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Abstract—Search Based testing has proved effective at gener-
ating test data to cover targeted branches and has consequently
received a great deal of attention from the automated software
testing community. However, previous approaches to search based
test data generation do not take account of oracle cost. While
there may be an aspiration that systems should have models,
checkable specifications and/or contract driven development, this
sadly remains an aspiration; in many real cases, system behaviour
must be checked by a human. This painstaking checking process
forms a significant cost, the oracle cost, which previous work on
automated test data generation tends to overlook.

In this paper we introduce three algorithms for reducing oracle
cost during test data generation. Each algorithm seeks to reduce
the number of test cases produced, without compromising cover-
age achieved. We present the results of an empirical study of the
effectiveness of the three algorithms on five benchmark programs
containing non trivial search spaces for branch coverage. The
results indicate that it is, indeed, possible to make reductions
in the number of test cases produced by search based testing,
without loss of coverage.

I. INTRODUCTION

It is widely believed that effective automation is one of
the crucial success determinants in software testing. The
process of designing test cases, executing them and checking
the behaviour of the System Under Test (SUT) can involve
a significant number of test executions, making automation
essential. Much previous work has sought to address the
problem of designing good quality test inputs, the achieve
certain well defined test goals, leading to the development
of research and practitioner communities working on Random
Testing [1], constraint solving [2] and Search Based Software
Testing (SBST) [3].

This paper focuses on the SBST approach, but the observa-
tions concerning the oracle cost problem apply to any and all
automated test data generation techniques. The SBST research
area is growing rapidly, with over 340 papers according
to a recent survey [4]. However, despite this considerable
publication output, there is very little work on the oracle cost
problem. That is, previous work concentrates on the problem
of searching for good test inputs, but it does not address the
equally important problem of reducing the cost of checking
the output produced in response to the inputs generated.

One obvious way to reduce checking effort consists of
finding ways to reduce the size of the test suite produced
as a result of automated test data generation. However, the
research challenge is to develop ways of achieving this goal
without sacrificing the equally important goal of achieving

coverage of the SUT. In order to do this, we seek test inputs
that cover a targeted branch in the SUT, while also maximizing
the so-called ‘co-lateral’ coverage [5]; coverage of branches
not targeted, but hitherto, uncovered by any other test case.
In this way we can reduce the overall number of test cases
required to achieve full coverage.

This paper argues that automated software test generation
should be (re-)formulated in terms of cost–benefit analysis.
The current state-of-the-art addresses only the benefit half of
the problem: that of generating inputs that meet the testing
criterion. It fails to address the other half of the problem:
the cost of checking the output produced. This is simply not
realistic for many testing applications; it assumes that all that
matters to the tester is the achievement of the highest possible
coverage, at any cost. However, a tester might, for example,
prefer an approach that achieves 85% coverage with 30 test
cases, over an alternative that achieves 90% coverage with
1,000 test cases.

Of course, one might hope that the SUT has been developed
with respect to excellent design–for–test principles, so that
there might be a detailed, and possibly formal, specification
of intended behaviour. One might also hope that the code
itself contains pre– and post– conditions that implement well-
inderstood contract–driven development approaches [6]. In
these situations, the oracle cost problem is ameliorated by the
presence of an automatable oracle to which a testing tool can
refer to check outputs, free from the need for costly human
intervention

However, for many real systems, the tester has the luxury of
neither formal specification nor assertions and must therefore
face the potentially daunting task of manually checking the
system’s behaviour for all test cases generated. In such cases,
it is essential that Automated Software Testing approaches
address the oracle cost problem. This paper takes some initial
steps towards tackling this re-formulated version of the Au-
tomated Test Data Generation Problem, making the following
contributions:

1) We introduce a new formulation of the search based
structural test data generation problem in which the
goal is to maximize coverage, while simultaneously
minimizing the number of test cases, with a view to
taking into account the human oracle cost effort involved
in checking the behaviour of the SUT for a given test
suite.

2) We introduce three algorithms for addressing this ex-
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tended re-formulation of the test data generation prob-
lem for search based software testing.

3) We present the results of an empirical study of the
effectiveness of the three algorithms when applied to five
programs containing search space sizes from 108 for the
trivial benchmark triangle program to 2119 for the
highly non-trivial, real world text processing program
clip_to_circle.

The rest of the paper is organized as follows: Section II
presents a brief overview of the background of search based
software testing and the static analysis techniques used in this
paper. Sections III and IV present the three algorithms used
and a brief description of their implementation respectively.
Section V presents the results of the empirical study. Sec-
tion VI presents related work while Section VII concludes.

II. BACKGROUND

Control Dependence: A node x dominates a node y if and
only if every path from the entry node to the node y passes
through node x. Conversely, a node y postdominates a node
x if and only if every path from the node x to the exit
node traverses the node y. A node z postdominates a branch
e = (x, y) if and only if every path from the node x to the
exit node through e contains the node z. A node y is control
dependent on a node x if and only if the node x dominates the
node y and the node y postdominates one and only one of the
two branches of the node x. A Control Dependence Graph
(CDG) is a directed graph that captures control dependence
[7]. Observe that sibling nodes, which belong to one parent
node through the same edge, must have, be definition, either
dominance or postdominance relationship between each other.
That is, should one of the nodes is executed, then other sibling
nodes must also be executed.
Search Based Testing: Meta-heuristic search techniques are
methods which adopt heuristic mechanisms as the principal
search strategies. The techniques are generally applied to
complex problems when there exists no satisfactory algorithm
for the problems or an existing algorithm is not practical with
respect to computation time. This approach has come to be
known as Search based Software Testing (SBST) [8], [3], a
subarea of Search Based Software Engineering (SBSE) [9],
[10]. Evolutionary algorithms are one of the most popular
meta-heuristic search algorithms and widely used to solve a
variety of problems [4].

A fitness function for covering a target branch requires
two principal components: an approximation level and branch
distance. The approximation level[11] indicates how close a
path traversed by a candidate solution approached to the target
node. This is achieved by counting the number of dominating
nodes using control dependence. Branch distance is a measure
of how close a candidate solution came to satisfaction of
the conditional expression in the last predicate executed on
a path of the target (that is, figuratively, where the path ‘went
wrong’ and missed the target). The combination of these
two components as a fitness function has been repeatedly
demonstrated to be capable of guiding a search technique to
find an input that covers a target branch [3].

Set Cover Problems: Set cover is one of the classic problems
in complexity theory. The goal is to find a collection of
minimal subsets of a set S that cover S. More formally:

Definition Let X be a finite set of size n, and let F =
{S1, . . . ,Sk} be a family of subsets of X , that is Si ⊆ X
such that

⋃k
i=1 Si = X . A collection of subsets C ⊆ F is a

set cover of X if X =
⋃
S∈C S .

Though the set cover problem is NP hard, greedy algorithms
are known to provide fast an relatively accurate approxima-
tions to the optimal solution. That is, greedy algorithms can
produce solutions of size n that are within log n of the optimal
solution[12].

Domain Range

Fig. 1. An example of set cover problem and its solution. Minimal subsets
are obtained by choosing 1st and 3rd elements from the domain. They cover
all the elements of the range.

III. ALGORITHMS FOR REDUCED ORACLE COST SEARCH
BASED TESTING

This section introduces the three algorithms for Reduced
Oracle Cost Search Based testing (ROC-SBT) studied in this
paper. The memory based approach is, effectively, a codifica-
tion of common sense and serves merely as a baseline against
which to compare the other two algorithms based on greedy
set cover and CDG analysis.

A. Memory-Based Test Data Reduction

In standard approaches to SBST, each currently uncovered
branch is targeted in turn. The goal of previous work has been
largely to cover branches (at any cost) and so no record of
coverage of non–targeted branches is kept. This is clearly sub
optimal from the point of view of reducing the number of
test cases required to cover the program under test. In order
to reduce the number of branches covered it makes sense to
record those other branches hit by a test cases that targets
some particular branch of interest. In this way, the algorithm
retains a memory of those branches currently uncovered. For
completeness, Algorithm 1 formalizes the observation as an
algorithm.
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Algorithm 1: Outline of memory-based approach
MEMORY-BASED-APPROACH(B)
(1) U ⇐ B
(2) C ⇐ ∅
(3) while U 6= ∅
(4) select a target branch, t ∈ U
(5) search for x s.t. t ∈ P (x)
(6) U ⇐ U − P (x)
(7) C ⇐ C ∪ {x}
(8) return C

Let B be the set of all branches in the target program, P .
Let P (x) denote the set of branches covered by the execution
of P with the input x. The memory-based approach maintains
a set of remaining target branches, U . Whenever an input x
is generated for a specific target branch t ∈ U , the approach
also removes from U other branches that were covered by the
execution of P with x, i.e. U ⇐ U − P (x). Therefore, if x
achieved collateral coverage of branches other than t, those
branches will not be targeted again.

B. Greedy Algorithm for Set Cover Problem
In regression testing, the goal of test suite minimiza-

tion [13], [14], [15] is to find a minimal collection of test
data whose paths cover all of the reachable branches of the
program. This is one kind of the set cover problem, which
could be solved by greedy algorithm. In the set cover–based
approach to ROC-SBT, we first generate as many test cases
as we can the cover the target branches (possibly multiple
times and in different ways) and then select from these a
subset that achieves coverage with the fewest test cases.
This approach is attractively simple and (because of its use
of greedy algorithms, which are know to be effective) it
also generates small covering sets. However, the approach
is computationally costly, because it requires the repeated
use of search based test data generation as a pre–requisite
for selection. The set–cover–based algorithm is presented as
Algorithm 2.

Algorithm 2: Outline of greedy approach
GREEDY-APPROACH(U , S)
(1) repeat
(2) foreach t ∈ B
(3) search for x s.t. t ∈ P (x)
(4) T ⇐ T ∪ {x}
(5) until stopping criterion is met
(6) U ⇐ B
(7) C ⇐ ∅
(8) while U 6= ∅
(9) select x in T s.t. maximises

|P (x) ∩ U|
(10) U ⇐ U − P (x)
(11) C ⇐ C ∪ {x}
(12) return C

The greedy approach shown in Algorithm 2 consists of
two stages. From line 1 to 5, the algorithm prepares the

pool of test cases; for each branch in the target program, the
algorithm generates a set of test cases using a search algorithm.
The number of generated test cases for a specific branch is
controlled by the stopping criterion used in line 5, which can
be either a set number of test cases generated or a set number
of fitness evaluation (i.e. computational resource) spent by the
search algorithm for test data generation. In the second stage,
from line 6 to 12, the algorithm applies a greedy-based test
suite minimisation to the pool of test cases, T . While there
exist remaining uncovered branches, the algorithm selects a
test case x from T such that x covers as many uncovered
branches as possible. Then x is added to C and the branches
covered by x, P (x), are removed from the set of remaining
target branches, U . Once all branches are covered, C contains
a set of test cases that provides a set cover of B.

T1

T2
T3

T4

Fig. 2. An example of greedy algorithm for set cover problem. Here,
a program consists of 9 branches and T = T1, T2, T3, T4. The greedy
algorithm produces set cover of size 3 by selecting the test data of T1, T3

and T2 in order.

C. CDG-Based Test Data Reduction

In search-based test data generation, the widely accepted
form of fitness function is defined in two parts: approach level
and branch distance []. The approach level represents how
close the execution path is to the predicate (i.e. branch) being
targeted, whereas the branch distance measures how close the
predicate is to being satisfied.

While this two-stage approach to the fitness function defini-
tion is known to be effective for achieving structural coverage,
it only concerns a single branch at a time. The resulting test
suite, i.e. the collection of test cases that are generated using
this fitness function, would naturally contain some redundant
test cases, which in turn results in extra test oracle cost.
If we want to reduce the size of the resulting test suite,
each search process for a test data should not only consider
the achievement of a specific structural target but also the
amount of extra structural coverage that the candidate test
case can achieve. Combined with the memory-based approach,
rewarding higher collateral coverage achieved by a test case
would produce a smaller test suite.
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Fig. 3. Calculating coverable branches

Algorithm 3: CDG-Based-Test-Data-Reduction(B)

(1) U ⇐ B
(2) C ⇐ ∅
(3) while U 6= ∅
(4) select t ∈ U
(5) search for x s.t. t ∈ P (x)∧

maximizes |P (x) ∩ U|
(6) U ⇐ U − s
(7) C ⇐ C ∪ {x}
(8) return C

Algorithm 3 formalizes this approach as a top level al-
gorithm. The main difference between Algorithm 3 and the
memory-based approach is in line 5. The CDG-based approach
actively seeks to maximise the increase in coverage as well as
achieving the coverage of the target branch, t. The algorithm
depends on the CDG representation of the target problem in
order to accurately calculate the possible collateral coverage.

1) CDG and Coverable Branches: Consider a program as
in Figure 3, where the two graphs - Control Flow Graph (CFG)
on the left and CDG on the right - represent the same program.
Suppose that edges in grey are previously covered, and the
next target branch is 1F. A set of 1F’s postdominating nodes
are 6 and the exit node. Then, edges of 1F, 3T, 3F are control
dependent on node 1 and 6F is control dependent on node
6. These are branches that can be potentially covered after
targeting the original, 1F. However, with a single test input,
only one branch between 3T and 3F can be covered. Therefore,
the number of coverable branches is 2 (1F and either 3T or
3F) for 1F. We formalise this with programs without loops,
then relax the definition of the collateral coverage to cater for
loop control structures.

For programs without any loop, CDG allows an elegant
recursive calculation of the number of potentially coverable
edges. Suppose that a node n in a CDG representation of a
program. For branching nodes, let E represent the true and
the false branch, i.e., E = {et, ef}. For e ∈ E, Let Ne be
the set of nodes that are control-dominated by e of n. Similarly,
let Le(n) be the number of potentially coverable edges when
targeting the edge e of the node n. Finally, let M be the set
of edges that are already covered. Then Le(n) is defined as
follows:

Le(n) =



0 if n is not a branching node∑
ni∈Ne

max(Let
(ni), Lef

(ni)) if e ∈M

1 +
∑

ni∈Ne

max(Let(ni), Lef
(ni)) if e /∈M

2) Fitness Function for Collateral Coverage: Once the
number of potentially coverable branches is calculated, it is
possible to express the collateral coverage in more precise
terms. Suppose that the CDG-based approach is evaluating the
fitness of a candidate input x for covering a branch, e, which
in turn belongs to a node n. Then the collateral coverage of
x regarding the branch e of node n, C(x, n, e), is defined as
follows:

C(x, n, e) =
|P (x)−M |

Le(n)

The edges in P (x)−M are the edges that are newly covered
by x. If the edges in the CDG are targeted in a top-down order
(i.e. the ones closer to the entry node are targeted first), then
any edges that are newly covered by x should be also control
dependent on e. This ensures that |P (x)−M | is less than or
equal to Le(n).

Using the definition of the collateral coverage, we extend the
traditional definition of fitness function for test data generation.
Let f(x, n, e) represent the overall fitness of an input value x
for covering branch e of node n. Let also a(x) be the approach
level and b(x) the branch distance. Then f(x, n, e) is defined
as follows:

f(x, n, e) = (a(x) + b(x)) + (1− C(x, n, e))

The fitness function is to be minimised. The ideal fitness
value is, therefore, 0, which is achieved when x covers e
and the maximum possible number of potentially coverable
branches. In practice, the fitness function was split into two
parts, a(x)+b(x) and 1−C(x, e), with the first part being the
primary fitness and the second part the secondary. This is due
to the fact that only the first part provides the actual guidance
towards the search of a test input that will satisfy the specific
condition required for the execution of a branch. The second
part, on the other hand, is merely a post-hoc measurement of
the collateral coverage that has been achieved; if the second
part were to act as the primary guidance, the overall coverage
achieved by the search algorithm will be significantly less than
ideal.

3) Relaxation for Loops: The definition of Le(n) relies
on the assumption that no single test case can execute both
the true and the false branch of a predicate node. This
assumption only holds when the predicate node is not a loop
predicate. With loop predicates, a single test case can execute
both the true and the false branch. This means that, for
loop predicates, |P (x) − M | for a node n can be greater
than Let

(n) or Lef
(n), resulting in a collateral coverage value

higher than 1.
However, it is not feasible to determine in general whether

there exists a test input that will complete a loop; otherwise we
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would solve the halting problem. Therefore, instead of doing
the exact analysis for the number of coverable branches for
loops, we relax the ease the definition of C(x, n, e) to cater
for loops as follows:

C(x, n, e) =


1, if |P (x)−M | > Le(n)

|P (x)−M |
Le(n)

, otherwise

IV. IMPLEMENTATION

Each of the three approaches described in Section III
was implemented on top of the IGUANA [16], a test data
generation framework using search-based approaches. It pro-
vides useful features, such as code instrumentation, high-level
data structure of a control flow graph, and general search
algorithms.

A. Greedy Approach

IGUANA
Initial Test Data

Set Cover

Program

GCOV

Minimized Test Data

{uses}

{uses}

Fig. 4. Greedy Algorithm Approach

Figure 4 is a diagrammatic representation of the imple-
mentation of the greedy approach. The greedy approach uses
IGUANA for its first stage; the stopping criterion was set
with the size of the resulting test suites, which ranged from
200 to 500 depending on the program. The second stage of
the greedy approach, a solver for the set cover problem, was
written as a perl script. Since the set cover solver exists
outside IGUANA, it uses GNU gcov profiler to collect the
execution path information of each test case.

B. Memory-based and CDG-based approach

Both the memory-based and CDG-based approaches
were implemented as extensions to the IGUANA [16].
The overall process is depicted in Figure 5. The
MemoryBasedTargetGenerator implementation is
merely a straightforward optimisation of the existing
IGUANA test data generation approach. If a search algorithm
requests a new target branch, it returns the first within the
list. Once the search algorithm found the ideal solution which
traverses the target branch, the path is inspected in order to
identify collaterally covered branches. These are marked as
visited. Should the algorithm fail to find the a covering input,

Target Generator
Target Branches

Genetic AlgorithmPost Processor

Memory-Based

Processor

CDG-Based

Processor

Generated Test Data

Fig. 5. Memory-based Approach and the CDG-based approach

then fittest solution is accepted if it covers any remaining
uncovered branches. Otherwise, the solution is discarded. The
search continues until no unattempted target branch remains.

The CDGBasedTargetGenerator implementation ini-
tially generates a control dependence graph of a program
under test. Each time a search algorithm requests a new target
branch, the target generator first updates the coverable branch
value for all remaining target branches. Then, it returns the
target closest to the entry node with the associated number
of potentially coverable branches. This number is used by the
genetic algorithm inside IGUANA to calculate the collateral
coverage fitness. Once the algorithm finds a solution, the trace
is inspected and accepted if the solution covers any remaining
branches. Note that the trace does not have to be ideal in a
sense that it covers the original target branch and also achieves
100% collateral coverage possible. However, if the trace fails
to cover any remaining branch, it is discarded. The search
attempt continues until no more target branch left.

C. Genetic Algorithm Setup

The genetic algorithm is used to search a solution for a given
target branch. This section details the parameter settings used
in our study in order to facilitate replication of our results.
For the selection operation, stochastic universal sampling[17]
was used, where the probability of individual selection is
biased according to its fitness value. This means the higher
the fitness value an individual has, the higher the chance that
the individual would be chosen, but worse individuals may
still be selected with low probability. This approach seeks to
maintain the diversity within the population. Before selection
operation for crossover takes place, individuals within the
population are ranked in regard to their fitness value. The
method of linear ranking[18] is used to rank the individuals.
Discrete recombination[19] is used to generate offspring from
the selected parent individuals. The mutation operation is
based on the breeder genetic algorithm[19]. For a target branch
coverage, the combination of approximation level and branch
distance measure is applied to the algorithm as a fitness
function.

For the CDG-based approach, the fitness function described
in Section III-C2 was split into the primary fitness and the
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secondary fitness. The primary fitness alone is applied until
the original target branch is covered. However, once the search
algorithm finds more than one test input that achieves the
coverage of the original target branch, it applies the secondary
fitness to evaluate the candidate test inputs according to the
amount of collateral coverage achieved.

V. EMPIRICAL STUDY

An empirical study was performed that compared the tra-
ditional search based test data generation algorithm, which
generates test data for each branch individually, against the
three reduced oracle cost algorithms discussed in Section III.

A. Test Subjects

Five programs were used as test subjects. check_isbn is
a function from the open source bibclean program, which
validates ISBNs in BibTex files. clip_to_circle is part
of the spice open source analogue circuit simulator, whilst
euchk is an open source program used to validate serial
numbers on European bank notes. gdkanji is a function
that forms part of the gdLibrary, an open source graphic
package library. Finally triangle is the well-known triangle
classification program, often used as a benchmark program in
automatic test data generation studies.

Further details regarding each program are recorded in Table
I. The test suite size for the traditional approach is equal
to each program’s number of branches if 100% coverage is
obtained. Cyclomatic complexity gives an upper bound on the
number of test cases required to cover all feasible branches if
‘collateral coverage’ is taken into account (i.e. the recording
of the fact that a test case has covered other branches in the
course of covering the target branch). Cyclomatic complexity
is therefore a useful statistic to compare against the test suite
sizes generated by the reduced oracle cost algorithms.

Program Lines Branches Cyclomatic Domain Size
of code complexity

check isbn 144 44 23 1050

clip to circle 156 42 22 2117

euchk 74 18 10 1012

gdkanji 140 58 30 240

triangle 60 20 11 109

TABLE I
DETAILS OF THE TEST SUBJECTS USED IN THE EMPIRICAL STUDY

B. Experimental Setup

The three reduced oracle cost algorithms (memory-based,
CDG-based and greedy set cover algorithm) were tested along-
side the traditional search-based approach, which attempts to
cover each branch individually. Due to the stochastic nature
of the algorithms, the experiments were repeated 15 times and
the numbers reported are averages over these 15 runs.

In order for the set cover approach to have a good chance
of achieving high coverage, it is necessary for the test case
generation phase (implemented using IGUANA) to generate a
great many test cases. These test case much cover branches in

the SUT multiple times and in different ways in order to ensure
that the set cover algorithm has a good range of options from
which to construct a good minimal set cover. The traditional
approach to search based test data generation [3] is simply
to cover each branch once, with one test case per branch.
Therefore, using the set cover approach, it is necessary to
generate more than one test case per branch in order to have a
good quality test pool from which to extract a reduced covering
set.

This is the primary reason why the set cover approach
is inefficient (though effective); the inefficiency lies in the
generation of a sufficiently large initial pool of test case from
which the selection phase can choose. Of course, the whole
process is entirely automated and so it is only inefficient in
machine time, and not in human analysis time, which is the
more precious commodity and that which we wish to preserve
in order to reduce oracle cost. In our experiments we set the
maximum number of test cases to be generated to 500. The
choice of upper limit has to be determined for the SUT in
question. In our experiments this number was chosen, based
upon initial experimentation, from which we found that the
set cover approach failed to noticeably increase effectiveness
for larger pools of test data.

It is these limitations of the set cover approach that mo-
tivate the introduction of the more computationally efficient
CDG–based approach. The CDG–based approach, performs a
static analysis to determine the branches to cover and uses a
secondary fitness to increase the co–lateral coverage achieved
when targeting a branch in the SUT. This obviates the need
for a large pre-genrated test pool and thereby, also removes
the need for the determination of this initial test pool size.

C. Results
The average test suite size and branch coverage achieved

by each algorithm for each test subject can be seen in the bar
charts of Figure 6. The average test suite sizes produced by the
reduced oracle cost algorithms were significantly smaller than
that of the traditional approach. For every test subject, average
test suite size was smaller than the subject’s cyclomatic com-
plexity number. As can also be seen in the figure, this reduced
test suite size did not have a comprising effect on branch
coverage of the program. For certain subjects and algorithms,
the reduced cost algorithms managed to exceed the average
level of coverage obtained by the traditional individual-branch
approach.

Figure 7 shows the additive branch coverage of each test
case search performed by the reduced oracle cost algorithms.
Generally speaking, the memory-based approach has to initiate
the most searches to achieve coverage levels comparable with
the CDG-based and greedy set cover method. The memory-
based approaches steadily covers small numbers of branches
in each search, whilst the CDG-based method and set cover
algorithm achieve most of their coverage in the early searches,
covering the proportionally fewer remaining branches that
remain after this initial burst.

The results are now discussed in detail for each test subject.
check isbn. The check_isbn program contains a large

loop with small nested statements within it. All methods
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Fig. 6. Average test suite size and branch coverage using the different
algorithms. All reduced oracle cost algorithms are successful at reducing test
suite size without compromising coverage

achieved approximately 97% coverage, with set cover produc-
ing a smaller test suite (just 1 test case) than the memory-based
and CDG-based approaches respectively.

clip to circle.: Again, set cover produced the smallest test
suite, whilst at the same time, achieved 100% coverage. The
average test suite produced by the CDG-based approach is
less than half the size of that produced by the memory-based
approach. Figure 7 for clip_to_circle caricatures shows
how the CDG-based and set cover methods attempt to achieve
as much branch coverage as early as possible, whilst the
memory-based approach maintains steady coverage, finding
test cases that execute only a small number of branches with
each additional search.

euchk. In terms of test suite size, both of the memory-
based and the CDG-based approaches are able to find test
suites that are almost as small as that found by the set
cover approach. When branch coverage performance over
each individual consecutive search (Figure 7), the CDG-based
approach manages its comparable coverage level in almost half
as many searches as the memory-based method for euchk.

gdkanji. The CDG-based approach performs better than the
memory-based approach with respect to the size as well as
the number of search attempts. The clear overall ‘winner’,
however, is the greedy set cover method. It achieves the
smallest test suite using the fewest number of searches.

triangle. For triangle program, there is one branch that
is difficult for search-based approaches, resulting in less than
100% coverage for all algorithms except the greedy set-cover
algorithm. Failure of the memory and CDG-based approaches
to cover this branch results in slightly smaller test suites for
this algorithm compared to greedy set-cover.

D. Analysis

For test suite size, the traditional approach is the worst;
although this is not surprising, given that it attempts to find a
separate test case for each individual branch. If the search
is able to keep track of ‘collateral’ coverage, as with the
memory-based approach, the number of test cases in the
test suite is always reduced to a size that is less than the
program’s cyclomatic complexity. However, it seems that this
situation can be improved by effectively targeting more deeply
nested branches using the CDG-based approach, which results
in smaller test suite sizes using a fewer number of distinct
searches to do so. The clear ‘winner’ with respect to test suite
size and the subjects considered, however, is the greedy set
cover algorithm. There was only one program (triangle)
for which the greedy set cover method did have a larger test
suite size than the CDG-based and memory-based approaches,
and this was because an additional ‘hard-to-cover’ branch had
been covered that the other algorithms had not. The greedy set
cover approach achieved its test suite sizes using a number
of test case searches that is comparable to the CDG-based
method.

The set cover approach is very effective at generating small
test suites, since it is based on a known near optimal greedy
algorithm. However it has the (non trivial) drawback that
it requires a ‘suitable initial test pool’ of test cases to be
generated . This is a research problem in itself, since test case
generation for multiple coverage remains a topic of current
research. Our experimental results do, however, confirm, that
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with a suitable test pool, the set cover approach can generate
good results. They also indicate, that by repeatedly executing
a ‘standard’ SBST test data generation tool (IGUANA in this
case) it is possible, for those programs studied herein, to create
such a suitable initial test pool.

The results for the check_isbn program highlight the
potential drawback of the CDG-approach approach, which is
unable to achieve results comparable to the set cover algorithm
in terms of the size of reduced test suite. This is due to the
fact that the check_isbn program has a large loop structure
containing a large number of small nested predicates within
it. This structure offers considerable potential for test suite
reduction, since a single test case may be able to traverse
the loop multiple times, covering different nested predicate
combinations on each iteration. If the ‘suitable initial test
pool’ used by the set cover approach is rich enough, it will
contain test cases that perform different traversals of the nested
predicates. The set cover algorithm will then be able to select
from these, a minimal (or near minimal) set that achieves
coverage of all (or nearly all) nested predicates with fewest
test cases.

E. Limitations and Threats to Validity

The empirical study in this paper has been primarily con-
cerned with determining the feasibility of reducing test suite
size, while maintaining coverage and in evaluating the effec-
tiveness of the set–cover–based and CDG–based approaches.
All three algorithms are novel to this paper, but the memory
based approach is merely a codification of ‘common sense’,
because it simply applies existing SBST test data generation
techniques in a ‘sensible’ way to avoid unnecessarily large test
suite sizes.

The empirical study results are promising, but it has to be
emphasized that they are merely an initial set of results and
that further empirical study is required to evaluate the three
algorithms proposed here (and also to develop and evaluate
other approaches). The results presented attract the threats to
validity that are commonly found in empirical studies of soft-
ware test data generation techniques. This section considers
these threats to validity and limitations and their implications.

There is a threat to external validity that limits the extent
to which the results can be generalized. We have selected
five programs for the study. These include the widely studied
(but relatively trivial) triangle program. This is included
merely because of the wide use of this example in other
studies. Due to its small size and synthetic (as opposed to real
world) application domain, results concerning this subject are
included merely for ‘historical compatibility’.

We have also selected four other programs for study. This
was far from a ‘random sample’ of all possible programs.
In choosing these four, we were careful to select those that
denoted challenging problems, with large search space sizes,
non–trivial branch nesting and real world applications.

However, like any set of programs used in a study of this
nature, results obtained from these subjects cannot necessarily
be generalized to other programs, languages or programming
paradigms. This is particularly true, precisely because these

subjects were not chosen at random, but were selected more as
a set of case studies that denote challenging search problems.
All that can be said with absolute certainty from our results,
is that there is evidence to support the claim that the size of
test suites can be reduced from that produced by the current
state–of–the–art in search based test data generation, while
maintaing coverage.

The results concerning test suite size are relatively free from
threats to construct validity, since the measurement used is
straightforward and intuitive (set size). However, as is well
known, branch reachability is undecidable [20] and so it cannot
be known whether uncovered branches are uncovered because
they are infeasible, or whether the test suite is simply insuffi-
ciently powerful to cover them. As a result, and finding relating
to coverage are affected by a threat to construct validity; low
coverage results may appear to be artificially low for subjects
with a large number of infeasible branches. Fortunately, as can
be observed from our results, the coverage for these subject
programs is extremely high and so we conclude that there are
very few, if any, infeasible branches present.

The results of the study are also vulnerable to threats
to internal validity. We only make the claim that there is
evidence to indicate that both algorithms, CDG–based and
set–cover–based, are capable of producing smaller covering
test suites than existing approaches. We do not seek to make
any conclusive claims regarding the relative performance of
each, but prefer to use our study to preset descriptive statistics
concerning their behaviour on the programs studied.

For these, we can say that there is evidence to suggest
that the algorithms do behave in different ways and that the
set cover approach can achieve smaller test suites. However,
there are too many confounding factors to be able to make
more definitive claims. For example, the performance of the
set cover approach is strongly influenced by the quality and
diversity of the test pool from which it draws a subset.
In order to fully evaluate its performance while taking into
account these potential confounding effects, a more detailed
and sophisticated controlled trial would be required; one which
would take more space to present that possible in a ten–page
conference paper.

VI. RELATED WORK

The work reported in this paper draws from two sources;
Search Based Software Test Data Generation and Test Suite
Minimization. The former is used to generate test data, while
the latter is used to reduce the size of the test suites so–
generated. Test Suite Minimization concerns reducing the
size of regression test suite which grows over time as the
software evolves [13], [14]. The majority of the literature
on Test Suite Minimization [21], [22], [23] differs from the
work in this paper as the existing minimization techniques are
post-hoc processes applied to existing test suites. This paper
incorporates the minimization within the test data generation
phase. Leitner et al. introduced a technique for minimizing, i.e.
shortening unit test cases in order to reduce testing cost [24].
While this paper shares a similar goal, the work reported in
this paper operates on the generation of a coverage-adequate
test suite rather than a single unit test.
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Fig. 7. Coverage performance of each reduced
oracle cost algorithm relative to the number of
searches that needed to be initiated. Whilst the
traditional approach initiates a new search for every
branch, reduced oracle cost algorithms attempt to
cover several branches with each additional test case
search

The work reported here also draws on the widely–studied
Search Based Software Engineering (SBSE) approach to soft-
ware test data generation, in which the test data generation
problem is reformulated as a search problem [4], [3]. Previous
work on SBST has addressed many different programming
paradigms and languages, including conventional 3GL code
[25], [26], [27], Object Oriented systems [28], [29], Aspect
Orient systems [5] and Model Based systems [30], [31]. The
SBST approach has proved to be highly generic, leading to
its incorporation in many different testing scenarios including
Stress Testing [32], Exception Testing [33], Mutation Testing
[34], [35], Functional [36] and Non–Functional Testing [8].
However, as mentioned in the introduction to this paper, there
is very little work on the oracle cost problem. This is the
primary novelty of the present paper; it re–formulates the test
data generation problem as one in which the human oracle cost
is reduced by minimizing the number of test cases generated,
while attempting to achieve maximal coverage of the SUT.

VII. CONCLUSION

This paper motivated a reformulation of the traditional
approach to automated test data generation that treats the prob-
lem as one of balancing cost and benefit. The paper sought to
determine the extent to which search based testing techniques
could be adapted to produce fewer test cases without loss of
coverage, presenting empirical results to support the claim that
the approach can reduce cost without an impact on the benefits
that accrue from coverage. The paper argue that more work is
required in this area of search based testing.

Our results and the observations of the relative strengths and
weakness of the CDG–based approach and the set cover based
approach allow us to make some suggestions for future work.
In order to achieve better results for nested predicate structures
inside loops, a form of multi objective search may be suitable
for extended and developing the CDG–based approach. In such
an approach, it may be possible to use a concept similar to
the ‘crowing distance’ measurement used in the multi objective
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search algorithm NSGA–II [37] in order to maintain a diversity
of branch coverage within loops.

It also suggests that some form of hybrid algorithm may be
required for optimal effectiveness, in which the CDG–based
approach is used to generate a small initial test pool which
is highly optimized for coverage diversity as well as maximal
co-lateral coverage, from which the set cover approach could
select. Such a hybrid may be capable of combining the best
features of both CDG and set cover approach. However, this
remains a topic for future work.
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