
Language Models Can Prioritize Patches
for Practical Program Patching

Sungmin Kang
KAIST

Daejeon, South Korea
sungmin.kang@kaist.ac.kr

Shin Yoo
KAIST

Daejeon, South Korea
shin.yoo@kaist.ac.kr

ABSTRACT
The field of Automated Program Repair (APR) has seen significant
growth in the past decade. As the field progressed, the number of
templates used by APR tools has grown substantially to increase
the number of patches included within the domain each tool finds
fixable, thus increasing their fixing capability. However, this height-
ened potential was not free: new techniques paid by using greater
computational resources and time to look over an enlarged repair
space. In this paper, we look to curtail this trend by using language
models (LMs) to provide guidance about whether a generated patch
is natural. By prioritizing patches that generate natural code, which
has been demonstrated in prior work to be related to correctness,
we can reduce the number of patches that must be inspected to find
the first correct patch. We evaluate this prioritization scheme over
five APR tools, and find that we can reduce the number of patches
that must be inspected in up to 70% of bugs and reduce the total
number of patches inspected by up to two-thirds, paving the way
for lower-cost program repair.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement.

KEYWORDS
automatic program repair, language models, naturalness
ACM Reference Format:
Sungmin Kang and Shin Yoo. 2022. Language Models Can Prioritize Patches
for Practical Program Patching. In APR ’22: International Workshop on Au-
tomated Program Repair, June 03–05, 2018, Pittsburgh, PA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3524459.3527343

1 INTRODUCTION
Automated Program Repair (APR) aims to automatically fix code
and thus close the debugging loop. Hence, many approaches have
been proposed over the years, some using constraint solving-based
techniques [19, 27], while others use a predetermined set of tem-
plates to generate new patches [22, 23]. While these two techniques
are different on the philosophical level, they share a common trait:
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW ’22, June 03–05, 2018, Pittsburgh, PA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9285-3/22/05. . . $15.00
https://doi.org/10.1145/3524459.3527343

they are computationally expensive to run. We are particularly
interested in tools that use templates and execute multiple patches
to find the correct one. As such tools aimed to patch more and
more bugs with a single framework, they increased the number of
templates employed: TBar [23], for example, agglomerates multiple
patch templates found by the APR literature into one technique.
This allows a single tool to handle a greater breadth of bugs, but also
increases the number of patches considered. Without appropriate
prioritization, it takes a longer time to identify the correct patch
out of the multitude of generated patches.

Listing 1: TBar Math80 Patch #13.
-1132,7 +1132,7 (...) {

1 (...) boolean flipIfWarranted(int n, int step) {
2 if (1.5*work[pingPong]<work[4*(n-1)+pingPong]) {
3 // flip array
4 - int j = 4 * n - 1;
5 + int j = 4 * getSolver() - 1;
6 for (int i = 0; i < j; i += 4) {
7 for (int k = 0; k < 4; k += step) {

To address this issue, we focus on the observation that many
patches generated by existing repair techniques result in unnat-
ural code, that is, unlikely to appear in actual code. For example,
note Listing 1, a patch generated by the TBar repair tool. This patch
changes the variable n to the result of the method call getSolver
(). Even without information about the getSolver method, to
human judgment the patch is awkward, as it is unnatural tomultiply
a solver with an integer. This patch is actually incorrect, suggesting
our intuition was meaningful. This nudges us toward the ques-
tion: by capturing correlations between tokens, could statistical
language models automate the provision of similar lexical
intuition, and thus hasten the process leading to the correct patch?

In this paper, we introduce a simple yet effective method to
quickly discover the correct patch: we train a language model on
an easily-obtainable corpus of Java code, and use it to re-rank
patches generated by various APR tools. Language models have
been used to quantify code naturalness since the birth of the concept
of code naturalness [11], and have been an ingredient of many
algorithms [10, 14]. Pertinent to our objective is the large body of
research that finds naturalness difference between buggy code and
non-buggy code [16, 25, 29]: based on such work, a language model
could provide information about which patch is likely to be correct.

If naturalness estimated by language models does provide mean-
ingful information, how can we incorporate this to reduce the cost
of validating patches in the generate-and-validate scheme? We pro-
pose a simple rank aggregation method to do so, and verify that
combined rankings that add information from the APR tool and
the language model can reduce the number of patches inspected
by up to two-thirds when compared to the original ranking.

https://doi.org/10.1145/3524459.3527343
https://doi.org/10.1145/3524459.3527343

ICSEW ’22, June 03–05, 2018, Pittsburgh, PA Kang and Yoo

The contribution of the paper is as follows:
• We verify that language models can provide complementary
information as to which patch is likely to be correct. Further,
they outperform a recent patch correctness predictor [34]
trained on curated patch data.
• We propose simple methods that combine the language
model ranking and the default ranking produced by APR
tools, to reduce the amount of validation effort required until
the correct patch is found.
• We empirically show language model prioritization reduces
the number of patches to be inspected by up to 65%.

The remainder of the paper is organized as follows. In Section 2
we present relevant work in the field. A concrete description of
our approach is given in Section 3, while the experimental protocol
is illustrated in Section 4. Results from experiments are presented
in Section 5. We outline the limitations of our work and future
research directions in Section 6, concluding in Section 7.

2 RELATEDWORK
2.1 Automated Program Repair (APR)
Automated Program Repair (APR) aims to do its namesake: given
some sort of specification about correct behavior, one wants to
automatically fix the program so that it correctly handles the task
on hand. APR is mature as a research area and there are far too
many approaches to summarize in this paper; one can refer to
Gazzola et al. [9] for an overview of the field.

Some of the most promising approaches up to now have come
from the template-based program repair family [17, 18, 22, 23].
These techniques are a prime subject for prioritization studies, as
they can generate a large number of patches quickly, and their main
bottleneck is the validation cost itself.

2.2 Code Naturalness
Since Hindle et al. [11] found code has ‘naturalness’, there has been
much work about how naturalness interacts with other known
software engineering concepts. In particular, multiple results have
shown that the naturalness of buggy code and correct code are
different: Ray et al. [29] find that one can use naturalness to identify
buggy code with a similar accuracy as certain static bug finders.
Furthermore, there has been work that learns from correct code
to help patch generation [25], but the features it uses are highly
idiosyncratic and difficult to apply to other tools. On the other hand,
our approach that directly leverages the concrete manifestation of
the patch application does not need any complicated features, and
thus can be applied to any automated program repair technique.

2.3 Repair Cost Reduction
In Generate and Validate (G&V) program repair techniques, validat-
ing each patch tends to take the lion’s share of the computational
cost [4]. This has been known in the literature for a while; as a result
many have employed a variety of cost reduction techniques. While
there are many ways to reduce repair cost, here we focus on those
that prioritize patches based on their ‘shape’ and ‘ingredients’.

Regarding shape, many APR tools use abstract templates to
modify the code under repair. Prioritizing which template to use

is important, as each template can generate numerous patches.
Prophet [25], HDRepair [20], and CapGen [35] all use mined patch
statistics to help the prioritization process, but generally use hand-
crafted features that may be difficult to apply to other techniques;
a similar limitation applies to CapGen. Meanwhile, Tan et al. [33],
ssFix [36], SimFix [13], and Asad et al. [3] mainly use non-mined
heuristics to determine which patch is likely to be the fix.

Regarding ingredients, there are many strategies to estimate
what is likely to go into empty slots of templates. ELIXIR [30]
uses four manually constructed features to prioritize which ingre-
dient to use in the repair tool; Hercules [31] also uses a similar
machine learning technique. On a similar note, Dynamoth [7] prior-
itizes based on in-class token frequency statistics. Meanwhile, deep
learning-based APR techniques (such as SequenceR[5]) internally
prioritize patches based on their weights, but only use relatively
limited patch data and are not tool-agnostic.

The language model prioritizes over the shape and synthesis
space. Note that the aforementioned prioritization techniques are
generally confined to the repair tool that was developed along with
the prioritization technique, and are non-trivial to apply to multiple
tools. To the best of our knowledge, we are the first to propose a tool-
agnostic prioritization technique that can successfully prioritize in
both the shape and synthesis space.

3 APPROACH

(d) Validate in order

Buggy
Code

Repair
Tool

(a) Generate Patches

(b) Evaluate Naturalness

Tool:
2nd

Tool:
3rd

Tool:
4th

Tool:
5th

Tool:
1st

Total:
1st

Total:
2nd

Total:
3rd

Total:
4th

Total:
5th

(c) Aggregate and Reorder

1st
:Nat

5th
:Nat

4th
:Nat

3rd
:Nat

2nd
:Nat

✔ ❌ ❌ ❌ ❌

Tool:
1st

Tool:
2nd

Tool:
3rd

Tool:
4th

Tool:
5th

Figure 1: Overview of the patch prioritization process. Har-
monic mean aggregation is used in this diagram.

Language Models Can Prioritize Patches for Practical Program Patching ICSEW ’22, June 03–05, 2018, Pittsburgh, PA

A language model (LM) defines a probability distribution over
sequences of words; i.e., given a sentence, it gives a probability
value indicating how likely the sequence is. A common formula-
tion is for a language model L to predict the upcoming token tn
provided preceding tokens t1, ..., tn−1, and deriving the probability
P ((t1, ..., tN)) of a sequence spanning from token t1 to tN as:

P ((t1, ..., tN)) =
N∏
i=1

P (ti |t1, ..., ti−1) (1)

How can we prioritize which patches to inspect, given an LM? A
graphic overview is provided in Figure 1. The prioritization process
consists of three steps. First, patches are generated based on the
buggy code and repair tool (Figure 1(a)). The repair tool’s own patch
order, denoted as DR, is recorded for later use. Next, the language
model evaluates each patch (Figure 1(b)). While the language model
cannot evaluate the correctness of a patch itself, it can evaluate
code resulting from a patch. Thus, the language model is agnostic
to what the buggy code was prior to the patch. Using Equation 1
(or a slight modification of it, as explained later in Section 4.3) we
rank each patch in order of naturalness, denoted as LR. Finally, with
these two rankings, we aggregate the information in the rankings
to generate a final prioritization (Figure 1(c)). Specifically, using the
two rankings, we calculate a score for each patch,

score(P) = Agg(DR (P),LR (P)) (2)

where Agg is some aggregation function, such as the harmonic
mean. As a lower number ranking means that the patch is of greater
importance, the patches are rearranged in increasing order of score.
The combined ranking is denoted with CR. Subsequently, we eval-
uate the patches against tests (Figure 1(d)). We expect to validate
fewer patches under CR than under DR.

4 EXPERIMENTAL SETUP
The following experimental setup is used in the experiments de-
scribed in this paper.

4.1 APR Tools Evaluated
We primarily took note of the work of Liu et al. [24] to choose APR
tools to be used in our study. They report 16 APR tools could be
reconfigured to operate under desired fault localization settings.
Among those, we choose the five tools that correctly fix more
than 20 bugs in the Defects4J [15] benchmark under perfect fault
localization conditions: namely TBar [23], AVATAR [22], kPAR [21],
FixMiner [18], and SimFix [13]. This is because we later evaluate
the rankings based on the rank of the correct patch: evaluating on
a tool that can only generate a small number of correct patches
would introduce noise and threaten the validity of our results.

Among these methods, TBar, AVATAR, kPAR, and FixMiner all
use greedy pattern matching to prioritize patches: starting by mod-
ifying the existing code just slightly, and subsequently progressing
to patches that induce greater changes. Meanwhile, SimFix priori-
tizes patches based on three criteria: modification consistency, the
number of modifications, and the number of replacements. Mod-
ification consistency means that for a particular donor template,

the variables in that template are swapped in a consistent man-
ner. SimFix also tries to minimize the number of modifications and
replacements in considering patches to evaluate.

4.2 Research Questions

RQ1. Utility in Prioritization: Can language models provide
prioritization information complementary to the default pri-
oritization technique of each APR tool?We first confirm that
language models have the potential to contribute to patch prioriti-
zation. The naturalness prioritization is compared with the default
prioritization as follows. First, given perfect fault localization infor-
mation, we generate all the patches that the APR tools can generate
(this process naturally provides the default prioritization). The nat-
uralness of each patched method is calculated using the language
model, and a corresponding prioritization is obtained. The rank of
the correct patch by default and naturalness prioritization is then
compared. If there are a significant number of bugs in which the
correct patch is ranked higher by the language model than by the
APR tool, it would be reasonable to think that the language model
can provide useful prioritization information. Note that we only
check whether the language model is providing something comple-
mentary from, and not outright better than, the default tool rank.
This is because the language model in this case has no informa-
tion about what patch operation was done: it solely prioritizes
based on code naturalness. Hence it does not benefit from infor-
mation like what patch operator was used, which the APR tool
can utilize. As such, our purpose with this RQ is to show that the
language model can contribute information.
RQ2. Comparison with Correctness Classifier: Does our lan-
guage model outperform a state-of-the-art baseline? To fur-
ther put our performance in context, we measure performance
relative to another patch evaluation algorithm that uses patch data.
To this end, we compare our language models with a recent base-
line from Tian et al. [34] that, given a plausible patch, predicts its
correctness. This baseline uses pretrained code embeddings to first
encode patches, then trains classifiers based on a patch dataset
to classify which patches are correct. We compare prioritization
performance with the BERT+classifier baseline, and see if there is
a meaningful difference. We refer to this baseline as DLPC (Deep
Learning Patch Correctness, from their repository [34]) for brevity.
RQ3. Validation Cost Reduction: Can we combine the two
ranking approaches to bring the best of both worlds? Upon
verifying language models can contribute to prioritization (RQ1),
we combine rankings from APR tools and language models and see
we can achieve better prioritizations than both. We use the same
comparison with aggregated rankings, and again directly compare
against the default ranking produced by the APR tools for each bug.
We also investigate the validation effort for each technique; that
is, how many evaluations are necessary until the correct patch is
found. The validation effort VE is defined as

VE =
∑
i ∈B

CR (Pci) (3)

where B is the set of bugs with a correct patch, and Pci represents
the correct patch for the ith bug. The validation effort based on the

ICSEW ’22, June 03–05, 2018, Pittsburgh, PA Kang and Yoo

default ranking and the combined rankings is compared to evaluate
whether incorporating language models can indeed result in overall
validation effort reduction.
RQ4. Combination Techniques: How do different rank ag-
gregation functions affect the ranking performance? In Equa-
tion 2, we left the aggregation function open to experiment: in terms
of ranking performance, which combination technique actually per-
forms the best? We evaluate five different aggregation functions:
minimum, harmonic mean, geometric mean, arithmetic mean, and
maximum. These aggregation methods each have different theo-
retic properties: in the presented order, the methods go from being
influenced more by the smaller of the two ranks to being more influ-
enced by the larger number. RQ4 investigates how these theoretical
factors play out in our situation.

4.3 Implementation Details
APR techniques. We make the perfect fault localization assump-

tion: that is, we prioritize patches that are generated from the buggy
location. This is because our approach is tangential from methods
that refine fault localization accuracy on the fly, as mentioned in
Section 2.3. Furthermore, much recent APR work [5, 14, 21, 23, 26]
uses perfect fault localization for evaluation. We use the Defects4J
dataset for evaluation and run APR tools on it. We exclude bugs
that required patches outside of methods, as the language model
was trained on methods alone.

Language Model. We train a single-layer 1000-neuron unidirec-
tional LSTM [12] network to predict the next token. The naturalness
is not calculated by using the exact probability multiplication form
as shown in Equation 1; instead we use the average of the log like-
lihood of each token. Concretely, for a patch Pi ∈ P that changes
the method M to Mi , and the new method Mi consists of tokens
M1
i , ...,M

T
i , the score of Pi is calculated as follows:

nat(Pi) =
1
T

T∑
t=1

log(p (Mt
i |M

1
i , ...M

t−1
i)) (4)

This is the logarithm of the naturalness of the sequence as de-
fined in Equation 1, divided by its length. We empirically find that
this length-normalized naturalness performs the best, as the non-
normalized versions tend to penalize patches that add new code.

We use the java-med dataset from code2vec [2] as the training
set, which consists of 1,000 top-starred Java projects from GitHub.
We removed Defects4J-related data from the training dataset. With
this training dataset, we first use byte-pair encoding (BPE) [1] to
tokenize; BPE was recently found to be useful by Karampatsis et
al. [16] in the software engineering context as well, as it does not
suffer from any out-of-vocabulary issues. We then train the lan-
guage model for naturalness calculation. Meanwhile, any ties that
happen after aggregation are broken using the APR tool ranking.

DLPC. To answer RQ2, we mostly use the existing work of Tian
et al. [34] as it is implemented in the official repository1. We use the
BERT implementation as the authors report that it shows the best
performance. For the classificationmodel, we use logistic regression;
we train it with data provided in the repository.

1https://github.com/SerVal-DTF/DL4PatchCorrectness

Environments. The machine used for experiments had a Intel(R)
Core(TM) i7-6700 3.4GHz CPU, 16GB of RAM, and an NVIDIA
Titan X GPU for language model training. The language model
was implemented with PyTorch [28]. Java method extraction and
tokenizing used the SrcML [6] framework.

5 EMPIRICAL RESULTS
This section presents the results of our empirical evaluation.

5.1 RQ1: Utility in Prioritization
RQ1 asks whether language models can contribute information that
helps prioritizing the correct patch.We primarily look at the number
of bugs for which the rank of the correct patch improved, remained
the same, or worsened, for each tool. We also investigate how well
the default tool rankings compare to a random prioritization: as
under a uniform random distribution, the rank of the correct patch
should come at the midpoint, we compare the original rank of the
correct patch to this reference point.

The results are presented in Figure 2, where bugs in which the
language model outperforms the default ordering are marked in
green, while red bugs are vice-versa. Note that the language model
prioritization does appear capable of contributing to the prioriti-
zation: in all APR tools examined, the rank is improved in at least
40% of all bugs. Note that we are not trying to establish that the LM
ranking is strictly superior to the default ranking; rather, Figure 2
demonstrates that LMs often (but not always) outperform the de-
fault ranking, suggesting LMs can complement the default ranking
and help make a better ranking in general.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

TBar

SimFix

AVATAR

kPAR

FixMiner

25 8 13

10 4 7

11 1 11

10 2 12

11 0 15

better same worse

Figure 2: Count of how many bugs in which the language
model ranked the correct patch at a better, same, or worse
level as the default prioritization by APR tools.

We further compare the performance of both the repair tool and
the language model to that of a random prioritization. The results
are presented in Table 1, which presents the number of bugs in
which each prioritization technique was better, same, or worse than
the expected ranking of a random baseline, along with the results
of a binomial test. Note that the language model is statistically
significantly better than random under a p = 0.05 power binomial
test for all tools except kPAR, while the prioritization of all tools
except AVATAR were also better than random. This suggests that
the results of Figure 2 are unlikely to be random, and that the
language model indeed has information that could contribute to
prioritizing the correct patch in the studied APR tools. The fact
that the language model can improve the ranking of the correct

Language Models Can Prioritize Patches for Practical Program Patching ICSEW ’22, June 03–05, 2018, Pittsburgh, PA

APR Tool Default LM
B S L p B S L p

TBar 29 2 15 .024 40 1 5 <.01
SimFix 16 2 3 <.01 14 2 5 .031
AVATAR 12 0 11 .5 15 1 6 .026
kPAR 17 0 7 .031 16 0 8 .075

FixMiner 20 0 6 <.01 18 0 8 .037
Table 1: Ranking comparison with a random baseline (mid-
point). For each technique, the B/S/L columns showwhether
the ranking was better, same, or worse than the random
baseline. The p columns represent the p-value of such a re-
sult under a binomial test.

patch in a significant proportion of bugs, even when compared to
strong ranking baselines, further strengthens our case that language
models provide meaningful information.

Answer to RQ1: Language models can contribute to patch rank-
ing. In fact, they perform competitively against the already well-
performing prioritization of existing repair tools.

5.2 RQ2: Comparison with Correctness
Classifier

Next, we compare rankings of the repair tool to those produced by
DLPC [34], which uses pre-trained BERT embeddings and a curated
patch dataset. We use the same evaluation metrics as before; the
results of the comparison are shown in Table 2. The results show
that using this baseline contributes little to the overall ranking:
generally less than a third of bugs see their rank improve. Looking at
the direct comparison to the random baseline, or the validation cost
relative to the total number of patches, the result suggests a random
prioritization model would yield similar performance. Thus, we can
conclude that the language model can provide information useful
for patch prioritization. To be clear, this does not mean that the work
of Tian et al. does not replicate: using their implementation and
data, we achieved similar classifier accuracy. Rather, this is because
their task was to distinguish correct patches among plausible ones,
not the full patch prioritization problem. Further, these results show
that the patch prioritization problem is not trivially performed by
such correctness classifiers.
Answer to RQ2: In contrast to the language model evaluated
in RQ1, a state-of-the-art technique that predicts the correctness
of patches performs similarly to a random baseline on the raw
patch prioritization task.

5.3 RQ3: Validation Cost Reduction
In RQ1, we found the default ranking and naturalness ranking
differed in their strengths, suggesting integration would help per-
formance. RQ3 studies whether combined rankings outperform
both the default prioritization and the language model based pri-
oritization: the validation cost results are shown in Figure 3, with
per-bug improvement results shown in Figure 4.

APR Tool vs Default vs Random Validation
CostB S L B S L p

TBar 10 3 33 16 2 28 .97 1525 (2890)
SimFix 6 3 12 13 0 8 .19 2328 (15642)
AVATAR 8 9 6 7 3 13 .98 539 (812)
kPAR 8 1 15 9 0 15 .92 979 (1304)

FixMine 8 0 18 10 1 15 .91 18993 (38213)
Table 2: Ranking results of DLPC, compared to the default
ranking from APR tools and a random baseline. The fourth
column shows the validation cost based onDLPC, alongwith
the total number of patches in parentheses.

Note that across all five tools, while at times the language model
alone underperforms the default prioritization, the combined rank-
ings require significantly less validation effort. For example, in
AVATAR the combined approaches can reduce the necessary in-
spection cost by 65%. In FixMiner, the language model made some
large mistakes in prioritization, ending up with a huge inspection
cost when employed on its own. However, under the combined
approaches, the language model contributes enough information
to actually reduce the validation cost: using harmonic mean, the
validation cost is reduced by 36%. While it may appear that the
performance in kPAR is mostly similar to the original baseline, this
is because most of the cost is dominated by a single bug Lang24, in
which both prioritization tools perform similarly. Excluding this
outlier, we can achieve a validation cost reduction of 30% over the
remaining 23 bugs, from 275 patch validations to only 194. This is
also evident by looking at the rank distribution on the right, which
shows that the cost for inspecting many bugs has decreased. These
results strongly suggest that language models can indeed contribute
towards reducing validation cost.

Answer to RQ3: The combined rankings could reduce valida-
tion effort significantly over a wide range of tools, up to 65%.

5.4 RQ4: Combination Techniques
As mentioned in Section 4, different aggregation methods have
widely different properties when the two ranking methods diverge
from each other. Then how do these aggregation methods perform
in practice? We present the validation cost by each aggregation
method in Figure 3, while a comparison of the aggregated ranking
on a per-bug basis is provided in Figure 4.

First, observe that (particularly on the minimum aggregation
side) there are bright green rectangles on almost every row indicat-
ing a large improvement; meanwhile, the red rectangles are almost
always dim, indicating only a minor underperformance relative
to the default ranking. This shows how the combined techniques
achieve the net validation effort reduction depicted on Figure 3. On
the other hand, towards the maximum side of aggregation functions,
while when both rankings are performing well, the maximum func-
tion can do better than both; if only one ranking fails, maximum
aggregation fails as well. This is especially clear in the maximum
case of FixMiner from Figure 4: note how the number of bugs col-
ored in bright red increases as we go toward the maximum side

ICSEW ’22, June 03–05, 2018, Pittsburgh, PA Kang and Yoo

02505007501000

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

605 (­39%)
558 (­44%)
547 (­45%)
560 (­43%)
569 (­42%)
428 (­57%)

989
TBar Rank Sum

0 20 40 60

TBar Rank Dist.

05001000

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

1090 (­20%)
883 (­35%)
787 (­42%)
908 (­34%)
939 (­31%)

1024 (­25%)
1367

SimFix Rank Sum

0 20 40 60

SimFix Rank Dist.

0100200300400

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

328 (­21%)
214 (­48%)
166 (­60%)
147 (­65%)
144 (­65%)
187 (­55%)

415
AVATAR Rank Sum

0 20 40 60

AVATAR Rank Dist.

0200400

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

523
490
486
485

466 (­3%)
552
482

kPAR Rank Sum

0 20 40 60

kPAR Rank Dist.

02505007501000

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

Comb­Max
Comb­AM
Comb­GM
Comb­HM
Comb­Min
LM
Default

7180
3743

761 (­13%)
558 (­36%)
568 (­35%)

9119
875

FixMiner Rank Sum

0 100 200 300

FixMiner Rank Dist.

Verification Required Under
Prioritization Schema

Figure 3: Validation effort by each model and combination
technique. (Left) Validation cost for each technique. The
number in parentheses represents cost reduction relative to
the default rank. (Right) Per-bug cost distribution via box-
plots; some outliers are truncated.

of aggregation functions. Thus while there is a tradeoff in which
aggregation function to use, in terms of “the probability that the
prioritization will be better than vanilla repair for this particular
bug” and “the expected cost of fixing this bug under the new priori-
tization”, the minimum aggregation function tends to show both
an overall lower validation cost and a more stable performance.

0 10 20 30 40

LM | (25, 8, 13)
Comb-Min | (19, 10, 17)
Comb-HM | (21, 10, 15)

Comb-GM | (27, 9, 10)
Comb-AM | (32, 8, 6)

Comb-Max | (32, 9, 5)

TBar

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

LM | (11, 4, 6)
Comb-Min | (7, 7, 7)

Comb-HM | (10, 5, 6)
Comb-GM | (11, 6, 4)
Comb-AM | (11, 5, 5)

Comb-Max | (12, 3, 6)

SimFix

0 5 10 15 20

LM | (11, 1, 11)
Comb-Min | (11, 8, 4)
Comb-HM | (11, 8, 4)
Comb-GM | (11, 8, 4)
Comb-AM | (12, 7, 4)

Comb-Max | (9, 10, 4)

AVATAR

0 5 10 15 20

LM | (10, 2, 12)
Comb-Min | (9, 7, 8)

Comb-HM | (8, 6, 10)
Comb-GM | (8, 5, 11)
Comb-AM | (8, 6, 10)
Comb-Max | (7, 8, 9)

kPAR

0 5 10 15 20 25

LM | (11, 0, 15)
Comb-Min | (8, 7, 11)
Comb-HM | (9, 5, 12)
Comb-GM | (12, 5, 9)
Comb-AM | (16, 5, 5)

Comb-Max | (12, 8, 6)

FixMiner

Combined Performance Per Bug
against Default Ranking

Figure 4: Comparison of per-bug performance for each ag-
gregation technique for each tool against the default prior-
itization of APR tools. Green represents bugs in which the
new prioritization did better than the default ranking, while
red represents the opposite scenario. The color is more in-
tense as the difference between the rankings increases.

Answer to RQ4: Different aggregation functions have different
characteristics, with a tradeoff involved between cost and proba-
bility of improvement. Given that the main bottleneck of APR is
validation cost itself, we would recommend using the minimum
or harmonic mean when aggregating, which show both lower
validation cost and overall more stable performance.

Language Models Can Prioritize Patches for Practical Program Patching ICSEW ’22, June 03–05, 2018, Pittsburgh, PA

5.5 Qualitative Inspection
To conclude the section, we present examples illustrating what the
LM ‘thinks’ about some example patches, to heighten the under-
standing of our approach. The listings in this section are best seen in
color, as color is used to intuitively establish the likelihood of each
token according to the LM. The concrete color code is provided in
the first line of Listing 2. Only differing parts are highlighted, as the
rest of the method is the same over all patches. The patch number
presented in the listing titles is from the default prioritization of
the APR tool in question.

Listing 2: TBar Lang57 Patch #1 (incorrect)
// Legend: token prob > 0.5 p > 0.1 p > 0.01 p <= 0.01

-220,7 +220,7
(...) boolean isAvailableLocale (Locale locale) {

- return cAvailableLocaleSet.contains(locale);
+ return (cAvailableLocaleSet.contains(locale))
+ || (locale.getVariant().length() > 0);
}

Listing 3: TBar Lang57 Patch #37 (correct)
-220,7 +220,7
(...) boolean isAvailableLocale (Locale locale) {

- return cAvailableLocaleSet.contains(locale);
+ return availableLocaleList().contains(locale);
}

Listing 4: SimFix Closure57 Patch #1 (incorrect)
-194,9 +194,16

Node target = callee.getNext();
- if (target != null) {
- className = target.getString();
- }
+ if(child!=null){
+ className=child.getString();
+ }

}

Listing 5: SimFix Closure57 Patch #27 (correct)
-194,9 +194,16

Node target = callee.getNext();
- if (target != null) {
+ if(target!=null&&target.getType()==Token.STRING){

className=target.getString();
}

}

TBar on Lang 57. Let us examine both an incorrect patch prior-
itized by TBar (Listing 2), and the correct patch placed in second
place by the language model (Listing 3). Here, TBar starts off by
appending some additional conditions to the existing return state-
ment. However, the existing statement itself is buggy and unnatural
to the language model. Furthermore, the language model deems
the appended part unnatural: for example, the invocation of the
getVariant method on locale is unlikely. (The token it sug-
gests instead is getAvailable, which at least on a lexical level
makes more sense.) Meanwhile, the correct patch is judged to be
mostly natural, and thus prioritized as second place. The patch
ranked at the top by the language model is a patch that replaces
availableLocaleListwith availableLocaleSet, which again
is natural from a lexical perspective.

SimFix on Closure 57. Two patches are presented: the incorrect
patch prioritized by SimFix (Listing 4), and the correct patch placed
in second place by the language model (Listing 5). Notice how in the
incorrect patch, the variable target is replaced with the variable
child. The language model finds this variable change unlikely,
particularly the use of the child variable, as the target variable
was declared in the previous statement. Meanwhile in the correct
patch, the use of the target variable is viewed upon favorably by
the neural network, along with the relatively high probability use
of the getType method, ranking this patch in the second place
among the approximately 100 patches generated in this instance.

6 DISCUSSION
6.1 Threats to Validity

Internal Validity. Internal validity concerns whether the study
has eliminated alternative explanations for the finding. The fact
that the language model outperforms the default prioritizations of
each APR tool may simply be due to randomness. To make sure
that is unlikely, we performed a binomial test to verify that both the
APR tool and language model are performing better than chance.
Further, our technique reports performance improvement over a
wide range of tools, heightening confidence in our results.

External Validity. Language models are a simple and widely ap-
plicable class of statistical models, andwe believe that our technique
could be widely available and useful to programming languages
in which patch data is scarce. However, we have not empirically
verified that language models actually improve performance in
languages other than Java, and indeed it has not been verified that
language models improve APR performance outside of the tools
that we investigated.

6.2 Future Directions
Naturalness as afitness function.As explained in Section 2.1, we
did not investigate the effect of using naturalness on optimization-
based techniques. However, the strong performance of using natu-
ralness on template-based APR techniques naturally brings up the
question of whether language models could shape the search space
of GenProg, for example. Specifically, one could use naturalness
as part of a fitness function, so that the optimization process does
not go far astray from what we expect natural code to look like.
Given that the search space is greater in such unconstrained opti-
mization APR techniques than in template-based APR techniques,
and that optimization-based APR is prone to bloating [32], it is
possible that naturalness would be even more helpful when applied
to optimization than when applied to template-based approaches.

The use of different language models. In this paper, we used
a simple unidirectional neural network. However, there are many
ways to calculate naturalness, from the simplest n-gram models to
the larger and more complicated models like CodeBERT [8]. To the
best of our knowledge, there has not yet been deep investigation as
to which language models aid software engineering tasks the most,
and why; if naturalness consistently provides useful results for
software engineering tools as with our results, an in-depth analysis
of various language models would be of interest.

ICSEW ’22, June 03–05, 2018, Pittsburgh, PA Kang and Yoo

7 CONCLUSION
In this work, we propose using languagemodels to prioritize patches
generated by multiple automatic program repair techniques. We
find that language models contribute information to patch ranking
that is complementary to what existing models were using. Lan-
guage models allow a greater range of data to be used in identifying
patch naturalness, outperforming a baseline that explicitly tries
to model patch correctness. Combining ranking information from
both the APR tool and the language model shows that the result-
ing ranking can save up to 65% of patch validation effort, saving
effort in up to 70% of bugs inspected. We believe this work is a
starting example of many ways in which language models could be
incorporated with existing software engineering tools.

8 ACKNOWLEDGMENTS
Sungmin Kang and Shin Yoo have been supported by National Re-
search Foundation of Korea (NRF) Grant (NRF-2020R1A2C1013629),
Engineering Research Center Program through the National Re-
search Foundation of Korea (NRF) funded by the Korean Govern-
ment MSIT (NRF-2018R1A5A1059921), as well as by Institute for In-
formation & communications Technology Promotion grant funded
by the Korean government (MSIT) (No.2021-0-01001).

REFERENCES
[1] [n.d.]. A New Algorithm for Data Compression. http://www.pennelynn.com/

Documents/CUJ/HTML/94HTML/19940045.HTM. Accessed: 2021-04-19.
[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning

distributed representations of code. Proceedings of the ACM on Programming
Languages 3 (2019), 1 – 29.

[3] Moumita Asad, K. K. Ganguly, and K. Sakib. 2019. Impact Analysis of Syntactic
and Semantic Similarities on Patch Prioritization in Automated Program Repair.
2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)
(2019), 328–332.

[4] L. Chen and L. Zhang. 2020. Fast and Precise On-the-fly Patch Validation for All.
ArXiv abs/2007.11449 (2020).

[5] Zimin Chen, Steve Kommrusch, Michele Tufano, L. Pouchet, D. Poshyvanyk,
and Monperrus Martin. 2019. SequenceR: Sequence-to-Sequence Learning for
End-to-End Program Repair. ArXiv abs/1901.01808 (2019).

[6] Michael L. Collard and J. Maletic. 2016. srcML 1.0: Explore, Analyze, and Manip-
ulate Source Code. 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME) (2016), 649–649.

[7] Thomas Durieux and Monperrus Martin. 2016. DynaMoth: Dynamic Code Syn-
thesis for Automatic Program Repair. 2016 IEEE/ACM 11th International Workshop
in Automation of Software Test (AST) (2016), 85–91.

[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, X. Feng, Ming Gong, Linjun
Shou, Bing Qin, T. Liu, Daxin Jiang, and M. Zhou. 2020. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In EMNLP.

[9] L. Gazzola, D. Micucci, and L. Mariani. 2019. Automatic Software Repair: A
Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.

[10] V. Hellendoorn, Sebastian Proksch, H. Gall, and Alberto Bacchelli. 2019. When
Code Completion Fails: A Case Study on Real-World Completions. 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE) (2019), 960–970.

[11] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). IEEE Press, 837âĂŞ847.

[12] S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural
Computation 9 (1997), 1735–1780.

[13] J. Jiang, Yingfei Xiong, H. Zhang, Q. Gao, and X. Chen. 2018. Shaping program
repair space with existing patches and similar code. Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (2018).

[14] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. arXiv:cs.SE/2103.00073

[15] René Just, D. Jalali, and Michael D. Ernst. 2014. Defects4J: a database of existing
faults to enable controlled testing studies for Java programs. In ISSTA 2014.

[16] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and
Andrea Janes. 2020. Big Code != Big Vocabulary: Open-Vocabulary Models for
Source Code. In Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 1073–1085.

[17] D. Kim, J. Nam, J. Song, and S. Kim. 2013. Automatic patch generation learned
from human-written patches. In 2013 35th International Conference on Software
Engineering (ICSE). 802–811.

[18] A. Koyuncu, K. Liu, Tegawendé F. Bissyandé, D. Kim, J. Klein, Monperrus Martin,
and Y. Le Traon. 2020. FixMiner: Mining relevant fix patterns for automated
program repair. Empirical Software Engineering 25 (2020), 1980–2024.

[19] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and Semantic-Guided Repair Synthesis via Programming by
Examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 593–604.

[20] Xuan-Bach D. Le, D. Lo, and Claire Le Goues. 2016. History Driven Program
Repair. 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER) 1 (2016), 213–224.

[21] K. Liu, A. Koyuncu, Tegawendé F. Bissyandé, D. Kim, J. Klein, and Y. L. Traon. 2019.
You Cannot Fix What You Cannot Find! An Investigation of Fault Localization
Bias in Benchmarking Automated Program Repair Systems. 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST) (2019), 102–113.

[22] K. Liu, A. Koyuncu, D. Kim, and Tegawendé F. Bissyandé. 2019. AVATAR: Fixing
Semantic Bugs with Fix Patterns of Static Analysis Violations. 2019 IEEE 26th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER)
(2019), 1–12.

[23] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 31–42.

[24] Kui Liu, Shangwen Wang, A. Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, P. Wu, J. Klein, Xiaoguang Mao, and Y. L. Traon. 2020. On the
Efficiency of Test Suite based Program Repair A Systematic Assessment of 16
Automated Repair Systems for Java Programs. 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE) (2020), 615–627.

[25] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. SIGPLAN Not. 51, 1 (Jan. 2016), 298âĂŞ312.

[26] Thibaud Lutellier, H. Pham, L. Pang, Yitong Li, Moshi Wei, and Lin Tan. 2020.
CoCoNuT: combining context-aware neural translation models using ensemble
for program repair. Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis (2020).

[27] S. Mechtaev, J. Yi, and A. Roychoudhury. 2016. Angelix: Scalable Multiline Pro-
gram Patch Synthesis via Symbolic Analysis. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). 691–701.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024–8035.

[29] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the "Naturalness" of Buggy Code.
In Proceedings of the 38th International Conference on Software Engineering (ICSE
’16). Association for Computing Machinery, New York, NY, USA, 428–439.

[30] R. Saha, Yingjun Lyu, H. Yoshida, and M. Prasad. 2017. Elixir: Effective object-
oriented program repair. 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) (2017), 648–659.

[31] Seemanta Saha, R. Saha, and M. Prasad. 2019. Harnessing Evolution for Multi-
Hunk Program Repair. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE) (2019), 13–24.

[32] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure
Worse than the Disease? Overfitting in Automated Program Repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). Association for Computing Machinery, New York, NY, USA, 532–543.

[33] S. Tan, H. Yoshida, M. Prasad, and Abhik Roychoudhury. 2016. Anti-patterns
in search-based program repair. Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (2016).

[34] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F. Bissyandé. 2020. Evaluating Representation Learning of Code
Changes for Predicting Patch Correctness in Program Repair. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.

[35] Ming Wen, J. Chen, Rongxin Wu, Dan Hao, and S. Cheung. 2018. Context-Aware
Patch Generation for Better Automated Program Repair. 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE) (2018), 1–11.

[36] Qi Xin and S. Reiss. 2017. Leveraging syntax-related code for automated program
repair. 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2017), 660–670.

http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://arxiv.org/abs/cs.SE/2103.00073

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated Program Repair (APR)
	2.2 Code Naturalness
	2.3 Repair Cost Reduction

	3 Approach
	4 Experimental Setup
	4.1 APR Tools Evaluated
	4.2 Research Questions
	4.3 Implementation Details

	5 Empirical Results
	5.1 RQ1: Utility in Prioritization
	5.2 RQ2: Comparison with Correctness Classifier
	5.3 RQ3: Validation Cost Reduction
	5.4 RQ4: Combination Techniques
	5.5 Qualitative Inspection

	6 Discussion
	6.1 Threats to Validity
	6.2 Future Directions

	7 Conclusion
	8 Acknowledgments
	References

