization. In certain cases, this formula-
tion is closer to human practice: for example, in Defects4J Lang-29,
the error message shows ‘expected: [0] but was: [0.0]’, from which
one can infer that (i) a type needs to be changed somewhere, but (ii)
which location to fix is unknown. Indeed, some existing techniques
have actually pioneered this concept in a restricted way: VFix [39]
notably focuses on null pointer exception fixes, and searches for
fix locations given the types of fixes it can do. Such a direction
is particularly promising given the recent improvements in using
error messages for generating patches [40].

Finally, while the automated debugging work that we cover do
not incorporate dependency information and updates at most based
on the evaluation results of patches generated at the same location,
we believe our model could facilitate the derivation of FL and APR
technologies that leverage dependency information such as call
stacks, and thus enhance precision; we hope to pursue such research
areas in future work.

7 RELATEDWORK
This section presents related work in different subfields.

7.1 Theories for Automated Debugging
Most existing work on automated debugging focuses on design-
ing techniques; relatively little has been done to examine the the-
oretical aspect of automated debugging. Weimer et al. observed
the duality between APR and mutation testing [35], which can be
thought to have provided the foundations for the subsequent work
on Mutation Based Fault Localization (MBFL) [21, 26]. Xie et al. [38]
proposed a theoretical framework for proving hierarchy between
Spectrum Based Fault Localization (SBFL) formulas, which even-
tually resulted in the no existence proof for the greatest formula
(i.e., there is no single formula that is guaranteed to outperform all
the other formulas) [42], prompting the FL research community to
focus on the aggregated use of multiple formulas and extra input
features [17], rather than designing new single formula. However,
both of existing theoretical results on APR and FL are limited to
relatively specific domains, i.e., mutation and spectrum-based fault
localization approaches, respectively. We still lack a general frame-
work that can express automated debugging as a whole, including
FL techniques such as MBFL and SBFL, as well as various APR
techniques. We believe that such a general framework may allow
us to rigorously reflect on existing techniques and propose new
and interesting future research directions.

889

A Bayesian Framework for Automated Debugging ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

7.2 Automated Debugging
Automated debugging has a long history [10] and thus it is difficult
to summarize all techniques in the scope of this paper. In this work
we focus on test-based automated debugging techniques, which we
find ideal when applying the Bayesian inference toolkit. Test-based
automated debugging techniques can be roughly categorized into
FL and APR. Test-based FL generally seeks to identify the part of a
project that needs to be fixed given a number of failing tests and
potentially passing tests. Researchers have identified multiple ways
to do this, including the use of program spectrum [10], mutation
testing [26], project history [36], and more. Test-based APR seeks
to change the source code of a project so that all tests pass, and
ideally so that the patch is semantically equivalent to the patch
that the developer would have made. As with FL, there are multiple
approaches: while the first APR technique, GenProg [15], used
genetic algorithms to create patches, other ways to generate patches
subsequently emerged, such as using templates as with PAR [11],
generating constraints that patches should meet then solving those
constraints with SMT solvers, as with Angelix [25], or by using
deep neural networks [7].

7.3 Program Values in Automated Debugging
A large number of automated debugging techniques do not explic-
itly use concrete program values in any way; for example, most
FL techniques do not explicitly use program values [10, 17, 26],
and a significant number of APR techniques focus on generating
the correct patch given the static context rather than incorporat-
ing values. Nonetheless, there have been attempts to incorporate
values into the automated debugging process, as humans do [6].
SmartFL [43] generates a detailed probabilistic graph of a program
that incorporates values into its inference process, but due to the
potentially large graphs that are generated, inference can be slow.
For APR, Angelix [25] identifies angelic values that allow a test
to pass, while Dynamoth [8] used a debugger to similarly check
if certain predicates met angelic value conditions. As our theory
provides a holistic view of APR and FL, our tool paves a way to
consider values and tackle the automated debugging problem as a
whole.

7.4 Patch Prioritization
As generate-and-validate APR techniques improved and increased
their search space, the importance of patch prioritization has also
grown, and multiple techniques have been suggested; as it is diffi-
cult to give a full overview of all techniques within this paper we
introduce a cross-section of explored approaches. To improve fault
localization during the patch validation process, Unified Debug-
ging [22] techniques have been proposed to improve the precision of
FL while doing patch validation. Meanwhile, some techniques seek
to optimize the patch template to apply: for example, Prophet [20]
mines statistics of patches to precisely apply templates. Other tech-
niques prioritize patches based on the specific code snippet they
introduce: ELIXIR [30] uses manually constructed features to iden-
tify patch ingredients to be used when applying a patch template.
Our prioritization approach differs as it uses program values as a
means of calculating patch ranking, and as a result is orthogonal
with the aforementioned techniques.

8 CONCLUSION
We propose a Bayesian framework of automated debugging, postu-
lating that the ultimate goal of automated debugging techniques
is to infer the posterior likelihood over the space of fault locations
and repair actions, P(l ,a). We find that this formulation can recover
previously proven results, such as the maximal Op2/Binary SBFL
formulae, as well as have specific probability terms neatly mapped
to specific automated debugging concepts and allow an inspection
of the assumptions behind automated debugging techniques. To
demonstrate the utility of the framework, we propose a novel value-
incorporating patch prioritization technique for APR, whose core
principles are derived from our Bayesian framework. Along with
the use of debuggers which allows the efficient implementation of
the recommendations of the framework, we find that overall our
tool BAPP can improve the patch ranking by 68%, leading to an av-
erage execution time reduction of 34 minutes. BAPP also improves
the FL ranking in two-thirds of the inspected bugs, leading to an
increase in acc@k values. In addition, our ablation study reveals
BAPP is resilient to the choice of α values. We believe that our
Bayesian framework also suggests interesting research directions,
such as choosing the repair operator before identifying where to fix,
that have not been thoroughly explored, and thus hope to perform
related research in the future.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feedback.
This research was supported by the Undergraduate Research Project
programme at KAIST, as well as the Institute for Information & com-
munications Technology Promotion grant funded by the Korean
government (MSIT) (No.2021-0-01001).

REFERENCES
[1] Rawad Abou Assi, Chadi Trad, Marwan Maalouf, and Wes Masri. 2019. Coinci-

dental correctness in the Defects4J benchmark. Software Testing, Verification and
Reliability 29 (03 2019). https://doi.org/10.1002/stvr.1696

[2] Rui Abreu and Arjan J. C. van Gemund. 2009. A Low-Cost Approximate Minimal
Hitting Set Algorithm and its Application to Model-Based Diagnosis. In SARA.

[3] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. 2009. Spectrum-Based Multiple
Fault Localization. In Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2009). 88–99. https://doi.org/10.1109/
ASE.2009.25

[4] Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang, and Shin
Yoo. 2022. Automatically Identifying Shared Root Causes of Test Breakages in
SAP HANA. In Proceedings of the 44th IEEE/ACM International Conference on
Software Engineering - Software Engineering In Practice Track (ICSE SEIP 2022).
65–74.

[5] Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming
Zhang. 2022. Towards Boosting Patch Execution On-the-Fly. In 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE). 2165–2176. https:
//doi.org/10.1145/3510003.3510117

[6] Mariano Ceccato, Alessandro Marchetto, Leonardo Mariani, Cu D. Nguyen, and
Paolo Tonella. 2012. An empirical study about the effectiveness of debugging
when random test cases are used. In 2012 34th International Conference on Software
Engineering (ICSE). 452–462. https://doi.org/10.1109/ICSE.2012.6227170

[7] Zimin Chen, Steve Kommrusch, Michele Tufano, L. Pouchet, D. Poshyvanyk,
and Monperrus Martin. 2019. SequenceR: Sequence-to-Sequence Learning for
End-to-End Program Repair. ArXiv abs/1901.01808 (2019).

[8] Thomas Durieux andMartinMonperrus. 2016. DynaMoth: Dynamic Code Synthe-
sis for Automatic Program Repair. In 2016 IEEE/ACM 11th International Workshop
in Automation of Software Test (AST). 85–91. https://doi.org/10.1145/2896921.
2896931

[9] Shin Hong, Taehoon Kwak, Byeongcheol Lee, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. 2017. MUSEUM: Debugging Real-World Multilingual
Programs Using Mutation Analysis. Information and Software Technology 82
(2017), 80–95.

890

https://doi.org/10.1002/stvr.1696
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1145/3510003.3510117
https://doi.org/10.1145/3510003.3510117
https://doi.org/10.1109/ICSE.2012.6227170
https://doi.org/10.1145/2896921.2896931
https://doi.org/10.1145/2896921.2896931

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Sungmin Kang, Wonkeun Choi, and Shin Yoo

[10] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ACM, New York, NY, USA, 467–477.

[11] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-written Patches. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 802–811.

[12] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano,
Rafal Szalanski, Vesna Nowack, Emily Rowan Winter, Steve Counsell, David
Bowes, Tracy Hall, Saemundur Haraldsson, and John Woodward. 2021. On The
Introduction of Automatic Program Repair in Bloomberg. IEEE Software 38, 4
(2021), 43–51. https://doi.org/10.1109/MS.2021.3071086

[13] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
Expectations on Automated Fault Localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2016). Association for
Computing Machinery, New York, NY, USA, 165âĂŞ176.

[14] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining Relevant Fix
Patterns for Automated Program Repair. Empirical Softw. Engg. 25, 3 (may 2020),
1980–2024. https://doi.org/10.1007/s10664-019-09780-z

[15] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[16] Claire Le Goues, Michael Pradel, Abhik Roychoudhury, and Satish Chandra.
2021. Automatic Program Repair. IEEE Software 38, 4 (2021), 22–27. https:
//doi.org/10.1109/MS.2021.3072577

[17] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: Integrating
Multiple Fault Diagnosis Dimensions for Deep Fault Localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2019). Association for ComputingMachinery, New York, NY, USA, 169–180.
https://doi.org/10.1145/3293882.3330574

[18] Kui Liu, Anil Koyuncu, TegawendÃľ F. BissyandÃľ, Dongsun Kim, Jacques Klein,
and Yves Le Traon. 2019. You Cannot FixWhat You Cannot Find! An Investigation
of Fault Localization Bias in Benchmarking Automated Program Repair Systems.
In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST).
102–113. https://doi.org/10.1109/ICST.2019.00020

[19] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon.
2020. On the Efficiency of Test Suite based Program Repair A Systematic Assess-
ment of 16 Automated Repair Systems for Java Programs. 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE) (2020), 615–627.

[20] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning Cor-
rect Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’16). Association for Computing Ma-
chinery, New York, NY, USA, 298–312. https://doi.org/10.1145/2837614.2837617

[21] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and
Lu Zhang. 2020. Can Automated Program Repair Refine Fault Localization? A
Unified Debugging Approach. In Proceedings of the 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2020). Association for
Computing Machinery, New York, NY, USA, 75–87.

[22] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automated program repair refine fault localization? a
unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM. https://doi.org/10.1145/
3395363.3397351

[23] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 269–278. https://doi.
org/10.1109/ICSE-SEIP.2019.00039

[24] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking
for simple program repairs. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. IEEE, 448–458.

[25] S. Mechtaev, J. Yi, and A. Roychoudhury. 2016. Angelix: Scalable Multiline Pro-
gram Patch Synthesis via Symbolic Analysis. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). 691–701.

[26] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
Mutants: Mutating Faulty Programs for Fault Localization. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. 153–162.
https://doi.org/10.1109/ICST.2014.28

[27] Akira Ochiai. 1957. Zoogeographic studies on the soleoid fishes found in Japan
and its neighbouring regions. Bulletin of Japanese Society of Scientific Fisheries 22
(1957), 526–530.

[28] Kai Pan, Sunghun Kim, and E. James Whitehead. 2009. Toward an Understanding
of Bug Fix Patterns. Empirical Softw. Engg. 14, 3 (jun 2009), 286âĂŞ315. https:
//doi.org/10.1007/s10664-008-9077-5

[29] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis (ISSTA 2011). ACM, New York, NY, USA,
199–209.

[30] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. Elixir:
Effective object-oriented program repair. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 648–659. https://doi.org/
10.1109/ASE.2017.8115675

[31] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: Using Code and Change Met-
rics to Improve Fault Localization. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2017). Asso-
ciation for Computing Machinery, New York, NY, USA, 273âĂŞ283. https:
//doi.org/10.1145/3092703.3092717

[32] Yi Song, Xiaoyuan Xie, Xihao Zhang, Quanming Liu, and Ruizhi Gao. 2023. Evolv-
ing Ranking-Based Failure Proximities for Better Clustering in Fault Isolation. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22). Association for Computing Machinery, New York, NY,
USA, Article 41, 13 pages.

[33] Gregory Tassey. 2002. The Economic Impacts of Inadequate Infrastructure for
Software Testing. (05 2002).

[34] Chris Thunes. 2022. javalang: Pure Python Java parser and tools. https://github.
com/c2nes/javalang. (2022).

[35] W. Weimer, Z. P. Fry, and S. Forrest. 2013. Leveraging program equivalence
for adaptive program repair: Models and first results. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 356–366.

[36] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2021. Historical Spectrum Based Fault Localization. IEEE
Transactions on Software Engineering 47, 11 (2021), 2348–2368. https://doi.org/10.
1109/TSE.2019.2948158

[37] W. Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. Effective Fault Lo-
calization using Code Coverage. In 31st Annual International Computer Soft-
ware and Applications Conference (COMPSAC 2007), Vol. 1. 449–456. https:
//doi.org/10.1109/COMPSAC.2007.109

[38] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A
Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-based Fault
Localization. ACMTransactions on Software EngineeringMethodology 22, 4, Article
31 (October 2013), 40 pages.

[39] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: Value-Flow-
Guided Precise Program Repair for Null Pointer Dereferences. In Proceedings of
the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press,
512âĂŞ523. https://doi.org/10.1109/ICSE.2019.00063

[40] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022.
SelfAPR: Self-supervised Program Repair with Test Execution Diagnostics. (2022).
https://doi.org/10.48550/ARXIV.2203.12755

[41] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
2014. No Pot of Gold at the End of Program Spectrum Rainbow: Greatest Risk
Evaluation Formula Does Not Exist. Technical Report RN/14/14. University College
London.

[42] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
2017. Human Competitiveness of Genetic Programming in SBFL: Theoretical and
Empirical Analysis. ACM Transactions on Software Engineering and Methodology
26, 1 (July 2017), 4:1–4:30.

[43] Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, and Lu Zhang.
2022. Fault Localization via Efficient Probabilistic Modeling of Program Semantics.
In 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE).
958–969. https://doi.org/10.1145/3510003.3510073

[44] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 341âĂŞ353.
https://doi.org/10.1145/3468264.3468544

Received 2023-02-16; accepted 2023-05-03

891

https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/MS.2021.3072577
https://doi.org/10.1109/MS.2021.3072577
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/3395363.3397351
https://doi.org/10.1145/3395363.3397351
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1007/s10664-008-9077-5
https://doi.org/10.1007/s10664-008-9077-5
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1145/3092703.3092717
https://github.com/c2nes/javalang
https://github.com/c2nes/javalang
https://doi.org/10.1109/TSE.2019.2948158
https://doi.org/10.1109/TSE.2019.2948158
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1109/ICSE.2019.00063
https://doi.org/10.48550/ARXIV.2203.12755
https://doi.org/10.1145/3510003.3510073
https://doi.org/10.1145/3468264.3468544

	Abstract
	1 Introduction
	2 Framework
	2.1 Bayesian Inference
	2.2 Application on Automated Debugging
	2.3 Fault Localization
	2.4 Automated Program Repair
	2.5 Unified Debugging

	3 Bayesian Patch Prioritization
	3.1 Assumptions and Derivation
	3.2 Implementation Overview
	3.3 Patch Generation
	3.4 Value Incorporation
	3.5 Patch Validation

	4 Experimental Setup
	4.1 Configurations
	4.2 Research Questions

	5 Results
	5.1 RQ1: Efficiency Improvement
	5.2 RQ2: FL Improvement
	5.3 RQ3: Configuration
	5.4 RQ4: Qualitative Analysis

	6 Discussion
	6.1 Threats to Validity
	6.2 Limitations & Future Work

	7 Related Work
	7.1 Theories for Automated Debugging
	7.2 Automated Debugging
	7.3 Program Values in Automated Debugging
	7.4 Patch Prioritization

	8 Conclusion
	References

