
COSMosFL: Ensemble of Small Language Models
for Fault Localisation

Hyunjoon Cho
School of Computing

KAIST
Daejeon, Republic of Korea

hyunjoon.cho@kaist.ac.kr

Sungmin Kang
School of Computing

KAIST
Daejeon, Republic of Korea

sungmin.kang@kaist.ac.kr

Gabin An
School of Computing

KAIST
Daejeon, Republic of Korea

gabin.an@kaist.ac.kr

Shin Yoo
School of Computing

KAIST
Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

Abstract—LLMs are rapidly being adopted to build powerful
tools and agents for software engineering, but most of them
rely heavily on extremely large closed-source models. This, in
turn, can hinder wider adoption due to security issues as well as
financial cost and environmental impact. Recently, a number of
open source Small Language Models (SLMs) are being released
and gaining traction. While SLMs are smaller, more energy-
efficient, and therefore easier to locally deploy, they tend to show
worse performance when compared to larger closed LLMs. We
present COSMos, a task-level LLM ensemble technique that uses
voting mechanism, to provide a broader range of choice between
SLMs and LLMs. We instantiate COSMos with an LLM-based
Fault Localisation technique, AutoFL, and report the cost-benefit
trade-off between LLM accuracy and various costs such as energy
consumption, inference time, and the number of tokens used. An
empirical evaluation using Defects4J shows that COSMos can
build effective ensembles that can achieve Pareto-optimality in
terms of FL accuracy and inference cost, when compared to
individual models.

Index Terms—Fault Localization, Ensemble Methods, Small
Language Models, Evolutionary Algorithms

I. INTRODUCTION

Large Language Models (LLMs) are rapidly being adopted
by software engineers to automate various tasks across the
software development lifecycle [1]. While LLMs are essen-
tially autocompletion engines trained on a vast amount of
data [2], they have exhibited many useful emergent behaviour,
including their capability to perform in-context learning. This
has led to many advanced prompting/inference techniques,
such as Chain-of-Thought [3], self-consistency [4], and Re-
Act [5]. Increasingly, these techniques are being used to build
LLM-based agents [6], [7], [8].

One challenge in broader adoption of these techniques is
the dependence on commercial and closed LLMs. In addition
to the financial cost of using those models, organisations may
not want to reveal their source code as part of any prompt
that are fed to external LLMs, for security reasons. Finally,
while growing LLM sizes have so far been accompanied
with improving performance, there are concerns about the
environmental impact that these large models have [9], [10].

Recently, Small Language Models (SLMs) with open source
licenses have started gaining traction due to their improving
capabilities and ability to be hosted and served more locally,
offering an alternative to the larger, closed models and their

limitations [11], [12], [13]. However, individual SLMs typi-
cally fall short of the comprehensive performance delivered by
larger language models like GPT-4 [14], creating a noticeable
gap in their stand-alone effectiveness [15]. Consequently, a
potential user of LLM-based software engineering technique
is presented with two options: high performance with high
cost, or low performance with low cost. It would be ideal to
have a broader range of choices in the cost-benefit trade-off.

We propose COSMos (COllection of Small Language
Models), an ensemble of SLMs: it builds upon self-
consistency, a prompting technique that states, for logical
tasks, it is better to take multiple samples of LLM answers and
marginalise them [4]. While self-consistency has been widely
accepted as a simple yet effective validation technique that
can improve the correctness of LLM-generated solutions [16],
[15], [17], it exacerbates the issue of cost due to its need
to sample multiple LLM-generated solutions. COSMos aims
to both exploit and alleviate challenges that self-consistency
introduces. Instead of taking multiple samples from a closed
LLM, COSMos forms an ensemble of SLMs and aggregate
their answers to form the final solution. In turn, we hope to
lower the cost of the self-consistency based inferences by using
SLMs, while maintain high FL accuracy.

In this paper, we concretely evaluate COSMos by instan-
tiating it with ensembles of LLM-based Fault Localisation
(FL) technique, AutoFL [17], to obtain COSMosFL. We first
choose the membership of the ensemble based on the FL
performance of individual SLMs. Subsequently, the ensemble
of SLMs provide the multiple inference samples that result in
the final ranking of the likely faulty methods via voting. We
evaluate two ensemble schemes: one where each member SLM
has the equal voting power, and another where we optimise
the relative voting weights with the aim of improving the
resulting FL accuracy. We report not only the FL accuracy of
the ensemble, but also various cost measures including number
of tokens, inference time, and the overall energy consumption.
Our evaluation of COSMosFL using Defects4J [18] shows that
ensembles can indeed outperform individual models when the
FL task is constrained by energy consumption or token count.
Detailed technical contributions are as follows:

• We introduce COSMos, an ensemble of multiple open
source SLMs. While ensembles of LLMs have been

proposed for token level decoding, COSMos is the first
to introduce task-level voting based ensembles.

• We compare two ensemble methods: a vanilla voting-
based ensemble, and a weight-optimised ensemble. The
weight optimisation uses Differential Evolution to op-
timise the weights that are applied to votes cast by
membership SLMs.

• We instantiate COSMos with an LLM-based FL tech-
nique, AutoFL, to obtain COSMosFL. We evaluate its
performance using the widely studied Defects4J bench-
mark. We report the trade-off between FL accuracy and
various costs, such as power consumption, token size, and
inference time.

The remainder of the paper is organised as follows. Sec-
tion II presents AutoFL and the design of COSMos. Section III
presents the settings of the empirical evaluation, the results of
which are shown in Section IV. Section V discusses details of
our findings. Section VI presents related work that are relevant
to ours, and Section VII finally concludes.

II. APPROACH

A. Preliminaries

1) Self-Consistency: Self-consistency is a property of
LLM-based reasoning that, for a complex reasoning task,
taking multiple samples of LLM inferences and marginalising
over them tend to yield more accurate answers when compared
to greedy decoding [4]. This has been widely adopted by
applications of LLMs for software engineering tasks [16], [17].

2) AutoFL: AutoFL [17] is a LLM agent for repository-
level FL, incorporating four tools to gather project-related
information: 1) class-level coverage of the failing test, 2)
method-level coverage within a covered class, 3) the code
snippet of the given method, and 4) comments associated with
the method. The original AutoFL utilised GPT-3.5 and GPT-4.

To improve accuracy and reliability, AutoFL leverages self-
consistency [4] by performing FL R times independently for
a single bug. In each inference run, it predicts a set of likely
buggy methods, and the results are aggregated using a voting-
based mechanism. Specifically, each predicted method in a
run is assigned a score equal to 1 divided by the total number
of predicted methods in that run. These scores are averaged
across all runs, ensuring that the sum of the scores for all
methods equals 1, and are then used to derive the final FL
ranking. For example, if the predicted methods from five runs
(R = 5) are {m1,m2}, {m2}, {m2}, {m2}, and {m3}, the
score of m2 is

(
1
2 + 1 + 1 + 1 + 0

)
/5 = 0.7, while the scores

of m1 and m3 are 0.1 and 0.2, respectively. In AutoFL, the
confidence in its result is defined by the maximum score of
the methods, e.g., 0.7 in the previous example, since a higher
maximum score indicates greater alignment of results across
multiple runs.

AutoFL demonstrates that LLMs can be effectively applied
to FL when augmented with specialised tools to extract con-
textual information. However, its original evaluation is limited
to GPT models, which are proprietary and commercially

TABLE I: Performance Comparison on Defects4J [18] (353
Bugs)

Model Template Accuracy (acc@k)

acc@1 acc@2 acc@3 acc@4 acc@5

Llama3 8B original 80 115 131 140 148
Llama3 8B modified 108 147 168 180 190

Gemma2 9B original 105 134 150 160 166
Gemma2 9B modified 112 145 159 169 182

available LLMs. While GPT models generally exhibit strong
performance, their use may not always be feasible due to
concerns such as code security and monetary costs.

B. Ensemble of Small Language Models

Intuitively, COSMos is a voting-based ensemble of SLMs
that makes use of the multiplicity of reasoning samples
required by self-consistency. Ensembles of SLMs can be
constructed by collecting multiple reasoning samples from
participating SLMs, instead of repeated sampling of a single
LLM. Subsequently, COSMos marginalises over the samples
using the voting-based ensemble mechanism. We posit that
COSMos can be applied to any task for which self-consistency
is shown to improve the performance of LLMs.

We instantiate COSMos with Fault Localisation (FL) prob-
lem and propose COSMosFL (COllection of Small Language
Models for FL), a novel approach that enables the application
of diverse SLMs for FL (the overview of COSMosFL is shown
in 1, along with AutoFL). We evaluate whether an ensemble of
heterogeneous open-source SLMs, capable of running on local
machines without network access (ensuring high security), can
also effectively address the FL problem. Further, COSMosFL
will allow us to investigate the cost-benefit trade-offs of our
ensemble approach, COSMos, with respect to a concrete task.

To explore the effectiveness of SLMs in performing the
FL task within the AutoFL framework, we first replaced
GPT with open-source models—Llama3 8B [11] and Gemma2
9B [12]. Our initial experiments found that smaller models
frequently called the first tool (class-level coverage) redun-
dantly, diminishing performance. Based on this observation,
we remove the class-level coverage tool for COSMosFL. Table
I demonstrates an improvement in FL performance from the
template modification.

The initial evaluation of two models also show that they
rank distinct sets of bugs at the top, a characteristic we
refer to as orthogonality. Comparing bugs ranked at the top
by Llama3 8B and Gemma2 9B over five repetitions, we
see that 71 bugs are ranked at the top by both models,
while 37 exclusively by Llama3 8B and 41 exclusively by
Gemma2 9B: approximately 35% of correctly localised bugs
are uniquely identified by each model. This orthogonality
suggests that individual models may excel at localizing certain
types of faults missed by others, providing a foundation for an
ensemble of heterogeneous SLMs to enhance FL performance
by leveraging their complementary behaviour.

AutoFL

LLM

get_class_covered

get_method_covered

get_code_snippet

get_comments

COSMosFL

get_class_covered

Bug Information

Confidence
Score

Voting-based
Ensemble

get_class_covered

Bug Information

Available Tools Available Tools

SLMs

x R x Rm

(R = M x Rm)

Query
Fault
Location

Query
Fault
Location

Query
Root Cause

Query
Root Cause

M models

Confidence
Score

(a) AutoFL (b) COSMosFL

get_method_covered

get_code_snippet

get_comments

Aggregation
Algorithm

Fig. 1: Overview of our approach against AutoFL [17] with differences colored in red.

Building on the confidence scores generated by AutoFL, we
develop a voting-based ensemble technique. Since the original
AutoFL already uses voting as the aggregation mechanism,
it is straightforward to implement a voting-based ensemble:
instead of R inference runs from a single LLM, COSMosFL
takes RM inference runs per each of the M member models
of the ensemble, such that RM ×M = R. Subsequently, the
same voting-based aggregation takes place, producing the final
confidence score based on the ensemble of SLMs.

Algorithm 1: Differential Evolution
Input: Problem Dimension n, Fitness Evaluator fitness
Output: Best Agent best

1 npop ← Population Size;
2 ngen ← Number of Generations;
3 pcx ← Crossover Probability;
4 wd ← Differential Weight;
5 pop← randomly generate npop agents;
6 gen← 0;
7 while gen < ngen do
8 for agent in pop do
9 agentref ← clone(agent);

10 a, b, c← sample three from(pop);
11 R← random([1, ..., n]);
12 for i in [1, ..., n] do
13 if i = R or uniform(0, 1) < pcx then
14 agentref [i]← a[i] + wd ∗ (b[i]− c[i]);

15 if fitness(agent) < fitness(agentref) then
16 agent← agentref ;

17 bestgen ← select best(pop);
18 if fitness(best) < fitness(bestgen) then
19 best← bestgen;

20 gen← gen+ 1;

We investigate two ensemble strategies to aggregate scores
from individual models. The first, equal weighting, naively
sums the scores from each model with uniform weights, pro-

viding a straightforward approach. The second, DE-optimised
weighting, refines the voting weights using differential evo-
lution (DE) algorithm [19]. A distinctive feature of DE, as
shown in line 14 of Algorithm 1, is its use of scaled differences
between agents to guide the generation of new candidates, en-
abling exploration of the search space. This characteristic has
been shown to make DE particularly effective for problems in
continuous search spaces [20], [21], making it an appropriate
candidate for our weight optimisation task. This optimisation
aims to maximise acc@1 – prioritising the buggy method in
the top rank – while minimising wasted effort as a secondary
objective in case of ties. With these objectives, we aim to
rank the buggy method at top while minimising the number
of irrelevant method inspections.

Considering the high inference cost of language models,
we further hypothesise that the ensemble approach can better
balance the cost-performance trade-off when utilizing mul-
tiple models. To enable further analysis, we integrate Ener-
gyMeter [22] to track GPU energy consumption throughout
experiments. In addition, we also report the number of tokens
and the time taken for the inference as cost of COSMosFL.

III. EXPERIMENTAL SETUP

A. Research Questions

Our primary objectives are to evaluate whether the ensemble
of small language models enhances fault localisation effective-
ness and to investigate the cost-benefit trade-off of ensembles.

• RQ1. Effectiveness: To what extent does our ensemble
technique improve fault localisation performance? To
address this, we conducted initial runs with seven open-
source SLMs to assess model orthogonality, running each
model five times. Based on these preliminary results,
we selected four models that demonstrated the most
complementary fault localisation performance in combi-
nation. For the final evaluation, we ran AutoFL on each
selected model 30 times and sampled a varying number
of runs to compare two ensemble weighting strategies:
equal weighting and differential evolution (DE)-optimised
weighting.

• RQ2. Efficiency: How does the ensemble technique
perform in terms of the cost-performance trade-off, and
does it contribute to balancing these factors? This analysis
focuses on computational efficiency, considering model
inference time, energy consumption, and number of to-
kens as the measure of cost. Note that we report the sum
of input and output tokens as the number of tokens, as
this reflects the pricing models of closed-source LLMs
more closely.

B. Language Models

To align with the characteristics of smaller language mod-
els, we redesign the agent’s task from a chat-completion to
instruction-following.

Each model has been downloaded and served using Ol-
lama [23], which is chosen for its convenient setup and support
for multiple models. We focus on 4-bit quantised models for
the sake of memory usage, and choose the following open-
source SLMs: CodeLlama 7B [24], Gemma2 9B [12], grantie3
8B [25], Llama3 8B [11], Llama3.1 8B [11], Mistral NeMo
12B [26], and Qwen2.5-Coder 7B [13]. These models are all
below the size of 8GB (when quantised for 4-bit): we expect
them to be compatible with a wider range of machines without
GPUs.

Techniques involving inherent randomness require sufficient
repetitions to ensure reliable performance measurement [27].
We employ sampling to stabilise our performance metrics and
account for stochastic variation of language models. We first
run AutoFL with each selected model 30 times. Then, for a
given number of runs (R) ranging from 4 to 24, we sample R
runs from the 30 runs 20 times for each model. For the case
of ensembles, we allocated an equal number of runs to each
model, ranging from 1 to 6, resulting in R of multiples of 4.

C. Dataset

Our evaluation dataset is a subset of Defects4J [18] used by
AutoFL, comprising a total of 353 bugs. We calculate acc@k
as the number of bugs for which at least one buggy method is
correctly ranked within the top k places, ensuring consistency
with the prior work [17]. Table II summarises the number of
bugs, Lines of Code (LOC) measured using cloc [28], and
the number of methods and tests for each project.

TABLE II: Evaluation Dataset Details

Project #Bugs LOC #Methods #Tests

Chart 26 78,564–96,382 6,378–8,041 1,598–2,201
Closure 131 58,989–104,131 4,621–8,700 2,692–8,625
Lang 64 16,593–21,810 1,794–2,248 1,587–2,265
Math 106 9,471–84,317 1,174–6,015 686–3,548
Time 26 26,589–27,795 3,535–3,696 3,802–4,054

D. Hyperparameters & Environment

We utilise DEAP [29], a framework for evolutionary com-
puation, to implement the differential evolution algorithm. To

reduce the over-fitting during the optimisation process, we
apply 10-fold cross-validation. We select the DE parameters
referring to Storn et al. [30], a population size of 40 and
30 generations. To foster exploratory behaviour during the
optimisation process, we set high differential weight, 1.5, and
also the crossover probability to 0.8.

EnergyMeter [22] is an open-source Python project that
measures the energy consumption incurred by the hard-
ware. As we focus on the language model inference cost,
we only utilise the GPU energy consumption enabled by
nvidia-smi [31].

We conduct all our experiments using the Docker image
nvidia/cuda:11.3.1-runtime-ubuntu20.04 on a
Linux server equipped with 252 GB RAM and 40 Intel Xeon
Silver 2.40GHz CPUs. A single NVIDIA GeForce RTX 3090
GPU is utilised to accelerate model inference.

IV. RESULTS

A. RQ1. Effectiveness

Figure 2 shows the orthogonality result of four models,
Llama3 8B, Llama3.1 8B, Mistral NeMo 12B, and Qwen2.5-
Coder 7B, which are identified as ranking the highest number
of bugs on top in combination. Collectively, these four models
achieve an acc@1 of 180, i.e., 180 bugs are ranked at the top
at least once by one of these models. Building on this, we
examined the effectiveness of the ensemble approach for fault
localisation.

Fig. 2: Overlap of bugs ranked at first by Llama3, Llama3.1,
Mistral NeMo, and Qwen2.5-Coder. Each model is run 5 times
without applying ensemble.

Figure 3 presents the mean acc@k for k ranging from 1 to
5 across individual models and two ensemble approaches. The
results also include the reported performance of GPT-3.5 for
R = 5. Both ensembles tend to outperform individual models
as k increases. Since our experiments use more runs (R = 20)
compared to the prior work (R = 5), a direct comparison is
unfair. However, the observation that even the least effective
model, Llama3.1, achieves higher accuracies at k = 4 and
5 suggests that increasing the number of runs could address
the underperformance at higher k values relative to SBFL

1 2 3 4 5
k

120

140

160

180

200

M
ea

n
of

 a
cc

@
k

(R
=2

0)
acc@k for R=20

Equal Weight
DE Ensemble
Llama3
Llama3.1
Mistral NeMo
Qwen2.5-Coder
GPT3.5 (R=5)

Fig. 3: acc@k for R=20 for each model and ensemble ap-
proaches, alongside AutoFL’s reported GPT-3.5 performance.

methods, previously attributed to the inability to dig deep into
a repository [17].

DE

Equal Weight

k=1 k=3 k=5

Fig. 4: Overlap of top-ranked bugs at each k for a single
sample (R = 20) of DE and Equal Weight Ensembles.

Since DE-optimised weights and equal weights show similar
performance, we further analyse overlap for a sample of five
runs from each model, totalling R = 20. Figure 4 indicates
that applying different weights for the same runs yields mild
variation in bugs ranked at top, suggesting potential for further
optimisations to harness model orthogonality. As k increases,
however, the top-ranked bug sets become more consistent
across weighting methods. SLMs list a limited number of
methods as suspicious, allocating confidence score only for
those. Thus, when we count the number of methods ranked at
top five, they rather show higher consistency; in contrast, for
the acc@1, they are more sensitive to the weight changes.

Figure 5 highlights acc@1, as high accuracy at the first
rank is particularly desirable for FL tasks. The ensemble does
not surpass the best single model’s performance when given
the same number of runs. This outcome can be attributed to
how runs are distributed: assigning all weights to a single
model effectively limits that model to R/4 runs in the ensemble
setup, rather than the full R runs it would receive if evaluated
independently. Consequently, mean optimised weights over
samples and cross-validation folds, depicted in Figure 6,
ranged from 0.15 to 0.37 for all four models. Although the

4 8 12 16 20 24
Number of Runs

100

105

110

115

120

125

130

M
ea

n
of

 a
cc

@
1

acc@1 over runs

Equal Weight
DE Ensemble
Llama3
Llama3.1
Mistral NeMo
Qwen2.5-Coder

Fig. 5: Mean of acc@1 across runs for four single models and
two ensemble approaches. Note that the ensemble techniques
are only available at multiples of four runs.

1 2 3 4 5 6
Number of Runs per Each Model

0.15

0.20

0.25

0.30

0.35

M
ea

n
O

pt
im

iz
ed

 W
ei

gh
t o

f E
ac

h
M

od
el

Llama3
Llama3.1
Mistral NeMo
Qwen2.5-Coder

Fig. 6: Mean of optimised weights for each model over cross-
validation folds and samples.

DE-based optimisation underperforms the equal weighting,
resulting weights still utilize information from all runs.

Figure 7 illustrates the distribution of acc@1 over samples.
While individual models tend to converge as R increases,
ensembles tend to maintain a relatively stable variance level
across runs, despite generally outperforming individual mod-
els. This highlights the need to investigate more advanced
methods for building ensembles.

B. RQ2. Efficiency

Figures 8a to 8c show the average cost of each sample,
composed of R runs, and its mean acc@1. The best performing
model, Qwen2.5-Coder consumes the most amount of energy
and time, while Llama3 requires the least. Ensemble cost and
performance tend to lie between these two extremes. We note
that Qwen2.5-Coder is less of an outlier for the number of
tokens in Figure 8c, due to the imbalance in its performance. In
our evaluation, Qwen2.5-Coder spends significant amounts of
time and energy when generating tokens, but input tokens take

100

110

120

130

140

ac
c@

1

Equal Weight

100

110

120

130

140
DE Ensemble

100

110

120

130

140

ac
c@

1

Llama3

100

110

120

130

140
Llama3.1

4 8 12 16 20 24
R

100

110

120

130

140

ac
c@

1

Mistral NeMo

4 8 12 16 20 24
R

100

110

120

130

140
Qwen2.5-Coder

Median
95% interval
80% interval
50% interval

Distribution of acc@1

Fig. 7: acc@1 across runs for each model and ensemble
method.

up the majority of the number of tokens used by an inference
run, balancing out the energy and time cost.

To further understand the energy consumption pattern, we
visualize the distribution of energy consumptions and ex-
ecution time in Figure 9a and 9b. Unlike the per sample
consumptions, all four models show similar median value.
The median consumption of Qwen2.5-Coder is actually the
second smallest among the four models. However, Llama3.1
and Qwen2.5-Coder have a group of outliers at around 1,000
times the median value, which we suspect is linked to an
issue in Ollama, given that there is an issue report about
some models generating tokens endlessly [32]. This erroneous
behaviour may have resulted in the significant increase of
overall energy consumption of Qwen2.5-Coder. Since the
total energy consumption and execution time follow similar
trends, the energy consumption per second remains relatively
constant, as shown in Figure 9c.

V. DISCUSSION

To better understand the performance characteristics of two
ensemble schemes, we have conducted a grid search for
weights for ensembles of every pair of models, increasing
the number of runs (Rm) from one to five, as illustrated in
Figure 10. Interestingly, the best weights are close to the equal
weights in most scenarios, supporting the success of equal
weight ensembles. As the number of runs increases, the acc@1
landscape becomes more rugged, implying a heightened risk of
DE converging to local minima that do not generalise well to
validation sets. We conjecture that introducing a more robust
optimisation scheme could further harness the potential of the
models.

This paper focuses on the quantitative aspect of the FL
performance. However, the original work [17] also points
that LLMs have the potential to provide rationales for their
decisions. Since we now have a diverse set of runs, it would be
interesting to see if we can rank generated explanations better
based on the larger number of runs sampled from different
SLMs, with more practical impact for the developers.

VI. RELATED WORK

A. LLM-based Fault Localisation

Fault localisation aims to automatically pinpoint software
bugs, often by analysing program behaviour at different
granularity levels. With large language models (LLMs) now
available, researchers have explored using these models for
fault localisation tasks. For instance, Wu et al. [33] achieved
notable results in statement-level localisation given the buggy
method using ChatGPT-4, though they identified challenges in
extending the model’s context handling to the class level. Ad-
dressing this issue, AutoFL [17] introduced an agent architec-
ture that leverages the function-calling capabilities of OpenAI
models, allowing LLMs to autonomously explore repositories.
This approach also posits that LLMs can potentially offer
explanations for root causes of bugs. Similarly, FuseFL [34]
aimed to enhance explainability by integrating spectrum-based
fault localisation results into prompts, though its scope was
limited to student programming assignments.

Alongside these advancements, efforts to utilize open-source
language models in fault localisation have gained traction.
Yang et al. [35] proposed a test-free FL approach by fine-
tuning large, open-source language models with datasets of
buggy programs, with a focus on reducing programmer input.
More recently, Liu et al. [36] conducted an empirical eval-
uation comparing FL performance between proprietary and
open-source models on novice programming tasks. They found
that while ChatGPT-3.5 and 4 outperformed other models,
open-source models demonstrated complementary behaviors,
successfully localizing bugs that proprietary models missed.

B. Ensemble Methods

Ensemble learning combines predictions from multiple
models to enhance overall performance by leveraging the
diverse strengths of individual learners. Ensembles have been
applied to fault localisation, based on the observation that
no single FL technique is effective across all faults. Wang
et al. [37] and Xuan et al. [38], combined FL outputs from
multiple models to improve localisation accuracy. Sohn et
al. [39] further explored ensemble learning across FL meth-
ods, demonstrating that combining diverse techniques could
achieve better performance. COSMosFL is the first ensemble
technique for LLM-based FL to the best of our knowledge.

There are recent works that have utilized multiple lan-
guage models in ensembles. Zhang et al. [40] showed that
combining outputs from different regex generators via self-
consistency decoding contributed to improved performance.
Kumar Dipongkor [41] employed ensemble methods for bug

0 25 50 75 100 125 150
Energy Consumption per Sample(MJ)

100

105

110

115

120

125

130
M

ea
n

of
 a

cc
@

1

Models
Equal Weight
DE Ensemble
Llama3
Llama3.1
Mistral NeMo
Qwen2.5-Coder

Number of Runs
R=4
R=8
R=12
R=16
R=20
R=24

Number of Runs
R=4
R=8
R=12
R=16
R=20
R=24

(a) Energy Consumption vs. acc@1

0 25 50 75 100 125 150
Time taken per Sample(hour)

100

105

110

115

120

125

130

M
ea

n
of

 a
cc

@
1

Models
Equal Weight
DE Ensemble
Llama3
Llama3.1
Mistral NeMo
Qwen2.5-Coder

Number of Runs
R=4
R=8
R=12
R=16
R=20
R=24

Number of Runs
R=4
R=8
R=12
R=16
R=20
R=24

(b) Execution Time vs. acc@1

20 40 60 80
of Tokens Read and Generated per Sample(MTokens)

100

105

110

115

120

125

130

M
ea

n
of

 a
cc

@
1

Models
Equal Weight
DE Ensemble
Llama3
Llama3.1
Mistral NeMo
Qwen2.5-Coder

Number of Runs
R=4
R=8
R=12
R=16
R=20
R=24

Number of Runs
R=4
R=8
R=12
R=16
R=20
R=24

(c) # of Tokens vs. acc@1

Fig. 8: Cost-Benefit Trade-Offs: energy consumption, inference time, and # of input and output tokens are mean values from
20 samples

Llama3 Llama3.1 Mistral
NeMo

Qwen2.5
Coder

10 4

10 2

100

102

104

106

108

En
er

gy
 (k

J)

log10 Model - Energy Consumptions

(a) Energy consumption per run

Llama3 Llama3.1 Mistral
NeMo

Qwen2.5
Coder

10 2

100

102

104

106

108

1010

Ti
m

e
Ta

ke
n

(s
ec

)

log10 Model - Execution Time

(b) Execution time (sec) per run

Llama3 Llama3.1 Mistral
NeMo

Qwen2.5
Coder

100

150

200

250

300

En
er

gy
 p

er
 S

ec
on

d
(w

at
t)

Model - Energy Consumptions per Second

(c) Energy consumption per second

Fig. 9: Boxplots of cost measures per model. Note that y-axis of (a) and (b) is log of the measure.

triaging using BERT variants, finding that the voting-based en-
semble consistently outperformed the stacking-based approach
(i.e., training an extra layer on top of the pre-trained language
models’ outputs). However, both ensembles aggregate lower
level outputs, such as next regex tokens or next embedding
vector. In comparison, COSMosFL implements voting-based
ensemble at the task level by aggregating the FL scores.

VII. CONCLUSION

Through this paper, we present COSMos, an ensemble
of small language models, and evaluate its instantiation on
the fault localisation task, COSMosFL. We first examine the
orthogonal behaviour of SLMs by adopting an LLM-based FL
technique to evaluate the feasibility of our approach. Then, by
implementing two versions of COSMosFL– equal weighting
and DE-optimised weighting – we further assess its perfor-
mance and cost compared to single-model repetitions. Our
results show that COSMosFL has the potential to outperform
a single SLM under cost constraints. Finally, we discuss the
current limitations of COSMosFL, including the issues of the
SLM serving platform, and outline future directions, such as
improving the optimisation strategy and developing a ranking
scheme for explanations.

REFERENCES

[1] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:

Survey and open problems,” in Proceedings of the 45th IEEE/ACM
International Conference on Software Engineering: Future of Software
Engineering, ICSE-FoSE, pp. 31–53, IEEE Computer Society, May
2023.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), vol. 30, Curran Associates, Inc., 2017.

[3] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning
in large language models,” in Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, (Red
Hook, NY, USA), Curran Associates Inc., 2024.

[4] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdh-
ery, and D. Zhou, “Self-consistency improves chain of thought reasoning
in language models,” arXiv preprint arXiv:2203.11171, 2022.

[5] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” in Pro-
ceedings of the International Conference on Learning Representation,
ICLR 2023, 2023.

[6] R. Feldt, S. Kang, J. Yoon, and S. Yoo, “Towards autonomous testing
agents via conversational large language models,” in Proceedings of
the 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ASE 2023, pp. 1688–1693, 2023.

[7] I. Bouzenia, P. Devanbu, and M. Pradel, “Repairagent: An autonomous,
llm-based agent for program repair,” 2024.

[8] J. Yoon, R. Feldt, and S. Yoo, “Intent-driven mobile gui testing with
autonomous large language model agents,” in Proceedings of the 16th
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2024, pp. 129–139, 2024.

ac
c@

1

Fig. 10: Landscapes of Pairwise acc@1 explored by grid search

[9] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (A. Korhonen,
D. Traum, and L. Màrquez, eds.), (Florence, Italy), pp. 3645–3650,
Association for Computational Linguistics, July 2019.

[10] M. C. Rillig, M. Ågerstrand, M. Bi, K. A. Gould, and U. Sauerland,
“Risks and benefits of large language models for the environment,”
Environmental Science & Technology, vol. 57, no. 9, pp. 3464–3466,
2023.

[11] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
and et al., “The Llama 3 Herd of Models,” Aug. 2024.

[12] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju,
and et al., “Gemma 2: Improving Open Language Models at a Practical
Size,” Oct. 2024.

[13] B. Hui, J. Yang, Z. Cui, J. Yang, D. Liu, L. Zhang, and et al., “Qwen2.5-
Coder Technical Report,” Nov. 2024.

[14] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “GPT-4
Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

[15] S. Kang, J. Yoon, N. Askarbekkyzy, and S. Yoo, “Evaluating diverse
large language models for automatic and general bug reproduction,”
IEEE Transactions on Software Engineering, vol. 50, no. 10, pp. 2677–
2694, 2024.

[16] T. Ahmed and P. Devanbu, “Better patching using llm prompting, via
self-consistency,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1742–1746, 2023.

[17] S. Kang, G. An, and S. Yoo, “A Quantitative and Qualitative Evaluation
of LLM-Based Explainable Fault Localization,” Proc. ACM Softw. Eng.,
vol. 1, pp. 64:1424–64:1446, July 2024.

[18] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 international symposium on software testing and
analysis, pp. 437–440, 2014.

[19] R. Storn and K. Price, “Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces,” Inter-
national computer science institute, 1995.

[20] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE transactions on evolutionary computation,
vol. 15, no. 1, pp. 4–31, 2010.

[21] J. Sohn, S. Kang, and S. Yoo, “Arachne: Search-based repair of deep
neural networks,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 4, pp. 1–26, 2023.

[22] M. F. Argerich and M. Patiño-Martı́nez, “Measuring and Improving the
Energy Efficiency of Large Language Models Inference,” IEEE Access,
vol. 12, pp. 80194–80207, 2024.

[23] “Ollama.” https://github.com/ollama/ollama, Nov. 2024.
[24] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, and

et al., “Code Llama: Open Foundation Models for Code,” Jan. 2024.
[25] Granite Team, IBM, “Granite 3.0 Language Mod-

els.” https://github.com/ibm-granite/granite-3.0-language-
models/blob/main/paper.pdf, 2024.

[26] Mistral AI, “Mistral NeMo.” https://mistral.ai/news/mistral-nemo/, July
2024.

[27] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the 33rd International Conference on Software Engineering, ICSE
’11, pp. 1–10, ACM, 2011.

[28] A. Danial, “cloc: v1.92,” Dec. 2021.
[29] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and

C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, jul 2012.

[30] R. Storn, “On the usage of differential evolution for function optimiza-
tion,” in Proceedings of North American Fuzzy Information Processing,
pp. 519–523, June 1996.

[31] N. Developer, “Nvidia system management interface,” NVIDIA System
Management Interface, 2021.

[32] “Ollama gets stuck in an infinite loop sometimes and
has to be restarted · Issue #2805 · ollama/ollama.”
https://github.com/ollama/ollama/issues/2805.

[33] Y. Wu, Z. Li, J. M. Zhang, M. Papadakis, M. Harman, and Y. Liu,
“Large Language Models in Fault Localisation,” Oct. 2023.

[34] R. Widyasari, J. W. Ang, T. G. Nguyen, N. Sharma, and D. Lo,
“Demystifying Faulty Code: Step-by-Step Reasoning for Explainable
Fault Localization,” in 2024 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 568–579, Mar.
2024.

[35] A. Z. H. Yang, C. Le Goues, R. Martins, and V. Hellendoorn, “Large
Language Models for Test-Free Fault Localization,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
ICSE ’24, (New York, NY, USA), pp. 1–12, Association for Computing
Machinery, Feb. 2024.

[36] Y. Liu, H. Liu, Z. Yang, Z. Li, and Y. Liu, “Empirical Evaluation
of Large Language Models for Novice Program Fault Localization,”
in 2024 IEEE 24th International Conference on Software Quality,
Reliability and Security (QRS), pp. 180–191, July 2024.

[37] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau, “Search-based fault
localization,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), pp. 556–559, Nov. 2011.

[38] J. Xuan and M. Monperrus, “Learning to Combine Multiple Ranking
Metrics for Fault Localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution, pp. 191–200, Sept. 2014.

[39] J. Sohn and S. Yoo, “Why train-and-select when you can use them all?
ensemble model for fault localisation,” in Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’19, (New York,
NY, USA), pp. 1408–1416, Association for Computing Machinery, July
2019.

[40] S. Zhang, X. Gu, Y. Chen, and B. Shen, “InfeRE: Step-by-Step Regex
Generation via Chain of Inference,” in 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp. 1505–
1515, Sept. 2023.

[41] A. Kumar Dipongkor, “An Ensemble Method for Bug Triaging using
Large Language Models,” in Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion
Proceedings, ICSE-Companion ’24, (New York, NY, USA), pp. 438–
440, Association for Computing Machinery, May 2024.

