
Empirical Software Engineering (2025) 30:124
https://doi.org/10.1007/s10664-025-10657-7

An empirical study of fault localisation techniques for deep
neural networks

Nargiz Humbatova1 · Jinhan Kim1 · Gunel Jahangirova2 · Shin Yoo3 ·
Paolo Tonella1

Accepted: 3 April 2025
© The Author(s) 2025

Abstract
With the increased popularity of Deep Neural Networks (DNNs), increases also the need
for tools to assist developers in the DNN implementation, testing and debugging process.
Several approaches have been proposed that automatically analyse and localise potential
faults in DNNs under test. In this work, we evaluate and compare existing state-of-the-art
fault localisation techniques, which operate based on both dynamic and static analysis of the
DNN. The evaluation is performed on a benchmark consisting of both real faults obtained
from bug reporting platforms and faulty models produced by a mutation tool. Our findings
indicate that the usage of a single, specific ground truth (e.g. the human-defined one) for
the evaluation of DNN fault localisation tools results in pretty low performance (maximum
average recall of 0.33 andprecision of 0.21).However, suchfigures increasewhen considering
alternative, equivalent patches that exist for a given faulty DNN. The results indicate that
DeepFD is the most effective tool, achieving an average recall of 0.55 and a precision of 0.37
on our benchmark.

Keywords Deep learning · Real faults · Fault localisation

Communicated by: Denys Poshyvanyk

B Nargiz Humbatova
nargiz.humbatova@usi.ch

Jinhan Kim
jinhan.kim@usi.ch

Gunel Jahangirova
gunel.jahangirova@kcl.ac.uk

Shin Yoo
shin.yoo@kaist.ac.kr

Paolo Tonella
paolo.tonella@usi.ch

1 Università della Svizzera italiana, Via Buffi, 13, Lugano, Switzerland

2 King’s College London, Bush House, Strand Campus, 30 Aldwych, London, UK

3 KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10657-7&domain=pdf
http://orcid.org/0000-0002-3037-8368

 124 Page 2 of 34 Empirical Software Engineering (2025) 30:124

1 Introduction

Fault localisation (FL) for DNNs is a rapidly evolving area of DL testing (Wardat et al. 2021,
2022; Cao et al. 2022; Nikanjam et al. 2021; Schoop et al. 2021). The decision logic of tradi-
tional software systems is encoded in their source code. Correspondingly, fault localisation
for such systems consists of identifying the parts of code that are most likely responsible for
the encountered misbehaviour. Unlike traditional software systems, however, the decision
logic of DL systems depends on many components such as the model structure, selected
hyper-parameters, training dataset, and the framework used to perform the training pro-
cess. Moreover, DL systems are stochastic in nature, as a retraining with the exactly same
parameters might lead to a slightly different final model and performance. These distinctive
characteristics make the mapping of a misbehaviour (e.g., poor classification accuracy) to a
specific fault type a highly challenging task.

Existing state-of-the-art works (Wardat et al. 2021; Zhang et al. 2021; Wardat et al. 2022;
Baker et al. 2022; Nikanjam et al. 2021) that focus on the problem of fault localisation for
DL systems were shown to be adequate for this task when evaluated on different sets of
real-world problems extracted from StackOverflow and GitHub platforms or were deemed
useful by developers in the process of fault localisation and fixing (Schoop et al. 2021).
However, these approaches rely on patterns of inefficient model structure design, as well
as a set of predefined rules about the values of internal indicators measured during the DL
training process. This makes the effectiveness of these approaches highly dependent on the
identified set of rules and on the threshold values selected to discriminate the values of the
internal indicators of a fault.

To understand whether these tools effectively generalise to a diverse set of fault types
and DL systems, and thus, are effective for the real-world usage, we performed an empirical
evaluation on a curated benchmark of carefully selected subjects. In this benchmark, the faults
obtained by the artificial injection of defects into otherwise well-performing DL models are
combined with a set of reproduced real-world DL faults. We ensured that our evaluation
involves models of different structure and complexity that solve problems from different
domains. The existing evaluations of FL tools are performed only on datasets in which there
is a single ground truth repair for each fault. However, an improvement in the performance
of a DL model can be achieved by applying different but equally effective fixes. Therefore,
limiting the evaluation to a single ground truth might lead to correctly suggested alternative
fixes being classified as incorrect, which posits a significant threat to the validity of the
performed experiments. To address this issue, we perform a neutrality analysis, which aims
to identify multiple alternative patches that fix a fault in the DL model. We then evaluate
the FL tools considering not only the manually identified single ground truth but also all the
available fixes.

Our results show that existing DNN FL techniques produce stable results in a relatively
short time, ranging from an average of 7 to 278 seconds. However, the accuracy of fault
localisation techniques with regard to ground truth provided for each issue is quite low (with
a maximum average recall of 0.33 and a precision of 0.21). Once we extend the available
ground truth to the changes that produce equivalent or superior improvement in the model’s
performance, the fault localisation performance significantly improves (the observed maxi-
mum recall growth is from 0.33 to 0.55). This shows that the evaluation of the approaches
on only one variant of the ground truth does not indeed provide accurate results.

The results indicate that the highest FL performance is achieved by DeepFD, which is
also the tool that requires the longest execution time. Neuralint is extremely efficient, as it

123

Empirical Software Engineering (2025) 30:124 Page 3 of 34 124

is based on static analysis and does not require model training, although its performance is
inferior to that of DeepFD.

In general, we make the following contributions in this paper:

– An empirical evaluation of four state-of-the-art fault localisation tools on a set of real-
world and artificially injected faults, in terms of fault detection effectiveness, efficiency
and stability of the results (both considering a single, fixed ground truth, as well as
multiple ground truths obtained by means of neutrality analysis).

– The largest and augmented dataset of reproducible DNN faults with an extended ground
truth based on neutrality analysis.

– An analysis of the output messages of fault localisation tools in terms of actionability.

2 Background

Most of the proposed approaches for fault localisation for DL systems focus on analysing
the run-time behaviour during model training. According to the collected information and
some predefined rules, these approaches decide whether they can spot any abnormalities and
report them (Wardat et al. 2021, 2022; Schoop et al. 2021).

DeepLocalize and DeepDiagnosis During the training of a DNN, DeepLocalize (DL)
(Wardat et al. 2021) collects various performance indicators such as loss values, performance
metrics, weights, gradients, and neuron activation values. Themain idea behind this approach
is that the historic trends in the performance evaluation or the values propagated between
layers can serve as an indicator of a fault’s presence. To allow the collection of the necessary
data, a developer should insert a custom callback provided by the tool into the source code
regulating the training process. A callback is amechanism that is invoked at different stages of
model training (e.g., at the start or end of an epoch, before or after a single batch Chollet et al.
(2015)) to perform a set of desired actions – store historical data reflecting the dynamics of
the training process in our case. The tool then compares the analysed values with a list of
pre-defined failure symptoms and root causes, which the authors have collected from the
existing literature. Based on the performed analysis, DeepLocalize either claims that the
model is correct or outputs an error message listing the detected misbehaviours. The final
output of DeepLocalize contains the (1) fault type, (2) the layer and the phase (feed forward
or backward propagation) in which the DL program has a problem, and (3) the iteration in
which learning is stopped. The faults that the tool is able to detect include the following:
“Error Before/After Activation”, “Error in Loss Function”, “Error Backward in Weight/Δ
Weight”, and “Model Does Not Learn” that suggests an incorrectly selected learning rate.

DeepDiagnosis (DD) (Wardat et al. 2022) was built on the basis of DeepLocalize and
improved the latter by enlarging the list of detected symptoms and connecting them to a set
of actionable suggestions. It detects ten types of faults: “Numerical Errors”, “Exploding Ten-
sor”, “Unchanged Weight”, “Saturated Activation”, “Dead Node”, “Activation Function’s
Output Out of Range”, “Loss Not Decreasing”, “Invalid Loss”, “Invalid Accuracy”, “Accu-
racy Not Increasing”, and “Vanishing Gradient”. Depending on the symptom, the actionable
messages provided by DeepDiagnosis suggest to change either the loss or optimisation
function, layer number, initialisation of weights, learning rate, or indicating that training data
is “improper”. The authors perform an empirical evaluation of DeepDiagnosis and compare
it to DeepLocalize, UMLAUT and AutoTrainer. They report the time overhead caused
by each tool with respect to the number of faults it can successfully localise. However, the

123

 124 Page 4 of 34 Empirical Software Engineering (2025) 30:124

time overhead is not reported for each fault but for each dataset (i.e., for all faults of subject
MNIST or Circle). In their empirical evaluation, the authors take the randomness associated
with model training into account by running each of the compared tools 5 times.

As DeepLocalize does not provide an output that can be translated into a specific fault
affecting the model, we only use DeepDiagnosis in the empirical comparison of fault local-
isation tools.

UMLAUT Similarly toDeepLocalize andDeepDiagnosis,UMLAUT (UM) (Schoop et al.
2021) operates through a callback attached to the model training call. This tool combines
dynamic monitoring of the model behaviour during training with heuristic static checks of
the model structure and its parameters. As an output, it provides the results of the checks
along with best practices and suggestions on how to deal with the detected faults. The tool
comprises ten heuristics for which the authors found mentions in different sources, such
as API documentation and existing literature, lecture notes and textbooks, courses, blogs
and non-scientific articles. The heuristics are divided by the area of application into “Data
Preparation”, “Model Architecture” and “Parameter Tuning”. “Data Preparation” heuristics
are dynamic and check if the training data contains “NaN”, has invalid shape, is not normalised
or if the validation accuracy is higher than 95% after the third epoch of the training. On
the other hand, all “Model Architecture” heuristics are static and are focused on the usage
of correct activation functions. The “Parameter Tuning” category combines both dynamic
and static rules that aim to detect over-fitting and control the values of the learning and
dropout rates. As an output, the tool returns a list of heuristics that were violated. The
empirical evaluation of UMLAUT was performed with 15 human participants and aimed
mostly to determine whether it is useful for the developers. The authors considered only 6
bugs artificially injected across two DL systems. The reported results do not include the time
the tool takes to run. Moreover, the authors do not account for the randomness associated
with using the tool and do not compare it to any state-of-the-art tools.

Neuralint Nikanjam et al. (2021) propose Neuralint (NL), a model-based fault detection
approach that uses meta-modelling and graph transformations. The technique starts with
building a meta-model for DL programs that consists of their base structure and fundamental
properties. It then performs a verification process that applies 23 pre-defined rules, imple-
mented as graph transformations, to themeta-model, to check for any potential inefficiencies.
The rules are classified into four high-level root causes as suggested by Zhang et al. (2018):
“Incorrect Model Parameter or Structure” (five rules), “Unaligned Tensor” (four rules), “API
Misuse” (five rules), and “Structure Inefficiency” (nine rules). One example of “Unaligned
Tensor” rule is a check whether consecutive layers in a model are compatible or whether the
reshape of data did not lead to the loss of any elements. “APIMisuse” includes a rule to check
if the optimiser is correctly defined and connected to the computational graph. Another rule
in this category inspects the parameter initialisation to detect the cases when initialisation
is performed more than once or after the training has already started. The “Incorrect Model
Parameter or Structure” rule checks if weights and biases are initialised with appropriate
values and if suitable activation functions are used for specific layer types. “Structure Ineffi-
ciency” is responsible for detecting flaws in the design and structure of DNN that can result
in the drop of model performance. Among others, there are rules in this category that check
if the number of neurons in fully connected layers is decreasing when moving from the input
to the output layer or rules that check that pooling layers are not used after each applied
convolution, to avoid losing too much information about an input. The empirical evaluation
of Neuralint does not include a comparison to any of the existing tools. The authors also do

123

Empirical Software Engineering (2025) 30:124 Page 5 of 34 124

not report the time it takes to run the tool for each of the faults, but only provide information
on the time for 5 selected DL models with different sizes.

DeepFD DeepFD (Cao et al. 2022) (DFD) is a learning-based framework that leverages
mutation testing and popular ML algorithms to construct a tool capable of labelling a given
DL program as correct or faulty according to a list of common fault types the tool has
learned to detect. To train the classifiers that lie at the core of the technique, the authors
prepare a set of correct and faulty models. Faulty models are obtained through the artificial
injection of up to five mutations to each correct program being used. The mutations that
are used to inject faults are changing loss or optimisation function, changing learning rate,
decreasing number of epochs, and changing activation functions. Consequently, these fault
types correspond to the fault localisation capabilities of the tool. To construct the training
dataset, all of the generated mutants and the original models are trained, while collecting
run-time data of the same kind as for DeepLocalize, DeepDiagnosis, UMLAUT. The
authors then extract 160 features from these data using statistical operations (e.g., calculating
skewness, variance or standard deviation). As the next step, three popular ML algorithms
(K-Nearest Neighbors Altman 1992, Decision Tree Breiman 2017 and Random Forest Ho
1995) are trained on the created dataset. A union of the prediction results of these classifiers
is used for fault localisation in a given program under test. DeepFD outputs a list of detected
faults along with the code lines affected by each fault type. The empirical evaluation of
DeepFD contains comparison to AutoTrainer and DeepLocalize. The authors take the
stochasticity of the proposed approach into account and run their experiments 10 times.
However, no information is reported on the time required to train and run DeepFD.

Autotrainer AutoTrainer (Zhang et al. 2021) is an automated tool whose aim is to detect,
localise, and repair training related problems in DL models. It starts with an already trained
and saved underperforming DL model. To check the model, AutoTrainer continues the
training process and observes different internal parameters such as loss values, accuracy,
gradients, etc. The collected information is then analysed and verified against a set of rules that
are aimed to detect potential training failures. In particular, the authors focus on the symptoms
of exploding and vanishing gradients, oscillating loss, slow convergence and ‘dying ReLU’.
To deal with each of the reveled symptom, AutoTrainer applies an ordered set of possible
solutions to the model. After a potential solution is applied, the tool continues training the
model for one more epoch to check whether the symptom is gone or not. The solutions
include changing activation functions, hyperparameters such as learning rate and batch size,
optimisers and weight initialisation, and addition of batch normalisation layers to the model
structure. We do not consider AutoTrainer in this empirical comparison as its final goal
is to patch an already trained model rather than localise and fix the source of a DNN’s
misbehaviour.

The tools described in this section are built using a limited set of rules and best practices,
fixed thresholds or training data, resulting in an urgent need to empirically investigate the
generalisability of these approaches to diverse programs and architectures. While some of
the experiments conducted by the proponents to evaluate these tools include comparisons to
other existing tools, no work considers the full set of four existing FL approaches. Moreover,
the existing evaluations do not always consider the randomness associated with the training
of the DLmodels and do not report detailed information on the runtime costs associated with
the FL tools. Most importantly, no third party evaluation of these tools on a curated dataset
of faulty DL models was ever conducted and reported so far.

123

 124 Page 6 of 34 Empirical Software Engineering (2025) 30:124

3 Benchmark

To evaluate and compare the fault localisation techniques selected for this study, we adopt a
carefully selected benchmark of faulty models from the existing literature (Kim et al. 2023).
This benchmark is of a particular interest as it combines both models affected by real-world
faults and those deliberately produced using artificial faults.

3.1 Fault Types and Tool Coverage

In Table 1, we introduce abbreviations (column ‘Abbrev.’) for all the ground truth fault types
encountered in the benchmark (see Tables 2 and 3) or suggested in the output of the evaluated
FL tools. Most of the abbreviations (except for BCI and CPP) are adopted from the work
that proposes mutation operators for DNNs derived from real faults (Humbatova et al. 2021).
Column ‘Freq.’ (frequency) indicates how many times a specific fault type is encountered in
the benchmark, while columns with tool names show whether each tool can detect a specific
fault type. The column ‘Cov.’ (coverage) shows how many tools can localise each fault
type. We separate the fault types obtained from the evaluation benchmark from those that
were extracted from the output of the FL tools after their execution on the benchmark. The
separating row (starts with ’Count’) provides the number of fault types in the benchmark
(under ‘Fault Type’ column), total number of ground truth faults (under ‘Freq.’ column), and
the number of covered fault types for each tool. In the last row, we provide total numbers
when taking the fault types coming from tool outputs into account.

Table 1 Fault types and abbreviations. Coverage of fault types by FL tools

Abbrev. Fault Type Freq. DFD DD NL UM Cov.

HBS Wrong batch size 4 N N N N 0

HLR Wrong learning rate 6 Y Y N Y 3

HNE Change number of epochs 7 Y N N N 1

ACH Change activation function 13 Y Y Y Y 4

RAW Redundant weights regularisation 1 N N N N 0

WCI Wrong weights initialisation 3 N Y Y N 2

LCH Wrong loss function 7 Y Y Y N 3

OCH Wrong optimisation function 5 Y Y Y N 3

LRM Missing layer 1 N Y Y Y 3

LCN Wrong number of neurons in a layer 2 N N Y N 1

VRM Missing validation set 1 N N N N 0

CPP Wrong data preprocessing 3 N Y N Y 2

Count 12 53 5 7 6 4 −
LAD Redundant layer 0 N Y Y N 2

LCF Wrong filter size in a convolutional layer 0 N N Y N 1

BCI Wrong bias initialisation 0 N N Y N 1

IWS Wrong shape of input data 0 N N N Y 1

Total 16 53 5 8 9 5 −

123

Empirical Software Engineering (2025) 30:124 Page 7 of 34 124

Table 2 Evaluation benchmark, artificial faults: the Fault Type can be real (R) or artificial (A); the fault Id
identifies subject MNIST mutants (M), CIFAR mutants (C), Reuters mutants(R), Udacity mutants (U), and
Speaker Recongnition (S); Source shows the dataset of origin; the models are divided into two groups of
classification (C) or regression (R) task

Fault Type Id SO Post # Source Task Faults
/Subject

A M1 MN DeepCrime C Wrong weights initialisation (0)

A M2 MN DeepCrime C Wrong activation function (7)

A M3 MN DeepCrime C Wrong learning rate

A C1 CF10 DeepCrime C Wrong activation function (2)

A C2 CF10 DeepCrime C Wrong number of epochs

A C3 CF10 DeepCrime C Wrong weights initialisation (2)

A R1 RT DeepCrime C Wrong weights regularisation (0)

A R2 RT DeepCrime C Wrong activation function (2)

A R3 RT DeepCrime C Wrong learning rate

A R4 RT DeepCrime C Wrong loss function

A R5 RT DeepCrime C Wrong optimiser

A R6 RT DeepCrime C Wrong weights initialisation (0)

A R7 RT DeepCrime C Wrong activation function (2)

A U1 UD DeepCrime R Wrong loss function

A U2 UD DeepCrime R Wrong optimiser

A S1 SR DeepCrime C Wrong loss function

A S2 SR DeepCrime C Wrong number of epochs

The authors of DeepFD identified five most frequent types of faults in the benchmark they
used for evaluation and designed their tool to detect these specific fault types. In particular,
they cover HLR, ACH, LCH, HNE and OCH fault types. Despite being a small fraction of
all the recognised faults that affect DL systems, these fault types are frequently encountered
in the real world (Humbatova et al. 2020) as well as in our benchmark. By observing how the
internal variables of a DNN change during the training process,DeepDiagnosis is designed
to detect 10 different fault symptoms, such as vanishing gradients or numerical errors. It maps
these symptoms to 7different fault types. Similarly toDeepFD, it can detectLCH,ACH,HLR,
OCH faults, and additionally, DeepDiagnosis can detect the WCI fault, as well as problems
in the training data and in the number of layers. In the last case, DeepDiagnosis’s ‘Change
the layer number’ corresponds to two distinct fault types in Table 1, i.e., ‘Missing layer’
and ‘Redundant layer’. Correspondingly, DeepDiagnosis covers 8 fault types encountered
in this study (7 from the benchmark). UMLAUT operates based on a set of both dynamic
and static checks performed before and during training of a model. The used heuristics
cover hyperparameter tuning, and while problems with learning rate are detected also by
the previously discussed approaches, UMLAUT can also detect high drop out rate, while it
does not pay attention to the number of epochs as DeepFD (Schoop et al. 2021). When it
comes to the fault types encountered in our benchmark, UMLAUT can only detect 4 out of
12. Similarly to DeepDiagnosis, UMLAUT can detect problems with training data and its
pre-processing and also covers problems with activation functions of the model.Neuralint
relies on meta-modelling and graph transformations to perform a verification process based
on 23 pre-defined rules that cover the initialisation of different parameters, nuances of neural

123

 124 Page 8 of 34 Empirical Software Engineering (2025) 30:124

network architecture, and API misuse (Nikanjam et al. 2021). The detection of the violation
of these rules leads to a number of diverse recommended fixes that cover data pre-processing,
selection of optimiser, activation functions and tuning of the neural network architecture. As
a result,Neuralint covers the largest number of fault types (9 out of 16). However, it covers
only 6 fault types of the benchmark as opposed to 7 of DeepDiagnosis.

The observations show that 3 fault types (HBS, RAW, and VRM) are not covered by any
of the considered tools, while ACH is the only one that is covered by all FL approaches. The
remaining fault types are covered by 1 (HNE, LCN, LCF, BCI, IWC), 2 (WCI, LAD, CPP) or
3 (HLR, LCH, OCH, LRM) of the tools. These findings show that despite some similarities
in the types of detected faults, all of the approaches have their own specifics and vary in
the localisation methods used. At the current state of the art, it appears that the available
approaches are rather complementary to each other.

3.2 Evaluation Benchmark

Artificial faults of our benchmark were produced by DeepCrime (Humbatova et al. 2021),
a state-of-the-art mutation testing tool for DL systems based on real faults (Humbatova
et al. 2020). The subject models in DeepCrime’s mutants dataset cover a diverse range of
application areas, such as handwritten digit classification (MN), speaker recognition (SR),
self-driving car designed for the Udacity simulator (UD), eye gaze prediction (UE), image
recognition (CF10), and categorisation of news articles (RT). Kim et al. (2023) selected 25
most representative faults from this dataset for the evaluation of DNN repair approaches.
These faults are generated by injecting 9 distinct fault types into originally well-performing
models. As our initial experimentation showed, all 4 evaluated FL tools crash on 8 UE faults
because this subject uses a more complex, Functional type of Keras’s DNN, and a custom
loss function. We adopted the remaining 17 faults for the needs of this study.

The benchmark compiled by Kim et al. (2023) also contains a number of real faults.
This section of their benchmark was derived from the set of issues that were collected and
used for the evaluation of the DeepFD tool (Cao et al. 2022, 2021). This initial set contains
58 faulty DNNs collected from bug-reporting platforms such as StackOverflow and Github.
Consequently, Kim et al. (2023) analysed this benchmark by performing a series of checks.
Specifically, they investigated the reproducibility of faults from the DeepFD benchmark,
checking if the reported faulty model, its training dataset, the fault, and its fix accurately
correspond to the source of the real fault (i.e., the original StackOverflow post or GitHub
commit). In addition, they analysed if the fault can be in fact reproduced, i.e., the faultymodel
demonstrates performanceworse than that of the fixedmodel and both are executable. If these
conditions were not satisfied, such a fault was deemed non-reproducible and unsuitable for
evaluation. As a result, only 9 out of 58 issues proved to be reliably reproducible.

To expand the pool of real faults, we refer to an empirical study by Jahangirova et al.
(2024) where the authors analyse all available repositories of real DNN faults in a system-
atic way. In particular, they perform a manual analysis of 490 faults from five benchmarks:
TFBugs2018 (Zhang et al. 2018), DeepLocalize (Wardat et al. 2021), DeepFD (Cao et al.
2022), Defects4ML (Morovati et al. 2023), and SFData (Wu et al. 2021, 2022). Their find-
ings show that 176 of these faults are invalid, primarily due to missing links to the source
(bug report), absence of code or fixes, or misinterpretation of the source fault report. When
analysing the remaining 314 faults, the authors assess their realism using 4 specific criteria:
(1) the source code for the buggy version in the benchmark must match with the buggy code
described in its original source (e.g., a bug report); (2) the fix implemented in the benchmark

123

Empirical Software Engineering (2025) 30:124 Page 9 of 34 124

must correspond to the fix detailed in the source; (3) the training data used in the benchmark
must be consistent with that specified in the source; (4) the training data should be realistic,
meaning it should either reference well-known existing datasets, be collected through a rig-
orous process, or be generated using a robust mathematical or statistical method (Jahangirova
et al. 2024). The results indicate that only 58 faults out of 314 satisfy all four realism cri-
teria. They further evaluate the reproducibility of these 58 faults, finding that only 18 are
reproducible and stable, consistently exhibiting faulty and fixed behaviour across 20 runs.
However, 5 out of these 18 faults are unusable due to program crashes, and another 5 were
duplicates of previously considered faults. Moreover, for one specific fault, all our FL tools
are not applicable. As a result, we could successfully complement the benchmark of Kim
et al. (2023) by adding 7 new real faults, making it 16 in total.

The complete benchmark used in this study can be found in Tables 2 and 3. Column ‘Fault
Type’ shows whether the fault was real (‘R’) or artificially seeded (‘A’). Column ‘Source’

Table 3 Evaluation benchmark, real faults: the Fault Type can be real (R) or artificial (A); Source shows the
dataset of origin; SO Post # / Subject shows ID from the dataset of origin; the models are divided into two
groups of classification (C) or regression (R) task

Fault Id SO Post # Source Task Faults
Type /Subject

R D1 31880720 DeepFD C Wrong activation function (7)

R D2 41600519 DeepFD C Wrong optimiser | Wrong batch size

Wrong number of epochs

R D3 45442843 DeepFD C Wrong optimiser | Wrong loss function

Wrong batch size | Wrong activation function (0,1)

Wrong number of epochs

R D4 48385830 DeepFD C Wrong activation function (0,1)

Wrong loss function | Wrong learning rate

R D5 48594888 DeepFD C Wrong number of epochs | Wrong batch size

R D6 50306988 DeepFD C Wrong learning rate | Wrong number of epochs

Wrong loss function | Wrong activation function (1)

R D7 51181393 DeepFD R Wrong learning rate

R D8 56380303 DeepFD C Wrong optimiser | Wrong learning rate

R D9 59325381 DeepFD C Wrong data preprocessing

Wrong activation function (5,6) | Wrong batch size

R D10 024 Defect4ML R Wrong optmiser | Wrong number of epochs

Missing validation set

R D11 068 Defect4ML C Wrong activation function (7)

R D12 098 Defect4ML C Wrong data preprocessing

R D13 099 Defect4ML C Missing layer | Wrong number of neurons (0)

Wrong activation function (1)

R D14 48221692 DeepLocalize R Wrong activation function (1)

R D15 50079585 DeepLocalize C Wrong number of neurons (13) | Wrong loss function

Wrong activation function (14)

Wrong data preprocessing

R D16 kerasma DeepLocalize C Wrong number of neurons (1)

123

 124 Page 10 of 34 Empirical Software Engineering (2025) 30:124

shows the fault’s parent dataset. Column ‘Id’ bears the ID of the fault which will be reused
throughout the paper. These IDs refer to real faults curated from theDeepFD,DeepLocalize,
and Defect4ML datasets using a prefix D followed by a number from 1 to 16. For artificial
faults, we use the first letter of the corresponding subject name (i.e. M for MNIST of C
for CIFAR-10). Column ‘SO Post #/Subject’ provides the StackOverflow post number for
issues inDeepFD andDeepLocalize, as obtained from the StackOverflow platform, or the the
subject name, in the case of artificial faults and GitHub issues in the DeepLocalize dataset,
and finally, ID of the fault, when taken from Defect4ML dataset. Column ‘Task’ has ‘C’ for
faults that solve a classification problem and ‘R’ for those dealing with a regression task.
Finally, column ‘Faults’ contains the ground truth associated with faults. Where applicable,
the fault description is accompanied by a set of layer identifiers in parentheses, specifying
the layers affected by the fault. For example, ‘Wrong activation function (1, 3)’ indicates that
the activation function should be changed in layers 1 and 3 to fix the fault.

4 Neutrality Analysis

In the context of fault localisation in DNNs, our goal is to identify and localise faults in the
network architecture and hyperparameters. Even if there are architectures widely used for
specific tasks (e.g., LeNet-5 for handwritten character recognition LeCun et al. 2020), there
are no strict rules that dictate a single optimal architecture with specific hyperparameter
values. Although the benchmarks that we use in this study include the ground truth (GT)
for faulty models, i.e., repaired models for real faults, and original and un-mutated versions
for artificial faults, there is often not only one possible way to ‘fix’ a model when a fault
is identified. This suggests the potential for discovering alternative patches that not only
complement the known patch (i.e., GT) by suggesting different ways of repairing but also
possibly exhibit better performance than the known one. Identifying such alternative patches
would enable a more precise and fair evaluation of FL techniques that could produce valid
outputs different from the known GT.

In our search for alternative patches, we are inspired by the notion of software neutrality,
which states that a random mutation of an executable program is considered neutral if the
behaviour of the program on the test set does not change (Renzullo et al. 2018). This neu-
trality analysis aims to investigate diverse patches with similar or better fitness: these can
be utilised as alternative Ground Truths. Since our targets are DL programs, the conditions
for performing a neutrality analysis differ from those of traditional programs. For example,
fitness is now measured by model performance with standard metrics such as test set accu-
racy. This means that fitness evaluation involves training and testing the model. Moreover,
during fitness evaluation it is important to account for the inherent stochastic properties of
DL programs because the model’s performance can vary with multiple trainings. To address
this, in our algorithm below, we train the model ten times and calculate the fitness as an
average of the resulting ten accuracy values.

Algorithm 1 presents the Breath-First Search (BFS) for our neutrality analysis on DL
programs. This algorithm takes as inputs an initial (buggy) model s, the accuracy of the
known GT accgt , and stopping criteria SC . The outputs are a list of alternative GTs and
edges of the neutrality graph. The algorithm starts with training and evaluating the initial
buggy model before putting it in the queue (Lines 2-3). Next, it begins a search loop where
it iteratively retrieves a model (i.e., a parent model c) along with its accuracy accc from the
queue (Line 5). Subsequently, the algorithm explores all adjacent models (i.e., neighbours)

123

Empirical Software Engineering (2025) 30:124 Page 11 of 34 124

Algorithm 1 Breadth-First Search (BFS) for neutrality analysis.
Input: Initial model s, GT accuracy accgt , stopping conditions SC , and topk
Output: Edges E and alternative GTs R

1 Q, V isi ted, R ← ∅, ∅, ∅
2 accs ← trainAndEvaluate(s)
3 Q.enqueue([s, accs])
4 while Q �= ∅ and SC not met do
5 c, accc ← Q.dequeue()
6 V isi ted.append(c)
7 N ← get Neighbours(c, V isi ted)

8 tempQ ← ∅
9 foreach n in N do

10 accn ← trainAndEvaluate(n)

// Check whether the neighbour is equivalent to or better than the current node.
11 if isNeutral(accn , accc) then
12 tempQ.append([n, accn])

// Check whether the neighbour is equivalent to or better than the given GT.
13 if isNeutral(accn , accgt) then
14 R.append([n, accn])

// Enqueue top k neighbours to Q and make edges to them.
15 tempQ ← sort(tempQ, topk)
16 foreach n, accn in tempQ do
17 Q.enqueue([n, accn])
18 E .append(c, n)

19 return E, R

that are obtained by applying a distinct single mutation on c (Line 7). Each mutation involves
changing a single hyperparameter of the model, in other words, neighbouring models differ
from their parent model by one hyperparameter. The details of mutation operators adopted
from Kim et al. (2023) are shown in Table 4. Then, the algorithm iterates over the neighbours

Table 4 Mutation operator for neutrality analysis

Operator Description

Change activation function

Change kernel initialisers

Change bias initialisers It replaces the value of the hyperparameter of the given
model with other pre-defined values from Keras.

Change loss function

Change optimiser

Change learning rate It changes the learning rate by either multiplying it by ten
or dividing it by ten.

Change epochs It changes the epochs by either multiplying it by two or
dividing it by two.

Change batch size It replaces the batch size with other pre-defined values of
16, 32, 64, 128, 256, 512.

Change layer It either duplicates or deletes the given layer.

Change the number of neurons in a given
dense layer

It changes the number of neurons by either multiplying
its number by two or dividing it by two.

123

 124 Page 12 of 34 Empirical Software Engineering (2025) 30:124

Fig. 1 An example neutrality network of D4

by training and evaluating them (Line 10), and evaluates the neutrality1 of each neighbour
compared to the parent model (Line 11) and the known GT (Line 13). Since sometimes
the number of neutral neighbours is numerous, potentially impeding the exploitation of the
search, the algorithm places them into the temporal queue, not in the main queue (Line 12).
If it is neutral with respect to the known GT, it is added to a list of alternative GTs (Line 14).
After this iteration, the algorithm sorts the temporal queue by accuracy and takes only top-k
performing neighbours by enqueueing them into the main queue. The search process stops
when it meets the given stopping criteria or the queue is empty. As the algorithm evolves the
model by applying mutation to its parent, the resulting alternate GTs are usually higher-order
mutants of the initial buggy model.

Based on the search results, we can draw a so-called neutrality graph or ‘network’ (Ren-
zullo et al. 2018), as shown in Fig. 1. Each edge represents a single mutation and each node
represents the DL models (i.e., mutants). A black node denotes the initial buggy model and
other nodes are neutral with their parent node. Among them, the ones that are on par with or
better than the known patch are coloured in either blue or green. In particular, models that
outperform the known GT with statistical significance are marked blue.2 Those that are not
statistically significant but exceed the known patch in terms of average accuracy are coloured
in green. In this example, we found 13 alternative patches that fix the buggymodel differently
but show equal or higher performance than the known patch.

1 A model is considered neutral relative to another model if it has equivalent or higher fitness than the other’s,
by comparing the mean accuracy of ten trained instances of the model and the other model.
2 For the computation of statistical significance, we employ a Generalized Linear Model (GLM) with a
significance level 0.05 and Cohen’s d to measure the effect size, for which we adopt a threshold at 0.5.

123

Empirical Software Engineering (2025) 30:124 Page 13 of 34 124

5 Empirical Study

5.1 Research Questions

The aim of this empirical study is to compare existing DL fault localisation approaches and to
explore their generalisability to different subjects represented by our benchmark of artificial
and real faults. To cover these objectives, we define the following three research questions:

– RQ1. Effectiveness: Can existing FL approaches identify and locate defects correctly in
faulty DL models? How do the outcomes differ when considering alternative GTs?

– RQ2. Stability: Is the outcome of fault identification analysis stable across several runs?
– RQ3. Efficiency: How costly are FL tools when compared to each other?

RQ1 is the key research question for this empirical study, as it evaluates the effectiveness
of different FL tools on our curated benchmark of artificial and real faults. By addressing
this question, our study aims to provide a deeper understanding of the practical utility of
FL tools across a range of diverse scenarios. RQ1 is further divided into two sub-questions
to address the alternative GTs: RQ1.1 focuses on the original GT, while RQ1.2 considers
all alternative GTs resulting from the neutrality analysis. Note that while these tools were
originally evaluated in their respective studies, disparate datasets and metrics were used for
each tool. Our goal is to provide a unified evaluation by applying all the tools to the same
benchmark.

RQ2 focuses on the fact that the output of the FL tools can be affected by randomness
and therefore there is a possibility of getting different results at different runs. If a simple
rerun of the tool produces a completely different outcome, then its reliability for practical
use becomes questionable. As part of this research question, we run the tools multiple times
and report how stable the outcomes are. By quantifying the extent of variability in the results
across diverse sets of faults, we aim to produce insight into the reliability and robustness of
the evaluated tools.

The main goal of FL tools is to assist developers in identifying faults in software systems.
However, if this support comes at a high price, i.e., one run of an FL tool takes a long time to
complete, the usefulness of such tools and the feasibility of using thembecomes questionable.
RQ3 examines this dimension and reports the time it takes to run each tool and how these
times vary across the tools. This analysis not only highlights the computational efficiency
of the tools but also provides insights into how performance trade-offs might influence their
adoption in practice.

5.1.1 Processing Tool Output

The output formats of the DL tools differ depending on the technique. For example,DeepFD
generates a list of detected fault types in the given DL program, and it can also indicate
the line numbers where faults are localised. In contrast, UMLAUT produces warnings and
critical messages at the end of each training epoch, often limited to a few words or a brief
sentence.DeepDiagnosis, similar toUMLAUT, uses a tool-specific callback to monitor the
training process, but stops training and writes any identified faults to a file once a symptom
is detected. These faults are localised to specific layers, and the tool often offers fault types
and potential fixes where possible. The output tends to be brief, typically limited to a short
sentence per component (e.g., symptom, fault type, or fix). On the other hand, Neuralint
can link faults either to specific layers or to a general ‘Learner’ function, presenting detailed
fault descriptions with one or two sentences. In our experiments, one of the authors manually

123

 124 Page 14 of 34 Empirical Software Engineering (2025) 30:124

analysed all outputs and mapped them to the corresponding fault types, adding new types as
needed.

5.2 Experimental Settings & EvaluationMetrics

For the comparison, we adopt publicly available versions of all considered tools (Cao et al.
2021; Schoop et al. 2021; Nikanjam et al. 2021; Wardat et al. 2021) that are run on Python
with library versions specified in the requirements for each tool. However, we had to limit
the artificial faults to those obtained using CF10, MN, and RT as DeepDiagnosis is not
applicable to other subjects.

The authors of DeepFD adopted the notion of statistical mutation killing (Jahangirova
and Tonella 2020) in their tool. They run each of the models used to train the classifier as
well as the model under test 20 times to collect the run-time features. For fault localisation
using DeepFD, we adopt an ensemble of already trained classifiers provided in the tool’s
replication package. Similar to the authors, for each faulty model in our benchmark, we
collect the run-time behavioural features from 20 retrainings of the model. Neuralint is
based on static checks that do not require any training and thus, are not prone to randomness.
We run each of the remaining tools 20 times to account for the randomness in the training
process and report the most frequently observed result (mode). Our experiments of running
FL tools were conducted on machines with an AMD Ryzen 7 3700X 8-Core CPU, Nvidia
GeForce RTX 2060 GPU, and 32GB of RAM, operating on Windows 11 Pro.

To calculate the similarity between the ground truth provided for each fault in our bench-
mark and the fault localisation results, we adopt the standard information retrieval metrics
Precision (PR), Recall (RC) and Fβ score:

RC = |FTloc ∩ FTgt |
|FTgt | (1)

PR = |FTloc ∩ FTgt |
|FTloc| (2)

Fβ = (1 + β2)
PR · RC

β2PR + RC
(3)

Recall measures the proportion of correctly reported fault types in the list of localised
faults (FTloc) among those in the ground truth (FTgt); Precision measures the proportion of
correctly reported fault types among the localised ones; Fβ is a weighted geometric average
of PR and RC , with the weight β deciding on the relative importance between RC and PR.
Specifically, we adopt Fβ with β equals 3, which gives three times more importance to recall
than to precision. This choice of beta is based on the assumption that in the task of fault
localisation, the ability of the tool to find as many correct fault sources as possible is more
important than the precision of the answer.

For neutrality analysis, we set topk to 5 and the stopping condition SC to a 48-hour time
budget. During the search, every model is trained ten times and we use a mean of the ten
metric values depending on the task solved by each subjects (i.e., accuracy for classification
or loss for regression).

For the efficiency analysis, we measure the runtime of the tools in seconds and perform
Wilcoxon rank sum test on the acquired results.

123

Empirical Software Engineering (2025) 30:124 Page 15 of 34 124

6 Results

6.1 RQ1.1 (Effectiveness Before Neutrality Analysis)

Tables 5, 6, 7, and 8 present the output of the application of fault localisation tools (DFD,
DD, NL, and UM, respectively) to our benchmark. Column ‘GT’ stands for ‘Ground Truth’
and provides the list of fault types affecting the model, while column ‘#F’ reports the length
of this list. Column ‘< tool_name > −output’ contains the fault list generated by each FL
tool, while column ‘Matches-GT’ indicates for each fault in the ground truth whether it was
detected by the tool or not (1 if yes and 0 otherwise) and column ‘#M’ counts the number
of ground truth faults detected by a corresponding tool. For each row (issue) we underline
the number of detected faults (‘#M’) if the tool was able to achieve the best result across
all the compared approaches. We provide the average number of fault types detected for

Table 5 Ground Truth (GT) and fault localisation outcome generated by DeepFD (DFD); #F indicates the
number of ground truth faults, while #M the number of ground truth faults detected by the tool (with underline
used to indicate the best result among all tools being compared). Avg. shows the average within artificial or
real faults. T.A. shows the total average across faults

123

 124 Page 16 of 34 Empirical Software Engineering (2025) 30:124

Table 6 Ground Truth (GT) and fault localisation outcome generated by DeepDiagnosis (DD); #F indicates
the number of ground truth faults, while #M the number of ground truth faults detected by the tool (with
underline used to indicate the best result among all tools being compared). Avg. shows the average within
artificial or real faults. T.A. shows the total average across faults

issues generated by artificially injected faults or real-world issues (rows ‘Avg.’) and across
the whole benchmark (row ‘T.A.’, i.e., Total Average).

When faults affect only selected layers, we specify the indexes of the faulty layers within
brackets, for ground truth and for fault localisation results, if this information is provided.
Moreover, ‘-’ means that an FL tool was not able to find any fault in the model under test;
‘N/A’ means that the tool was not applicable to the fault type in question or crashed on it.
For example, Neuralint accepts only optimisers that are defined as strings (e.g., ‘sgd’),
which in turn implies that the default learning rate as defined by the framework is used. This
makes it not possible forNeuralint to find an optimiser withmodified learning rate. Symbol
‘,’ separates all detected faults, while separation by ‘|’ means that the faults are alternative
to each other, i.e., the tool suggests either of them could be the possible cause of model’s
misbehaviour.

123

Empirical Software Engineering (2025) 30:124 Page 17 of 34 124

Table 7 Ground Truth (GT) and fault localisation outcome generated by Neuralint (NL); #F indicates the
number of ground truth faults, while #M the number of ground truth faults detected by the tool (with underline
used to indicate the best result among all tools being compared). Avg. shows the average within artificial or
real faults. T.A. shows the total average across faults

Interestingly, for most of the applicable faulty models UMLAUT (31 out of 33) and
DeepDiagnosis (19 out of 28) suggest changing the activation function of the last layer
to ‘softmax’ even if in 61% of these cases for UMLAUT and 54% for DeepDiagnosis,
the activation function is already ‘softmax’. This also happens once to Neuralint. We
exclude suchmisleading suggestions from the tools’ output.Moreover, sometimesUMLAUT
mentions that overfitting is possible. Since it is just a possibility and such a message does not
point to a specific fault, we also exclude it from our analysis. The complete output messages
provided by the tools are available in our replication package (Humbatova et al. 2023).

Table 9 reflects the overall evaluation of the effectiveness of the FL tools. Column ‘GT #F’
shows the number of fault types in the ground truth, while columns ‘< tool_name >’ contain
all measured performance metrics for each tool: columns ‘RC’ report the values of Recall,
columns ‘PR’ report Precision, and columns ‘F3’ the Fβ score with β = 3. We use the

123

 124 Page 18 of 34 Empirical Software Engineering (2025) 30:124

Table 8 Ground Truth (GT) and fault localisation outcome generated by UMLAUT (UM); #F indicates the
number of ground truth faults, while #M the number of ground truth faults detected by the tool (with underline
used to indicate the best result among all tools being compared). Avg. shows the average within artificial or
real faults. T.A. shows the total average across faults

F3 metric because in our context recall is very important, as it directly reflects the ability
of the tool to identify all relevant faults. While precision also remains valuable, it is less
of a priority compared to ensuring high recall. The F3 score, by assigning recall a weight
three times greater than precision, balances these considerations effectively. It ensures that
significant penalties are incurred for missing relevant faults while still maintaining sensitivity
to precision. Using F2, which weights recall only twice as much as precision, might under-
emphasise recall, leading to suboptimal evaluation of the tools’ fault localisation capabilities.
In contrast, F4 may over-emphasise recall to the extent that precision is insufficiently con-
sidered, potentially resulting in too many false positives that the user has to investigate. By
selecting F3, we strike an optimal balance that prioritises recall strongly while still valuing

123

Empirical Software Engineering (2025) 30:124 Page 19 of 34 124

Table 9 Number of Ground Truth (GT) faults (#F); Recall (RC), Precision (PR) and F3 measure for each FL
tool. Avg. shows the average within artificial or real faults. T.A. shows the total average across faults

precision to a meaningful degree. The results for F1 and F2 are available in the replication
package (Humbatova et al. 2023) and are generally aligned with those obtained for F3, i.e.
all conclusions about the performance comparison of tools hold, disregarding the selection
of specific values for β.

We treated the cases when a tool is not applicable to an issue as if the tool has failed to
locate any faults affecting the issue. We provide mean values for each tool across artificial
and real faults (rows ‘Avg.’) and across all issues in the benchmark (row ‘T.A’), to ease the
comparison between the tools. According to these numbers,DeepFD, on average, exhibits the
best performance and significantly outperforms other tools on real faults. This can be influ-
enced by the fact that the ‘Real Fault’ part of the benchmark partly comes from the evaluation
benchmark of DeepFD, as this was one of the few available sources of truly reproducible
real faults. The selection of the fault types that DeepFD is trained to detect was influenced
by the distribution of faults in the evaluation benchmark, as described in the corresponding
article (Cao et al. 2022). For artificial faults, DeepFD, Neuralint, and UMLAUT achieve

123

 124 Page 20 of 34 Empirical Software Engineering (2025) 30:124

equal RC performance, higher than that of DeepDiagnosis, with Neuralint, DeepDiag-
nosis and UMLAUT having higher PR and F3 score than DeepFD. Overall, based on all
the measured metrics,DeepFD has the highest RC values, whileDeepDiagnosis’s RC mea-
surements are noticeably lower than for other tools.Neuralint and UMLAUT show similar
performance according to the RC metric, while PR is slightly higher for Neuralint (0.23
vs 0.20), which achieved the highest values across all the considered tools.

Despite the inferior performance of DeepDiagnosis in our experiments, the authors
of DeepDiagnosis achieved higher performance for their tool than UMLAUT in their
evaluation. They used 2 separate sets of faulty programs. According to the results, DeepDi-
agnosis could correctly identify 87% of the buggy models from one benchmark and 68%
from another, while UMLAUT was only able to identify 49% and 35% of faulty models
from these benchmarks, respectively. UMLAUT’s authors, in their turn, did not perform
any empirical comparison with existing FL tools, and instead carried out a human study to
measure how useful and usable is their tool for developers that aim to find and fix bugs in
ML programs (Schoop et al. 2021). The authors of Neuralint also did not perform any
comparison, but they have evaluated the performance of their tool on a set of 34 real-world
faulty models gathered from SO posts and Github (Nikanjam et al. 2021). Their evaluation
showed that Neuralint was able to correctly detect 71% of all the faults found in these
issues. The authors of DeepFD have performed their evaluation on a benchmark consisting
of 58 real-world faults (Cao et al. 2022), that were later analysed by the authors of the bench-
mark (Kim et al. 2023) that we included in the real fault section for our study. Their evaluation
showed that DeepFD can correctly localise 42% of the ground truth faults observed in their
benchmark, while UMLAUT could only detect 23%.

It is worth mentioning that, unlike other tools, DeepFD does not provide layer index
suggestions. Thus, it is not possible to understand whether a successfully detected fault of
‘ACH’ type actually points to the correct layer. This is the case for five of the 33 issues and
if we exclude these issues from the calculation of the average RC, the result for DeepFD
drops from 0.33 to 0.20, which makes it comparable to Neuralint (0.19) and UMLAUT
(0.19). If we assume that DeepFD correctly locates this fault with the probability of 50%
(the suggested layer is either correct or not), the mean RC value will be equal to 0.27. Also,
for some of the fault types, other tools, but DeepFD provide specific suggestions on which
activation function (DD, UM) or weights initialisation (NL) to adopt or whether to increase
or decrease the learning rate (UM).

RQ1.1 (before neutrality analysis): Our evaluation shows that all FL tools show
relatively low RC results before neutrality analysis, as, for many issues, the tools are
not able to successfully identify the faults affecting the model according to the avail-
able ground truth. On average, DeepFD shows the best results and DeepDiagnosis
the lowest. At the same time, Neuralint and UMLAUT have almpost identical
performance.

6.2 RQ1.2 (Effectiveness after neutrality analysis)

We have subsequently investigated our hypothesis that relying on a single ground truth,
represented by a single set of changes that improve the model performance, may not be
sufficient.

123

Empirical Software Engineering (2025) 30:124 Page 21 of 34 124

Table 10 Neutrality Analysis

Id # node # alternative GTs Complexity Improvement

M1 258 240 3.54 (21) 0.000
M2 291 291 2.54 (21) 0.000
M3 170 170 2.01 (21) 0.000
C1 61 36 1.86 (27) 0.003
C2 31 1 1.00 (27) 0.007
C3 19 10 2.00 (27) 0.004
R1 45 0 - (12) -
R2 57 55 1.98 (12) 0.008
R3 60 0 - (12) -
R4 19 19 1.68 (12) 0.009
R5 31 19 2.58 (12) 0.008
R6 23 20 1.90 (12) 0.004
R7 38 38 2.79 (12) 0.008
U1 7 0 - (19) -
U2 6 0 - (19) -
S1 0 0 - (13) -
S2 0 0 - (13) -

Avg. 65.65 52.88 2.17 (18.55) 0.005

D1 92 92 4.29 (15) 0.000
D2 14 0 - (21) -
D3 47 44 8.59 (13) 0.003
D4 61 13 9.54 (12) 0.010
D5 41 1 4.00 (19) 0.001
D6 37 7 5.29 (12) 0.000
D7 49 25 4.04 (9) 0.065
D8 73 73 8.51 (17) 0.186
D9 22 0 - (19) -
D10 0 0 - (13) -
D11 10 10 0.90 (17) 0.000
D12 21 21 2.48 (10) 0.001
D13 29 21 3.67 (10) 0.097
D14 12 7 1.86 (10) 28.320 (MSE)
D15 10 0 - (14) -
D16 12 0 - (14) -

Avg. 33.13 19.63 4.83 (13.09) -

Table 10 shows the number of nodes in the neutrality graph, all of which are neutral relative
to their parent nodes, and the number of found alternative GTs that achieve equal or better
performance than the known GT. For faulty models that lack alternative ground truths, the
corresponding results are shaded grey. Column ‘Complexity’ shows howmuch the alternative
GTs differ from the known GT, measured by counting how many hyperparameters differ
between them. For each row, we calculate the complexity averaged over all found alternative

123

 124 Page 22 of 34 Empirical Software Engineering (2025) 30:124

GTs. The number in brackets indicates the total number of hyperparameters for each fault.
Column ‘Improvement’ shows the extent of performance improvement over the known GT
in terms of the evaluation metric (e.g., accuracy), measured as the average difference across
all alternative GTs found. For 11 faults (R1, R3, U1, U2, S1, S2, D2, D9, D10, D15, D16), it
was not possible to identify alternative patches within the available budget, and therefore no
results could be calculated (marked with ‘-’). The number of nodes varies depending on the
dataset/model, with relatively smaller models such as MNIST (M1, M2, and M3) producing
a more expanded network than others.

Through our neutrality analysis, we identify an average of 53 alternative GTs for artificial
faults and 20 for real faults, revealing the existence of alternative GTs and could impact
the evaluation of fault localisation tools. Typically, the complexity of real faults (4.83 on
average) is higher than artificial faults (2.17 on average). This may stem from the fact that
artificial faults are simpler by definition: by construction, only one hyperparameter ismutated,
compared to the GT, whereas real faults tend to be more complex. In terms of performance
improvement of the alternative GTs over the known GT, we observe that there are only
marginal improvements, although the improvements are more pronounced for real faults
compared to artificial faults. This could be attributed to the fact that the answers obtained
from StackOverflow are not always ideal and may sometimes only suggest a partial fix.

Based on the results of neutrality analysis, we have recalculated the fault localisation
results for all the tools evaluated using the RC, PR or F3 score. Table 11 shows results for
each tool and issue that can be observed when using all the alternative ground truths, in
addition to the original one. For issues where it was not possible to locate alternative ground
truths, the results are greyed out. For issues on which a tool improved its performance after
neutrality analysis, we indicate the improved RC, PR and F3 score in boldface. The PR values
that have decreased as a result of taking alternative ground truth into account are underlined.
In this table, we report the maximum RC observed across all ground truth variants and the
average PR and F3 calculated on these GTs. To simplify the comparison of the tools before
and after neutrality analysis, in Table 12 we provide initial average RC, PR and F3 scores,
along with the new ones, for the two benchmark sections (AF denotes artificial faults, RF
real faults) and overall (T.A.: Total Average).

It can be seen that DeepFD is the tool that benefited the most from alternative ground
truth selection, as its RC results have improved for 10 out of 22 issues for which alternative
GT was available, with the average RC increasing from 0.33 to 0.55. DeepFD is followed
by Neuralint, whose RC results improved for 8 issues, which made its average RC to go
up to 0.36 from 0.19. On the other hand, for DeepDiagnosis and UMLAUT, the RC values
have increased in only 4 cases, with a difference between the old and the new RC of 0.6.
It can be seen that the comparative performance observed between the pairs of tools on the
original ground truth is generally consistent with the results after neutrality analysis, with
the exception of Neuralint and UMLAUT. If before the neutrality analysis their RC and
F3 scores were identical, after the performance of Neuralint has become considerably
higher. These observations are confirmed by the Wilcoxon signed-rank test with p-value
of 0.0008 for the comparison between DeepFD and DeepDiagnosis and p-value of 0.016
for DeepFD vs UMLAUT. The difference between DeepFD and Neuralint is not statis-
tically significant (p-value of 0.063). The complete results are available in the replication
package (Humbatova et al. 2023).

123

Empirical Software Engineering (2025) 30:124 Page 23 of 34 124

Table 11 Recall (RC), Precision (PR) and F3 measure for each FL tool after neutrality analysis. Avg. shows
the average within artificial or real faults. T.A. shows the total average across faults. The values that increased
or decreased in comparison with the initial results (before neutrality analysis) are boldfaced or underlined,
respectively. The issues for which neutrality analysis was not able to find any alternative ground truth are
greyed out

Id DFD DD NL UM
RC PR F3 RC PR F3 RC PR F3 RC PR F3

M1 1 1 1.00
M2

0.67 0.5 0.65
0.67 0.67 0.67 1 1 1.00

0.5 1 0.53 0.5 1 0.53
0.5 1 0.53 1 0.5 0.91

M3 1 0 0 0 0 0 0 0 0 0
C1 1

0.47 0.88
0.39 0.85 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0 0 0
C3 0 0 0 1 1 1 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0
R2

1 0.25 0.77

1 0.56 0.91 1 1 1 1 1 1 1 1 1
R3 0 0 0 0 0 0 0 0 0 1 1 1
R4 1 0 0 0 1 1 1 0 0 0
R5 1

0.57 0.92
0.5 0.89 0 0 0 0 0 0 0 0 0

R6 0.5 0.25 0.45 0 0 0 1 1 1 0 0 0
R7 1 0.5 0.89 1 1 1 1 1 1 1 1 1
U1 0 0 0 0 0 0 0 0 0 0 0 0
U2 0 0 0 0 0 0 0 0 0 0 0 0
S1 0 0 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 0 0 0 0 0 0 0 0 0
Avg. 0.52 0.27 0.46 0.21 0.24 0.21 0.38 0.41 0.38 0.26 0.26 0.26

D1 1 1 1 0.5 1 0.53 0.5 1 0.53 0 0 0
D2 0 0 0 0 0 0 0 0 0 0 0 0
D3 1 0.5 0.91 0 0 0 0.5 0.33 0.48 0 0 0
D4 0 0 0 0.33 1 0.35 1 0.5 0.91 1 0.5 0.91
D5 0 0 0 0 0 0 0 0 0 0 0 0
D6 1 0.5 0.89 0 0 0 0 0 0 0 0 0
D7 0.5 1 0.53 0 0 0 0 0 0 0 0 0
D8 1 0.5 0.91 0 0 0 0 0 0 0 0 0
D9 0 0 0 0 0 0 0 0 0 0 0 0
D10 0.67 0.67 0.67 0 0 0 0 0 0 0 0 0
D11 1 0.33 0.83 1 1 1 1 0.33 0.83 0 0 0
D12 0 0 0 0 0 0 1 0.5 0.91
D13 0.5 1 0.53

1 1 1
1 1 1 0.5 1 0.53

D14 1 0.33 0.82 1 1 1 0 0 0 1 1 1
D15 0.5 0.5 0.5 0.25 1 0.27 0.5 1 0.53 0.25 1 0.27
D16 1 0.25 0.77 0 0 0 0 0 0 0 0 0
Avg.

T.A.

0.5 0.33 0.48

0.57 0.37 0.52

0.55 0.32 0.49

0.22 0.38 0.23 0.34 0.32 0.33

0.21 0.3 0.22 0.36 0.37 0.36

0.23 0.25 0.23

0.25 0.26 0.24

Overall, our research highlights the importance of considering the existence of multiple
potential fault-inducing changes. Fault localisation results change significantly when we
broaden the definition of ground truth to include alternative fault-fixing changes.

RQ1.2 (after neutrality analysis): Our evaluation after neutrality analysis shows
that the performance of all FL tools increases if alternative ground truths are consid-
ered, with DeepFD and Neuralint exhibiting the largest improvements. Still, the
relatively low RC even after neutrality analysis indicates that DL fault localization is
still and open problem, requiring future research. They also indicate the fundamen-
tal importance of considering alternative ground truths in the evaluation of DL fault
localization tools.

123

 124 Page 24 of 34 Empirical Software Engineering (2025) 30:124

Table 12 Overall comparison of Recall (RC), Precision (PR) and F3 measure for each FL tool before/after
neutrality analysis. Avg. shows the average within artificial (AF) or real (RF) faults. T.A. shows the total
average across faults

6.3 RQ2 (Stability)

The authors of DeepFD account for the instability of the training process and perform 20
retrainings when collecting input features both during the classifier training stage and during
fault identification. This way, the output of the tool is calculated from 20 feature sets for each
model under test.

Neuralint does not require any training and is based on static rules that are stable by
design. We performed 20 runs of all other tools to investigate their stability. We found out
that outputs are stable across the experiment repetitions for all considered tools.

RQ2: Existing fault localisation tools provide stable results that do not change from
execution to execution.

6.4 RQ3 (Efficiency)

In this RQ, we investigate how demanding the evaluated approaches are in terms of execution
time. Here we measure only the time required to run an FL tool on a subject, without taking
into account the time and effort needed to prepare the subject for the tool application or
to post-process the tool output (see Sec. 5.1.1). All tools require some manual work to be
done: for DeepFD, a user has to create serialised versions of the training dataset and model
configuration according to a specific format; for DeepDiagnosis and UMLAUT, a user
has to insert a tool-specific callback to the code and provide it with a list of arguments; for
Neuralint, there are a number of manual changes to the source code to make the tool run.

Table 13 shows the execution time measured in seconds on a single run of DeepFD
and Neuralint, and the average of 20 runs for the remaining tools. Row ‘T.A.’ shows
the average time spent by each tool on fault localisation over the whole benchmark. To
allow fair comparison, row ‘Avg.’ shows the average execution time over the faults where
all tools are applicable. Not surprisingly, DeepFD takes considerably longer to run than the
other tools, as it fully trains 20 instances for each issue, while the other tools perform one
(DeepDiagnosis, UMLAUT) or no retraining (Neuralint). In addition, DeepDiagnosis

123

Empirical Software Engineering (2025) 30:124 Page 25 of 34 124

Table 13 Execution time (in seconds)

ID DFD DD NL UM

M1 605.30 6.65 7.63 37.62
M2 485.34 6.84 9.95 38.66
C1 316.10 7.34 10.02 163.08
C2 338.45 7.15 9.77 4.77
C3 321.42 7.03 10.02 135.75
R1 124.50 4.75 9.44 6.25
R2 115.12 4.05 9.59 5.89
R4 125.76 3.90 9.59 6.16
R5 126.13 3.58 7.7 5.10
R6 133.23 4.07 9.19 6.02
R7 158.34 3.95 8.99 6.07
D1 54.50 3.40 9.85 2.07
D2 451.67 20.13 9.95 18.98
D3 32.80 1.58 9.50 1.33
D4 797.46 11.66 6.87 324.57
D5 562.46 11.54 7.50 27.43
D6 19.6 1.32 6.88 0.39
D8 109.40 2.36 10.16 4.38
D10 32.94 24.12 2.367 62.32
D11 1651.01 69.77 2.681 178.45
D13 35.17 2.11 2.802 25.88
D14 11.33 4.12 0.452 4.99
D15 19.23 10.56 2.136 40.7
D16 39.45 558.87 2.149 2.2

Avg. 277.78 32.54 7.3 46.21

M3 798.23 6.86 N/A 40.17
R3 116.34 4.00 N/A 6.00
U1 N/A N/A 2.441 646.41
U2 N/A N/A 2.62 1434.85
S1 N/A N/A N/A 57.15
S2 N/A N/A N/A 9.58
D7 53.53 166.12 N/A 2.5
D9 N/A N/A 9.35 57.07
D12 N/A N/A 2.557 49.9

T.A. 282.77 35.48 6.86 100.37

often terminates the training when a faulty behaviour is observed, which makes its average
execution time the shortest among the tools that require model training. AsNeuralint does
not require training a model to perform fault localisation, its average execution time is the
lowest. It can be noted that for some faults that are very fast to train (e.g. C2, D1, D3, D6, D8),
a full training performed by UMLAUT takes less time than the static checks of Neuralint.
On average, Neuralint is the fastest to run, followed by DeepDiagnosis and UMLAUT,
and finally DeepFD. Despite the differences, the execution time of all tools considered is
compatible with real-world use. In Fig. 2, we show the average execution time of each tool
combined with the average performance measured using the F3 score. A longer execution
time is compensated for in terms of greater effectiveness in the case of DeepFD, while this is
not the case for DeepDiagnosis and UMLAUT, which are outperformed by the extremely
efficient Neuralint.

123

 124 Page 26 of 34 Empirical Software Engineering (2025) 30:124

Fig. 2 Average execution time and average performance (F3 score) for each tool

We also performed a statistical analysis (Wilcoxon rank sum test) of the execution times. In
particular, the differences in the execution times are statistically significant (p-value less than
0.05) in all cases but for the D16 run with NL and UM (p-value= 0.105).We did not perform
a statistical test of the run time between DFD and NL since both tools were run only once.
The corresponding results are also available in the replication package (Humbatova et al.
2023).

RQ3: The tools considered in our empirical study operate on the basis of different
strategies and require different numbers of retrainings of the same model to attempt
fault localisation.DeepFD is the slowest, as it trains 20 instances of the model under
test, but it is also the most effective. Neuralint, being more on average effective
than UMLAUT and DeepDiagnosis, performs fault localisation without training a
model, often making it faster than these two tools. No tool requires a runtime that is
prohibitively expensive for practical use.

6.5 The Outputs of Fault Localisation Tools

The analysed fault localisation tools output messages in natural language that explain where
the fault is present in the neural network. The level of understandability of these messages, as
well as the degree of detail they provide about the location of the fault and its possible fixes,
is an important indicator of the applicability of these tools in practice. We have analysed
each output message produced by each tool and provide an overview of our findings in this
subsection.

The output of DeepFD consists of a vector of parameters from the following list [‘opti-
mizer’, ‘lr’, ‘loss’, ‘epoch’, ‘act’]. In our experiments, the size of the output vector varied
between 1 and 4. While the provided vector clearly indicates which hyperparameters might
contain faulty values, it provides no indication on how the values should be changed, e.g.,

123

Empirical Software Engineering (2025) 30:124 Page 27 of 34 124

whether the learning rate should be increased or decreased. Moreover, for the activation
hyperparameter, the layer number for which the activation function should be changed is not
indicated.

The outputs of DeepDiagnosis often refer to problems observed for internal parameters
during the training process. Some of these outputs, such as “Batch 0 layer 6: Numerical
Error in delta Weights, terminating training”, do not provide any guidance on what should
be changed in the model architecture, training data or hyperparameters to fix the fault. In
contrast, some other outputs such as “Batch 0 layer 9: Out of Range Problem, terminating
training. Change the activation function to softmax” or “Batch 0 layer 0: Vanishing Gradient
Problem in deltaWeights, terminating training. Add/delete layer or change sigmoid activation
function” are more instructive and provide layer numbers along with the required changes.

UMLAUT provides an output that lists critical issues aswell as warnings, e.g., “<Critical:
Missing Softmax layer before loss>,<Warning: Lastmodel layer has nonlinear activation>”
and “<Critical: Missing Softmax layer before loss>, <Critical: Missing activation func-
tions>, <Warning: Last model layer has nonlinear activation>”. It should be noted that in
our experimentsUMLAUT reported the critical issue of “Missing Softmax layer before loss”
for all the analysed faults, including the cases when the softmax layer is already present in the
model architecture. Messages indicate the layer number (“before loss” or “last model layer”)
in some cases, while in others this information is missing (“<Critical: Missing activation
functions>”). The latter error is raised also when the activation function is specified not in
the layer itself, but in a subsequent specific ‘Activation’ layer. Similarly to DeepDiagnosis,
some of the warnings produced by UMLAUT do not contain actionable fix suggestions, for
example, “Possible over-fitting” or “Check validation accuracy”.

The output messages of Neuralint report faults either in specific layers (“Layer 4 ==>

The initialization of weights should not be constant to break the symmetry between neurons”)
or in the learning process (“Learner ==> The loss should be correctly defined and connected
to the layer in accordance with its input conditions (i.e., shape and type)-post_activation”).
The messages provide information on which component is faulty, along with an explanation
of why it is faulty.

Overall, except for some cases in DeepDiagnosis, the outputs of FL tools provide clear
messages indicating which types of hyperparameters are faulty. However, in cases when the
hyperparameter can be applied to different layers of the model, the localisation to the specific
layer is not always performed. When it comes to fix suggestions, while DeepFD provides no
information in this direction, the remaining tools have some output messages that come with
suggested repairs.

7 Discussion and Implications

In thiswork,we perform the evaluation of existing FL approaches on a set of carefully selected
issues.Although someof the tools compared their resultswith those of the existing approaches
in the corresponding publications, such comparisons were limited, and used ad-hoc metrics
and tool-specific benchmarks. The goal of this study is to provide a fair and standardised
comparison of the fault coverage of such tools, their effectiveness, and efficiency. The results
are aimed at guiding developers in selecting an appropriate tool for their specific situation,
which might be dictated by the resources available or model type and architecture. In this
section, we provide some insight for future research on the implementation and evaluation of
DL testing tools. In particular, we discuss the importance of a properly collected evaluation

123

 124 Page 28 of 34 Empirical Software Engineering (2025) 30:124

benchmark and best practices in collecting reproducible faults. Finally, we convert the results
and observations of this study into suggestions for directions of future research.

7.1 Ensuring Quality and Reliability in Benchmarking

Evaluation benchmarks play a crucial role when it comes to the evaluation and comparison of
DL testing tools. They act as proxies for real-world scenarios, simulating the kinds of faults
and model architectures that practitioners encounter. The quality and characteristics of such
benchmarks significantly influence the reliability and generalisability of conclusions drawn
from experimental results. Thus, ensuring quality and representativeness of faults enables
meaningful comparisons between tools and facilitates the replication of experiments by other
researchers. Without well-designed benchmarks, it would be challenging to assess the true
capabilities of a testing tool or to identify its strengths and limitations in various contexts.
Ideally, a comprehensive benchmark would meet the following characteristics:

– Representativeness. Benchmark issues should cover a range of different tasks (e.g., clas-
sification and regression), popular frameworks, architectures, complexity, fault types,
and domains of application. Such requirements ensure that the evaluated tools are judged
on their ability to handle diverse real-world scenarios rather than a narrow subset of
problems or widely-used toy models.

– Realism. Faults within the benchmark programs should reflect bugs commonly encoun-
tered in DL development.

– Reproducibility. Faults should be obtained fromverifiable sources using a strictmethodol-
ogy that would ensure the benchmark’s correspondence to the real-world issues reported
by developers. Faults should be also well-documented, by including both faulty and fixed
versions of the program, and all the necessary dependencies to replicate the execution
environment where the fault can be exhibited.

– Independence. Preferably, the evaluation benchmark should be independent from the
evaluated tool, to provide a standardised background for fair comparisons.

Previous work (Jahangirova et al. 2024) revealed that only a small number of issues used
in the evaluation of DNN testing techniques (Cao et al. 2022; Wardat et al. 2022; Nikanjam
et al. 2021) actuallymeet these quality and reproducibility criteria. In futurework, researchers
could build on the benchmark used in this study or create their own fault benchmark while
adhering to these criteria. In our work, we proposed neutrality analysis as a way to augment
existing benchmarks and expand the evaluation of DNN FL tools. Introducing alternative
GTs can make the evaluation more comprehensive and fair. We argue that all future research
should consider alternative GTs as part of the evaluation approach.

7.2 Practical Selection of FL Tools

Our findings offer valuable insights for practitioners in selecting the most suitable FL
tool for their specific needs. Existing DL fault localisation approaches cover two types of
approach to fault detection: dynamic and static. DeepFD and DeepDiagnosis rely exclu-
sively on dynamic analysis, and Neuralint only uses statically available information, while
UMLAUT benefits from both approaches.

Another crucial factor in selecting a tool might be the Python and Tensorflow versions of
the project under test. In particular, DeepDiagnosis works only with code compatible with
Tensorflow 1 and all the remaining tools work with Tensorflow 2. Tensorflow 1 is normally

123

Empirical Software Engineering (2025) 30:124 Page 29 of 34 124

supported by Python versions no higher than 3.7, while Tensorflow 2 is tested and supported
by Python 3.8-3.11 (Abadi et al. 2015).

On the other hand, the application domain and available resources might play an impor-
tant role in choosing testing tools. Practitioners working in a safety-critical domain might
prefer tools with higher recall, despite longer execution times, to ensure comprehensive fault
coverage. Conversely, in time-sensitive environments or when models take a very long time
to train, tools with faster execution times, i.e., relying on static analysis, may be preferable.
For instance, while DeepFD achieves high recall, it requires training multiple instances to
account for randomness in the training process, whichmay not always be feasible in resource-
constrained environments. However, it is important to note that in the original publication,
the authors used 10 retrainings of the model, while in our experiments we performed 20
retrainings.

In addition, our study identified some setup challenges associated with specific tools, such
as the need for manual source code modifications. Usage of DeepDiagnosis implies editing
the framework’s source by adding its proprietary callback and then initialising this callback
before the model training while providing a number of model parameters such as the number
of layers or learning rate, before passing the callback to the ‘fit’ function. Similarly,UMLAUT
requires its callback to be initialised and passed to the model for training. Additionally, this
tool would not run if the validation data is not presented to the ‘fit’ call and if ‘accuracy’ is not
in the list of the calculated metrics.DeepFD calls for a more sophisticated preprocessing like
serialising the configurations of the model (loss function, optimiser, learning rate, number
of epochs and batch size) and the whole training and validation datasets. It also requires the
faulty model to be trained and saved in the ‘h5’ format. Neuralint parses the source code
of the deep learning model and builds a graph that is then used to verify the pre-determined
rules. Therefore, its usage is hindered by the limitations of the parser. Very often to make
Neuralint applicable to the source code, the source code needs to be simplified or to follow
some specific structure. For example, if the layer is indicated as a separate layer (which is
something the Keras framework allows), the source code would not be parsed. When running
our experiments, we discovered some of these limitations. Practitioners should weigh these
factors against tool performance metrics to make informed decisions about adoption.

7.3 State of the Art and Future Directions of DNN Fault Localisation

Our findings reveal that none of the considered tools can successfully detect and localise
DL faults, which indicates that FL for DNNs is still an unsolved problem. In fact, existing
tools cover only 27% to 60% of the fault types encountered in our benchmark, which is
only a fraction of the real DL fault types reported in real DL fault taxonomies (Humbatova
et al. 2020). Researchers might consider using state-of-the-art fault classifications and tool
coverage reported in this study as a guidance when designing future FL tools.

The majority of existing FL tools focus on models developed exclusively using the Keras
framework, while Tensorflow and Pytorch, other extremely popular DL frameworks (Hale
2018), have not been considered. The only exception is Neuralint that is also applicable to
Tensorflow.Moreover, current approaches that use a dynamic approach are only applicable to
simpler ’Sequential’ Keras models (Abadi et al. 2015), failing on more flexible ’Functional’
architectures (Abadi et al. 2015). Additionally, none of the approaches can handle models
using custom (non-native to Keras framework) loss functions and multiple model inputs.
These observations indicate that as the field of DL evolves, more diverse and sophisticated
tools are required to assist practitioners in the development process.

123

 124 Page 30 of 34 Empirical Software Engineering (2025) 30:124

Another important factor for future research is the maintainability of the tools. Program-
ming languages such as Python,which iswidely used forDLprogramming (DeepLearning.Al
2024), and popular DL frameworks (Hale 2018), periodically release newer versions and dep-
recate or abolish old functionality and versions. This makes FL tools inapplicable to software
developed with a more recent codebase and might hinder their practical and academic usage.

Lastly, it is important to consider the scalability of the tools for practical use.Manymodern
and industrial models have billions of parameters and a large amount of training data. When
implementing novel FL tools, scalability to such size should be taken into consideration to
allow smooth and affordable integration of a tool in the tested system environment.

8 Threats to Validity

8.1 Construct

A potential threat to construct validity in our study lies in the metrics used to evaluate
the effectiveness of fault localisation tools. To address this, we employed a straightforward
count of matches between the fault localisation results and the ground truth, supplemented
by standard metrics from information retrieval, including Recall (RC), Precision (PR), and
Fβ , to ensure a well-rounded assessment.

Another potential threat to construct validity is the existence of multiple plausible ground
truth (GT) repairs for faulty deep learning models. When a fault is identified, there may be
several valid ways to repair a model, and these alternative fixes can vary significantly in their
structure, behaviour, or performance. This introduces ambiguity in evaluating FL tools, as
they may propose repairs that deviate from the selected GT but are equally valid or even
superior. To mitigate this, we adopted an approach to identify a set of alternative patches that
can serve as a set of possible ground truth fixes. We then report the performance of the FL
tools across this set.

8.2 Internal

One threat to internal validity of the study lies in the selection of evaluated FL tools. To
the best of our knowledge, we considered all state-of-the-art techniques and adopted their
publicly available implementations. Another potential threat is the randomness inherent to
the underlying DL systems and possibly present in the FL tools. To account for this threat,
we have evaluated the stability of the FL tools that are affected by randomness as part of
RQ2 by running the tools 20 times. Finally, a potential threat to internal validity is the fault
injectionmethodology, as inconsistencies or biases in fault injection could unfairly advantage
or disadvantage specific tools. To mitigate this, we used an independent fault injection tool,
DeepCrime (Humbatova et al. 2020), ensuring that the fault injection process is systematic
and unbiased.

8.3 External

The primary threat to external validity in our study is the representativeness of the fault
benchmarks used. To mitigate this, we incorporated both real faults and artificial faults. For
the real faults, we relied on the dataset curated by Jahangirova et al. (2024), which aggregates
faults from five different benchmarks. These faults were carefully filtered to ensure they meet

123

Empirical Software Engineering (2025) 30:124 Page 31 of 34 124

realism criteria and are reproducible. To generate artificial faults, we applied nine different
mutation operators to six distinct DL models, each performing a task in a different domain.
Despite these efforts, replicating our studywith additional subjects and datasets would further
validate and strengthen our findings.

9 RelatedWork

While to the best of our knowledge ours is the first empirical study that performs a third party
assessment of existing DL fault localization tools, there is a previous empirical work (Kim
et al. 2023) aimed at comparing different DL repair approaches. In the following, we first dis-
cuss such empirical work, followed by a summary presentation of existing repair approaches:
although they do not address the DL fault localisation problem, they are relevant to such task.

The DNN model architecture repair problem, as defined in the recent study by Kim et al.
(2023), lies in improving the performance of a faulty deep neural network (DNN) model
by finding an alternative configuration of its architecture and hyperparemeters. The new
configuration should lead to a statistically significant enhancement in model performance,
such as accuracy or mean squared error, when measured on a test dataset. In particular,
the authors consider a number of categories and subcategories from a DL fault taxon-
omy (Humbatova et al. 2020), covering the following issues: faults affecting the structure
and properties, faults affecting the DNN layer properties and activation functions, faults due
to missing/redundant/wrong layers, and faults associated with the choice of optimiser, loss
function and hyperparameters (e.g., learning rate, number of epochs) as model architecture
faults. Examples of such faults include the selection of an inappropriate loss function for the
task at hand or training a model for an insufficient number of epochs.

Existing advances in Hyperparameter Optimisation (HPO) can be considered as a way
to address the problem of repair as they can be applied to search optimal configurations
for different aspects of model architecture such as activation functions, number of neurons
and layers, hyperparameters affecting the training process, etc. At the moment, there is
no automated source-level repair tool that improves performance of a model by means of
patching and modifying the sources of the model’s architecture. However, there exists a
tool called AutoTrainer (Zhang et al. 2021) which is designed to detect and repair training
problems such as dyingReLUor exploding gradients, by continuing the trainingwith patched
architecture or hyperparameters.

Kim et al. (2023) compared AutoTrainer with HEBO (Cowen-Rivers et al. 2022) and
BOHB (Falkner et al. 2018), state-of-the-art HPO techniques based on Bayesian Optimisa-
tion (BO), while using random search as a baseline. The comparison was performed on a
carefully compiled set of artificial and real-world faulty models. Their results demonstrate
that the evaluated techniques can potentially improve the performance of models affected by
architecture faults. However, their findings indicate that there is still considerable room for
improvement as random baseline performs quite well when compared with other techniques.

On the other hand, there exist a number of post-trainingmodel-level repair approaches that
focus on modifying the weights of an already trained model in order to eliminate observed
misbehaviours. Arachne (Sohn et al. 2022) and Care (Sun et al. 2022) both focus on identify-
ing the neurons that contribute the most to the detected misbehaviours on certain test inputs,
and calibrate the weights associated with these neurons, while trying not to corrupt correct
predictions. GenMuNN (Wu et al. 2022), however, directly locates the weights that play the
biggest role in predictions, and uses a genetic algorithm to evolve the model by applying

123

 124 Page 32 of 34 Empirical Software Engineering (2025) 30:124

slight mutations to such weights. I-Repair (Henriksen et al. 2022) also locates and changes
the weights that take part in forming a misbehaving output for a certain group of inputs,
while maintaining the same behaviour on correctly classified inputs. PRDNN (Sotoudeh
and Thakur 2021) similarly aims at producing the smallest achievable single-layer repair.
NNrepair (Usman et al. 2021) uses constraint solving to produce slight modifications to sus-
picious weights revealed by fault localisation. Apricot (Zhang and Chan 2019) adjusts the
weights of a misbehaving model using the guidance from the weights of a complementary
correctly-performing model trained on reduced dataset that contains the problematic inputs.

While hyperparameter optimisation tools provide source level information about the per-
formed fixes, which means they also offer some fault localisation capability, post-training
repair tools are completely opaque and their fixes have no interpretation in terms of architec-
tural model elements affected by a fault. In our empirical study, we restricted the selection
of tools to those that explicitly address the DL fault localisation problem.

10 Conclusion

We evaluated four state-of-the-art techniques in DL fault localisation on a meticulously tai-
lored set of real and artificial faulty models to assess the advances in the area. Our findings
show that all of the evaluated approaches are able to locate a certain percentage of faults.
However, all are quite far from the best possible results when considering the available ground
truth. DeepFD exhibited the highest effectiveness, followed by Neuralint and UMLAUT.
DeepDiagnosis exhibited relatively poor performance. On the positive side, all proposed
techniques are stable across multiple runs and do not require excessive execution time. How-
ever, our experimentation suggests thatwhen re-computing the results after includingmultiple
alternative to ground truth patches (obtained by neutrality analysis), the FL accuracy of tools
increases in all cases, sometimes quite substantially.

According to our findings, future work in the area of DL fault localisation should focus on
improving the fault identification capabilities of the proposed techniques and broadening the
variety of considered fault types. Moreover, any empirical evaluation of DL fault localisation
tools should include some form of neutrality analysis, to expand the available ground truth
to other possible, equivalent fixes.

Acknowledgements Shin Yoo has been supported by the Engineering Research Center Program through
the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) (NRF-
2018R1A5A1059921), NRF Grant (NRF-2020R1A2C1013629), Institute for Information & communications
Technology Promotion grant funded by the Korean government (MSIT) (No.2021-0-01001), and Samsung
Electronics (Grant No. IO201210-07969-01). Gunel Jahangirova has been partially supported by the UKRI
Trustworthy Autonomous Systems Node in Verifiability, Grant Award Reference EP/V026801/2. This work
was partially supported by the H2020 project PRECRIME, funded under the ERC Advanced Grant 2017
Program (ERC Grant Agreement n. 787703).

Funding Open access funding provided by Università della Svizzera italiana.

Data Availability The experimental data, code, and evaluation results supporting the findings of this study
are available on the Zenodo platform (Humbatova et al. 2023) with the following identifier: 10.5281/zen-
odo.10387015.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the

123

Empirical Software Engineering (2025) 30:124 Page 33 of 34 124

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abadi,M,AgarwalA,BarhamP,BrevdoE,ChenZ,CitroC,CorradoGS,DavisA,Dean J,DevinM,Ghemawat
S, Goodfellow I, Harp A, Irving G, IsardM, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané
D,Monga R,Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker
P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X
(2015) TensorFlow: large-scale machine learning on heterogeneous systems. Available at https://www.
tensorflow.org

Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat
46(3):175–185. [Online]. Available http://www.jstor.org/stable/2685209

Baker W, O’Connor M, Shahamiri SR, Terragni V (2022) Detect, fix, and verify tensorflow api misuses. In:
International conference on software analysis, evolution and reengineering, pp 1–5

Breiman L (2017) Classification and regression trees. Routledge
Cao J, Li M, Chen X, Wen M, Tian Y, Wu B, Cheung S-C (2021) Replication package of deepfd. https://

github.com/ArabelaTso/DeepFD
Cao J, Li M, Chen X, Wen M, Tian Y, Wu B, Cheung S-C (2022) Deepfd: automated fault diagnosis and

localization for deep learning programs.” In: Proceedings of the 44th international conference on soft-
ware engineering, ser. ICSE ’22. New York, USA: Association for Computing Machinery, pp 573–585.
[Online]. Available https://doi.org/10.1145/3510003.3510099

Chollet F, et al (2015) Keras. Available at https://keras.io
Cowen-Rivers AI, Lyu W, Tutunov R, Wang Z, Grosnit A, Griffiths RR, Maraval AM, Jianye H, Wang J,

Peters J et al (2022) Hebo: pushing the limits of sample-efficient hyper-parameter optimisation. J Artif
Intell Res 74:1269–1349

DeepLearning.ai (2024) Five important AI programming languages. Available at https://www.deeplearning.
ai/blog/five-important-ai-programming-languages/

Falkner S, Klein A, Hutter F (2018) Bohb: robust and efficient hyperparameter optimization at scale. In:
International conference on machine learning. PMLR, pp 1437–1446

Hale J (2018) Deep learning framework power scores. Available at https://towardsdatascience.com/deep-
learning-framework-power-scores-2018-23607ddf297a

Henriksen P, Leofante F, Lomuscio A (2022) Repairing misclassifications in neural networks using limited
data. In: Proceedings of the 37th ACM/SIGAPP symposium on applied computing, pp 1031–1038

Ho TK (1995) Random decision forests. In: Proceedings of 3rd international conference on document analysis
and recognition, vol 1. IEEE, pp 278–282

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in deep
learning systems. In: Proceedings of the 41st international conference on software engineering, ICSE

Humbatova N, Jahangirova G, Tonella P (2020) DeepCrime: mutation Testing tool based on real faults.
Available at https://github.com/dlfaults/deepcrime

HumbatovaN, JahangirovaG, Tonella P (2021)Deepcrime:Mutation testing of deep learning systems based on
real faults. In: Proceedings of the 30th ACM SIGSOFT international symposium on software testing and
analysis, ser. ISSTA 2021. New York, USA: Association for Computing Machinery, pp 67–78. [Online].
Available https://doi.org/10.1145/3460319.3464825

Humbatova N, Kim J, Jahangirova G, Yoo S, Tonella P (2023) Empirical comparison of fault localisation tech-
niques for DNNs (replication package). Available at https://zenodo.org/doi/10.5281/zenodo.10387015

Jahangirova G, Humbatova N, Kim J, Yoo S, Tonella P (2024) Real faults in deep learning fault benchmarks:
how real are they? arXiv:2412.16336

Jahangirova G, Tonella P (2020) An empirical evaluation of mutation operators for deep learning systems. In:
IEEE International Conference on software testing, verification and validation, ser. ICST’20. 1em plus
IEEE, p 12. [Online]. Available https://doi.org/10.1109/ICST46399.2020.00018

Kim J, Humbatova N, Jahangirova G, Tonella P, Yoo S (2023) Repairing dnn architecture: are we there yet?
In: 2023 IEEE Conference on Software Testing, Verification and Validation (ICST)

LeCun Y, Bottou L, Bengio Y, Haffner P (2020) Lenet architecture: a complete guide. Available at https://
www.kaggle.com/code/blurredmachine/lenet-architecture-a-complete-guide

123

http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org
https://www.tensorflow.org
http://www.jstor.org/stable/2685209
https://github.com/ArabelaTso/DeepFD
https://github.com/ArabelaTso/DeepFD
https://doi.org/10.1145/3510003.3510099
https://keras.io
https://www.deeplearning.ai/blog/five-important-ai-programming-languages/
https://www.deeplearning.ai/blog/five-important-ai-programming-languages/
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://github.com/dlfaults/deepcrime
https://doi.org/10.1145/3460319.3464825
https://zenodo.org/doi/10.5281/zenodo.10387015
http://arxiv.org/abs/2412.16336
https://doi.org/10.1109/ICST46399.2020.00018
https://www.kaggle.com/code/blurredmachine/lenet-architecture-a-complete-guide
https://www.kaggle.com/code/blurredmachine/lenet-architecture-a-complete-guide

 124 Page 34 of 34 Empirical Software Engineering (2025) 30:124

Morovati MM, Nikanjam A, Khomh F, Jiang ZM (2023) Bugs in machine learning-based systems: a faultload
benchmark. Empir Softw Eng 28(3):62

NikanjamA,BraiekHB,MorovatiMM,KhomhF (2021)Automatic fault detection for deep learning programs
using graph transformations. ACM Trans Softw Eng Methodol (TOSEM) 31(1):1–27

Nikanjam A, Braiek HB, Morovati MM, Khomh F (2021) Replication package of Neuralint. Available at
https://github.com/neuralint/neuralint

Renzullo J, Weimer W, Moses M, Forrest S (2018) Neutrality and epistasis in program space. In: Proceedings
of the 4th international workshop on genetic improvement workshop, ser. GI ’18. New York, USA:
Association for Computing Machinery, pp 1–8. [Online]. Available https://doi.org/10.1145/3194810.
3194812

Schoop E, Huang F, Hartmann B (2021) Replication package of umlaut. Available at https://github.com/
BerkeleyHCI/umlaut

Schoop E, Huang F, Hartmann B (2021) Umlaut: debugging deep learning programs using program structure
andmodel behavior. In: Proceedings of the 2021CHI conference on human factors in computing systems,
pp 1–16

Sohn J, Kang S, Yoo S (2022) Arachne: search based repair of deep neural networks. ACM Trans Softw Eng
Methodol. [Online]. Available https://doi.org/10.1145/3563210

Sotoudeh M, Thakur AV (2021) Provable repair of deep neural networks. In: Proceedings of the 42nd ACM
SIGPLAN international conference on programming language design and implementation, pp 588–603

Sun B, Sun J, Pham LH, Shi J (2022) Causality-based neural network repair. In: Proceedings of the 44th
international conference on software engineering, pp 338–349

Usman M, Gopinath D, Sun Y, Noller Y, Păsăreanu CS (2021) Nn repair: constraint-based repair of neural
network classifiers. In: International conference on computer aided verification. Springer, pp 3–25

WardatM, Cruz BD, LeW, Rajan H (2021) Replication package of DeepDiagnosis. Available at https://github.
com/deepdiagnosis/icse2022

WardatM,CruzBD,LeW,RajanH (2022)DeepDiagnosis: automatically diagnosing faults and recommending
actionable fixes in deep learning programs. In: Proceedings of the 44th international conference on
software engineering, pp 561–572

Wardat M, Le W, Rajan H (2021) Deeplocalize: fault localization for deep neural networks. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). Los Alamitos, CA, USA:
IEEE Computer Society, pp 251–262. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
ICSE43902.2021.00034

Wu D, Shen B, Chen Y, Jiang H, Qiao L (2022) Automatically repairing tensor shape faults in deep learning
programs. Inf Softw Technol 151:107027

Wu H, Li Z, Cui Z, Liu J (2022) Genmunn: a mutation-based approach to repair deep neural network models.
Int J Model Simul Sci Comput p 2341008

Wu D, Shen B, Chen Y, Jiang H, Qiao L (2021) Tensfa: detecting and repairing tensor shape faults in deep
learning systems. In: 2021 IEEE 32nd International Symposium on Software Reliability Engineering
(ISSRE). IEEE, pp 11–21

Zhang H, ChanW (2019) Apricot: a weight-adaptation approach to fixing deep learning models. In: 2019 34th
IEEE/ACM International conference on Automated Software Engineering (ASE), pp 376–387

Zhang Y, Chen Y, Cheung S-C, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs.
In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis,
ser. ISSTA 2018. New York, USA: ACM, pp 129–140. [Online]. Available http://doi.acm.org/10.1145/
3213846.3213866

Zhang X, Zhai J, Ma S, Shen C (2021) Autotrainer: an automatic dnn training problem detection and repair
system. In: 2021 IEEE/ACM43rd InternationalConference onSoftwareEngineering (ICSE), pp 359–371

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://github.com/neuralint/neuralint
https://doi.org/10.1145/3194810.3194812
https://doi.org/10.1145/3194810.3194812
https://github.com/BerkeleyHCI/umlaut
https://github.com/BerkeleyHCI/umlaut
https://doi.org/10.1145/3563210
https://github.com/deepdiagnosis/icse2022
https://github.com/deepdiagnosis/icse2022
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00034
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00034
http://doi.acm.org/10.1145/3213846.3213866
http://doi.acm.org/10.1145/3213846.3213866

	An empirical study of fault localisation techniques for deep neural networks
	Abstract
	1 Introduction
	2 Background
	3 Benchmark
	3.1 Fault Types and Tool Coverage
	3.2 Evaluation Benchmark

	4 Neutrality Analysis
	5 Empirical Study
	5.1 Research Questions
	5.1.1 Processing Tool Output

	5.2 Experimental Settings & Evaluation Metrics

	6 Results
	6.1 RQ1.1 (Effectiveness Before Neutrality Analysis)
	6.2 RQ1.2 (Effectiveness after neutrality analysis)
	6.3 RQ2 (Stability)
	6.4 RQ3 (Efficiency)
	6.5 The Outputs of Fault Localisation Tools

	7 Discussion and Implications
	7.1 Ensuring Quality and Reliability in Benchmarking
	7.2 Practical Selection of FL Tools
	7.3 State of the Art and Future Directions of DNN Fault Localisation

	8 Threats to Validity
	8.1 Construct
	8.2 Internal
	8.3 External

	9 Related Work
	10 Conclusion
	Acknowledgements
	References

