
Information Transformation:
An Underpinning Theory for Software Engineering

David Clark∗, Robert Feldt†, Simon Poulding† and Shin Yoo∗
∗ Department of Computer Science

University College London, Gower Street, London
†Department of Software Engineering, Blekinge Institute of Technology, Sweden

Email: david.clark@ucl.ac.uk, robert.feldt@bth.se, simon.poulding@bth.se, shin.yoo@ucl.ac.uk

Abstract—Software engineering lacks underpinning scientific
theories both for the software it produces and the processes
by which it does so. We propose that an approach based on
information theory can provide such a theory, or rather many
theories. We envision that such a benefit will be realised primarily
through research based on the quantification of information
involved and a mathematical study of the limiting laws that arise.
However, we also argue that less formal but more qualitative uses
for information theory will be useful.

The main argument in support of our vision is based on the
fact that both a program and an engineering process to develop
such a program are fundamentally processes that transform
information. To illustrate our argument we focus on software
testing and develop an initial theory in which a test suite is
input/output adequate if it achieves the channel capacity of the
program as measured by the mutual information between its
inputs and its outputs. We outline a number of problems, metrics
and concrete strategies for improving software engineering, based
on information theoretical analyses. We find it likely that similar
analyses and subsequent future research to detail them would be
generally fruitful for software engineering.

I. INTRODUCTION

We believe that information theory is more useful to soft-

ware engineering than hitherto has been realised. Not only is

information theory a useful way to think about and to solve

problems in our discipline but it is possibly the only contender

for an underlying theory that could produce laws, explanations

and predictions, all connected by a common perspective.

Information Theory offers the following three things to

software engineering:

1) A theory of communication and encoding, due to Shan-

non, that allows us to view software, specifications,

verification and validation in a unified way as a collec-

tion of information transformation channels (information

transformers) [1].

2) A theory of the information content of objects, due to

Kolmogorov and others, that allows us to assess the

complexity of objects and to compare them at a highly

useful level of abstraction [2]. This is the very notion

of the information in an object which Brooks asserted

would be so useful to software engineering [3].

3) A non-mathematical theory of information useful for

describing the process and human aspects of software

engineering—such as how individuals and teams best

pool their resources to efficiently develop software sys-

tems [4].

Feynman famously categorised lines of enquiry in physics

into Babylonian and Greek, i.e. focused on the phenomena

or on the underlying order [5]. This paper is a very much a

Babylonian paper but with a Greek promise. By tackling differ-

ent problems in software engineering in a piecemeal way, we

believe that there is a very real possibility that the approaches

could eventually be systematised into an underlying theory.

In what follows, after some brief definitions and intuitions,

we offer an example of the power of information theory to

explain and predict by considering the input/output channel of

a program and its potential uses in software testing. We then

list a set of open problems in software engineering that have an

obvious information theory connection. These range through

testing, metrics, software evolution and system development.

II. WHAT IS INFORMATION THEORY?

It is hard to do justice to information theory within this brief

paper. Here, we merely describe the underlying concepts.

Shannon information, often called entropy, is a statistic of a

probability distribution and measures the amount of variation

in the probability distribution on a random variable. It is

a negative quantity that measures ignorance – uncertainty

about the outcome of the experiment of sampling the random

variable. For a random variable X with sample values x with

probability p(x), it is defined as

H(X) = −
∑

x∈X
p(x) log2 p(x)

Since its inception as a mathematical theory of communica-

tion, information theory has broadened and found applications

in many other areas, e.g. natural language processing, pattern

detection, and statistical inference. Information theory answers

fundamental questions about the limits of signal processing,

transmission, and data transformation [1].

Kolmogorov complexity, also called algorithmic informa-

tion, measures the amount of information in a string (or

object) as the length of the shortest program that can produce

that object from empty input. It historically post-dates but

conceptually precedes Shannon information and has a strong

connection to it. While it is not computable, Cilibrasi, Vitanyi

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.202

599

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.202

599

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.202

599

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.202

599

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.202

599 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

and others have demonstrated that compression of strings can

be used successfully as upper approximations in practice [2].

III. TOWARDS A THEORY FOR SOFTWARE TESTING

To illustrate the potency of information theory in software

engineering, we present a sketch of a theoretical framework

for software testing based on information theory. We begin by

looking at software as information transformation.

1) The input/output channel: Every program, viewed stati-

cally, has an input/output channel. The input to the channel, I,

is the random variable in all possible initial states; the output,

O, is the random variable in all possible final states. In the

case of stateless programs, the initial state is defined by the

values of arguments to the program and the random variable I
has a joint probability distribution over these arguments. For

stateful programs, I additionally encompasses the current state

of the program. Non-termination, although not observable, can

be considered for completeness of the model as one possible

final state. Following this view, we immediately have a number

of interesting quantities that have significant implications in

software testing.

2) Mutual information: Mutual information between inputs

and outputs was used by Shannon to model transmission of

information. M(X;Y) is the quantity of information from X
that arrives at (or is shared with) Y . Assume that the program

we wish to test is deterministic, i.e. without any probabilistic

schedulers or key generation so that for a program, P , P (I) =
O. Then the random variable in outputs is entirely dependent

on the random variable in inputs and all the variation in O
comes from I. This fact allows us to simplify the mutual

information between inputs and outputs in a nice way: because

of this dependency H(I,O) = H(I) so, using the chain rule

of entropy [1], we have H(O|I) = H(I,O) − H(I) = 0.

Then M(I;O) = H(O)−H(O|I) = H(O).
3) The channel capacity: Shannon defined the channel

capacity as the largest possible amount of mutual informa-

tion, considered over all possible input distributions. In our

deterministic program setting this also reduces to something

very simple. The general, formal definition is

max
σ∈ΣI

M(I;O)

where ΣI is the set of all possible distributions for the random

variable I. In our setting this simplifies to

max
σ∈ΣI

H(O) = log2(|O|)

i.e. no higher than the highest possible value of H(O),
achieved when the probability distribution of O is uniform.

So the channel capacity only depends on the number of

outputs. To return to the question of testing, we might

consider it reasonable that any test suite reflects an input

distribution that achieves the channel capacity of the program.

Otherwise, how can it be adequate? If it doesn’t achieve this

there must be some part of the behaviour of the program that

has not been tested. There are, in general, for any program,

many input distributions that achieve the channel capacity.

We can go further than this in what follows and show what

these test suites look like. For the moment we have done

enough to put forward our first suggestion:

A test suite is I/O channel adequate if it achieves the
channel capacity of the input/output channel of program.

In practice, given that the channel capacity is the log of

the number of outputs, this suggestion can be realised by

finding a test suite that finds all the outputs of the program.

Evidence for the usefulness of this suggestion (law) comes

from recent work on test output diversity [6], [7]. The most

recent paper demonstrates that “output uniqueness”, i.e. in-

crementally choosing a test suite by increasing the number

of unique outputs that the suite produces, has high Pearson

correlation to white box testing with either statement, branch

and path coverage. In addition, the output diversity test suite

selection technique increases the number of real faults found

by 47% in comparison to selecting the test suite using any of

the three coverage metrics. The original paper demonstrates

that the approach works in a black box testing context as

well [6]. We argue that the power of the approach rests on

the fact that it is a method for constructing a test suite that

achieves the channel capacity of the program.

This is in line with the more general suggestion by Feldt et

al. [8] that test case diversity measured with an approximation

of the Kolmogorov complexity of test case execution traces

could help create better test suites. By varying the information

used to characterise the test cases, different types of diversity

between them could be exploited, such as output diversity.

This is an extension of the results on output uniqueness since

the level of diversity can be directly measured, with a provably

universal diversity metric based on Kolmogorov complex-

ity [2]. Instead of only counting unique outputs, information

theory suggests that we can utilise the diversity between

outputs to further improve testing. Subsequent investigation

of these information theoretical notions of uniqueness and

diversity in software testing might prove a very fertile ground

for important, future results.

4) Conditional entropy: The conditional entropy of

the input/output channel in the program is given by

H(I|O). Using the arguments we used above in the case

of a deterministic program we have, by the chain rule,

H(I|O) = H(I,O)−H(O) = H(I)−H(O). This quantity

can be interpreted as the information that is lost through

executing the program (over all possible runs). There is an

equivalent to channel capacity for this quantity: the maximal

conditional entropy of program over all possible input

distributions [9] but we suspect that, for conditional entropy,

the uniform distribution on inputs (or any other distribution

obtained via the Maximum Entropy Principle) is more useful.

This quantity is, in a sense, a measure of how difficult it

is to test a program. The more information the input/output

channel loses, the less useful an oracle observing outputs

becomes and the more necessary a greater testing effort

becomes, whether this is manifested as additional oracles on

600600600600600 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

internal states, the provision of higher order mutation testing,

or the use of a search-based method for finding a test suite

that has properties that go beyond meeting the information

transformer adequacy condition. Evidence for the usefulness

of this metric is provided in the work of Androutsopoulos

et al., in which they show that there is a high correlation

between the probability of coincidental correctness for

oracles observing output and the conditional entropy of

certain internal channels [10]. The work of Masri et al. has

demonstrated that coincidental correctness is prevalent in

programs to varying degrees and that it exercises a reducing

effect on the usefulness of syntactic coverage criteria [11].

This leads us to put forward another suggestion:

The conditional entropy of the input/output channel of a
program (under the uniform distribution on inputs) is a
measure of the difficulty in testing a program.

We can normalise and consider
H(I|O)
H(I) ∈ [0, 1] as a

testability measure. The most difficult programs will have

measure 1 and the easiest measure 0.

5) Achieving the channel capacity of the program’s I/O
channel: What do we mean by the phrase “achieves the

channel capacity” precisely? Now that we have discussed con-

ditional entropy we can illustrate this. The partition property

of entropy [1] allows us to reformulate conditional entropy in

a useful way. Suppose that a deterministic program P has an

input/output semantics expressed by the function f . Let f−1o
be the random variable in the inverse image of o ∈ O. The

inverse images of elements of O partition I . For each o ∈ O,

σO(o) =
∑

i∈f−1o σI(i) so σO is the probability distribution

for the random variable in the partitions induced by the inverse

images. These inverse images partition the input space. By the

partition property

H(I) = H(O) +
∑

o∈O
p(o) H(f−1o)

so we can write the conditional entropy of the input/output

channel as the sum of the entropies of the inverse images of

the outputs:

H(I|O) = H(I)−H(O) =
∑

o∈O
p(o) H(f−1o)

A graphical interpretation of this definition of conditional

entropy for the input/output channel is in figure 1.

From the diagram it is clear that, to achieve the channel

capacity with a test suite, we can select one test input from

each inverse image. This corresponds to an input distribution

which is uniform on the test suite but 0 for every other input

and this distribution will achieve the channel capacity. The

closer the conditional entropy of the program is to H(I) the

more choices we have but the harder it is to make those choices

so as to avoid coincidental correctness as the testability of the

program decreases.

Of course the question remains as to how easy it is to

construct a test suite that achieves an adequacy criterion

f

. . .

.

. . .
o

p(o)

f−1o

H(f−1o)

Fig. 1. Information destroyed by program execution.

based on information theory, such as achieving the channel

capacity or a uniform distribution over the outputs. This is an

example of where taking an information theoretical perspective

can motivate improvements to existing software engineering

techniques. Recent work in search-based software testing has

demonstrated that by using metaheuristic search algorithms, it

is feasible to derive a probability distribution over the input

domain of a program, i.e. a specific distribution for the random

variable I, that induces a desired target distribution over, for

example, the execution of structural elements in the program

[12]. In the existing implementation of this technique, the

test engineer is able to choose this target distribution based

on their own experience or best practice—in other words, by

applying the more informal type of information discussed in

the introduction.

The results above suggest an alternative objective for this

search-based approach that takes a more formal information

theoretical view. The new objective would be to derive a

distribution over the input, I, that induces a target distribution

over the output, O, of a program that optimises an information

theoretical metric such as the channel capacity. Test inputs may

then be sampled in order to construct the test suite. In practice,

the best results—for example, the best fault-detecting ability—

might be realised by combining both types of information: the

informal knowledge of the human engineer and a metric based

on the more formal view of information.

Consider: we have looked at one channel, but we can also

view the program as a collection of transformers. In the theory

of secure software flows this has become an important idea

[13] and can model many properties of software systems in-

cluding differential privacy, side-channel attacks, information

hiding, integrity, anonymity, and cache leaks. We believe that

a theory of software testing has a natural fit with information

theory and in time many testing phenomena can be modelled

and better understood using information theory.

IV. FUTURE SOFTWARE ENGINEERING RESEARCH

We list here some problems in software engineering that

have connections to information theory. Some have existing

publications, others do not.

601601601601601 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

The Input/Output channel in software testing: Consider

two programs, ID and ML. ID is a complex implementation of

the identity function. ML is a complex machine learning clas-

sifier with two outputs, yes and no. The functional semantics

of ID means that, with zero conditional entropy, I/O channel

adequacy may not be achievable. For ML it is easy to achieve

but not very helpful. What other channels can assist in devising

a test suite? How far short of I/O channel adequacy can be

tolerated?

Coupling and cohesion metrics: Allen et al. used infor-

mation theory in the context of counting edges on graphs to

define coupling and cohesion for software components [14].

But coupling between components can be measured in terms

of the strength of the information flow between them. A high

channel capacity indicates strong coupling. This fits closely

with the use of coupling in safety critical systems.

Clustering test cases: The use of Kolmogorov complexity

ideas to cluster test cases produces a ‘natural’ measure of

diversity. This idea has barely been explored as yet [8].

Modelling properties of software: Clark et al. have in-

spired much research into measuring properties of software

using information theory [15]. Bucketing continuous quantities

allows time, power consumption and other non-functional

properties to be interpreted in terms of information [16].

The Kolmogorov complexity of the software under test:
Gates et al. have argued that there is something to be learned

about the difficulty of testing software from the Kolmogorov

complexity of the source code [17].

Using soft information for informal modelling: An in-

formation theoretical ‘point of view’ can be useful also for

less mature areas where formal modelling is either hard or

as yet unexplored. As an example, in industrial projects, the

applicability of a software engineering method often depends

on the type and number of information sources and amount

of information the method needs. Methods that require a large

amount of information from many different sources and types

of information are less likely to be economically feasible [18].

Software maintenance and evolution: Arbuckle has

demonstrated the practicality of using Kolmogorov complexity

in understanding software evolution [19].

Path feasibility: It seems likely that channel capacity can be

used to conservatively estimate path feasibility and the entropy

of the input space for a path be used to estimate how feasible

a feasible path is.

Guiding search using information: It has been understood

for decades that information is useful for guiding search,

whether it is being employed in the context of Big Data,

machine learning, Monte Carlo simulations or even software

testing. Yoo et al. have used it in this way to optimise test

input ordering for regression testing [20].

We consider the problems above to give only a ‘tip of an

iceberg’ sense of the important, future, software engineering

research based on and inspired by information theory. Our

vision is of a more wide-spread research programme where

information theory can provide theoretical underpinnings for

software engineering in general and an information theoretical

approach can be broadly useful for software engineering

both in theory and in practice. Both the software produced

and the engineering processes to produce it are information

transformation processes and will obey fundamental limits that

can be studied mathematically. We urge more researchers to

join in this exploration.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed.
John Wiley & Sons, 2012.

[2] P. M. Vitányi, F. J. Balbach, R. L. Cilibrasi, and M. Li, “Normalized
information distance,” in Information theory and statistical learning.
Springer, 2009, pp. 45–82.

[3] F. P. Brooks, Jr., “Three great challenges for half-century-old computer
science,” Journal of the ACM, vol. 50, no. 1, pp. 25–26, 2003.

[4] K. Krippendorff, Information theory: structural models for qualitative
data. Sage, 1986, vol. 62.

[5] L. Mlodinow, Feynman’s Rainbow: A Search for Beauty in Physics and
in Life. Warner Books, 2003.

[6] N. Alshawan and M. Harman, “Augmenting test suites’ effectiveness
by increasing output diversity,” in Proceedings of the 34th International
Conference on Software Engineering, 2012, pp. 1345–1348.

[7] N. Alshahwan and M. Harman, “Coverage and fault detection of
the output-uniqueness test selection criteria,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2014, pp.
181–192.

[8] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cog-
nitively diverse tests: Towards universal test diversity metrics,” in Pro-
ceedings of International Conference on Software Testing, Verification
and Validation Workshops, 2008, pp. 178–186.

[9] D. Clark and R. Hierons, “Squeeziness: an information theoretic metric
for avoiding fault masking,” Information Processing Letters, vol. 12, no.
8–9, pp. 335–340, 2012.

[10] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons, and M. Harman,
“An analysis of the relationship between conditional entropy and failed
error propagation in software testing,” in Proceedings of the Interna-
tional Conference on Software Engineering, 2014, pp. 573–583.

[11] W. Masri and R. A. Assi, “Prevalence of coincidental correctness and
mitigation of its impact on fault localization,” ACM Transactions on
Software Engineering Methodology, vol. 23, no. 1, pp. 8:1–8:28, 2014.

[12] R. Feldt and S. Poulding, “Finding test data with specific properties
via metaheuristic search,” in Proceedings of the 24th International
Symposium on Software Reliability Engineering, 2013, pp. 350–359.

[13] D. Clark, S. Hunt, and P. Malacaria, “A static analysis for quantifying
information flow in a simple imperative language,” Journal of Computer
Security, vol. 15, no. 3, pp. 321–371, 2007.

[14] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen, “Measuring coupling
and cohesion of software modules: An information-theory approach.” in
IEEE METRICS, 2001, pp. 124–134.

[15] C. Mu and D. Clark, “A tool: quantitative analyser for programs,”
in Proceedings of the 8th International Conference on Quantitative
Evaluation of Systems, 2011.

[16] B. Köpf and D. A. Basin, “Automatically deriving information-theoretic
bounds for adaptive side-channel attacks,” Journal of Computer Security,
vol. 19, no. 1, pp. 1–31, 2011.

[17] A. Q. Gates, V. Kreinovich, and L. Longpre, “Kolmogorov complexity
justifies software engineering heuristics,” Bulletin of the European
Association for Theoretical Computer Science (EATCS), pp. 150–154,
1998.

[18] R. Feldt, “Do system test cases grow old?” in Proceedings of the
IEEE International Conference on Software Testing, Verification, and
Validation, 2014, pp. 343–352.

[19] T. Arbuckle, “Studying software evolution using artefacts’ shared infor-
mation content,” Science of Computer Programming, vol. 76, no. 12,
pp. 1078–1097, 2011.

[20] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritization:
Comparing information-theoretic and coverage-based approaches,” ACM
Transactions on Software Engineering Methodology, vol. 22, no. 3, pp.
19:1–19:29, 2013.

602602602602602 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

