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Abstract—Many automated test generation techniques have
been developed to aid developers with writing tests. To facilitate
full automation, most existing techniques aim to either increase
coverage, or generate exploratory inputs. However, existing
test generation techniques largely fall short of achieving more
semantic objectives, such as generating tests to reproduce a
given bug report. Reproducing bugs is nonetheless important,
as our empirical study shows that the number of tests added
in open source repositories due to issues was about 28% of
the corresponding project test suite size. Meanwhile, due to
the difficulties of transforming the expected program semantics
in bug reports into test oracles, existing failure reproduction
techniques tend to deal exclusively with program crashes, a
small subset of all bug reports. To automate test generation from
general bug reports, we propose LIBRO, a framework that uses
Large Language Models (LLMs), which have been shown to be
capable of performing code-related tasks. Since LLMs themselves
cannot execute the target buggy code, we focus on post-processing
steps that help us discern when LLMs are effective, and rank
the produced tests according to their validity. Our evaluation of
LIBRO shows that, on the widely studied Defects4J benchmark,
LIBRO can generate failure reproducing test cases for 33% of all
studied cases (251 out of 750), while suggesting a bug reproducing
test in first place for 149 bugs. To mitigate data contamination
(i.e., the possibility of the LLM simply remembering the test code
either partially or in whole), we also evaluate LIBRO against 31
bug reports submitted after the collection of the LLM training
data terminated: LIBRO produces bug reproducing tests for 32%
of the studied bug reports. Overall, our results show LIBRO
has the potential to significantly enhance developer efficiency by
automatically generating tests from bug reports.

Index Terms—test generation, natural language processing,
software engineering

I. INTRODUCTION

Software testing is the practice of confirming that software
meets specification criteria by executing tests on the software
under test (SUT). Due to the importance and safety-critical
nature of many software projects, software testing is one of the
most important practices in the software development process.
Despite this, it is widely acknowledged that software testing
is tedious due to the significant human effort required [1]. To
fill this gap, automated test generation techniques have been
studied for almost half a century [2], resulting in a number
of tools [3], [4] that use implicit oracles (regressions or crash
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detection) to guide the automated process. They are useful
when new features are being added, as they can generate novel
tests with high coverage for a focal class.

However, not all tests are added immediately along with
their focal class. In fact, we find that a significant number of
tests originate from bug reports, i.e., are created in order to
prevent future regressions for the bug reported. This suggests
that the generation of bug reproducing tests from bug reports
is an under-appreciated yet impactful way of automatically
writing tests for developers. Our claim is based on the analysis
of a sample of 300 open source projects using JUnit: the
number of tests added as a result of bug reports was on
median 28% of the size of the overall test suite. Thus, the bug
report-to-test problem is regularly dealt with by developers,
and a problem in which an automated technique could provide
significant help. Previous work in bug reproduction mostly
deals with crashes [5], [6]; as many bug reports deal with
semantic issues, their scope is limited in practice.

The general report-to-test problem is of significant impor-
tance to the software engineering community, as solving this
problem would allow developers use a greater number of
automated debugging techniques, equipped with test cases
that reproduce the reported bug. Koyuncu et al. [7] note
that in the widely used Defects4J [8] bug benchmark, bug-
revealing tests did not exist prior to the bug report being
filed in 96% of the cases. Consequently, it may be difficult
to utilize the state-of-the-art automated debugging techniques,
which are often evaluated on Defects4J, when a bug is first
reported because they rely on bug reproducing tests [9], [10].
Conversely, alongside a technique that automatically generates
bug-revealing tests, a wide range of automated debugging
techniques would become usable.

As an initial attempt to solve this problem, we propose
prompting Large Language Models (LLMs) to generate tests.
Our use of LLMs is based on their impressive performance
on a wide range of natural language processing tasks [11] and
programming tasks [12]. In this work, we explore whether
their capabilities can be extended to generating test cases from
bug reports. More importantly, we argue that the performance
of LLMs when applied to this problem has to be studied
along with the issue of when we can rely on the tests
that LLMs produce. Such questions are crucial for actual
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developer use: Sarkar et al. [13] provide relevant examples,
showing that developers struggle to understand when LLMs
will do their bidding when used for code generation. To fill
this gap of knowledge, we propose LIBRO (LLM Induced
Bug ReprOduction), a framework that prompts the OpenAI
LLM, Codex [14], to generate tests, processes the results, and
suggests solutions only when we can be reasonably confident
that bug reproduction has succeeded.

We perform extensive empirical experiments on both the
Defects4J benchmark and a new report-test dataset that we
have constructed, aiming to identify the features that can
indicate successful bug reproduction by LIBRO. We find that,
for the Defects4J benchmark, LIBRO can generate at least one
bug reproducing test for 251 bugs, or 33.5% of all studied
bugs from their bug reports. LIBRO also successfully deduced
which of its bug reproducing attempts were successful with
71.4% accuracy, and produced an actual bug reproducing test
as its first suggestion for 149 bugs. For further validation, we
evaluate LIBRO on a recent bug report dataset that we built,
finding that we could reproduce 32.2% of bugs in this distinct
dataset as well, and verifying that our test suggesting heuristics
work in this different dataset as well.

In summary, our contributions are as follows:
• We perform an analysis of open source repositories to

verify the importance of generating bug reproducing test
cases from bug reports;

• We propose a framework to harness an LLM to reproduce
bugs, and suggest generated tests to the developer only
when the results are reliable;

• We perform extensive empirical analyses on two datasets,
suggesting that the patterns we find, and thus the perfor-
mance of LIBRO, are robust.

The remainder of the paper is organized as follows. We
motivate our research in Section II. Based on this, we describe
our approach in Section III. Evaluation settings and research
questions are in Section IV and Section V, respectively.
Results are presented in Section VI, while threats to validity
are discussed in Section VII. Section VIII gives an overview
of the relevant literature, and Section IX concludes.

II. MOTIVATION

As described in the previous section, the importance of the
report-to-test problem rests on two observations. The first is
that bug-revealing tests are rarely available when a bug report
is filed, unlike what automated debugging techniques often
assume [9], [10]. Koyuncu et al. [7] report that Spectrum-
Based Fault Localization (SBFL) techniques cannot locate
the bug at the time of being reported in 95% of the cases
they analyzed, and thus propose a completely static automated
debugging technique. However, as Le et al. [15] demonstrate,
using dynamic information often leads to more precise lo-
calization results. As such, a report-to-test technique could
enhance the practicality and/or performance of a large portion
of the automated debugging literature.

The other observation is that the report-to-test problem
is a perhaps underappreciated yet nonetheless important and

recurring part of testing. Existing surveys of developers reveal
that developers consider generating tests from bug reports to
be a way to improve automated testing. Daka and Fraser [16]
survey 225 software developers and point out ways in which
automated test generation could help developers, three of
which (deciding what to test, realism, deciding what to check)
can be resolved using bug reports, as bug reproduction is a
relatively well-defined activity. Kochhar et al. [17] explicitly
ask hundreds of developers on whether they agree to the
statement “during maintenance, when a bug is fixed, it is good
to add a test case that covers it”, and find a strong average
agreement of 4.4 on a Likert scale of 5.

To further verify that developers regularly deal with the
report-to-test problem, we analyze the number of test additions
that can be attributed to a bug report, by mining hundreds
of open-source Java repositories. We start with the Java-med

dataset from Alon et al. [18], which consists of 1000 top-
starred Java projects from GitHub. From the list of commits
in each repository, we check (i) whether the commit adds a
test, and (ii) whether the commit is linked to an issue. To
determine whether a commit adds a test, we check that its diff
adds the @Test decorator along with a test body. In addition, we
link a commit to a bug report (or an issue in GitHub) if (i) the
commit message mentions "(fixes/resolves/closes) #NUM", or
(ii) the commit message mentions a pull request, which in turn
mentions an issue. We compare the number of tests added by
such report-related commits to the size of the current (August
2022) test suite to estimate the prevalence of such tests. As
different repositories have different issue-handling practices,
we filter out repositories that have no issue-related commits
that add tests, as this indicates a different bug handling practice
(e.g. Google guava). Accordingly, we analyze 300 repositories,
as shown in Table I.

TABLE I: Analyzed repository characteristics

Repository Characteristic # Repositories

Could be cloned 970
Had a JUnit test (@Test is found in repository) 550
Had issue-referencing commit that added test 300

We find that the median ratio of tests added by issue-
referencing commits in those 300 repositories, relative to the
current test suite size, is 28.4%, suggesting that a significant
number of tests are added due to bug reports. We note that this
does not mean 28.4% of tests in a test suite originate from bug
reports, as we do not track what happens to tests after they are
added. Nonetheless, it indicates the report-to-test activity plays
a significant role in the evolution of test suites. Based on this
result, we conclude that the report-to-test generation problem
is regularly handled by open source developers. By extension,
an automated report-to-test technique that suggests and/or
automatically commits confirmed tests would help developers
in their natural workflow.

Despite the importance of the problem, its general form
remains a difficult problem to solve. Existing work attempts
to solve special cases of the problem by focusing on different



aspects: some classify the sentences of a report into categories
like observed or expected behavior [19], while others only
reproduce crashes (crash reproduction) [6], [20]. We observe
that solving this problem requires good understanding of both
natural and programming language, not to mention capabilities
to perform deduction. For example, the bug report in Table II
does not explicitly specify any code, but a fluent user in
English and Java would be capable of deducing that when
both arguments are NaN, the ‘equals’ methods in ‘MathUtils’
should return false.

One promising solution is to harness the capabilities of pre-
trained Large Language Models (LLMs). LLMs are generally
Transformer-based neural networks [13] trained with the lan-
guage modeling objective, i.e. predicting the next token based
on preceding context. One of their main novelties is that they
can perform tasks without training: simply by ‘asking’ the
LLM to perform a task via a textual prompt, the LLM is often
capable of actually performing the task [11]. Thus, one point
of curiosity is how many bugs LLMs can reproduce given
a report. On the other hand, of practical importance is to be
able to know when we should believe and use the LLM results,
as noted in the introduction. To this end, we focus on finding
heuristics indicative of high precision, and minimize the hassle
that a developer would have to deal with when using LIBRO.

III. APPROACH
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Fig. 1: Overview of LIBRO

An overview diagram of our approach is presented in
Figure 1. Given a bug report, LIBRO first constructs a prompt
to query an LLM (Figure 1:(A)). Using this prompt, an initial
set of test candidates are generated by querying the LLM
multiple times (Figure 1:(B)). Then, LIBRO processes the tests
to make them executable in the target program (Figure 1:(C)).
LIBRO subsequently identifies and curates tests that are likely
to be bug reproducing, and if so, ranks them to minimize
developer inspection effort (Figure 1:(D)). The rest of this
section explains each stage in more detail using the running
example provided in Table II.

A. Prompt Engineering

LLMs are, at the core, large autocomplete neural networks:
prior work have found that different ways of ‘asking’ the LLM
to solve a problem will lead to significantly varying levels of
performance [21]. Finding the best query to accomplish the
given task is known as prompt engineering [22].

To make an LLM to generate a test method from a given
bug report, we construct a Markdown document, which is to be
used in the prompt, from the bug report: consider the example
in Listing 1, which is a Markdown document constructed from
the bug report shown in Table II. LIBRO adds a few distinctive
parts to the Markdown document: the command “Provide a
self-contained example that reproduces this issue”, the start
of a block of code in Markdown, (i.e., ```), and finally the
partial code snippet public void test whose role is to induce
the LLM to write a test method.

TABLE II: Example bug report (Defects4J Math-63).

Issue No. MATH-3701

Title NaN in “equals” methods

Description

In “MathUtils”, some “equals” methods will return true if
both argument are NaN. Unless I’m mistaken, this contradicts
the IEEE standard.
If nobody objects, I’m going to make the changes.

Listing 1: Example prompt without examples.
1 # NaN in "equals" methods

2 ## Description

3 In "MathUtils", some "equals" methods will return true if both argument

are NaN.

4 Unless I'm mistaken, this contradicts the IEEE standard.

5 If nobody objects, I'm going to make the changes.

6

7 ## Reproduction

8 >Provide a self-contained example that reproduces this issue.

9 ```
10 public void test

We evaluate a range of variations of this basic prompt.
Brown et al. [11] report that LLMs benefit from question-
answer examples provided in the prompt. In our case, this
means providing examples of bug reports (questions) and the
corresponding bug reproducing tests (answers). With this in
mind, we experiment with a varying number of examples,
to see whether adding more examples, and whether having
examples from within the same project or from other projects,
significantly influences performance.

As there is no real restriction to the prompt format, we
also experiment with providing stack traces for crash bugs
(to simulate situations where a stack trace was provided),
or providing constructors of the class where the fault is
located (to simulate situations where the location of the bug
is reported).

Our specific template format makes it highly unlikely that
prompts we generate exist verbatim within the LLM training
data. Further, most reports in practice are only connected to
the bug-revealing test via a chain of references. As such, our
format partly mitigates data leakage concerns, among other
steps taken to limit this threat described later in the manuscript.

B. Querying an LLM

Using the generated prompt, LIBRO queries the LLM to
predict the tokens that would follow the prompt. Due to the

1https://issues.apache.org/jira/browse/MATH-370

https://issues.apache.org/jira/browse/MATH-370


nature of the prompt, it is likely to generate a test method,
especially as our prompt ends with the sequence public void

test. We ensure that the result only spans the test method by
accepting tokens until the first occurrence of the string ```,
which indicates the end of the code block in Markdown.

It is known that LLMs yield inferior results when per-
forming completely greedy decoding (i.e., decoding strictly
based on the most likely next token) [11]: they perform
better when they are doing weighted random sampling, a
behavior modulated by the temperature parameter. Following
prior work, we set our temperature to 0.7 [11], which allows
the LLM to generate multiple distinct tests based on the exact
same prompt. We take the approach of generating multiple
candidate reproducing tests, then using their characteristics to
identify how likely it is that the bug is actually reproduced.

An example output from the LLM given the prompt in
Listing 1 is shown in Listing 2: at this point, the outputs from
the LLM typically cannot be compiled on their own, and need
other constructs such as import statements. We next present
how LIBRO integrates a generated test into the existing test
suite to make it executable.

Listing 2: Example LLM result from the bug report described
in Table II.

1 public void testEquals() {

2 assertFalse(MathUtils.equals(Double.NaN, Double.NaN));

3 assertFalse(MathUtils.equals(Float.NaN, Float.NaN));

4 }

C. Test Postprocessing

We first describe how LIBRO injects a test method into an
existing suite then how LIBRO resolves the remaining unmet
dependencies.

1) Injecting a test into a suitable test class: If a developer
finds a test method in a bug report, they will likely insert it
into a test class which will provide the required context for the
test method (such as the required dependencies). For example,
for the bug in our running example, the developers added
a reproducing test to the MathUtilsTest class, where most
of the required dependencies are already imported, including
the focal class, MathUtils. Thus, it is natural to also inject
LLM-generated tests into existing test classes, as this matches
developer workflow, while resolving a significant number of
initially unmet dependencies.

Listing 3: Target test class to which the test in Listing 2 is
injected.

1 public final class MathUtilsTest extends TestCase {

2 ...

3 public void testArrayEquals() {

4 assertFalse(MathUtils.equals(new double[] { 1d }, null));

5 assertTrue(MathUtils.equals(new double[] {

6 Double.NaN, Double.POSITIVE_INFINITY,

7 ...

To find the best test class to inject our test methods into, we
find the test class that is lexically most similar to the generated
test (Algorithm 1, line 1). The intuition is that, if a test method
belongs to a test class, the test method likely uses similar

Algorithm 1: Test Postprocessing
Input: A test method tm; Test suite T of SUT; source code files S

of SUT;
Output: Updated test suite T ′

1 cbest ← findBestMatchingClass(tm, T );
2 deps← getDependencies(tm);
3 needed_deps← getUnresolved(deps, cbest);
4 new_imports← set();
5 for dep in needed_deps do
6 target← findClassDef(dep, S);
7 if target is null then
8 new_imports.add(findMostCommonImport(dep,S, T ));
9 else

10 new_imports.add(target);

11 T ′ ← injectTest(tm, cbest, T );
12 T ′ ← injectDependencies(new_imports, cbest, T ′);

methods and classes, and is thus lexically related, to other tests
from that test class. Formally, we assign a matching score for
each test class based on Equation (1):

simci = |Tt ∩ Tci |/|Tci | (1)

where Tt and Tci are the set of tokens in the generated test
method and the ith test class, respectively. As an example,
Listing 3 shows the key statements of the MathUtilsTest

class. Here, the test class contains similar method invocations
and constants with those used by the LLM-generated test in
Listing 2, particularly in lines 4 and 6.

As a sanity check, we inject ground-truth developer-added
bug reproducing tests from the Math and Lang projects of
the Defects4J benchmark, and check if they execute normally
based on Algorithm 1. We find execution proceeds as usual
for 89% of the time, suggesting that the algorithm reasonably
finds environments in which tests can be executed.

2) Resolving remaining dependencies: Although many de-
pendency issues are resolved by placing the test in the right
class, the test may introduce new constructs that need to be
imported. To handle these cases, LIBRO heuristically infers
packages to import.

Line 2 to 10 in Algorithm 1 describe the dependency
resolving process of LIBRO. First, LIBRO parses the generated
test method and identifies variable types and referenced class
names/constructors/exceptions. LIBRO then filters “already
imported” class names by lexically matching names to existing
import statements in the test class (Line 3).

As a result of this process, we find types that are not
resolved within the test class. LIBRO first attempts to find
public classes with the identified name of the type; if there is
exactly one such file, the classpath to the identified class is
derived (Line 7), and an import statement is added (Line 11).
However, either no or multiple matching classes may exist.
In both cases, LIBRO looks for import statements ending with
the target class name within the project (e.g., when searching
for MathUtils, LIBRO looks for import .*MathUtils;). LIBRO
selects the most common import statement across all project
source code files. Additionally, we add a few rules that allow



Algorithm 2: Test Selection and Ranking
Input: Pairs of modified test suites and injected test methods ST ′ ;

target program with bug Pb; bug report BR; agreement
threshold Thr;

Output: Ordered list of ranked tests ranking;
1 FIB ← set();
2 for (T ′, tmi) ∈ ST ′ do
3 r ← executeTest(T ′, Pb);
4 if hasNoCompileError(r) && isFailed(tmi, r) then
5 FIB.add((tmi, r));

6 clusters←clusterByFailureOutputs(FIB);
7 output_clus_size← clusters.map(size);
8 max_output_clus_size←max(output_clus_size);
9 if max_output_clus_size ≤ Thr then

10 return list();

11 FIBuniq ← removeSyntacticEquivalents(FIB);
12 br_output_match← clusters.map(matchOutputWithReport(BR));
13 br_test_match← FIBuniq.map(matchTestWithReport(BR));
14 tok_cnts← FIBuniq.map(countTokens);
15 ranking ←list();
16 clusters← clusters.sortBy(

br_output_match, output_clus_size, tok_cnts);

17 for clus ∈ clusters do
18 clus← clus.sortBy(br_test_match, tok_cnts);

19 for i = 0; i <max(output_clus_size); i← i+ 1 do
20 for clus ∈ clusters do
21 if i < clus.length() then
22 ranking.push(clus[i])

23 return ranking;

assertion statements to be properly imported, even when there
are no appropriate imports within the project itself.

Our postprocessing pipeline does not guarantee compilation
in all cases, but the heuristics used by LIBRO are capable of
resolving most of the unhandled dependencies of a raw test
method. After going through the postprocessing steps, LIBRO
executes the tests to identify candidate bug reproducing tests.

D. Selection and Ranking

A test is a Bug Reproducing Test (BRT) if and only if the
test fails due to the bug specified in the report. A necessary
condition for a test generated by LIBRO to be a BRT is that
the test compiles and fails in the buggy program: we call such
tests FIB (Fail In the Buggy program) tests. However, not
all FIB tests are BRTs, making it difficult to tell whether
bug reproduction has succeeded or not. This is one factor
that separates us from crash reproduction work [20], as crash
reproduction techniques can confirm whether the bug has been
reproduced by comparing the stack traces at the time of crash.
On the other hand, it is imprudent to present all generated
FIB tests to developers, as asking developers to iterate over
multiple solutions is generally undesirable [23], [24]. As such,
LIBRO attempts to decide when to suggest a test and, if so,
which test to suggest, using several patterns we observe to be
correlated to successful bug reproductions.

Algorithm 2 outlines how LIBRO decides whether to present
results and, if so, how to rank the generated tests. In Line
1-10, LIBRO first decides whether to show the developer any

results at all (selection). We group the FIB tests that exhibit the
same failure output (the same error type and error message)
and look at the number of the tests in the same group (the
max_output_clus_size in Line 8). This is based on the
intuition that, if multiple tests show similar failure behavior,
then it is likely that the LLM is ‘confident’ in its predictions as
its independent predictions ‘agree’ with each other, and there
is a good chance that bug reproduction has succeeded. LIBRO
can be configured to only show results when there is significant
agreement in the output (setting the agreement threshold Thr
high) or show more exploratory results (setting Thr low).

Once it decides to show its results, LIBRO relies on three
heuristics to rank generated tests, in the order of increasing
discriminative strength. First, tests are likely to be bug re-
producing if the fail message and/or the test code shows the
behavior (exceptions or output values) observed and mentioned
in the bug report. While this heuristic is precise, its decisions
are not very discriminative, as tests can only be divided into
groups of ‘contained’ versus ‘not contained’. Next, we look at
the ‘agreement’ between generated tests by looking at output
cluster size (output_clus_size), which represents the ‘consen-
sus’ of the LLM generations. Finally, LIBRO prioritizes based
on test length (as shorter tests are easier to understand), which
is the finest-grained signal. We first leave only syntactically
unique tests (Line 11), then sort output clusters and tests within
those clusters using the heuristics above (Lines 16 and 18).

As tests with the same failure output are similar to each
other, we expect that, if one test from a cluster is not BRT,
the rest from the same cluster are likely not BRT as well.
Hence, LIBRO shows tests from a diverse array of clusters.
For each ith iteration in Line 19-22, the ith ranked test from
each cluster is selected and added to the list.

IV. EVALUATION

This section provides evaluation details for our experiments.

A. Dataset

As a comprehensive evaluation benchmark, we use De-
fects4J version 2.0, which is a manually curated dataset of
real-world bugs gathered from 17 Java projects. Each De-
fects4J bug is paired to a corresponding bug report2, which
makes the dataset ideal for evaluating the performance of
LIBRO. Among 814 bugs that have a paired bug report, we
find that 58 bugs have incorrect pairings, while six bugs
have different directory structures between the buggy and
fixed versions: this leaves 750 bugs for us to evaluate LIBRO
on. 60 bugs in the Defects4J benchmark are included in
the JCrashPack [25] dataset used in the crash reproduction
literature; we use this subset when comparing against crash
reproduction techniques.

As Codex, the LLM we use, was trained with data collected
until July 2021, the Defects4J dataset is not free from data
leakage concerns, even if the prompt format we use is unlikely
to have appeared verbatim in the data. To mitigate such

2Except for the Chart project, for which only 8 bugs have reports



concerns, from 17 GitHub repositories3 that use JUnit, we
gather 581 Pull Requests (PR) created after the Codex training
data cutoff point, ensuring that this dataset could not have been
used to train Codex. We further check if a PR adds any test
to the project (435 left after discarding non-test-introducing
ones), and filter out the PRs that are not merged to the main
branch or associated with multiple issues (84 left).

For these 84 PRs, we verify that the bug can be reproduced
by checking that a developer-added test added by the PR
fails on the pre-merge commit without compilation errors, and
passes on the post-merge commit. We add the pair to our final
list only when all of them have been reproduced. After the
final check, we end up with 31 reproducible bugs and their
bug reports. This dataset is henceforth referred to as the GHRB
(GitHub Recent Bugs) dataset. We use this dataset to verify
that trends observed in Defects4J are not due to data leakage.

B. Metrics

A test is treated as a Bug Reproducing Test (BRT) in our
evaluation if it fails on the version that contains the bug
specified in the report, and passes on the version that fixes
the bug. We say that a bug is reproduced if LIBRO generates
at least one BRT for that bug. The number of bugs that are
reproduced is counted for each evaluation technique.

We use the PRE_FIX_REVISION and POST_FIX_REVISION versions
in the Defects4J benchmarks as the buggy/fixed versions,
respectively. The two versions reflect the actual state of the
project when the bug was discovered/fixed. For the GHRB
dataset, as we gathered the data based on code changes
from merged pull requests, we use pre-merge and post-merge
versions as the buggy/fixed versions.

EvoCrash [20], the crash reproduction technique we com-
pare with, originally checks whether the crash stack is re-
produced in the buggy version. For fair comparison, we eval-
uate EvoCrash under our reproduction criterion: EvoCrash-
generated tests are executed on the buggy and fixed versions,
and when execution results change, we treat the test as a BRT.

To evaluate the rankings produced by LIBRO, we focus on
two aspects: the capability of LIBRO to rank the actual BRTs
higher, and the degree of effort required from developers to
inspect the ranked tests. For the former, we use the acc@n
metric, which counts the number of bugs whose BRTs are
found within the top n places in the ranking. Additionally,
we report the precision of LIBRO by dividing acc@n with
the number of all selected bugs, representing how often a
developer would accept a suggestion by LIBRO. To estimate
developer effort, we use the wef metric: the number of non-
reproducing tests ranked higher than any bug reproducing test.
If there are no BRTs, we report wef as the total number of
the target FIB tests in ranking. We also use wef@n, which
shows the wasted effort when using the top n candidates.

3These repositories have been manually chosen from either Defects4J
projects that are on GitHub and open to new issues, or Java projects that
have been modified since 10th July 2022 with at least 100 or more stars, as
of 1st of August 2022. A list of 17 repositories is available in our artifact.

C. Environment

All experiments are performed on a machine running
Ubuntu 18.04.6 LTS, with 32GB of ram and Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz CPU. We access OpenAI
Codex via its closed beta API, using the code-davinci-002

model. For Codex, we set the temperature to 0.7, and the
maximum number of tokens to 256. We script our experiments
using Python 3.9, and parse Java files with the javalang

library [26]. Our replication package is online4.

V. RESEARCH QUESTIONS

We aim to answer the following research questions.

A. RQ1: Efficacy

With RQ1, we seek to quantitatively evaluate the perfor-
mance of LIBRO using the Defects4J benchmark.

• RQ1-1: How many bug reproducing tests can LIBRO
generate? We evaluate how many bugs in total are
reproduced by LIBRO using various prompt settings.

• RQ1-2: How does LIBRO compare to other tech-
niques? In the absence of generic report-to-test tech-
niques, we compare against EvoCrash, a crash reproduc-
tion technique. We also compare against a ‘Copy&Paste’
baseline that directly uses code snippets (identified with
the HTML <pre> tag or via infoZilla [27]) within the bug
report as tests. For code that could be parsed as a Java
compilation unit, we add the code as a test class and add
JUnit imports if necessary to run it as a test. Otherwise,
we wrap the code snippet in a test method and evaluate
it under the same conditions as LIBRO.

B. RQ2: Efficiency

With RQ2, we examine the efficiency of LIBRO in terms of
the amount of resources it uses, to provide an estimate of the
costs of deploying LIBRO in a real-world context.

• RQ2-1: How many Codex queries are required? We
estimate how many queries are needed to achieve a
certain bug-reproduction rate on the Defects4J dataset
based on a pool of generated tests.

• RQ2-2: How much time does LIBRO need? Our tech-
nique consists of querying an LLM, making it executable,
and ranking: we measure the time taken at each stage.

• RQ2-3: How many tests should the developer inspect?
We evaluate how many bugs could be reproduced within
1, 3, and 5 suggestions, along with the amount of ‘wasted
effort’ required from the developer.

C. RQ3: Practicality

Finally, with RQ3, we aim to investigate how well LIBRO
generalizes by applying it to the GHRB dataset.

• RQ3-1: How often can LIBRO reproduce bugs in the
wild? To mitigate data leakage issues, we evaluate LIBRO
on the GHRB dataset, checking how many bugs can be
reproduced on it.

4https://anonymous.4open.science/r/llm-testgen-artifact-2753

https://anonymous.4open.science/r/llm-testgen-artifact-2753


• RQ3-2: How reliable are the selection and ranking
techniques of LIBRO? We investigate whether the factors
that were used during selecting bugs and ranking tests for
the Defects4J dataset are still valid for the GHRB dataset,
and thus can be used for other projects in general.

• RQ3-3: What does reproduction success and failure
look like? To provide qualitative context to our results,
we describe examples of bug reproduction success and
failure from the GHRB dataset.

VI. EXPERIMENTAL RESULTS

A. RQ1. How effective is LIBRO?

1) RQ1-1: Table III shows which prompt/information set-
tings work best. When using examples from the source project,
we use the oldest tests available within that project; otherwise,
we use two handpicked report-test pairs (Time-24, Lang-
1) throughout all projects. We find that providing construc-
tors (à la AthenaTest [28]) does not help significantly, but
adding stack traces does help reproduce crash bugs, indicating
that LIBRO can benefit from using the stack information to
replicate issues more accurately. Interestingly, adding within-
project examples shows poorer performance: inspection of
these cases has revealed that, in such cases, LIBRO simply
copied the provided example even when it should not have,
leading to lower performance. We also find that the number
of examples makes a significant difference (two-example n=10
values are sampled from n=50 results from the default setting),
confirming the existing finding that adding examples helps
improve performance. In turn, the number of examples seems
to matter less than the number of times the LLM is queried, as
we further explore in RQ2-1. As the two-example 50-repeat
setting shows the best performance, we use it as the default
setting throughout the rest of the paper.

TABLE III: Reproduction performance for different prompts

Setting reproduced FIB

No Example (n=10) 124 440
One Example (n=10) 166 417
One Example from Source Project (n=10) 152 455
One Example with Constructor Info (n=10) 167 430
Two Examples (n=10, 5th percentile) 161 386
Two Examples (n=10, median) 173 409
Two Examples (n=10, 95th percentile) 184 429
Two Examples (n=50) 251 570

One Example, Crash Bugs (n=10) 69 153
One Example with Stack, Crash Bugs (n=10) 84 155

Under the two-example 50-repeat setting, we find that
overall 251 bugs, or 33.5% of 750 studied Defects4J bugs,
are reproduced by LIBRO. Table IV presents a breakdown of
the performance per project. While there is at least one bug
reproduced for every project, the proportion of bugs repro-
duced can vary significantly. For example, LIBRO reproduces
a small number of bugs in the Closure project, which is known
to have a unique test structure [29]. On the other hand, the
performance is stronger for the Lang or Jsoup projects, whose
tests are generally self-contained and simple.

TABLE IV: Bug reproduction per project in Defects4J:
x/y means x reproduced out of y bugs

Project rep/total Project rep/total Project rep/total

Chart 5/7 Csv 6/16 JxPath 3/19
Cli 14/29 Gson 7/11 Lang 46/63
Closure 2/172 JacksonCore 8/24 Math 43/104
Codec 10/18 JacksonDatabind 30/107 Mockito 1/13
Collections 1/4 JacksonXml 2/6 Time 13/19
Compress 4/46 Jsoup 56/92 Total 251/750

Answer to RQ1-1: A large (251) number of bugs can be
replicated automatically, with bugs replicated over a diverse
group of projects. Further, the number of examples in the
prompt and the number of generation attempts have a strong
effect on performance.

2) RQ1-2: We further compare LIBRO against the state-
of-the-art crash reproduction technique, EvoCrash, and the
‘Copy&Paste baseline’ that uses code snippets from the bug
reports. We present the comparison results in Figure 2. We find
LIBRO replicates a large and distinct group of bugs compared
to other baselines. LIBRO reproduced 91 more unique bugs
(19 being crash bugs) than EvoCrash, which demonstrates that
LIBRO can reproduce non-crash bugs prior work could not
handle (Fig. 2(b)). On the other hand, the Copy&Paste baseline
shows that, while the BRT is sometimes included in the bug
report, the report-to-test task is not at all trivial. Interestingly,
eight bugs reproduced by the Copy&Paste baseline were not
reproduced by LIBRO; we find that this is due to long tests that
exceed the generation length of LIBRO, or due to dependency
on complex helper functions.
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Fig. 2: Baseline comparison on bug reproduction capability

Answer to RQ1-2: LIBRO is capable of replicating a large
and distinct group of bugs relative to prior work.

B. RQ2. How efficient is LIBRO?

1) RQ2-1: Here, we investigate how many tests must be
generated to attain a certain bug reproduction performance.
To do so, for each Defects4J bug, we randomly sample x
tests from the 50 generated under the default setting, leaving
a reduced number of tests per bug. We then check the number
of bugs reproduced y when using only those sampled tests. We
repeat this process 1,000 times to approximate the distribution.

The results are presented in Figure 3. Note that the x-axis is
in log scale. Interestingly, we find a logarithmic relation holds
between the number of test generation attempts and the median
bug reproduction performance. This suggests that it becomes
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Fig. 3: Generation attempts to performance. Left depicts bugs
reproduced as attempts increase, right for FIB

increasingly difficult, yet stays possible, to replicate more bugs
by simply generating more tests. As the graph shows no signs
of plateauing, experimenting with an even greater sample of
tests may result in better bug reproduction results.

Answer to RQ2-1: The number of bugs reproduced in-
creases logarithmically to the number of tests generated,
with no sign of performance plateauing.

TABLE V: The time required for the pipeline of LIBRO

Prompt API Processing Running Ranking Total

Single Run <1 µs 5.85s 1.23s 4.00s - 11.1s
50-test Run <1 µs 292s 34.8s 117s 0.02s 444s

2) RQ2-2: We report the time it takes to perform each
step of our pipeline in Table V. We find API querying takes
the greatest amount of time, requiring about 5.85 seconds.
Postprocessing and test executions take 1.23 and 4 seconds per
test (when the test executes), respectively. Overall, LIBRO took
an average of 444 seconds to generate 50 tests and process
them, which is well within the 10-minute search budget often
used by search-based techniques [20].

Answer to RQ2-2: Our time measurement suggests that
LIBRO does not take a significantly longer time than other
methods to use.

3) RQ2-3: With this research question, we measure how
effectively LIBRO prioritizes bug reproducing tests via its
selection and ranking procedure. As LIBRO only shows results
above a certain agreement threshold, Thr from Section III-D,
we first present the trade-off between the number of total bugs
reproduced and precision (i.e., the proportion of successfully
reproduced bugs among all selected by LIBRO) in Figure 4. As
we increase the threshold, more suggestions (including BRTs)
are discarded, but the precision gets higher, suggesting one can
smoothly increase precision by tuning the selection threshold.

We specifically set the agreement threshold to 1, a conser-
vative value, in order to preserve as many reproduced bugs
as possible. Among the 570 bugs with a FIB, 350 bugs
are selected. Of those 350, 219 are reproduced (leading to
a precision of 0.63(= 219

350 ) whereas recall (i.e., proportion
of selected reproduced bugs among all reproduced bugs) is
0.87(= 219

251 ). From the opposite perspective, the selection
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TABLE VI: Ranking Performance Comparison between LI-
BRO and Random Baseline

Defects4J GHRB

acc@n (precision) wef@nagg acc@n (precision) wef@nagg

n LIBRO random LIBRO random LIBRO random LIBRO random

1 149 (0.43) 116 (0.33) 201 (0.57) 234 (0.67) 6 (0.29) 4.8 (0.23) 15 (0.71) 16.2 (0.77)
3 184 (0.53) 172 (0.49) 539 (1.54) 599 (1.71) 7 (0.33) 6.6 (0.31) 42 (2.0) 44.6 (2.12)
5 199 (0.57) 192 (0.55) 797 (2.28) 874 (2.5) 8 (0.38) 7.3 (0.35) 60 (2.86) 64.3 (3.06)

process filters out 188 bugs that were not reproduced, while
dropping only a few successfully reproduced bugs. Note that
if we set the threshold to 10, a more aggressive value, we
can achieve a higher precision of 0.84 for a recall of 0.42.
In any case, as Figure 4 presents, our selection technique
is significantly better than random, indicating it can save
developer resources.

Among the selected bugs, we assess how effective the test
rankings of LIBRO are over a random baseline. The random
approach randomly ranks the syntactic clusters (groups of
syntactically equivalent FIB tests) of the generated tests. We
run the random baseline 100 times and average the results.

Table VI presents the ranking evaluation results. On the
Defects4J benchmark, the ranking technique of LIBRO im-
proves upon the random baseline across all of the acc@n
metrics, presenting 30, 14, and 7 more BRTs than the random
baseline on n = 1, 3, and 5 respectively. Regarding acc@1, the
first column shows that 43% of the top ranked tests produced
by LIBRO successfully reproduce the original bug report on
the first try. When n increases to 5, BRTs can be found in
57% of the selected bugs, or 80% of all reproduced bugs.
The conservative threshold choice here, emphasizes recall over
precision. However, if the threshold is raised, the maximum
precision can rise to 0.8 (for Thr = 10, n = 5).

The wef@nagg values are additionally reported by both
summing and averaging the wef@n of all (350) selected bugs.
The summed wef@n value indicates the total number of non-
BRTs that would be manually examined within the top n
ranked tests. Smaller wef@n values indicate that a technique
delivers more bug reproducing tests. Overall, the ranking of
LIBRO saves up to 14.5% of wasted effort when compared
to the random baseline, even after bugs are selected. Based
on these results, we conclude that LIBRO can reduce wasted
inspection effort and thus be useful to assist developers.



Answer to RQ2-3: LIBRO can reduce both the number of
bugs and tests that must be inspected: 33% of the bugs
are safely discarded while preserving 87% of the successful
bug reproduction. Among selected bug sets, 80% of all bug
reproductions can be found within 5 inspections.

C. RQ3. How well would LIBRO work in practice?

TABLE VII: Bug Reproduction in GHRB: x/y means x
reproduced out of y bugs

Project rep/total Project rep/total Project rep/total

AssertJ 3/5 Jackson 0/2 Gson 4/7
checkstyle 0/13 Jsoup 2/2 sslcontext 1/2

1) RQ3-1: We explore the performance of LIBRO when
operating on the GHRB dataset of recent bug reports. We find
that of the 31 bug reports we study, LIBRO can automatically
generate bug reproducing tests for 10 bugs based on 50 trials,
for a success rate of 32.2%. This success rate is similar to
the results from Defects4J presented in RQ1-1, suggesting
LIBRO generalizes to new bug reports. A breakdown of results
by project is provided in Table VII. Bugs are successfully
reproduced in AssertJ, Jsoup, Gson, and sslcontext, while they
were not reproduced in the other two. We could not reproduce
bugs from the Checkstyle project, despite it having a large
number of bugs; upon inspection, we find that this is because
the project’s tests rely heavily on external files, which LIBRO
has no access to, as shown in Section VI-C3. LIBRO also
does not generate BRTs for the Jackson project, but the small
number of bugs in the Jackson project make it difficult to draw
conclusions from it.
Answer to RQ3-1: LIBRO is capable of generating bug
reproducing tests even for recent data, suggesting it is not
simply remembering what it trained with.

2) RQ3-2: LIBRO uses several predictive factors correlated
with successful bug reproduction for selecting bugs and rank-
ing tests. In this research question, we check whether the
identified patterns based on the Defects4J dataset continue to
hold in the recent GHRB dataset.
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Fig. 5: Distribution of the max_output_clus_size values for
reproduced and not-reproduced bugs

Recall that we use the maximum output cluster size as a
measure of agreement among the FIBs, and thus as a selection
criterion to identify whether a bug has been reproduced. To
observe whether the criterion is a reliable indicator to predict

Listing 4: Generated FIB test for AssertJ-Core-2666.
1 public void testIssue952() {

2 Locale locale = new Locale("tr", "TR");

3 Locale.setDefault(locale);

4 assertThat("I").as("Checking␣in␣tr_TR␣locale").containsIgnoringCase("i

");

5 }

the success of bug reproduction, we observe the trend of
max_output_clus_size between the two datasets, with and
without BRTs. In Figure 5, we see that the bugs with no BRT
typically have small max_output_clus_size, mostly under
ten; this pattern is consistent in both datasets.

The ranking results of GHRB are also presented in Table VI.
They are consistent to the results from Defects4J, indicating
the features used for our ranking strategy continue to be good
indicators of successful bug reproduction.

Answer to RQ3-2: We find that the factors used for the
ranking and selection of LIBRO consistently predict bug
reproduction in real-world data.

3) RQ3-3: We present case studies of attempts by LIBRO
to reproduce bugs that either succeeded or failed.

TABLE VIII: Bug Report Successfully Reproduced: URLs
are omitted for brevity (AssertJ-Core Issue #2666)

Title assertContainsIgnoringCase fails to compare i and I in
tr_TR locale

See org.assertj.core.internal.Strings#assertContainsIgnoringCase
[url]
I would suggest adding [url] verification to just ban
toLowerCase(), toUpperCase() and other unsafe methods: #2664

We first present a successfully reproduced bug report, issue
#2685 for the AssertJ-Core project, in Table VIII. The bug
is that, in tr_TR locale, assertContainsIgnoringCase method is
mishandling the letter I. For this bug report, LIBRO gener-
ates the bug reproducing test in Listing 4. Despite the bug
report not containing any executable code, LIBRO successfully
generated a bug reproducing test that compares I and i,
using the containsIgnoringCase method referenced within the
report. A BRT for this bug is ranked at the second place,
suggesting a developer would have been quickly provided with
a reproducing test.

Listing 5: Generated FIB test for Checkstyle-11365.
1 public void testFinalClass() throws Exception {

2 final DefaultConfiguration checkConfig =

3 createModuleConfig(FinalClassCheck.class);

4 final String[] expected = CommonUtil.EMPTY_STRING_ARRAY;

5 verify(checkConfig, getPath("InputFinalClassAnonymousClass.java"),

expected);

6 }

We now turn to a bug report that is not successfully
reproduced. Table IX contains issue #11365 in the Checkstyle
project. The bug is that CheckStyle incorrectly decides that a
class should be declared final, and mistakenly raises an error.



TABLE IX: Bug Report Reproduction Failure: Lightly edited
for clarity (Checkstyle Issue #11365)

Title FinalClassCheck: False positive with anonymous classes

... I have executed the cli and showed it below, as cli describes the
problem better than 1,000 words
→src cat Test.java
[...]
public class Test {
class a { // expected no violation
private a(){} } }

[...]
→java [...] -c config.xml Test.java
Starting audit...
[ERROR] Test.java:3:5: Class a should be declared as final.

A FIB test generated by LIBRO is presented in Listing 5, which
fails as the Java file it references in Line 5 is nonexistent. This
highlights a weakness of LIBRO, i.e., its inability to create
working environments outside of source code for the generated
tests. However, if we put the content of Test.java from the
report into the referenced file, the test successfully reproduces
the bug, indicating that the test itself is functional, and that
even when a test is initially incorrect, it may reduce the amount
of developer effort that goes into writing reproducing tests.

VII. THREATS TO VALIDITY

Internal Validity concerns whether our experiments demon-
strate causality. In our case, two sources of randomness threat
internal validity: the flakiness of tests and the randomness of
LLM querying. While we do observe a small number of flaky
tests generated, the number of them is significantly smaller
(<2%) than the overall number of tests generated, and as
such we do not believe their existence significantly affects
our conclusions. Meanwhile, we engage with the randomness
of the LLM, performing an analysis in RQ2-1.
External Validity concerns whether the results presented
would generalize. In this case, it is difficult to tell whether
the results we presented here would generalize to other Java
projects, or projects in other languages. While the uniqueness
of our prompts and our use of GHRB cases provide some
evidence that LIBRO is not simply relying on the memorization
of the underlying LLM, it is true that LIBRO benefits from
the fact that the underlying LLM, Codex, has likely seen the
studied Defects4J projects during training. However, our aim is
not to assess whether a specific instance of Codex has general
intelligence about testing: our aim is to investigate the extent
to which LLM architectures augmented with post-processing
steps can be applied to the task of bug reproduction. For
LIBRO to be used for an arbitrary project with a similar level of
efficacy as in our study, we expect the LLM of LIBRO to have
seen projects in a similar domain, or the target project itself.
This can be achieved with fine-tuning the LLMs, as studied
in other domains [30], [31] (note that Codex is GPT-3 fine
tuned with source code data). As a due dilligence, we checked
how many tests generated from the Defects4J benchmark
verbatim matched developer-committed bug reproducing tests.
There were only such three cases, and all had the test code
written verbatim in the report as well, suggesting it is likely

they got verbatim answers from the report rather than from
memorization. We also report a few general conditions for
which LIBRO does not perform well: it does not generalize to
tests that rely on external files or testing infrastructure whose
syntactic structure is significantly different from the typical
JUnit tests (such as the Closure project in Defects4J).

VIII. RELATED WORK

A. Test Generation

Automated test generation has been explored since almost
50 years ago [2]. The advent of the object-oriented program-
ming paradigm caused a shift in test input generation tech-
niques, moving from primitive value exploration to deriving
method sequences to maximize coverage [3], [4]. However, a
critical issue with these techniques is the oracle problem [32]:
as it is difficult to determine what the correct behavior for
a test should be, automated test generation techniques either
rely on implicit oracles [3], or accept the current behavior as
correct - effectively generating regression tests [4], [33].

Similar to our work, some techniques focus on reproducing
problems reported by users: a commonly used implicit oracle
is that the program should not crash [32]. Most of existing
work [5], [6], [34]–[36] aim to reproduce crashes given a stack
trace, which is assumed to be provided by a user. Yakusu [37]
and ReCDroid [38], on the other hand, require user reports
written in specific formats to generate a crash-reproducing test
for mobile applications. All the crash-reproducing techniques
differ significantly from our work as they rely on the crash-
based implicit oracle, and make extensive use of of SUT code
(i.e., they are white-box techniques). BEE [19] automatically
parses bug reports to classify sentences that describe observed
or expected behavior but stops short of actually generating
tests. To the best of our knowledge, we are the first to propose
a technique to reproduce general bug reports in Java projects.

B. Code Synthesis

Code synthesis also has a long history of research. Tradi-
tionally, code synthesis has been approached via SMT solvers
in the context of Syntax-Guided Synthesis (SyGuS) [39]. As
machine learning techniques improved, they showed good
performance on the code synthesis task; Codex demonstrated
that an LLM could solve programming tasks based on natural
language descriptions [14]. Following Codex, some found that
synthesizing tests along with code was useful: AlphaCode used
automatically generated tests to boost their code synthesis
performance [40], while CodeT jointly generated tests and
code from a natural language description [12]. The focus of
these techniques is not on test generation; on the other hand,
LIBRO processes LLM output to maximize the probability of
execution, and focuses on selecting/ranking tests to reduce the
developer’s cognitive load.

IX. CONCLUSION

In this paper, we first establish that the report-to-test
problem is important, by inspecting relevant literature and
performing an analysis on 300 open source repositories. To



solve this problem, we introduce LIBRO, a technique that uses
a pretrained LLM to analyze bug reports, generate prospective
tests, and finally rank and suggest the generated solutions
based on a number of simple statistics. Upon extensive
analysis, we find that LIBRO is capable of reproducing a
significant number of bugs in the Defects4J benchmark, and
perform detailed analyses about the requirements of using the
technique. We further experiment with a real-world report-
to-bug dataset that we have collected: we find that LIBRO
shows similar performance on this dataset when compared
to the Defects4J benchmark, demonstrating its versatility. In
both datasets, LIBRO successfully identifies when the bug is
reproduced by which test, showing that LIBRO can minimize
developer effort as well. We hope to expand upon these
results and explore the synergy with existing test-generation
techniques to further help practitioners.
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