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Abstract—Mutation testing aims to ensure that a test suite is
capable of detecting real faults, by checking whether they can
reveal (i.e., kill) small and arbitrary lexical changes made to
the program (i.e., mutants). Some of these arbitrary changes
may result in a mutant that is syntactically different but is
semantically equivalent to the original program under test:
such mutants are called equivalent mutants. Since program
equivalence is undecidable in general, equivalent mutants pose a
serious challenge to mutation testing. Given an unkilled mutant,
it is not possible to automatically decide whether the cause is
the weakness of test cases or the equivalence of the mutant.
Recently machine learning has been adopted to train binary
classification models for mutant equivalence. However, training
such classification models requires a pool of equivalent mutants,
the labelling for which involves a significant amount of human
investigation. In this paper, we introduce two techniques that can
be used to augment the equivalent mutant benchmarks. First, we
propose a symbolic execution-based validation of mutant equiv-
alence, instead of manual classification. Second, we introduce
a synthesis technique for equivalent mutants: for a subset of
mutation operators, the technique identifies potential mutation
locations that are guaranteed to produce equivalent mutants.
We compare these two techniques to MutantBench, a manually
labelled equivalent mutant benchmark. For the 19 programs
studied, MutantBench contains 462 equivalent mutants, whereas
our technique is capable of generating 1,725 equivalent mutants
automatically, of which 1,349 are new and unique. We further
show that the additional equivalent mutants can lead to more
accurate equivalent mutant classification models.

I. INTRODUCTION

Mutation testing, proposed by Hamlet [1] and DeMillo et

al. [2], is used as a gold standard to assess the quality of a

test suite [3]. Given a program under test, developers inject

artificial faults to create mutant programs and run a given test

suite against these mutants. Such injected faults are intended

to mimic common mistakes of developers and a well-made

test suite is desired to be able to identify them. According

to the two fundamental hypotheses of mutation testing, the

Competent Programmer Hypothesis and the Coupling Effect
Hypothesis [2], simple and small syntactic changes are suffi-

cient to cover the fault space. These changes are categorised

via mutation operators; typically a single mutation operator

is applied to create a mutant. Mutation operators include

modifying a binary add operator (+) to a subtraction operator

(−) or replacing a whole conditional statement to true or

false.

Each mutant is labelled killed if at least one test yields a

different result from when run against the original program,

otherwise the mutant is labelled live. The more mutants a given

test suite can kill, the higher its fault detection capability is.

This is quantified as Mutation Score [4], MS, which is defined

as follows:

MS =
# of killed mutants

# of total mutants
, 0 ≤MS ≤ 1

One widely known challenge in mutation testing is the exis-

tence of equivalent mutants (hereafter denoted as EM). These

are mutants that are syntactically distinct but semantically

identical to the original program [5]. Since they are seman-

tically identical to the original program, no test can reveal

any difference between EMs and the original program, which

misleadingly lowers the mutation score. Consequently, EMs

make it difficult to interpret the mutation score: ideally, EMs

should be excluded from the computation of mutation scores.

The problem is that the program equivalence is undecidable

in general, resulting in no highly efficient and automated way

of distinguishing EMs from non-equivalent mutants (hereafter

denoted as NEMs). Manual inspection is known to be costly,

taking about 15 minutes per mutant on average [6] while being

prone to error [7]. Many heuristics have been designed based

on program invariants [8] or dataflow analysis [9], but they

often require non-trivial additional analysis.

Recently, Machine Learning (ML) has been applied to

classify EMs from NEMs based on easily collectable fea-

tures [10]–[12]. While these techniques show promising accu-

racy, there is the problem of providing a sufficient number of

EMs to train the classification models. The cyclic nature of the

problem presents a non-trivial challenge: we would like to train

a classification model because identifying EMs is difficult; but

because identifying EMs is difficult, it is a challenge to build

a large enough dataset to train such a model.

Due to the difficulty of identifying EMs, existing datasets

are curated with manual inspection, limiting their overall size.

As a result, existing ML-based approaches have been trained

on these relatively small datasets. Naeem et al. [12] used a

dataset with 1,393 EMs and 1,631 NEMs; Brito et al. [11]

used 2,005 EMs and 21,406 NEMs, while Peacock et al. [10]

used 946 EMs and 284 NEMs. The number of EMs in the

most recently introduced EM benchmark, MutantBench [13],
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is still of the same order of magnitude: 927 and 462 EMs

for C and Java, respectively, out of 4,400 total mutants. While

the ML-based techniques for detecting EMs seem encouraging

in terms of cost and accuracy, they have been limited by the

small dataset size. Thus, we believe it is necessary to repurpose

conventional EM detection work and adapt it to EM generation

research to boost the performance of ML-based techniques.

This paper aims to propose a way to generate EMs to aug-

ment existing benchmarks of EMs. Our approach contains two

techniques. First, we adopt the existing symbolic execution-

based detection of EMs [14], [15], but for the purpose of aug-

menting EM datasets. Instead of filtering out EMs for mutation

testing, we only choose EMs out of the generated mutants,

in a generate & validate approach for EMs. Second, more

importantly, we use static analysis and symbolic execution

to synthesise mutants that are guaranteed to be equivalent,

presenting an EM synthesis approach. Using both G&V and

synthesis approaches, we show that it is possible to almost

double the number of EMs in the largest existing benchmark.

Our evaluation shows that the augmentation has a positive im-

pact on the performance of ML-based EM classifiers. Further,

we highlight some issues (e.g. falsely included EMs) in the

manually labelled EMs in current benchmarks, based on the

contrast between automatically generated EMs and existing,

manually labelled EMs. In summary, the contributions of this

paper are as follows:

• We introduce two approaches for augmenting EM

datasets used for the training of ML-based equivalent mu-

tant classifiers. Our synthesis approaches are guaranteed

to produce equivalent mutants.

• Using the proposed augmentation technique, we present

1,349 new and unique equivalent Java mutants that are not

included in the largest existing EM dataset, MutantBench.

This addition almost quadruples the number of EMs in

MutantBench, which included 462 EMs.

• Our empirical evaluation suggests that EM augmentation

can improve the accuracy of ML-based EM classifiers.

• We identify and report some threats to validity in existing,

manually labelled EMs.

II. BACKGROUND

This section presents background information that is rele-

vant to our proposed technique.

A. Symbolic Execution for Mutant Equivalence Check

Symbolic execution is a static analysis technique that repre-

sents program inputs as symbols rather than concrete values.

Given a max depth, a symbolic execution engine explores

every observable program execution path until it reaches the

depth scope or the end of the program. Whenever it reaches

a conditional branch, it splits the exploration path into two,

each corresponding to the case where the branch is evaluated

to true and false. If either of the two conditions is infeasible

when added up to the path condition collected up to that point,

the path gets discarded.

The result of a symbolic execution run can be represented

as a set of pairs of path conditions and symbolic program

states, with one pair for each feasible execution path. This

information can be extracted not only at the end of an

execution path (i.e., a leaf state) after the program terminates,

but also at any point of a program. In the example below, we

only consider the leaf state result. Suppose we run symbolic

execution against a program P . At a leaf state, we obtain

path condition, PCi, and the corresponding symbolic return

value, ri. Program semantics can be represented as a first-order

logic formula that is the union of pairs of path conditions and

corresponding return values, called a symbolic summary of a

program. If we mutate P into P ′, we get two corresponding

symbolic summaries:

P =

n⋃

i=1

(PCi, ri), P
′ =

m⋃

i=1

(PC ′
i, r

′
i)

Note that the number of feasible paths of the two programs

(n,m) can differ based on the mutation.

Verifying equivalence of two syntactically different pro-

grams can be formulated as proving the equivalence of

two symbolic summaries using Satisfiability Modulo Theory

(SMT) solvers. We simply check the satisfiability of the

following formula:

m∨

j=1

n∨

i=1

(PCi ∧ PC ′
j) ∧ (ri �= r′j) (1)

Intuitively, we consider every combination of path condi-

tions in two given programs, PCi in P and PCj in P ′,
and check if the corresponding return values can be different

from each other. If the result is SAT, the model obtained from

the solver can produce the input that reveals non-equivalence.

However, if the result is UNSAT, it means that the two programs

are equivalent. Note that, while Equation 1 represents non-

equivalence, the opposite is also possible; Baer et al. [15], for

instance, encodes equivalence in their formula. Common to

our formula and that of Baer et al. is the case of SMT solver

not terminating within the given time budget, i.e., timeouts:

we interpret this as not being able to know the equivalence

explicitly, and discard any such comparisons.

The technique described above is one of the core techniques

that consist our work. For ease of understanding, let us provide

a concrete example of how symbolic execution can be used

to check equivalence between the original program and its

mutant.

Listing 1 shows Min, a program that returns the minimum of

the given two numbers, together with one of its mutants. The

mutation has replaced the relational operator, and the mutated

line is denoted with the Δ symbol. There are two execution

paths in the original program, Po, as well as the mutant, Pm.

The symbolic summaries of two versions of the program are

as follows:

Po = (J ≤ I, J) ∪ (J > I, I)

Pm = (J < I, J) ∪ (J ≥ I, I)
(2)
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1 public int Min(int i, int j)
2 {
3 int min;
4 min = i;
5 if(j < i){

Δ if(j <= i){
6 min = j;
7 }
8 return min;
9 }

Listing 1: The Min subject program, with ROR mutation

applied in line 5.

Using Equation 1, we get the following formula to query

the SMT solver:

(J ≤ I ∧ J < I) ∧ (J �= J)

∨(J ≤ I ∧ J ≥ I) ∧ (J �= I)

∨(J > I ∧ J < I) ∧ (I �= J)

∨(J > I ∧ J ≥ I) ∧ (I �= I)

(3)

In this simple example, it is relatively easy to figure out that

all four clauses in Equation 3 are false. The first and the last

clause is unsatisfiable since V �= V is not satisfiable for any

integer V ; the second clause is equivalent to (J = I) ∧ (J �=
I), which is also unsatisfiable, as the same pattern applies to

the third clause.

1 (declare-const I Int)(declare-const J Int)
2 (assert (or (or (or (and
3 (and (< J I)(<= J I))
4 (not (= J J)))
5 (and
6 (and (< J I)(> J I))
7 (not (= J I))))
8 (and
9 (and (>= J I)(<= J I))

10 (not (= I J))))
11 (and
12 (and (>= J I)(> J I))
13 (not (= I I))
14 )))

Listing 2: SMTLib2 query.

A corresponding query formulated using the SMTLib2 [16]

format is shown in Listing 2. When we query it to the solver,

it returns UNSAT, verifying that Pm is an equivalent mutant.

B. Machine-Learning Techniques for Classifying EMs

There are a number of existing techniques that propose to

build a Machine Learning (ML) binary classifier to distinguish

EMs from NEMs. Chekam et al. [17] proposed an ML based

approach by using static features, such as mutation location

in control flow graphs, to train a binary classification model

that can predict likely equivalent mutants. When tested on a

collection of C programs, the trained model achieved AUC

value of 0.88 and 95%, 35% precision and recall. Naeem et

al. [12] extract and utilise 23 features to build such a classifier:

features include the location of the mutated node within the

program dependence graph, the significance of the mutated

node, the entropy of the mutation operator, and features based

on the test suite. In an empirical evaluation based on six Java

programs, a Gradient Boosted Trees model achieved 88.8%

and 90.5% of average precision and recall for prediction of

EMs. Brito et al. [11] utilise features extracted from the

graph, e.g., whether the mutant is the source/target node of

a primitive arc [18], which is a directed transition from one

basic block to another that is never always followed by other

transitions. The trained model achieved an accuracy of 80.30%

when classifying 2,005 EMs from 27 C programs. Peacock et

al. [10] represent programs as Abstract Syntax Trees (ASTs)

and use Recurrent Neural Networks (RNNs) that take ASTs as

input to classify EMs. When studied with 582 mutants of five

C programs, the proposed ML approach showed a detection

accuracy higher than or equal to 90.0%.

Name Description

AORB
Replace basic binary arithmetic operators with other
binary arithmetic operators.

AOIS† Insert short-cut arithmetic operators.

AOIU Insert unary arithmetic operators.

AODS Delete short-cut arithmetic operators.

AODU Delete basic unary arithmetic operators.

ROR
Replace relational operators with other relational operators,
and replace the entire predicate with true and false.

COR
Replace binary conditional operators with other binary
conditional operators.

COI Insert unary conditional operators.

COD Delete unary conditional operators.

LOI Insert unary logical operator.

SDL Deletes each executable statement.

VDL
All occurrences of variable references are deleted from
every expression.

CDL
All occurrences of constant references are deleted from
every expression.

ODL
Each arithmetic, relational, logical, bitwise, and shift operator
is deleted from expressions and assignment operators.

ABS† Insert absolute operator.

VR† Replace variable reference with other variable reference.

TABLE I: List of Mutation operators used in our study. Those

marked with † are studied for an EM synthesis, whereas the

remaining operators are studied for EM Generate & Validate.

III. EQUIVALENT MUTANT AUGMENTATION

This section describes the two techniques we propose to

augment the EM datasets: 1) Generate & Validate, and 2) EM

Synthesis. An overview of our approach that includes the two

techniques is depicted in Figure II-B. Table I contains the list

of mutation operators we study. Note that we choose only

three operators to be studied for EM synthesis because: 1)

EMs made of the three operators account for the majority

of the EM operator population, 2) explaining EM synthesis

techniques for the three appears to be sufficient to convey the

main idea, 3) ease of implementation for the three.
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MuJava, 
EvoSuite

LOI.java

ROR.java

Killed

P.java
CFG 

(Soot) 

Path Condition, 
Program State 

(Jbse)

EM
AOIS

ABS, VR

NEM 

Z3 T.O.

SAT

UNSAT

Query
Live

Fig. 1: Overview of our approach. Part enclosed with blue dotted lines represent an EM synthesis, and the rest accounts for

G&V.

A. EM Generate & Validate

Generate & Validate is essentially reusing existing EM

detection techniques to identify EMs: instead of filtering out

EMs from actual mutation testing, we intend to augment the

existing EM datasets with them. First, we use a mutation

testing tool to generate as many mutants as possible. Second,

we use test cases to kill and thereby filter out, NEMs: this is

to minimise the use of SMT solvers, which can be expensive.

After the second step, the remaining mutants are either NEMs

that have not been killed due to weak test cases, or EMs.

Finally, we apply the symbolic execution-based detection

technique, outlined in Section II-A, to identify EMs from the

set of remaining mutants.

B. EM Synthesis

One downside of the G&V approach is its cost, as we need

to process a large number of mutants in the initially generated

set. Instead, we propose a novel EM synthesis approach that

is driven by the duality between EM detection and generation.

Given a program P and a mutant P ′, detection concerns

the question of “if we mutate a point in P to make P ′,
would it be equivalent to P ?”, while generation concerns

“to make P and P ′ equivalent, which point in P should

be mutated?”. Detection focuses on a given mutated point,

whereas generation should search for the point to mutate.

While answering the latter question, in general, may still

be infeasible (as it can be equally reduced to the question

of program equivalence), certain mutation operators allow us

to design specific heuristics that would produce EMs. The

synthesis of EMs hinges on both the static analysis of the

original program and the symbolic summaries of execution

paths. The EM synthesis based on symbolic execution is

guaranteed pending the capability of the SMT solver. We posit

that synthesis can still be more efficient, as we can forego the

dynamic validation of many NEMs that are initially generated

while sharing the same limitations that are inherent in SMT

solvers. Let us below present synthesis heuristics per mutation

operator.

1) Synthesis of ABS and VR EMs: Algorithm 1 shows

the algorithm for the EM synthesis of ABS (Absolute value

insertion) and VR (Variable reference replacement) mutation

operators. Using symbolic execution, we obtain the symbolic

summary after each statement on every execution path (Jp).

From this, we check signs of concrete values (in the case of

ABS, lines 10-15) and the existence of another variable with

the same concrete value (in the case of VR, lines 25-30). With

symbolic values, we similarly decide whether a symbolic value

of a variable is positive (in the case of ABS mutation operator,

lines 16-21), or identical to another symbolic value (in the case

of VR mutation operator, lines 31-36).

These checks allow us to identify places where the appli-

cation of either ABS (line 37) or VR (line 38) mutation will

always result in EMs.

2) Synthesis of AOIS EMs: Here we only consider the AOIS

(Short-cut arithmetic operator insertion) mutation operator that

inserts shortcut arithmetic operators, but only for the post-

increment/decrement. The main idea is to find a variable

reference that is thereafter never referenced unless it is re-

defined (overwritten) using dataflow analysis.

Algorithm 2 shows the algorithm for the EM synthesis of

AOIS mutation operators. We obtain a Use-Definition chain

through static analyser (Sp) and combine path information

to see if which chain is on a feasible path: if a use of a

variable is immediately followed by definitions in all sub-

sequent branching paths, the original use can be mutated

with the AIOS mutation (lines 3-16). Note that any infeasible

subsequent branches does not affect our synthesis, as the

mutation cannot have any impact on that particular execution

path (because it cannot be executed). We use the symbolic

execution information to determine the path feasibility.

153

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 19,2023 at 02:11:15 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: ABS and VR Synthesis Algorithm

Input: Jp: pairs of line and path information that reaches
the line of a program p.

Output: SABS : pairs of a line and a variable to apply ABS,
SV R: pairs of a line and a pair of variables to
apply VR.

1 foreach line, paths ∈ Jp do
2 positives, equals ← ∅, ∅
3 foreach v1, v2 ∈ getLocalV ars(p) do
4 isNotPositive[v1] ← False
5 isNotEqual[(v1, v2)] ← False
6 foreach cond, state ∈ paths do
7 foreach var, val ∈ state do
8 if isNotPositive[var] then
9 continue

10 else if val is number then
11 if val ≥ 0 then
12 positives ← positives ∪ {var}
13 else
14 positives ← positives− {var}
15 isNotPositive[var] ← True
16 else
17 if checkPositive(val, cond) then
18 positives ← positives ∪ {var}
19 else
20 positives ← positives− {var}
21 isNotPositive[var] ← True
22 foreach (vr1, vl1), (vr2, vl2) ∈ state do
23 if isNotEqual[(vr1, vr2)] then
24 continue
25 else if vl1 is number ∧ vl2 is number then
26 if vl1 = vl2 then
27 equals ← equals ∪ {(vr1, vr2)}
28 else
29 equals ← equals− {(vr1, vr2)}
30 isNotEqual[(vr1, vr2)] ← True
31 else
32 if checkEqual(vl1, vl2, pc) then
33 equals ← equals ∪ {(vr1, vr2)}
34 else
35 equals ← equals− {(vr1, vr2)}
36 isNotEqual[(vr1, vr2)] ← True

37 SABS ← SABS ∪ bind(positives, line)
38 SV R ← SV R ∪ bind(equals, line)
39 return SABS , SV R

IV. EXPERIMENTAL SETUP

This section describes the experimental setup of our empir-

ical evaluation.

A. Research Questions

We design our experiments to answer the following research

questions.

RQ1. Effectiveness How effective is our approach in its
capability of generating unique equivalent mutants? We use

MutantBench as a baseline and analyse the intersection and

disjoint sets between EMs in the baseline and those generated

by our approach. We check and compare the identities of EMs

from both datasets by comparing their ASTs to each other.

RQ2. Utility Is the created dataset useful for training
or evaluating equivalent mutant classification model? RQ2

Algorithm 2: AOIS Synthesis Algorithm

Input: linePathsp: lists of line numbers of which each
path of a program p consist,
Sp: a list of basic blocks of p and variable’s
Use-Definition information.

Output: SAOIS : pairs of a line and a variable to apply
AOIS.

1 blockPathsp ← lineToBlock(linePathsp, Sp)
2 SAOIS ← ∅
3 foreach var ∈ getLocalV ars(p) do
4 isNotCandidate[var] ← False
5 foreach path ∈ blockPathsp do
6 foreach varuse ∈ getUseInPath(var, path) do
7 line ← getLineNum(varuse)
8 buse ← getUseBlock(varuse, path)
9 bdef ← getFollowingDefBlock(buse, path)

10 if isNotCandidate[varuse] then
11 continue
12 else if existUseBtw(varuse, path, buse, bdef )

then
13 SAOIS ← SAOIS − {(line, varuse)}
14 isNotCandidate[varuse] ← True
15 else
16 SAOIS ← SAOIS ∪ {(line, varuse)}

17 return SAOIS

concerns the usefulness of our augmentation. Recall that the

main purpose of this work is to provide an equivalent dataset

generation methodology that can be used for training clas-

sifiers. To answer RQ2, we build separate EM classification

models, each using a different training dataset: the baseline

dataset that is MutantBench, and another dataset that has been

augmented by our technique.

RQ3. Replication Do the generated EMs confirm the
existing, manually labelled EMs? RQ3 qualitatively study

the EMs that exist exclusively in either MutantBench or our

augmentation set. After manual analysis, we report potential

threats in the existing datasets of EMs.

Program LOC |M | |MT | Test Coverage

ArrayUtils 1582 174 354 94%
Bisect 27 2 3 100%
Bubble 25 1 2 100%
BubbleSort 15 1 3 100%
Day 42 1 15 100%
Defroster 214 2 29 96%
Insert 25 1 4 100%
MathUtils 455 40 113 88%
Mid 27 1 11 100%
Min 10 1 4 100%
Primenum 24 1 2 100%
Profit 40 2 13 100%
QuickSort 50 3 8 100%
Simulator 30 36 10 100%
StringTokenizer 173 13 57 98%
Triangle 41 1 22 100%
Vector3D 135 24 74 100%
WordUtils 239 14 44 99%
XmlFriendlyNameCoder 86 10 13 96%

TABLE II: Subject Java programs from MutantBench: |M |
and |MT | represents the number of program methods and test

methods, respectively.
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B. Dataset

For comparison to baseline, we use all 19 subject Java

programs from MutantBench, whose details are shown in the

table II. We apply the following preprocessing. First, we man-

ually investigate the programs and convert void functions to

explicitly return the side effects. This process is necessary for

the G&V part of our approach requires return value for every

function. Second, we remove print statements, as mutating

them adds little value to the equivalent mutant dataset.

C. Implementation & Environment

Our EM augmentation approach consists of two techniques:

G&V and EM synthesis. For G&V, we use muJava [19]

to create as many mutants as possible, using all supported

mutation operators. In order to filter out NEMs, we generate

test suites by applying EvoSuite [20] to the original version

and subsequently running the test cases against the mutants.

When the proportion of killed mutants is too low, we manually

augmented the test suites. Detail for the prepared dataset and

test suite can be found in Table II. We analyse the remaining

live mutants using JBSE [21], a symbolic execution tool, and

Z3 [22], a backend SMT solver, as described in Section II-A.

For EM synthesis described in Section III-B, we obtain Use-

Definition information and Control Flow Graph (CFG) of the

given program using Soot [23], a program analysis tool.

For comparison between ASTs of EMs, (described in Sec-

tion V-A), we use GumTree [24] to represent each mutant

to AST and exhaustively check the isomorphism between

individual ASTs.

To train classification models, we collect various features

related to the generated mutants. Table III contains the features

that we use, which are a combination of those introduced by

Naeem et al. [12] and by Brito et al. [11]. We build a pipeline

to collect relevant features when given a set of an original

program and mutants.

All experiments have been performed on a machine with

an 8-core Apple M1, equipped with 8GB of unified memory.

We use JBSE built with Gradle 7.1.1, which is executed using

Java version 1.8. Our classification models are written using

scikit-learn [25] version 0.24 and Python version 3.7.

V. RESULT

A. RQ1.Effectiveness

Table IV shows the number of EMs generated by our

approach, in comparison to those in MutantBench. In total,

our approach has generated 1,725 EMs. Out of these EMs

(denoted by set O in Table IV), there are 1,349 unique EMs

that are not present in MutantBench. This effectively increases

the total of Java EMs in the benchmark from 462 to 1,811,

almost quadrupling the total.

For ArrayUtils, we get rid of some of the generated EMs,

as they are simply the same mutations applied to a set of

overloaded methods that share the same argument names, but

with different type signatures. We regard them essentially as

the same EMs and filter them out.

Fig. 2: 855 out of 1,725 EMs are generated through synthesis.

Type If Assg. Block For Func. Call Return Etc.

Num. 1,012 325 153 16 14 11 194

TABLE V: The number of EMs categorised by the type of

mutated statements.

Figure 2 shows the breakdown of the 1,725 generated EMs,

focused on the number of EMs created using G&V versus the

synthesis approach. Among these, the AOIS operator accounts

for the largest portion that is 32%. We also note that 49%

of the generated EMs, i.e., 855 EMs, are created by the

synthesis approach, which can significantly contribute to the

cost reduction of EM benchmark augmentation. We discuss the

details of cost reduction in Section VI. Table V shows that our

approach can generates EMs in diverse types of statements.

B. RQ2.Utility

RQ2 concerns the comparison of two models: a model

trained solely using MutantBench (hereafter denoted as Mmb,

and a model trained on a dataset that is augmented with our

unique EMs (hereafter denoted as Maug). For each trained

model, we prepare two test sets: one is collected from both

MutantBench and our augmented dataset (hereafter denoted

as Tboth), and the other is collected only from MutantBench

(hereafter denoted as Tmb). Let us explain the way we form

each set.

The training set Mmb contains 80% of MutantBench EMs;

the training set Maug is Mmb augmented with all EMs from

O, except for those EMs that we leave out for test sets. Since

available EMs are either from MutantBench or our augmented

dataset, we pay particular attention to building a fair test set.

To construct Tboth, we randomly sample 31 EMs from each

of M−O, M ∩O, and O−M . This results in 93 EMs, which

is 20% of the MutantBench EM size, thereby achieving 80:20

split ratio between train and test datasets for Mmb.

Note that Maug uses a much larger train set, O ∪ M :

if Maug overfits to EMs in O, having EMs from O in the

test set may affect its performance. To mitigate this potential

threat, we arrange the second experiment that removes part

of the test set brought from O, reducing the size of the test

set Tmb to 62. Table VI shows the details of datasets for

both of the experiments. The result for RQ2 is summarised

in Table VII. While the performance of Mmb is already

high, Maug consistently outperforms Mmb. Evaluation on

Tboth shows that Maug outperforms Mmb, showing that the
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Property Description Possible Values

Operator The mutation operator applied to the mutant. String

Source Primitive Arc Indicates whether the mutant is the source node of a primitive arc. 0 or 1

Target Primitive Arc Indicates whether the mutant is the target node of a primitive arc. 0 or 1

Distance Begin Min
The minimum distance from the mutated node to the initial
control flow graph node.

Integer

Distance Begin Max
The maximum distance from the mutated node to the initial
control flow graph node.

Integer

Distance Begin Avg The average value of Distance Begin Min and Distance Begin Max. [0, 1]

Distance End Min
The minimum distance from the mutated node to the control flow
graph end nodes.

Integer

Distance End Max
The maximum distance from the mutated node to the control flow
graph end nodes.

Integer

Distance End Avg The average value of Distance End Min and Distance End Max [0, 1]

Complexity
The number of mutations occurred on the mutated node divided by
the total number of mutations.

[0, 1]

Type Statement The type of the mutated statement.
String (Block, While,
For, If, Assignment,
Return, Function Call)

Hub Hub value of the mutated node. [0, 1]

Authority Authority value of the mutated node. [0, 1]

PageRank PageRank value of the mutated node. [0, 1]

Position Score
The number of faults revealed by the mutant node divided by
the total faults seeded in the mutated node.

[0, 1]

Operator Score
The number of faults revealed by the mutation operator divided by
the total seeded faults that belongs to the mutation operator.

[0, 1]

TABLE III: List of collected features. Undermost five features are introduced in [11], and the rest in [12].

Program |O| |M | |O −M | |O ∩M | |M −O|
ArrayUtils 46 11 42 4 7
Bisect 65 32 33 32 0
Bubble 23 9 14 9 0
BubbleSort 18 19 8 10 9
Day 23 14 9 14 0
Defroster 747 143 604 143 0
Insert 28 19 11 17 2
MathUtils 242 20 228 14 6
Mid 19 5 14 5 0
Min 10 9 1 9 0
Primenum 17 4 13 4 0
Profit 33 38 7 26 12
QuickSort 71 12 59 12 0
Simulator 12 11 12 0 11
StringTokenizer 89 51 61 28 23
Triangle 43 27 18 25 2
Vector3D 100 5 95 5 0
WordUtils 57 10 53 4 6
XmlFriendlyNameCoder 82 23 67 15 8

Total 1,725 462 1,349 376 86

TABLE IV: Number of EMs in MutantBench as well as those

generated by our approach: O and M indicate sets of EMs

from our technique, and MutantBench, respectively.

augmentation can improve the model performance. Our second

experiment using Tmb does show that EMs in O −M may

bias the model towards those EMs: Mmb performs better for

Tmb than for Tboth, while Maug performs slightly worse for

Tmb than for Tboth. However, the relative differences apart,

Maug outperforms Mmb in both experiments, showing that

augmentation can improve the general performance of EM

classification models.

Dataset Mmb Maug

|Train| 400 1,718

|Tboth| 93

|Tmb| 62

TABLE VI: |Train| denotes the number of EMs in training set

for each model. |Tboth| and |Tmb| denote the number of EMs

in test set for two experiments to answer RQ2.

Test Set Model Accuracy Precision Recall F1

Tboth
Mmb 0.91 0.95 0.87 0.91
Maug 0.96 0.97 0.96 0.97

Tmb
Mmb 0.94 0.92 0.93 0.93
Maug 0.95 0.97 0.93 0.95

TABLE VII: Maug trained using our augmented dataset out-

performs Mmb trained using MutantBench. Each number is

averaged over 20 runs.

C. RQ3. Replication

We find that there are EMs that belong to the set M−O, i.e.,

mutants that are manually labelled as EMs in MutantBench but

are not reproduced by our approach. We sample and manually

investigated some of thse to answer RQ3.

Missing Assumptions: Some ABS mutants in MutantBench

implicitly assume that the original program receives positive

inputs only. An example is a subject program Profit. Given

an income value, Profit calculates the amount of bonus.

While normally it is natural to assume the value of income as
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being equal to or greater than zero, this is only semantically

implied and not specified in Profit. As such, our approach

does not consider ABS mutations made to these input values

as equivalent; instead, it will print out negative input values

as a distinguishing input.

Incorrect Equivalence: We report a few EMs in MutantBench

to be actually nonequivalent. Here, we briefly mention the

cases of Triangle and BubbleSort. Triangle takes three

integer sides as input and determine the triangle type. An

input (1, 1, 2) must be classified as INVALID for any EM,

but some EMs in MutantBench contradict this. Consider the

mutated version of Triangle1 in Listing 3. The mutation in

Line 27 causes the program to return "ISOSCELES" when

input (1, 1, 2) is given.

1 public String triangle(int a, int b, int c)
2 {
3 int trian;
4 if (a <= 0 || b <= 0 || c <= 0) {
5 return "INVALID";
6 }
7 trian = 0;
8 if (a == b) {
9 trian = trian + 1;

10 }
11 if (a == c) {
12 trian = trian + 2;
13 }
14 if (b == c) {
15 trian = trian + 3;
16 }
17 if (trian == 0) {
18 if (a + b < c || a + c < b || b + c < a) {
19 return "INVALID";
20 } else {
21 return "SCALENE";
22 }
23 }
24 if (trian > 3) {
25 return "EQUILATERAL";
26 }
27 if (trian == 1 && a + b > c) {

Δ if (trian == 1) {
28 return "ISOSCELES";
29 } else {
30 if (trian == 2 && a + c > b) {
31 return "ISOSCELES";
32 } else {
33 if (trian == 3 && b + c > a) {
34 return "ISOSCELES";
35 }
36 }
37 }
38 return "INVALID";
39 }

Listing 3: A mutated Triangle marked as equivalent in

MutantBench: the mutation in Line 27 will cause the program

to accept the input (1, 1, 2) as an isoscleles triangle instead

of returning "INVALID"

Listing 4 shows a similar mutant2 for BubbleSort. The

mutation in Line 8 changes the behaviour of sorting algorithm

by duplicating an element in the given array instead of

swapping, yet the mutant is marked as an EM.

1 public void sort( int[] data )
2 {

1This mutant can be found in dataset.ttl file of MutantBench by its
URI: f4f5ace09139ab1fc12b096aae6371e9922778b6.

2This mutant can be found in dataset.ttl file of MutantBench by its
URI: 44994785a8fc0f8bc1a59f6626cde4a81bd0162b.

3 for (int i = 0; i < data.length - 1; i++) {
4 for (int j = data.length - 1; j > i; --j) {
5 if (data[j] < data[j - 1]) {
6 int temp = data[j];
7 data[j] = data[j - 1];
8 data[j - 1] = temp;

Δ data[j] = temp;
9 }

10 }
11 }
12 }

Listing 4: The BubbleSort subject program, with AORB

mutation applied in line 8.

Mutation on IO Functions: MutantBench has EMs that

mutate print statements, which our approach filters out.

Thus, such EMs are not present in our results.

Cross-Language Discrepancies Although we only study

Java EMs in MutantBench, we have discovered some cross-

language discrepancies in some subject programs that exist

in multiple languages, which we report here. First is the

discrepancy between Defroster.java and Defroster.c.

The Java version has nine class instance variables, all with

the default value of 0. However, the C version initialises the

corresponding variables with 1. Due to the difference, most of

the lines are unreachable in the Java version of the program.

A similar cross-language discrepancy is found between

Prime num.java and Prime number.c, both a program

that seeks prime numbers less than or equal to a certain

number. For the Java version, the termination condition for a

for loop is set as m <= 5, whereas the corresponding condition

for the C version is m <= 100. This can potentially lead to

different behaviour between the two versions.

D. Threats to Validity

Threats to internal validity concern factors that may have af-

fected the observed outcomes. The proposed approach depends

heavily on a number of technical components that can cause

such threats, primarily the symbolic execution engine, and the

SMT solver. We try to mitigate these threats by choosing JBSE

symbolic execution engine and Z3 SMT solver, both widely

used tools that have withstood public scrutiny.

Threats to external validity concern the generalisation of

our work outside the studied scope. Our claim about the

effectiveness of the proposed EM augmentation technique

is based on the EM classification model and its features.

While only further study can ensure the generalisability of

the proposed approach, we tried to provide a fair comparison

to existing techniques by adopting model configurations and

features used in the previous studies [11], [12].

Another factor that limits the generalisation of our claim is

the choice of programs we study. We chose all 19 programs in

MutantBench [13]: nine are relatively simple, single function

programs, while the rest consist of at least 110 lines of

code and five functions. Given the small size of the subject

programs, generalization of our approach may be limited by

the scalability of its components (i.e., the symbolic execution

engine and the SMT solver).
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Fig. 3: Among 2,502 AOIS mutants, 349(14%) are equivalent.

Our approach reduces the cost wasted on the rest 86%.

VI. DISCUSSION

A. Cost of our approach

One of our technical contributions is the EM synthesis

technique: to the best of our knowledge, this is the first attempt

at directly creating EMs with no false positives. However, the

practicality of our approach depends on its computational cost.

Let us analyse the cost-benefit of the synthesis approach.

Schuler and Zeller [6] report that manual identification of

an EM can take about 15 minutes on average, which provides

the baseline for efficiency (note that manual identification may

still produce false positives). We will compare the cost of

generating AIOS EMs via G&V and synthesis to this baseline;

AOIS is chosen for being the most prevalent mutation.

When applied to 19 studied Java programs, the mutation tool

muJava generates a total of 2,502 AOIS mutants. Among these,

539 mutants survived the testing stage; eventually, 349 AOIS

mutants are decided to be equivalent. The ratio of each stage’s

number is shown in a figure 3. Creating 2,502 AOIS mutants,

creating and running tests on them, and running symbolic

execution followed by one-by-one equivalence comparison

takes about 120 minutes for all programs except Defroster

(additional 485 minutes if we take Defroster into account).

In comparison, our synthesis algorithm can directly generate

all 349 EMs using static analysis of an original program as

well as a single symbolic execution run. It takes less than

10 minutes for 19 programs, even including Defroster: the

cost reduction is mainly because EM synthesis does not have

to query the SMT solver for each mutant.

Suppose we are to construct a pool of AOIS EMs for the 19

subject programs. The cost of manual inspection is estimated

as 8,085 minutes (539×15), while our G&V approach takes

485 minutes. The advantage of our synthesis approach is clear,

as it takes less than 10 minutes.

B. Limitations and Future Work

In the final stage of G&V, we construct an equivalence

query using symbolic execution results that is to be sent to

an SMT solver. The query includes an identity clause of

return values. While such queries are trivial for primitive types

that SMT solvers can take, more complex data types may

pose a problem for SMT solvers. Comparing two instances of

complex data structures for equivalence may require additional

instrumentation that breaks down the data structures into a set

of primitive type values. We leave this as future work.

Currently, our technique only aims to generate First Order

EMs, as opposed to Higher Order EMs. It is known that

non-equivalent First Order Mutants (FOMs) can be combined

to create Higher Order Mutants (HOMs) that are equivalent

because one FOM masks the other. We expect that categorising

such patterns can lead to synthesis techniques for Higher

Order EMs. Such techniques will have to consider symbolic

relationships between program elements, in a way similar to

existing work [26] that exploits dependence relationship to

create Strongly Subsuming Higher Order Mutants [27].

VII. RELATED WORK

MutantBench [13] is a open-source EM dataset that can

serve as an evaluation benchmark for techniques such as EM

classification. We share the same motivation for creating a

high-quality dataset of EMs, but aim to provide an accurate

and automated EM generation instead of manual labelling.

Several existing work address the challenges EMs present

to mutation score using various approaches including static

analysis techniques [14], [15], [28]–[30], Higher Order Muta-

tion [31], and compiler optimization [32], [33]. Our approach

also relies on symbolic execution, but with the purpose of

generating EMs instead of detecting and avoiding EMs. We

are motivated by the recent work that aims to build predictive

models that can classify EMs based on both static and dynamic

features [10]–[12]. By augmenting the existing EM datasets

automatically, we hope to improve the existing predictive

modelling techniques.

Nonetheless, the approaches we propose are motivated by

existing work. Our EM synthesis is inspired by the work

of Kintis et al. [9], which identifies problematic data flow

patterns that are like to produce EMs when mutated. We

actively exploit such patterns to synthesise EMs. Our Generate

& Validate technique is a more straightforward application of

existing EM detection techniques based on SMT solvers, but

we actively report EMs instead of discarding them.

VIII. CONCLUSION

We introduce an automated way of augmenting existing

datasets of Equivalent Mutants (EMs) with the purpose of

improving ML-based classification of EMs. Using symbolic

execution as well as an SMT solver, our approach can either

synthesise a mutant that is guaranteed to be equivalent or

actively seek out EMs from generated mutants. The proposed

approach is much more efficient than manual labelling of

EMs, considering that 49% of EMs we generate are directly

synthesised, with no false positives. We evaluate our approach

using 19 Java programs in an existing EM benchmark and

show that we can quadruple the size of the existing EM dataset

with 1,349 unique EMs that are automatically generated.

Further, we show that our augmentation can produce EM

classification models with higher accuracy.
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