
Learning Fault Localisation for Both Humans
and Machines using Multi-Objective GP

Kabdo Choi, Jeongju Sohn, and Shin Yoo

Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea

Abstract. Genetic Programming has been successfully applied to fault
localisation to learn ranking models that place the faulty program ele-
ment as near the top as possible. However, it is also known that, when
localisation results are used by Automatic Program Repair (APR) tech-
niques, higher rankings of faulty program elements do not necessarily
result in better repair effectiveness. Since APR techniques tend to use
localisation scores as weights for program mutation, lower scores for non-
faulty program elements are as important as high scores for faulty pro-
gram elements. We formulate a multi-objective version of GP based fault
localisation to learn ranking models that not only aim to place the faulty
program element higher in the ranking, but also aim to assign as low
scores as possible to non-faulty program elements. The results show mi-
nor improvements in the suspiciousness score distribution. However, sur-
prisingly, the multi-objective formulation also results in more accurate
fault localisation ranking-wise, placing 155 out of 386 faulty methods
at the top, compared to 135 placed at the top by the single objective
formulation.

Keywords: Fault Localisation, Multi-Objective Evolutionary Algorithm

1 Introduction

Genetic Programming has been successfully applied to fault localisation [9], ini-
tially to learn individual Spectrum-Based Fault Localisation (SBFL) risk evalu-
ation formulæ [11] and subsequently to learn more complicated ranking models
that take multiple SBFL formulæ as well as code and change metrics as input
and produce rankings of program elements [7].

Increasingly, fault localisation techniques are being used by Automated Pro-
gram Repair techniques, such as GenProg [8]: suspiciousness scores, i.e., the
scores used for rankings, are often used as weights to determine parts of the
program under repair that need to be patched. Noting this, Qi et al. evaluated
fault localisation techniques using success rates of APR techniques as the effec-
tiveness measure [6] and reported an interesting finding: SBFL formulas proven
to produce better ranking than others [10] turned out to be less effective than
formulæ they dominate when used with APR.

Inspired by Qi et al., we formulate a multi-objective learning to rank problem
for fault localisation, aiming to evolve a ranking model that assigns not only

2 K. Choi et al.

higher scores (and, therefore, rankings) to faulty program elements, but also
lower scores to non-faulty program elements. Thus, we aim to maintain better
rankings for humans, while producing better distributions for APR techniques.

2 Locality Information Loss as Fitness Function

The primary fitness function used by the multi-objective version of FLUCCS is
average ranking of the first faulty program elements computed against the faults
in the training data. This section explains how we convert the distribution of
suspiciousness scores into a secondary fitness function.

2.1 Locality Information Loss (LIL)

LIL is an evaluation metric for fault localization based on information theory [4].
Essentially, LIL treats the distribution of suspiciousness scores as a probability
distribution, and computes the cross-entropy between the ground truth and the
given score distribution using Kullback-Leibler divergence. The score distribu-
tion for the ground truth is give L(si) = 1 if the program element si belongs
to the set of faulty elements, Sf , and 0 < ε � 1 otherwise. LIL converts both
the ground truth distribution, L, and the given suspiciousness score distribu-
tion, τ , into probability distribution using linear normalisation, i.e. Pτ (si) =
τ(si)∑n
i=1 τsi

, (1 ≤ i ≤ n). Finally, LIL itself is computed as the Kullbeck-Leibler

divergence between two distributions: DKL(PL||Pτ) =
∑
i PL(si) ln PL(si)

Pτ (si)
.

2.2 Weighted Locality Information Loss

After initial investigation, we learnt that LIL in its basic form is not suitable as
a fitness function. As the number of program elements grows, the faulty program
elements, of which there are only a few, have decreasing impact on the final LIL
score. Reducing the suspiciousness scores for all program elements becomes a
more effective strategy for GP to learn, damaging the ranking based fitness.

To counter this, we introduce Weighted Locality Information Loss, wLIL,

which is defined as
∑
i wiPL(si) ln PL(si)

Pτ (si)
. The value of the weight, wi, depends

on whether si is the faulty program element or not: wi =
|Sf |
|S| if si ∈ Sf , and

|S\Sf |
|S| if si /∈ Sf (S is the set of all program elements).

3 Experimental Setup

This section presents our research questions and the experimental set-up.

3.1 Research Questions

We investigate the following research questions to evaluate the effectiveness of
the multi-objective version of FLUCCS, FMO, which uses NSGA-II [1] to imple-
ment multi-objective GP.

Fault Localisation for Both Humans and Machines 3

RQ1. Ranking Effectiveness: how effective is FMO at ranking the faulty pro-
gram elements higher than non-faulty elements?
RQ2. Distribution Effectiveness: how effective is FMO at producing distri-
butions of suspiciousness scores that resembles the ground truth?

Intuitively, RQ1 evaluates FMO from the human perspective by checking the
ranking of the faulty program elements, while RQ2 evaluates FMO from the
machine (i.e., APR) perspective. We use the original FLUCCS as the single
objective baseline, FSO. To answer RQ1, we adopt the widely used evaluation
metrics, acc@n and wef , to compare FMO and FSO: acc@n counts the number of
faults that have been ranked within the top n places by ranking models, whereas
wef is the number of non-faulty program elements ranked higher than the first
faulty program elements1. To answer RQ2, we measure the ratio between the
highest suspiciousness scores of faulty and non-faulty program elements: casually,
the higher the ratio is, the more obvious the faulty program elements appears
to APR techniques. We report these ratios because wLIL values are hard to
interpret intuitively.

3.2 Subject Programs

We use real world faults from Defects4J [3], the same benchmark that have been
used in our previous works [7]. From the 395 faults provided by Defects4J 1.1.0
repository, we use 386 faults, excluding 9 faults that we could not reproduce in
the method level localisation experiments. Table 1 contains the details of subject
programs and faults.

Table 1. Subject software systems and their faults

Project # faults Loc # Methods # Test cases

Commons Lang 63 9059–11490 1953–2408 1540–2295
Commons Math 105 4726–41344 1049–6668 817–4429
Joda-Time 26 12732–13270 3628–3802 3749–4041
Closure Compiler 131 30438–50523 4848–8880 2595–8443
Jfreechart 25 41075–51523 6578–8281 1586–2193
Mockito 36 2110–4385 747–1476 695–1399

3.3 Configuration

Both FMO and FSO are implemented using DEAP 1.2.2 [2], a Python evolu-
tionary computation framework. We use tree-based GP, with single-point cross
over with rate 1.0 and subtree mutation with rate 0.1. The population size is 40,
and the maximum and minimum tree depth are eight and one respectively. The
stopping criterion is after 100 generations. We use six GP operators: addition,
subtraction, multiplication, safe division, negation, and safe square root. Both
FMO and FSO use the same set of features and constant values as the previous
work [7]. All experiments were performed on Ubuntu 16.04.4 LTS.

1 Note that our primary fitness function is essentially the mean wef computed for
faults in the training data-set.

4 K. Choi et al.

To avoid overfitting, we adopt ten-fold cross validation: 386 faults have been
divided into 10 folds, each consisting of 35 to 39 faults. Each fold is used as the
test data set to validate the ranking models trained with the remaining folds.
We repeat GP ten times for each fold: for FMO, from each run in a fold, we first
choose the ranking model with the best ranking fitness on the final Pareto-front
to represent the run. Subsequently, we choose the ranking models with median
and minimum ranking fitness (FmedMO and FminMO) among the ten representatives.
For FSO, we simply choose the best individual from each run in a fold as the
representative, and subsequently choose ones with median and minimum ranking
fitness (FmedSO and FminSO) among the ten representatives. Finally, all faults are
localised by FmedMO , FminMO , FmedSO , and FminSO trained in their corresponding folds.

Ranking models generated by both FMO and FSO are essentially a large
expressions that produce suspiciousness scores. When raking program elements
using these scores, it is possible for ties to take place. We use the maximum
tie-breaking rule, which assigns the lowest rank to all of the tied elements.

Table 2. Ranking Effectiveness of Single and Multi-objective FLUCCS

Config. Subject Flt. acc wef Config. Subject Flt. acc wef
@1 @3 @5 @10 mean σ @1 @3 @5 @10 mean σ

Fmed
SO

Chart 25 15 18 20 22 6.6400 20.0497

Fmed
MO

Chart 25 17 20 23 24 1.3600 3.0447
Clos. 131 34 66 81 92 29.9008 101.3193 Clos. 131 37 66 83 97 33.3282 118.3868
Lang 63 27 44 49 54 2.8571 4.5595 Lang 63 36 48 54 61 2.5556 9.0374
Math 105 42 56 58 70 46.2857 305.3330 Math 105 45 60 67 76 107.1143 674.0247
Mock. 36 10 19 21 28 9.2500 22.5085 Mock. 36 9 17 21 28 15.5833 54.0896
Time 26 7 13 15 19 133.6538 636.7294 Time 26 11 16 17 19 253.0385 854.3380

Overall 386 135 216 244 285 33.5000 239.1826 Overall 386 155 227 265 305 59.4508 426.7188

Fmin
SO

Chart 25 16 20 23 23 1.8400 4.3237

Fmin
MO

Chart 25 15 20 23 23 1.9600 4.7873
Clos. 131 25 61 74 92 33.5191 113.6997 Clos. 131 38 66 79 95 31.6336 103.2980
Lang 63 34 42 48 55 2.8571 4.4645 Lang 63 34 46 53 59 33.5555 247.6137
Math 105 49 62 65 76 57.8571 454.5908 Math 105 39 55 60 68 64.9714 480.6590
Mock. 36 9 17 22 29 10.0555 21.7496 Mock. 36 8 18 21 27 49.8611 212.5439
Time 26 10 16 18 19 89.5769 379.9093 Time 26 8 17 18 20 142.1538 636.0536

Overall 386 143 218 250 294 34.6710 266.4820 Overall 386 142 222 254 292 48.2383 329.9654

4 Results

Table 2 shows the results of ranking models generated by FMO and FSO. Me-
dian fitness models perform better, FmedSO and FmedMO localising 35% and 40% of
the total faults at the top of ranking respectively. Both FminSO and FminMO places
approximately 37% of the faults at the top in comparison. Within top 10, 73%
and 76% of the faults are localized by FmedSO and FminSO , respectively; FmedMO and
FminMO place 79% and 75.6% within top 10.

Most notably, FmedMO ranking models performs either better or almost equally
well according to acc@1, when compared to FmedSO counterparts. We interpret this
as a similar phenomenon to that reported by Praditwong et al. [5] in software
remodularisation: formulating the same problem in a multi-objective fashion
contributes to better fitness than in the single objective formulation. While the
results calls for a closer analysis, we cautiously posit that this improvement is due

Fault Localisation for Both Humans and Machines 5

Table 3. Effectiveness of Single and Multi-objective FLUCCS

Config. Subject Flt. vf/vn vn/vf Config. Subject Flt. vf/vn vn/vf
> 1 > 2 > 5 > 10 ≥ 1 ≥ 2 ≥ 5 ≥ 10 > 1 > 2 > 5 > 10 ≥ 1 ≥ 2 ≥ 5 ≥ 10

Fmed
SO

Chart 25 15 12 12 6 10 7 3 3

Fmed
MO

Chart 25 17 13 11 4 8 7 6 4
Clos. 131 34 24 17 15 97 74 58 50 Clos. 131 37 26 12 8 94 81 61 50
Lang 63 27 24 21 20 36 23 19 15 Lang 63 36 29 20 18 27 19 11 7
Math 105 42 25 20 19 63 45 30 26 Math 105 45 28 17 10 60 48 34 23
Mock. 36 10 7 5 3 26 19 15 12 Mock. 36 9 5 2 2 27 22 12 10
Time 26 7 6 3 2 19 11 4 4 Time 26 11 5 4 2 15 13 9 9

Overall 386 135 98 78 65 251 179 129 110 Overall 386 155 106 66 44 231 190 133 103

Fmin
SO

Chart 25 16 13 11 8 9 6 6 6

Fmin
MO

Chart 25 15 9 5 2 10 8 7 2
Clos. 131 25 18 14 14 106 64 51 45 Clos. 131 38 28 13 10 93 75 60 49
Lang 63 34 16 15 13 29 20 19 16 Lang 63 34 26 22 17 29 19 10 8
Math 105 49 27 18 15 56 41 32 28 Math 105 39 23 13 8 66 49 37 25
Mock. 36 9 5 2 2 27 13 10 7 Mock. 36 8 6 1 1 28 22 14 9
Time 26 10 7 3 3 16 10 10 9 Time 26 8 6 4 4 18 15 10 8

Overall 386 143 86 63 55 243 154 128 111 Overall 386 142 98 58 42 244 188 138 101

Fig. 1. Histograms of
vf
vn

ratios achieved by FMO and FSO

> 1 > 2 > 5 > 10

50

100

150
135

98

78

65

155

106

66

44

#
fa

u
lt

s

SOmed MOmed

> 1 > 2 > 5 > 10

50

100

150 143

86

63
55

142

98

58

42

#
fa

u
lt

s

SOmin MOmin

to the increased diversity during the multi-objective evolution. Interestingly, in
terms of wef , FSO tends to outperform FMO, which is as expected because FSO
can focus on improving wef alone whereas FMO has to maintain Pareto-optimal
populations. To answer RQ1: FMO can rank as effectively as FSO.

To evaluate the distribution effectiveness, we report the ratio between the
maximum score among faulty elements, vf , and the maximum score among non-
faulty elements, vn. For both ratios

vf
vn

and vn
vf

, we count the number of faults

for which the ratio exceeded n = 1, 2, 5, 10. The results are shown in Table 3
and Figure 1. FMO localise more faults with higher ratios up to n = 2, but fail
to localise more faults with ratios higher than five. However, also note that the
number of faults whose vn

vf
is greater than 10, i.e., the number of faults that

are extremely difficult to localise, has been decreased by FMO ranking models:
from 110 to 103 by FmedMO , and from 111 to 101 by FminMO , respectively. We suspect
that the secondary objective, wLIL, encouraged the faulty program elements
to be assigned with higher scores. To answer RQ2: FMO does produce better
distributions, but its effect is limited.

6 K. Choi et al.

5 Conclusion

We report the first attempt to evolve ranking models for fault localisation that
is useful for both humans and machines using Multi-Objective GP. The results
suggest that the added diversity produces better rankings.

Acknowledgements This research was supported by the Korean MSIT(Ministry
of Science and ICT), under the National Program for Excellence in SW (2016-
0-00018), supervised by the IITP(Institute for Information & communications
Technology Promotion).

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (Apr 2002)

2. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: Deap:
Evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (Jul
2012)

3. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In: Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis. pp. 437–440. ISSTA 2014,
ACM, New York, NY, USA (2014)

4. Moon, S., Kim, Y., Kim, M., Yoo, S.: Ask the mutants: Mutating faulty programs
for fault localization. In: Proceedings of the 2014 IEEE International Conference
on Software Testing, Verification, and Validation. pp. 153–162. ICST ’14, IEEE
Computer Society, Washington, DC, USA (2014)

5. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering 37(2), 264–
282 (March-April 2010)

6. Qi, Y., Mao, X., Lei, Y., Wang, C.: Using automated program repair for evaluat-
ing the effectiveness of fault localization techniques. In: Proceedings of the 2013
International Symposium on Software Testing and Analysis. pp. 191–201. ISSTA
2013, ACM, New York, NY, USA (2013)

7. Sohn, J., Yoo, S.: FLUCCS: Using code and change metrics to improve fault local-
ization. In: Proceedings of the 26th International Symposium on Software Testing
and Analysis. pp. 273–283. ISSTA 2017, ACM (2017)

8. Weimer, W., Nguyen, T., Goues, C.L., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st IEEE International Con-
ference on Software Engineering (ICSE ’09). pp. 364–374 (16-24 May 2009)

9. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Transactions on Software Engineering 42(8), 707 (August 2016)

10. Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Transactions on Software
Engineering Methodology 22(4), 31:1–31:40 (October 2013)

11. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) Search Based Software Engineering,
Lecture Notes in Computer Science, vol. 7515, pp. 244–258. Springer (2012)

