
Preliminary Evaluation of Path-aware Crossover
Operators for Search-Based Test Data Generation

for Autonomous Driving
Seunghee Han∗

KAIST
Daejeon, Republic of Korea

shhan1755@kaist.ac.kr

Jaeuk Kim∗

KAIST
Daejeon, Republic of Korea

kju5789@kaist.ac.kr

Geon Kim∗

KAIST
Daejeon, Republic of Korea

skygun88@kaist.ac.kr

Jaemin Cho∗
KAIST

Daejeon, Republic of Korea
jjm7307@kaist.ac.kr

Jiin Kim∗

KAIST
Daejeon, Republic of Korea

kji1362@kaist.ac.kr

Shin Yoo
KAIST

Daejeon, Republic of Korea
shin.yoo@kaist.ac.kr

Abstract—As autonomous driving gains attraction, testing of
autonomous vehicles has become an important issue. However,
testing in the real world is not only dangerous but also expensive.
Consequently, a virtual test method has emerged as an alterna-
tive. Recently, a novel testing technique based on Procedural
Content Generation (PCG) and Genetic Algorithm (GA), As-
Fault, has been proposed to test the lane-keeping functionality
of autonomous vehicles. This paper proposes new crossover
operators for AsFault that can better preserve the coupling be-
tween genotype (representations of road segments) and phenotype
(occurrences of interesting self-driving behaviour). We explain
our design intentions and present a preliminary evaluation of
the proposed operators using the Simulink autonomous driving
simulator. We report promising early results: the proposed
operators can lead not only to Out of Bound Episodes (OBEs) but
also causes more vision errors in the simulation when compared
to the original.

Index Terms—Autonomous Driving, Test Data Generation,
Search Based Software Engineering

I. INTRODUCTION

With advances in AI techniques, the autonomous driving
industry has become one of the most valuable industries [8].
Consequently, the safety assurance of autonomous vehicles is
receiving much attention. To improve the safety of autonomous
vehicles, it is crucial to test and detect problematic behaviour
of self-driving cars as early as possible. The most realistic way
of testing autonomous vehicles would be in the real traffic.
However, it would be impractical for a number of reasons [3]:
the testing itself may pose safety risks to other cars, not to
mention the cost and time required for testing. Testing within
computer simulation is a widely accepted alternative [9].

AsFault [2] is a search-based test data generation tech-
nique that can evolve road networks to test the lane-keeping
functionality of autonomous vehicles on. AsFault combines
Procedural Content Generation (PCG) and Genetic Algorithm

*Equal contribution

(GA) to automatically evolve random road maps that can be
used to expose problems in self-driving software.

While AsFault has been shown to be capable of producing
realistic and effective road layouts, we believe its genetic op-
erators can be improved. AsFault uses two types of crossover
methods to generate new road maps by combining different
segments of each parent road map. Here, the road segments
on the map are genotype, while the self-driving behaviour on
the roads is phenotype. In principle, if we select a candidate
solution based on the fitness of its phenotype, we would want
to pass on the corresponding genotype: if a road map reveals
particularly erratic self-driving behaviour, we would like to
keep the road segment that affected the driving behaviour
negatively. However, the crossover operator used by AsFault
does not consider the specific road segment that was traversed
by the simulation, and chooses a random segment for the
exchange. This leads to the failure to preserve the dominant
trait of the parent road network that resulted in the high fitness.

This paper proposes new crossover operators that can better
preserve the dominant trait of a given parent road network in
AsFault: these operators are aware of the actual path last tra-
versed by the simulation to yield the fitness value, and always
operate on a road in the traversed path. We also introduce
a new fitness function that captures more details of OBEs.
For a preliminary evaluation of these components, we present
a framework called ATeSS (Automatic Test Data Generator
System for Self-Driving Car). Our preliminary comparison of
ATeSS and AsFault are potentially promising and show that
the new operators, guided by the new fitness function, can
potentially generate road networks that induce more OBEs
than AsFault.

The remainder of this paper is organised as follows. Sec-
tion II describes some background knowledge about this study
including conventional AsFault. Section III describes ATeSS,
with an emphasis on the differences in crossover operators.



Section IV presents related work, and Section V concludes.

II. ASFAULT

AsFault [2] combines PCG and GA to generate road
networks that can expose the problems in the lane-keeping
functionality of autonomous vehicles. PCG refers to the al-
gorithmic generation of game content with limited or no
human input. AsFault uses PCG to initialise the road network
population. The road network generation is an incremental
process that builds road networks from road segments using
PCG: it is depicted in Fig 1. First, it constructs a short straight
road segment, either horizontally or vertically: this segment
becomes the starting point of the road (Fig 1 (a)). Subse-
quently, PCG grows the road by randomly creating additional
new road segments, which are concatenated to form a single
road (Fig 1 (b)). The road generation is completed when the
road reaches the map boundary (Fig 1 (c)). Multiple roads are
placed on the same map to create a road network (Fig 1 (d)).
During the process, PCG also applies some validation checks.
For example, a road cannot intersect itself. When an invalid
road or road network is detected, the generation process fails
and PCG creates a new road or road network.

Each time the self-driving car software under test deviates
from the road counts as an Out of Boundary Episode (OBE).
AsFault uses GA to evolve road networks that produce more
OBEs. After an initial population is generated, AsFault selects
road networks with more OBEs using tournament selection.
Next, selected networks produce offsprings using crossover
and mutation. AsFault can successfully generate road networks
that produce OBEs through the evolutionary search.

Fig. 1. An example of road network generation process.

III. ATESS

ATeSS (Automatic Test Data Generator System for Self-
Driving Car) is essentially AsFault with improved genetic
operators and fitness function. It inherits PCG and GA for
AsFault to evolve road networks. ATeSS uses tournament
selection with k = 5, and an elitism mechanism that preserves
the top 10% of parent generation according to their fitness. We
describe the fitness function, as well as the crossover and the
mutation operator, of ATeSS in the remainder of this section.

A. Fitness Calculation
We argue that the number of OBEs may not be the ideal

fitness function to generate test data (i.e., road networks)
for lane-keeping functionality. Essentially being a count-based
metric, OBEs can be prone to ties. The number of OBEs as
fitness function also fails to capture the severity of each OBE,
as both minor and major deviations will count as one. To
address these issues, we propose Bounded Lateral Deviation
(BLD) as the fitness value: it represents the maximum distance
between the centre of the road and the car during self-driving.
Figure 2 shows when OBE occurs, and how the fitness value
is measured.

Road Width

Half Road Width

Lateral
Deviation

(Fitness Bound)

Vehicle
Drive Path

Lateral
Deviation

OBE Occurred

Fig. 2. Fitness value calculation scenario. The lateral deviation is used to
calculate the fitness value, and OBE occurs when the lateral deviation becomes
larger than the half road width.

When the lateral deviation is greater than half the width
of the road, an OBE occurs. However, during our evaluation,
we found that exceptionally large lateral deviations can cause
the simulator to malfunction, hindering the search process.
Consequently, we bound the lateral deviation by a value larger
than half of the road width.

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

Fig. 3. Example of the original join crossover: in (c), the blue segment of
(a) and the green segment of (b) have been joined, while the purple segment
of (a) and the yellow segment of (b) have been joined.

B. Crossover Operators
1) AsFault: AsFault uses join and merge crossover oper-

ators. The join crossover splits each road into two roads at



a randomly assigned segment and cross-connects the divided
parts to create one new road. Subsequently, it creates random
road segments, so that the road can be reached to the map
boundary. Figure 3 shows an example of the join crossover
operator.

Merge crossover, on the other hand, randomly chooses two
or three roads from two road networks without any variation
on the road itself in the road networks. Figure 4 shows an
example of the merge crossover operator application.

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

Fig. 4. Example of the original merge crossover: in (c), the blue road of (a)
and the yellow road of (b) have been merged.

The original crossover operators proposed by AsFault oper-
ate at the map level. However, the fitness of a map is actually
only based on a single road that the vehicle traverse during the
fitness evaluation. This, combined with the random sampling
of the cut or merge point, means that segments of road that
have little to do with the map fitness can be chosen for the
crossover, based on the map level fitness.

2) ATeSS: ATeSS join crossover randomly chooses a join
point from the path traversed in the latest fitness evaluation of
the road network. Figure 5 shows an example of an improved
join crossover operator application. The red lines at the centre
of the roads in Figure 5 (a) and Figure 5 (b), respectively,
denote the paths traversed in the fitness evaluation. Note that
a traversed path exists across multiple roads. ATeSS first
randomly chooses a road used by the traversed path, then
subsequently chooses a cut point on the chosen road. Consider
Figure 5 (a) for an example: the traversed path involves two
roads. ATeSS first chooses the left one that connects the top
and the bottom of the map tile, then chooses a random cut
point to retrieve the segment to perform crossover with (road
segment with the blue lanes). Similarly, the traversed path in
Figure 5 (b) involved both roads: ATeSS chooses the curved
road at the bottom, and subsequently the cut point, and the road
segment with the green lanes. These two chosen segments are
combined into the child road in Figure 5 (c), which is added
to the child road network map tile. First, one of the chosen
segments is placed randomly at the edge of the child map tile;
the next one is joined at the end, and the road is randomly
extended using PCG, until it crosses the map edge.

ATeSS performs the same validity check as used by AsFault.
If a child road is not valid, ATeSS will make up to ten attempts
with the same pair of chosen roads (each time with different
cut points), after which it chooses another pair of roads from
the parent. It will repeat the join crossover until the number
of roads in the child map tile is equal to that of the parent
map tile with fewer roads.

Similarly to its join crossover, the merge crossover of ATeSS
operates on the path that was traversed in the fitness evaluation.

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

Fig. 5. Example of the improved join crossover operator: the traversed path
is shown in red. The yellow road from (a) and the green road from (b) have
been chosen from the traversed paths. After cutting them at a random join
points marked with triangles, the yellow and green segments have been joined
in (c).

Figure 6 shows an example of the improved merge crossover
operator. The red line in Figure 6 (a) and Figure 6 (b) shows
the traversed path. ATeSS randomly chooses one or two roads
that are traversed from one parent (roads with blue lanes in
Figure 6 (a)), and merges them with one or two traversed
roads from the other parent (the road with green lanes in
Figure 6 (b)) , while keeping the maximum number of roads
to three. The chosen roads are merged into the child road
network in Figure 6 (c) consists of only blue and green lines.
Merge crossover operator also follows the same validation and
iteration policy of the join crossover.

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

+ =

(a) (c)(b)

Fig. 6. Example of the improved merge crossover: the traversed path is shown
in red. Both blue roads of (a) have been chosen from the traversed path, while
only the green road of (b) has been chosen. These are merged in (c).

With the bias towards the traversed path, we hope to
preserve the dominant trait of the road that led to the fitness
of the parent road network map.

C. Preliminary Evaluation

In our preliminary evaluation of ATeSS using Simulink
autonomous driving simulator, the path-aware crossover op-
erators, combined with the new fitness function, resulted in
14–29% more OBEs than AsFault, depending on the size of
the map, using a population size of 25 and 40 generations
of search budget. ATeSS can also consistently outperform
random search. These early findings are potentially promising
and in line with our expectation that path-aware crossovers
may improve the effectiveness of AsFault. We leave a more
rigorous comparison with statistical analysis as future work.

IV. RELATED WORK

Testing of AI-based systems have received much attention
recently, as machine learning models using Deep Neural
Networks (DNNs) are rapidly incorporated into safety-critical
system such as autonomous driving vehicles [5], [7], [10], [13],
[15]. Many existing work focus on test adequacy criteria, i.e.,
the problem of finding a criterion that can be used to choose a
test input that is likely to reveal unexpected behaviour in the



DNN model under test. However, existing work tends to study
a component of an autonomous driving vehicle, such as steer-
ing control module [13] or object segmentation module [6]
in separation. System level testing of autonomous driving ve-
hicle is relatively under-explored, although uncertainty-based
approaches are starting to be investigated [12].

Unlike the study of test adequacy, actual test data gen-
eration for DNN models remain as a challenge due to the
high dimensionality of the input space [1], [14]. Riccio and
Tonella proposed a model-based approach, where a search-
based approach is applied to parameterised models of test
inputs to DNN image classifiers [11]. Kang et al. introduced
a VAE based model, where a search is performed in the latent
embedding space of the input domain derived by Variational
Autoencoder [4]. AsFault can be considered as a model-based
approach, but it uses discrete ingredient genes, rather than
parameterised models [2]. Our work focuses on the GA-based
search part of AsFault, and proposes alternative crossover
operators that are more customised for the input domain (i.e.,
road maps).

V. CONCLUSION

We proposed a new and improved crossover operator for
search-based test data generation for the testing of lane-
keeping functionalities of autonomous vehicles. The crossover
operators are improved versions of those used by AsFault, an
existing test data generation framework. Unlike existing oper-
ators, our new search operators are aware of the path traversed
by the vehicle in the latest fitness evaluation, and focuses
on the traversed road segments when performing crossover.
Consequently, we expect the new crossover operators to better
preserve the parts of the road network that resulted in its
fitness value, providing better coupling between genotype and
phenotype. We also present a more detailed fitness function
to capture Out-of-Bound Episodes. A preliminary compari-
son of ATeSS, our extension of AsFault with new operators
and fitness function, to AsFault, shows potentially promising
performance. We leave more rigorous experimentation and
comparison as future work.

ACKNOWLEDGEMENT

This work was supported by the Korean MSIT (Ministry of
Science and ICT), under the National Program for Excellence
in SW (2016-0-00018), supervised by the IITP (Institute of
Information & communications Technology Planning &Eval-
uation).

REFERENCES

[1] Taejoon Byun and Sanjai Rayadurgam. Manifold for machine learning
assurance. Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: New Ideas and Emerging Results, Jun 2020.

[2] Alessio Gambi, Marc Müller, and Gordon Fraser. Asfault: Testing self-
driving car software using search-based procedural content generation.
In 2019 IEEE/ACM 41st International Conference on Software En-
gineering: Companion Proceedings (ICSE-Companion), pages 27–30.
IEEE, 2019.

[3] Nidhi Kalra and Susan M Paddock. Driving to safety: How many miles
of driving would it take to demonstrate autonomous vehicle reliability?
Transportation Research Part A: Policy and Practice, 94:182–193, 2016.

[4] Sungmin Kang, Robert Feldt, and Shin Yoo. Sinvad: Search-based
image space navigation for dnn image classifier test input generation.
In Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, SBST 2020, pages 521–528, 2020.

[5] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system
testing using surprise adequacy. In Proceedings of the 41th International
Conference on Software Engineering, ICSE 2019, pages 1039–1049.
IEEE Press, 2019.

[6] Jinhan Kim, Jeongil Ju, Robert Feldt, and Shin Yoo. Reducing dnn
labelling cost using surprise adequacy: An industrial case study for
autonomous driving. In Proceedings of ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE Industry Track), ESEC/FSE 2020, pages 1466–
1476, 2020.

[7] Lei Ma, Felix Juefei-Xu, Jiyuan Sun, Chunyang Chen, Ting Su, Fuyuan
Zhang, Minhui Xue, Bo Li, Li Li, Yang Liu, Jianjun Zhao, and
Yadong Wang. Deepgauge: Comprehensive and multi-granularity testing
criteria for gauging the robustness of deep learning systems. CoRR,
abs/1803.07519, 2018.

[8] Market Data Forecast Inc. Self-driving cars market worth usd
220.44 billion by 2025: Industry report 2020-2025 https://www.
marketdataforecast.com/market-reports/self-driving-cars-market.

[9] Satoshi Masuda. Software testing design techniques used in automated
vehicle simulations. In 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 300–303.
IEEE, 2017.

[10] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, pages
1–18, New York, NY, USA, 2017. ACM.

[11] Vincenzo Riccio and Paolo Tonella. Model-based exploration of the
frontier of behaviours for deep learning system testing. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 876–888, 2020.

[12] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. Mis-
behaviour prediction for autonomous driving systems. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
pages 359–371, 2020.

[13] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest:
Automated testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th International Conference on Software Engineer-
ing, ICSE ’18, pages 303–314, New York, NY, USA, 2018. ACM.

[14] Shin Yoo. Sbst in the age of machine learning systems-challenges
ahead. In 2019 IEEE/ACM 12th International Workshop on Search-
Based Software Testing (SBST), pages 2–2. IEEE, 2019.

[15] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sar-
fraz Khurshid. Deeproad: Gan-based metamorphic testing and input
validation framework for autonomous driving systems. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, pages 132–142, New York, NY, USA, 2018.
ACM.


