IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO.5, MAY 2015 507

The Oracle Problem in Software
Testing: A Survey

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo

Abstract—Testing involves examining the behaviour of a system in order to discover potential faults. Given an input for a system,
the challenge of distinguishing the corresponding desired, correct behaviour from potentially incorrect behavior is called the “test
oracle problem”. Test oracle automation is important to remove a current bottleneck that inhibits greater overall test automation.
Without test oracle automation, the human has to determine whether observed behaviour is correct. The literature on test oracles
has introduced techniques for oracle automation, including modelling, specifications, contract-driven development and metamorphic
testing. When none of these is completely adequate, the final source of test oracle information remains the human, who may be
aware of informal specifications, expectations, norms and domain specific information that provide informal oracle guidance. All
forms of test oracles, even the humble human, involve challenges of reducing cost and increasing benefit. This paper provides a
comprehensive survey of current approaches to the test oracle problem and an analysis of trends in this important area of software

testing research and practice.

Index Terms—Test oracle, automatic testing, testing formalism

1 INTRODUCTION

UCH work on software testing seeks to automate as

much of the test process as practical and desirable,
to make testing faster, cheaper, and more reliable. To
this end, we need a test oracle, a procedure that distin-
guishes between the correct and incorrect behaviors of
the System Under Test (SUT).

However, compared to many aspects of test automation,
the problem of automating the test oracle has received signif-
icantly less attention, and remains comparatively less well-
solved. This current open problem represents a significant
bottleneck that inhibits greater test automation and uptake
of automated testing methods and tools more widely. For
instance, the problem of automatically generating test inputs
has been the subject of research interest for nearly four deca-
des [46], [107]. It involves finding inputs that cause execution
to reveal faults, if they are present, and to give confidence in
their absence, if none are found. Automated test input gener-
ation been the subject of many significant advances in both
Search-Based Testing [3], [5], [83], [126], [128] and Dynamic
Symbolic Execution [75], [108], [161]; yet none of these
advances address the issue of checking generated inputs
with respect to expected behaviours—that is, providing an
automated solution to the test oracle problem.

Of course, one might hope that the SUT has been devel-
oped under excellent design-for-test principles, so that there

e E.T. Barr, M. Harman and S. Yoo are with the Department of Computer
Science, University College London, Gower Street, London WC2R 2LS,
London, United Kingdom. E-mail: {e.barr, m.harman, shin.yoo}@ucl.ac.uk.

o P. McMinn and M. Shahbaz are with the Department of Computer
Science, University of Sheffield, Sheffield S1 4DP, South Yorkshire,
United Kingdom.

E-mail: p.mcminn@sheffield.ac.uk, muzammil shahbaz@gmail.com.

Manuscript received 24 July 2013; revised 5 Sept. 2014; accepted 28 Oct.
2014. Date of publication 19 Nov. 2014; date of current version 15 May 2015.
Recommended for acceptance by L. Baresi.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2014.2372785

might be a detailed, and possibly formal, specification of
intended behaviour. One might also hope that the code
itself contains pre- and post- conditions that implement
well-understood contract-driven development approaches
[135]. In these situations, the test oracle cost problem is ame-
liorated by the presence of an automatable test oracle to
which a testing tool can refer to check outputs, free from the
need for costly human intervention.

Where no full specification of the properties of the SUT
exists, one may hope to construct a partial test oracle that
can answer questions for some inputs. Such partial test
oracles can be constructed using metamorphic testing
(built from known relationships between desired behav-
iour) or by deriving oracular information from execution
or documentation.

For many systems and most testing as currently practiced
in industry, however, the tester does not have the luxury of
formal specifications or assertions, or automated partial test
oracles [91], [92]. The tester therefore faces the daunting task
of manually checking the system’s behaviour for all test
cases. In such cases, automated software testing approaches
must address the human oracle cost problem [1], [82], [130].

To achieve greater test automation and wider uptake of
automated testing, we therefore need a concerted effort to
find ways to address the test oracle problem and to integrate
automated and partially automated test oracle solutions
into testing techniques. This paper seeks to help address
this challenge by providing a comprehensive review and
analysis of the existing literature of the test oracle problem.

Four partial surveys of topics relating to test oracles pre-
cede this one. However, none has provided a comprehen-
sive survey of trends and results. In 2001, Baresi and Young
[17] presented a partial survey that covered four topics
prevalent at the time the paper was published: assertions,
specifications, state-based conformance testing, and log file
analysis. While these topics remain important, they capture
only a part of the overall landscape of research in test

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

508 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

oracles, which the present paper covers. Another early work
was the initial motivation for considering the test oracle
problem contained in Binder’s textbook on software testing
[23], published in 2000. More recently, in 2009, Shahamiri
et al. [164] compared six techniques from the specific cate-
gory of derived test oracles. In 2011, Staats et al. [174] pro-
posed a theoretical analysis that included test oracles in a
revisitation of the fundamentals of testing. Most recently, in
2014, Pezze and Zhang focus on automated test oracles for
functional properties [150].

Despite this work, research into the test oracle problem
remains an activity undertaken in a fragmented community
of researchers and practitioners. The role of the present
paper is to overcome this fragmentation in this important
area of software testing by providing the first comprehen-
sive analysis and review of work on the test oracle problem.

The rest of the paper is organised as follows: Section 2 sets
out the definitions relating to test oracles that we use to com-
pare and contrast the techniques in the literature. Section 3
relates a historical analysis of developments in the area. Here
we identify key milestones and track the volume of past pub-
lications. Based on this data, we plot growth trends for four
broad categories of solution to the test oracle problem, which
we survey in Sections 4, 5, 6, and 7. These four categories
comprise approaches to the oracle problem where:

test oracles can be specified (Section 4);
test oracles can be derived (Section 5);
test oracles can be built from implicit information
(Section 6); and

e no automatable oracle is available, yet it is still possible
to reduce human effort (Section 7).

Finally, Section 8 concludes with closing remarks.

2 DEFINITIONS

This section presents definitions to establish a lingua franca
in which to examine the literature on oracles. These defini-
tions are formalised to avoid ambiguity, but the reader
should find that it is also possible to read the paper using
only the informal descriptions that accompany these formal
definitions. We use the theory to clarify the relationship
between algebraic specification, pseudo oracles, and meta-
morphic relations in Section 5.

To begin, we define a test activity as a stimulus or
response, then test activity sequences that incorporate con-
straints over stimuli and responses. Test oracles accept or
reject test activity sequences, first deterministically then
probabilistically. We then define notions of soundness and
completeness of test oracles.

2.1 Test Activities

To test is to stimulate a system and observe its response. A
stimulus and a response both have values, which may coin-
cide, as when the stimulus value and the response are both
reals. A system has a set of components C. A stimulus and its
response target a subset of components. For instance, a com-
mon pattern for constructing test oracles is to compare the
output of distinct components on the same stimulus value.
Thus, stimuli and responses are values that target compo-
nents. Collectively, stimuli and responses are test activities:

NO.5, MAY 2015

S | £)] R

Fig. 1. Stimulus and observations: S is anything that can change the
observable behavior of the SUT f; R is anything that can be observed
about the system’s behavior; I includes f’s explicit inputs; O is its explicit
outputs; everything not in S U R neither affects nor is affected by f.

Definition 2.1 (Test Activities). For the SUT p, S is the set of
stimuli that trigger or constrain p’s computation and R is the
set of observable responses to a stimulus of p. S and R are dis-
joint. Test activities form theset A = Sw R.

The use of disjoint union implicitly labels the elements of
A, which we can flatten to the tuple L x C'x V, where
L = {stimulus, response} is the set of activities labels, C' is
the set of components, and V' is an arbitrary set of values.
To model those aspects of the world that are independent of
any component, like a clock, we set an activity’s target to
the empty set.

We use the terms “stimulus” and “observation” in the
broadest sense possible to cater to various testing scenarios,
functional and nonfunctional. As shown in Fig. 1, a stimulus
can be either an explicit test input from the tester, / C S, or an
environmental factor that can affect the testing, S \ I. Similarly,
an observation ranges from an output of the SUT, O C R, to a
nonfunctional execution profile, like execution timein R \ O.

For example, stimuli include the configuration and plat-
form settings, database table contents, device states, resource
constraints, preconditions, typed values at an input device,
inputs on a channel from another system, sensor inputs and
so on. Notably, resetting a SUT to an initial state is a stimulus
and stimulating the SUT with an input runs it. Observations
include anything that can be discerned and ascribed a mean-
ing significant to the purpose of testing—including values
that appear on an output device, database state, temporal
properties of the execution, heat dissipated during execution,
power consumed, or any other measurable attributes of its
execution. Stimuli and observations are members of different
sets of test activities, but we combine them into test activities.

2.2 Test Activity Sequence

Testing is a sequence of stimuli and response observations.
The relationship between stimuli and responses can often
be captured formally; consider a simple SUT that squares
its input. To compactly represent infinite relations between
stimulus and response values such as (7,0 = z'Q), we intro-
duce a compact notation for set comprehensions:

z:(¢] = {9},
where z is a dummy variable over an arbitrary set.

Definition 2.2 (Test Activity Sequence). A test activity
sequence is an element of Ty = {w|T — w} over the
grammar

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

509

ifi = 2.0733
Specified Oracles Y7 0-1888

R2=0.94422
350
300
L

250 i
5 L
5 200 >
£ 41
5 150 EE
2

y = 0.324x16751
R?=0.90182

Derived Oracles
300 7
250
200 ¢
150 -

100

i il .Iiill
0 lm——mmmrrziwnannll i
Qoo
[Rspas
8538
SRRR

Commulative Number of Publications

Implicit Oracles v =0.2178x1653

"
2
2

£ R?=0.87326

_gSO

=

s 70 -

H

%5 60 -

o |

'ESO

5 40 - P

2 -‘4“

o 30 . -

g —

B - |

® 20 - _——_

E} - w i

E 1o —z=a] |

£ =

- pRNNNs

S o lmmm==rZ 0 W HEsBS
O
0 0 DO DD DO OO0 00O 00 0 O o o o
DO OO0 OO0 0000000 o0 o0 o
$88888885838388858S88CC¢8¢8%]

Handling the lack of oracles Y= 0-2997x'4"

2 _

2 R?=0.8871

E 60

£

5

S 50

a

S 40

o

2

2 . =888

3 4

2 25

M | -8 B 0 8 8

2 20 —=

2 =

= P

glo '_—-- E Ili‘

go_v’_’:':unll.ll.lhhl

© O O N M S N O OO d N mMT W ON VD O A N
QDD DO OO0 000 00 0 O od oA o
a0 0O OO0 OO0 0 00 O O o o o
938882922888 RRRRRRERE

Fig. 2. Cumulative number of publications from 1978 to 2012 and research trend analysis for each type of test oracle. The z-axis represents years
and y-axis the cumulative number of publications. We use a power regression model to perform the trend analysis. The regression equation and the
coefficient of determination (R?) indicate a upward future trend, a sign of a healthy research community.

T:u= A:[¢T|AT|e
where A is the test activity alphabet.

Under Definition 2.2, the testing activity sequence
io:[o = i*] denotes the stimulus of invoking f on i, then
observing the response output. It further specifies valid
responses obeying o = i?. Thus, it compactly represents
the infinite set of test activity sequences 4i101,%209,...
where o}, = z%

For practical purposes, a test activity sequence will
almost always have to satisfy constraints in order to be use-
ful. Under our formalism, these constraints differentiate the
approaches to test oracle we survey. As an initial illustra-
tion, we constrain a test activity sequence to obtain a practi-
cal test sequence:

Definition 2.3 (Practical Test Sequence). A practical test
sequence is any test activity sequence w that satisfies

w=TsTrT, forse SreR.

Thus, the test activity sequence, w, is practical iff w con-
tains at least one stimulus followed by at least one
observation.

This notion of a test sequence is nothing more than a very
general notion of what it means to test; we must do some-
thing to the system (the stimulus) and subsequently observe
some behaviour of the system (the observation) so that we
have something to check (the observation) and something
upon which this observed behaviour depends (the stimulus).

A reliable reset (p, t) € S is a special stimulus that returns
the SUT’s component p to its start state. The test activity
sequence (stimulus, p, t)(stimulus, p, 7) is therefore equivalent
to the conventional application notation p(¢). To extract the
value of an activity, we write v(a); to extract its target compo-
nent, we write c(a). To specify two invocations of a single

component on the different values, we must write t;é;v, 4s:
[tl,il,tg,ig € S, C(‘Cl) = C(il) = C(tg) = C(ig) A U(il) 75 ’U(ig)}.
In the sequel, we often compare different executions of a sin-
gle SUT or compare the output of independently imple-
mented components of the SUT on the same input value. For
clarity, we introduce syntactic sugar to express constraints on
stimulus values and components. We let f(z) denote vi:
[c(@) = fAv(i) =z] for feC.

A test oracle is a predicate that determines whether a
given test activity sequence is an acceptable behaviour of
the SUT or not. We first define a “test oracle”, and then relax
this definition to “probabilistic test oracle”.

Definition 2.4 (Test Oracle). A test oracle D : T+ Bisa
partial® function from a test activity sequence to true or false.

When a test oracle is defined for a test activity, it either
accepts the test activity or not. Concatenation in a test activ-
ity sequence denotes sequential activities; the test oracle D
permits parallel activities when it accepts different permu-
tations of the same stimuli and response observations. We
use D to distinguish a deterministic test oracle from proba-
bilistic ones. Test oracles are typically computationally
expensive, so probabilistic approaches to the provision of
oracle information may be desirable even where a determin-
istic test oracle is possible [124].

Definition 2.5 (Probabilistic Test Oracle). A probabilistic
test oracle D : Ty +— [0, 1] maps a test activity sequence into
the interval [0,1] € R.

A probabilistic test oracle returns a real number in the
closed interval [0, 1]. As with test oracles, we do not require
a probabilistic test oracle to be a total function. A

1. Recall that a function is implicitly total: it maps every element of
its domain to a single element of its range. The partial function
f:+ X+ Y is the total function f' : X’ — Y, where X’ C X.

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not often write specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fit with practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracle D is sound iff
D(a) = G(a).

Definition 2.8 (Completeness). The test oracle D is complete
iff
G(a) = D(a).

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness and Completeness).
A probabilistic test oracle D is probabilistically sound iff

~ 1
P(D(w) =1) > gte= G(w)
and D is probabilistically complete iff

G(w) = P(D(w) =1) > %—5— €

where e is non-negligible.

NO.5, MAY 2015

The non-negligible advantage ¢ requires D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden's
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications

We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”?, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based

Vs

languages”,

”voou

transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.
Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification

inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

Handling the Lack of Test Oracles

511

pre-78 93 00 02 05 11 12
13 =
n g g 2 § 23
£ S £ 5 g E 8
S c =} IS B
o 51 = i £= o '8
= 4 b= 3 @ g e
<) @ 3 © o o
S Q o a fied N B
£ 7 i B 2 e
8 % > 2 2 s I3
"'“ 3 = IS = ¥
Implicit Test Oracles
pre-78 88 90 98 06 08
(=4 [
o [
S i 2
}-;9] '% E’ c 2
A = 2 3 2 3
11 o @ 3] c
o 2 = (=] o s L o
11 2] £ o 3 S
8 ¢ & s N 2 e
= = = (51 =) o = 5|
11 = i £ g o
[= > 7] il
q40) 2 2 s
1 5 e I
S K = iE
o § s
9 Derived Test Oracles
pre-78 § 82 83 86 94 98 99 02 07 09 10
(2]
o 3 7 2l= 5
= E E 5 an |2 2 £ °
8 B E 2 = =2 8 z z 2 8
= o 2 [ceo o z £ A
g E Q2 (7] = <t 0O | S o =
2 N B L7} S o8 2] N B
g s 8 Z £ TS & £ s X8
5 8 = £ g8 g = 3 =
4 [1) - £ (5]
: = g
[2)
Specified Test Oracles
81 83 83 89 92 93 94 95 96 97 98 99 00 01 02 04 07 08 09
= N _o N w
i e) s T =
EE EEEREEREREE
1= = E c e}
4 i = W =
2 s 8 < e B B S S b g xr = = 11
@ @D = BT =G5 806 5 2 s =l
< i 8 2 11 1 80 85 e s Bl B B
b E E x o (== B e = i = E S 5
2 5 Co=l S == 15} =
2 =< 11 @ & ® d
e 11 11 11 3
] @ 3 T 2
q g 4 g q
)] 4 y ’ y y L]
1978 1980 1985 1990 1995 2000 2005 2010

Fig. 3. Chronological introduction of test oracles techniques and concepts.

minimization”, “test suite reduction” and “test data + gen-
eration + realistic + valid”.

Each of the above queries were appended by the key-
words “software testing”. The results were filtered,
removing articles that were found to have no relation to
software testing and test oracles. Fig. 2 shows the cumu-
lative number of publications on each type of test oracle
from 1978 onwards. We analyzed the research trend on
this data by applying different regression models. The
trend line, shown in Fig. 2, is fitted using a power
model. The high values for the four coefficients of deter-
mination (R?), one for each of the four types of test ora-
cle, confirm that our models are good fits to the trend
data. The trends observed suggest a healthy growth in
research volumes in these topics related to the test oracle
problem in the future.

3.2 The Advent of Test Oracle Techniques

We classified the collected publications by techniques or
concepts they proposed to (partially) solve a test oracle
problem; for example, Model Checking [35] and Metamorphic
Testing [36] fall into the derived test oracle and DAISTIS
[69] is an algebraic specification system that addresses the
specified test oracle problem.

For each type of test oracle and the advent of a tech-
nique or a concept, we plotted a timeline in chronological
order of publications to study research trends. Fig. 3 shows
the timeline starting from 1978 when the term “test oracle”
was first coined. Each vertical bar presents the technique

or concept used to solve the problem labeled with the year
of its first publication.

The timeline shows only the work that is explicit on the
issue of test oracles. For example, the work on test genera-
tion using finite state machines (FSM) can be traced back
to as early as 1950s. But the explicit use of finite state
machines to generate test oracles can be traced back to Jard
and Bochmann [102] and Howden in 1986 [98]. We record,
in the timeline, the earliest available publication for a given
technique or concept. We consider only published work in
journals, the proceedings of conferences and workshops, or
magazines. We excluded all other types of documentation,
such as technical reports and manuals.

Fig. 3 shows a few techniques and concepts that pre-
date 1978. Although not explicitly on test oracles, they
identify and address issues for which test oracles were
later developed. For example, work on detecting concur-
rency issues (deadlock, livelock, and races) can be traced
back to the 1960s. Since these issues require no specifica-
tion, implicit test oracles can and have been built that
detect them on arbitrary systems. Similarly, Regression
Testing detects problems in the functionality a new ver-
sion of a system shares with its predecessors and is a pre-
cursor of derived test oracles.

The trend analysis suggests that proposals for new tech-
niques and concepts for the formal specification of test
oracles peaked in 1990s, and has gradually diminished in
the last decade. However, it remains an area of much
research activity, as can be judged from the number of

512 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

publications for each year in Fig. 2. For derived test oracles,
many solutions have been proposed throughout this period.
Initially, these solutions were primarily theoretical, such as
Partial/Pseudo-Oracles [196] and Specification Inference
[194]; empirical studies however followed in late 1990s.

For implicit test oracles, research into the solutions estab-
lished before 1978 has continued, but at a slower pace than
the other types of test oracles. For handling the lack of an
automated test oracle, Partition Testing is a well-known tech-
nique that helps a human test oracle select tests. The trend
line suggests that only recently have new techniques and
concepts for tackling this problem started to emerge, with
an explicit focus on the human oracle cost problem.

4 SPECIFIED TEST ORACLES

Specification is fundamental to computer science, so it is not
surprising that a vast body of research has explored its use as
a source of test oracle information. This topic could merit an
entire survey on its own right. In this section, we provide an
overview of this work. We also include here partial specifica-
tions of system behaviour such as assertions and models.

A specification defines, if possible using mathematical
logic, the test oracle for particular domain. Thus, a specifica-
tion language is a notation for defining a specified test oracle
D, which judges whether the behaviour of a system con-
forms to a formal specification. Our formalism, defined in
Section 2, is, itself, a specification language for specifying
test oracles.

Over the last 30 years, many methods and formalisms for
testing based on formal specification have been developed.
They fall into four broad categories: model-based specifica-
tion languages, state transition systems, assertions and con-
tracts, and algebraic specifications. Model-based languages
define models and a syntax that defines desired behavior in
terms of its effect on the model. State transition systems
focus on modeling the reaction of a system to stimuli,
referred to as “transitions” in this particular formalism.
Assertions and contracts are fragments of a specification
language that are interleaved with statements of the imple-
mentation language and checked at runtime. Algebraic
specifications define equations over a program’s operations
that hold when the program is correct.

4.1 Specification Languages

Specification languages define a mathematical model of a
system’s behaviour, and are equipped with a formal seman-
tics that defines the meaning of each language construct in
terms of the model. When used for testing, models do not
usually fully specify the system, but seek to capture salient
properties of a system so that test cases can be generated
from or checked against them.

4.1.1 Model-Based Specification Languages

Model-based specification languages model a system as a
collection of states and operations to alter these states, and
are therefore also referred to as “state-based specifications”
in the literature [101], [109], [182], [183]. Preconditions and
postconditions constrain the system’s operations. An oper-
ation’s precondition imposes a necessary condition over the
input states that must hold in a correct application of the

NO.5, MAY 2015

operation; a postcondition defines the (usually strongest)
effect the operation has on program state [109].

A variety of model-based specification languages exist,
including Z [172], B [110], UML/OCL [31], VDM/VDM-SL
[62], Alloy [101], and the LARCH family [71], which
includes an algebraic specification sub-language. Broadly,
these languages have evolved toward being more concrete,
closer to the implementation languages programmers use to
solve problems. Two reasons explain this phenomenon: the
first is the effort to increase their adoption in industry by
making them more familiar to practitioners and the second
is to establish synergies between specification and imple-
mentation that facilitate development as iterative refine-
ment. For instance, Z models disparate entities, like
predicates, sets, state properties, and operations, through a
single structuring mechanism, its schema construct; the B
method, Z’s successor, provides a richer array of less
abstract language constructs.

Borger discusses how to use the abstract state machine
formalism, a very general set-theoretic specification lan-
guage geared toward the definition of functions, to define
high level test oracles [29]. The models underlying specifica-
tion languages can be very abstract, quite far from concrete
execution output. For instance, it may be difficult to com-
pute whether a model’s postcondition for a function permits
an observed concrete output. If this impedance mismatch
can be overcome, by abstracting a system’s concrete output
or by concretizing a specification model’s output, and if a
specification’s postconditions can be evaluated in finite
time, they can serve as a test oracle [4].

Model-based specification languages, such as VDM, Z,
and B can express invariants, which can drive testing. Any
test case that causes a program to violate an invariant has
discovered an incorrect behavior; therefore, these invariants
are partial test oracles.

In search of a model-based specification language acces-
sible to domain experts, Parnas et al. proposed TOG (Test
Oracles Generator) from program documentation [142],
[145], [148]. In their method, the documentation is written
in fully formal tabular expressions in which the method sig-
nature, the external variables, and relation between its start
and end states are specified [104]. Thus, test oracles can be
automatically generated to check the outputs against the
specified states of a program. The work by Parnas et al. has
been developed over a considerable period of more than
two decades [48], [59], [60], [144], [149], [190], [191].

4.1.2 State Transition Systems

State transition systems often present a graphical syntax,
and focus on transitions between different states of the sys-
tem. Here, states typically abstract sets of concrete state of
the modeled system. State transition systems have been
referred as visual languages in the literature [197]. A wide
variety of state transition systems exist, including finite state
machines [111], Mealy/Moore machines [111], I/O Autom-
ata [117], Labeled Transition Systems [180], SDL [54], Harel
Statecharts [81], UML state machines [28], X-Machines [95],
[96], Simulink/Stateflow [179] and PROMELA [97]. Mou-
chawrab et al. conducted a rigorous empirical evaluation
of test oracle construction techniques using state transition
systems [70], [137].

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

An important class of state transition systems have a
finite set of states and are therefore particularly well-suited
for automated reasoning about systems whose behaviour
can be abstracted into states defined by a finite set of values
[93]. State transition systems capture the behavior of a sys-
tem under test as a set of states,” with transitions represent-
ing stimuli that cause the system to change state. State
transition systems model the output of a system they
abstract either as a property of the states (the final state in
the case of Moore machines) or the transitions traversed (as
with Mealy machines).

Models approximate a SUT, so behavioral differences
between the two are inevitable. Some divergences, however,
are spurious and falsely report testing failure. State-transition
models are especially susceptible to this problem when
modeling embedded systems, for which time of occurrence is
critical. Recent work model tolerates spurious differences in
time by “steering” model’s evaluation: when the SUT and its
model differ, the model is backtracked, and a steering action,
like modifying timer value or changing inputs, is applied to
reduce the distance, under a similarity measure [74].

Protocol conformance testing [72] and, later, model-
based testing [183] motivated much of the work applying
state transition systems to testing. Given a specification F' as
a state transition system, e.g. a finite state machine, a test
case can be extracted from sequences of transitions in F.
The transition labels of such a sequence define an input. A
test oracle can then be constructed from F' as follows: if F'
accepts the sequence and outputs some value, then so
should the system under test; if ' does not accept the input,
then neither should the system under test.

Challenges remain, however, as the definition of confor-
mity comes in different flavours, depending on whether
the model is deterministic or non-deterministic and
whether the behaviour of the system under test on a given
test case is observable and can be interpreted at the same
level of abstraction as the model’s. The resulting flavours
of conformity have been captured in alternate notions, in
terms of whether the system under test is isomorphic to,
equivalent to, or quasi-equivalent to F. These notions of
conformity were defined in the mid-1990s in the famous
survey paper by Lee and Yannakakis [111] among other
notable papers, including those by Bochmann and
Petrenko [26] and Tretmans [180].

4.2 Assertions and Contracts
An assertion is a boolean expression that is placed at a cer-
tain point in a program to check its behaviour at runtime.
When an assertion evaluates to true, the program’s behav-
iour is regarded “as intended” at the point of the assertion,
for that particular execution; when an assertion evaluates to
false, an error has been found in the program for that partic-
ular execution. It is obvious to see how assertions can be
used as a test oracle.

The fact that assertions are embedded in an implementa-
tion language has two implications that differentiate them

3. Unfortunately, the term ‘state” has different interpretation in the
context of test oracles. Often, it refers to a ‘snapshot’ of the configura-
tion of a system at some point during its execution; in context of state
transition systems, however, ‘state’ typically refers to an abstraction of
a set of configurations, as noted above.

513

from specification languages. First, assertions can directly
reference and define relations over program variables,
reducing the impedance mismatch between specification
and implementation, for the properties an assertion can
express and check. In this sense, assertions are a natural
consequence of the evolution of specification languages
toward supporting development through iterative refine-
ment. Second, they are typically written along with the code
whose runtime behavior they check, as opposed to preced-
ing implementation as specification languages tend to do.

Assertions have a long pedigree dating back to Turing
[181], who first identified the need to separate the tester
from the developer and suggested that they should commu-
nicate by means of assertions: the developer writing them
and the tester checking them. Assertions gained significant
attention as a means of capturing language semantics in the
seminal work of Floyd [64] and Hoare [94] and subse-
quently were championed as a means of increasing code
quality in the development of the contract-based program-
ming approach, notably in the language Fiffel [135].

Widely used programming languages now routinely
provide assertion constructs; for instance, C, C++, and Java
provide a construct called assert and C# provides a Debug.
Assert method. Moreover, a variety of systems have been
independently developed for embedding assertions into a
host programming languages, such as Anna [116] for Ada,
APP [155] and Nana [119] for C languages.

In practice, assertion approaches can check only a limited
set of properties at a certain point in a program [49]. Lan-
guages based on design by contract principles extend the
expressivity of assertions by providing means to check con-
tracts between client and supplier objects in the form of method
pre- and post- conditions and class invariants. Eiffel was the
first language to offer design by contract [135], a language fea-
ture that has since found its way into other languages, such as
Java in the form of Java modeling language (JML) [139].

Cheon and Leavens showed how to construct an assertion-
based test oracle on top of JML [45]. For more on assertion-
based test oracles, see Coppit and Haddox-Schatz’s evalua-
tion [49], and, later, a method proposed by Cheon [44]. Both
assertions and contracts are enforced observation activity that
are embedded into the code. Araujo et al. provide a systematic
evaluation of design by contract on a large industrial system
[9] and using JML in particular [8]; Briand et al. showed how
to support testing by instrumenting contracts [33].

4.3 Algebraic Specification Languages
Algebraic specification languages define a software module in
terms of its interface, a signature consisting of sorts and opera-
tion symbols. Equational axioms specify the required proper-
ties of the operations; their equivalence is often computed
using term rewriting [15]. Structuring facilities, which group
sorts and operations, allow the composition of interfaces. Typ-
ically, these languages employ first-order logic to prove prop-
erties of the specification, like the correctness of refinements.
Abstract data types (ADT), which combine data and opera-
tions over that data, are well-suited to algebraic specification.
One of the earliest algebraic specification systems, for
implementing, specifying and testing ADTs, is DAISTS [69].
In this system, equational axioms generally equate a term-
rewriting expression in a restricted dialect of ALGOL 60

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

against a function composition in the implementation lan-
guage. For example, consider this axiom used in DAISTS:

Pop2(Stack S, EltType 1) :
Pop(Push(S,I)) = if Depth(S) = Limit
then Pop(S)

else S;

This axiom is taken from a specification that differentiates
the accessor Top, which returns the top element of a stake
without modifying the stack, and the mutator Pop, which
returns a new stack lacking the previous top element. A test
oracle simply executes both this axiom and its correspond-
ing composition of implemented functions against a test
suite: if they disagree, a failure has been found in the imple-
mentation or in the axiom; if they agree, we gain some
assurance of their correctness.

Gaudel et al. [19], [20], [72], [73] were the first to provide
a general testing theory founded on algebraic specification.
Their idea is that an exhaustive test suite composed only of
ground terms, i.e., terms with no free variables, would be
sufficient to judge program correctness. This approach faces
an immediate problem: the domain of each variable in a
ground term might be infinite and generate an infinite num-
ber of test cases. Test suites, however, must be finite, a prac-
tical limitation to which all forms of testing are subject. The
workaround is, of course, to abandon exhaustive coverage
of all bindings of values to ground terms and select a finite
subset of test cases [20].

Gaudel’s theory focuses on observational equivalence.
Observational inequivalence is, however, equally important
[210]. For this reason, Frankl and Doong extended Gaudel’s
theory to express inequality as well an equality [52]. They
proposed a notation that is suitable for object-oriented pro-
grams and developed an algebraic specification language
called LOBAS and a test harness called ASTOOT. In addi-
tion to handling object-orientation, Frankl and Doong
require classes to implement the testing method EQN that
ASTOOT uses to check the equivalence or inequivalence of
two instances of a given class. From the vantage point of an
observer, an object has observable and unobservable, or hid-
den, state. Typically, the observable state of an object is its
public fields and method return values. EQN enhances the
testability of code and enables ASTOOT to approximate the
observational equivalence of two objects on a sequence of
messages, or method calls. When ASTOOT checks the
equivalence of an object and a specification in LOBAS, it
realizes a specified test oracle.

Expanding upon ASTOOT, Chen et al. [40], [41] built
TACCLE, a tool that employs a white-box heuristic to gener-
ate a relevant, finite number of test cases. Their heuristic
builds a data relevance graph that connects two fields of a
class if one affects the other. They use this graph to consider
only that can affect an observable attributes of a class when
considering the (in)equivalence of two instances. Algebraic
specification has been a fruitful line of research; many alge-
braic specification languages and tools exist, including
Daistish [100], LOFT [122], CASL [11], CASCAT [205]. The
projects have been evolving toward testing a wider array of
entities, from ADTS, to classes, and most recently, compo-
nents; they also differ in their degree of automation of test

NO.5, MAY 2015

case generation and test harness creation. Bochmann et al.
used LOTOS to realise test oracle functions from algebraic
specifications [184]; most recently, Zhu also considered the
use of algebraic specifications as test oracles [210].

4.3.1 Specified Test Oracle Challenges

Three challenges must be overcome to build specified test
oracles. The first is the lack of a formal specification. Indeed,
the other classes of test oracles, discussed in this survey, all
address the problem of test oracle construction in the
absence of a formal specification. Formal specifications
models necessarily rely on abstraction that can lead to the
second problem: imprecision, models that include infeasible
behavior or that do not capture all the behavior relevant to
checking a specification [68]. Finally, one must contend
with the problem of interpreting model output and equat-
ing it to concrete program output.

Specified results are usually quite abstract, and the con-
crete test results of a program’s executions may not be repre-
sented in a form that makes checking their equivalence to the
specified result straightforward. Moreover, specified results
can be partially represented or oversimplified. This is why
Gaudel remarked that the existence of a formal specification
does not guarantee the existence of a successful test driver
[72]. Formulating concrete equivalence functions may be
necessary to correctly interpret results [118]. In short, solu-
tions to this problem of equivalence across abstraction levels
depend largely on the degree of abstraction and, to a lesser
extent, on the implementation of the system under test.

5 DERIVED TEST ORACLES

A derived test oracle distinguishes a system’s correct from
incorrect behavior based on information derived from vari-
ous artefacts (e.g. documentation, system executions) or
properties of the system under test, or other versions of it.
Testers resort to derived test oracles when specified test
oracles are unavailable, which is often the case, since specifi-
cations rapidly fall out of date when they exist at all. Of
course, the derived test oracle might become a partial
“specified test oracle”, so that test oracles derived by the
methods discussed in this section could migrate, over time,
to become, those considered to be the “specified test
oracles” of the previous section. For example, JWalk incre-
mentally learns algebraic properties of the class under test
[170]. It allows interactive confirmation from the tester,
ensuring that the human is in the “’learning loop”.

The following sections discuss research on deriving test
oracles from development artefacts, beginning in Section 5.1
with pseudo-oracles and N-version programming, which
focus on agreement among independent implementations.
Section 5.2 then introduces metamorphic relations which
focuses on relations that must hold among distinct executions
of a single implementation. Regression testing, Section 5.3,
focuses on relations that should hold across different versions
of the SUT. Approaches for inferring models from system
executions, including invariant inference and specification
mining, are described in Section 5.4. Section 5.5 closes with a
discussion of research into extracting test oracle information
from textual documentation, like comments, specifications,
and requirements.

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

5.1 Pseudo-Oracles

One of the earliest versions of a derived test oracle is the
concept of a pseudo-oracle, introduced by Davis and
Weyuker [50], as a means of addressing so-called non-test-
able programs:

“Programs which were written in order to deter-
mine the answer in the first place. There would be
no need to write such programs, if the correct
answer were known.” [196].

A pseudo-oracle is an alternative version of the program
produced independently, e.g. by a different programming
team or written in an entirely different programming lan-
guage. In our formalism (Section 2), a pseudo-oracle is a test
oracle D that accepts test activity sequences of the form

fi(@)orfo(z)oa: [fi # fa Ao = 09, 1

where fi, f» € C, the components of the SUT (Section 2),
are alternative, independently produced, versions of the
SUT on the same value. We draw the reader’s attention
to the similarity between pseudo-oracles and algebraic
specification systems (Section 4.3), like DIASTIS, where
the function composition expression in the implementa-
tion language and the term-rewriting expression are
distinct implementations whose output must agree and
form a pseudo-oracle.

A similar idea exists in fault-tolerant computing,
referred to as multi- or N-version programming [13], [14],
where the software is implemented in multiple ways and
executed in parallel. Where results differ at run-time, a
“voting” mechanism decides which output to use. In our
formalism, an N-version test oracle accepts test activities
of the following form:

fi(@)orfo(z)oo - - - fr(z)oy:
Vi,je[l.kl, i#j=fi # f; 2)

A argmax, m(o;) > t.

In Equation (2), the outputs form a multiset and m is the
multiplicity, or number of repetitions of an element in the
multiset. The argmax operator finds the argument that
maximizes a function’s output, here an output with great-
est multiplicity. Finally, the maximum multiplicity is
compared against the threshold ¢. We can now define a
N-version test oracle as D,,(w,z) where w obeys Equa-
tion (2) with ¢ bound to @. Then Dy,j(w) = Dyo(w, [5]) is an
N-version oracle that requires a majority of the outputs to
agree and D, (w) = D,,(w, k) generalizes pseudo oracles
to agreement across k£ implementations.

More recently, Feldt [58] investigated the possibility of
automatically producing different versions using genetic
programming, and McMinn [127] explored the idea of pro-
ducing different software versions for testing through pro-
gram transformation and the swapping of different
software elements with those of a similar specification.

5.2 Metamorphic Relations

For the SUT p that implements the function f, a metamorphic
relation is a relation over applications of f that we expect to
hold across multiple executions of p. Suppose f(z)=¢e",

515

then e“e™ = 1 is a metamorphic relation. Under this meta-
morphic relation, p(0.3) * p(-0.3) = 1 will hold if p is
correct [43]. The key idea is that reasoning about the proper-
ties of f will lead us to relations that its implementation p
must obey.

Metamorphic testing is a process of exploiting metamor-
phic relations to generate partial test oracles for follow-up
test cases: it checks important properties of the SUT after
certain test cases are executed [36]. Although metamorphic
relations are properties of the ground truth, the correct phe-
nomenon (f in the example above) that a SUT seeks to
implement and could be considered a mechanism for creat-
ing specified test oracles. We have placed them with
derived test oracles, because, in practice, metamorphic rela-
tions are usually manually inferred from a white-box
inspection of a SUT.

Metamorphic relations differ from algebraic specifica-
tions in that a metamorphic relation relates different execu-
tions, not necessarily on the same input, of the same
implementation relative to its specification, while algebraic
specifications equates two distinct implementations of the
specification, one written in an implementation language
and the other written in formalism free of implementation
details, usually term rewriting [15].

Under the formalism of Section 2, a metamorphic rela-
tion is

f(z1)o1 f(za)og - -~ f(ir)ox:[expr Nk > 2],

where expr is a constraint, usually arithmetic, over the
inputs z; and o,. This definition makes clear that a meta-
morphic relation is a constraint on the values of stimulating
the single SUT f at least twice, observing the responses,
and imposing a constraint on how they interrelate. In con-
trast, algebraic specification is a type of pseudo-oracle, as
specified in Equation (1), which stimulates two distinct
implementations on the same value, requiring their output
to be equivalent.

It is often thought that metamorphic relations need to
concern numerical properties that can be captured by arith-
metic equations, but metamorphic testing is, in fact, more
general. For example, Zhou et al. [209] used metamorphic
testing to test search engines such as Google and Yahoo!,
where the relations considered are clearly non-numeric.
Zhou et al. build metamorphic relations in terms of the con-
sistency of search results. A motivating example they give is
of searching for a paper in the ACM digital library: two
attempts, the second quoted, using advanced search fail,
but a general search identical to the first succeeds. Using
this insight, the authors build metamorphic relations, like
Ror : A1 = (A2 U A3) = |Ay| < |Ay|, where the A; are sets of
web pages returned by queries. Metamorphic testing is also
means of testing Weyuker’s “non-testable programs”, intro-
duced in the last section.

When the SUT is nondeterministic, such as a classifier
whose exact output varies from run to run, defining meta-
morphic relations solely in terms of output equality is usu-
ally insufficient during metamorphic testing. Murphy et al.
[138], [139] investigate relations other than equality, like set
intersection, to relate the output of stochastic machine learn-
ing algorithms, such as classifiers. Guderlei and Mayer

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

introduced statistical metamorphic testing, where the rela-
tions for test output are checked using statistical analysis
[80], a technique later exploited to apply metamorphic test-
ing to stochastic optimisation algorithms [203].

The biggest challenge in metamorphic testing is automat-
ing the discovery of metamorphic relations. Some of those
in the literature are mathematical [36], [37], [42] or combina-
torial [138], [139], [160], [203]. Work on the discovery of
algebraic specifications [88] and JWalk’s lazy systematic
unit testing, in which the specification is lazily, and incre-
mentally, learned through interactions between JWalk
and the developer [170] might be suitable for adaptation to
the discovery metamorphic relations. For instance, the
programmer’s development environment might track rela-
tionships among the output of test cases run during devel-
opment, and propose ones that hold across many runs to
the developer as possible metamorphic relations. Work has
already begun that exploits domain knowledge to formulate
metamorphic relations [38], but it is still at an early stage
and not yet automated.

5.3 Regression Test Suites

Regression testing aims to detect whether the modifications
made to the new version of a SUT have disrupted existing
functionality [204]. It rests on the implicit assumption
that the previous version can serve as an oracle for existing
functionality.

For corrective modifications, desired functionality
remains the same so the test oracle for version 4, D;, can
serve as the next version’s test oracle, D;, ;. Corrective mod-
ifications may fail to correct the problem they seek to
address or disrupt existing functionality; test oracles may
be constructed for these issues by symbolically comparing
the execution of the faulty version against the newer, alleg-
edly fixed version [79]. Orstra generates assertion-based test
oracles by observing the program states of the previous ver-
sion while executing the regression test suite [199]. The
regression test suite, now augmented with assertions, is
then applied to the newer version. Similarly, spectra-based
approaches use the program and value spectra obtained
from the original version to detect regression faults in the
newer versions [86], [200].

For perfective modifications, those that add new features
to the SUT, D; must be modified to cater for newly added
behaviours, i.e. Dj1; = D; UAD. Test suite augmentation
techniques specialise in identifying and generating AD [6],
[131], [202]. However, more work is required to develop
these augmentation techniques so that they augment, not
merely the test input, but also the expected output. In this
way, test suite augmentation could be extended to augment
the existing oracles as well as the test data.

Changes in the specification, which is deemed to fail to
meet requirements perhaps because the requirements have
themselves changed, drives another class of modifications.
These changes are generally regarded as “perfective” main-
tenance in the literature but no distinction is made between
perfections that add new functionality to code (without
changing requirements) and those changes that arise due to
changed requirements (or incorrect specifications).

Our formalisation of test oracles in Section 2 forces a dis-
tinction of these two categories of perfective maintenance,

NO.5, MAY 2015

since the two have profoundly different consequences for
test oracles. We therefore refer to this new category of
perfective maintenance as “changed requirements”. Recall
that, for the function f: X — Y, dom(f) = X. For changed
requirements:

Jo - D7',+1(Ol) 7é Di(d),

which implies, of course, dom(D; 1) Ndom(D;) # 0 and the
new test oracle cannot simply union the new behavior with
the old test oracle. Instead, we have

Dol AD if o € dom(AD)
#1171 D; otherwise.

5.4 System Executions

A system execution trace can be exploited to derive test
oracles or to reduce the cost of a human test oracle by align-
ing an incorrect execution against the expected execution,
as expressed in temporal logic [51]. This section discusses
the two main techniques for deriving test oracles from
traces—invariant detection and specification mining.
Derived test oracles can be built on both techniques to auto-
matically check expected behaviour similar to assertion-
based specification, discussed in Section 4.2.

5.4.1 Invariant Detection

Program behaviours can be automatically checked against
invariants. Thus, invariants can serve as test oracles to help
determine the correct and incorrect outputs.

When invariants are not available for a program in
advance, they can be learned from the program (semi-)
automatically. A well-known technique proposed by Ernst
et al. [56], implemented in the Daikon tool [55], is to execute
a program on a collection of inputs (test cases) against a col-
lection of potential invariants. The invariants are instanti-
ated by binding their variables to the program’s variables.
Daikon then dynamically infers likely invariants from those
invariants not violated during the program executions over
the inputs. The inferred invariants capture program behav-
iours, and thus can be used to check program correctness.
For example, in regression testing, invariants inferred from
the previous version can be checked as to whether they still
hold in the new version.

In our formalism, Daikon invariant detection can define
an unsound test oracle that gathers likely invariants from
the prefix of a testing activity sequence, then enforces those
invariants over its suffix. Let /; be the set of likely invariants
at observation j; Iy are the initial invariants; for the test
activity sequence rry...7r,, I, ={z € I'|Vi € [l.n],r; E z},
where = is logical entailment. Thus, we take an observation
to define a binding of the variables in the world under
which a likely invariant either holds or does not: only those
likely invariants remain that no observation invalidates. In
the suffix r,41742 ... 7y, the test oracle then changes gear
and accepts only those activities whose response observa-
tions obey I, i.e. r;:[r; = I,],1 > n.

Invariant detection can be computationally expensive, so
incremental [22], [171] and light weight static analyses [39],
[63] have been brought to bear. A technical report summa-
rises various dynamic analysis techniques [157]. Model

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

inference [90], [187] could also be regarded as a form of
invariant generation in which the invariant is expressed as a
model (typically as an FSM). Ratcliff et al. used Search-
Based Software Engineering (SBSE) [84] to search for invari-
ants, guided by mutation testing [153].

The accuracy of inferred invariants depends in part on
the quality and completeness of the test cases; additional
test cases might provide new data from which more accu-
rate invariants can be inferred [56]. Nevertheless, inferring
“perfect” invariants is almost impossible with the current
state of the art, which tends to frequently infer incorrect or
irrelevant invariants [151]. Wei et al. recently leveraged
existing contracts in Eiffel code to infer postconditions on
commands (as opposed to queries) involving quantification
or implications whose premises are conjunctions of formu-
lae [192], [193].

Human intervention can, of course, be used to filter the
resulting invariants, i.e., retaining the correct ones and dis-
carding the rest. However, manual filtering is error-prone
and the misclassification of invariants is frequent. In a recent
empirical study, Staats et al. found that half of the incorrect
invariants Daikon inferred from a set of Java programs were
misclassified [175]. Despite these issues, research on the
dynamic inference of program invariants has exhibited
strong momentum in the recent past with the primary focus
on its application to test generation [10], [141], [207].

5.4.2 Specification Mining

Specification mining or inference infers a formal model of
program behaviour from a set of observations. In terms of
our formalism, a test oracle can enforce these formal models
over test activities. In her seminal work on using inference
to assess test data adequacy, Weyuker connected inference
and testing as inverse processes [194]. The testing process
starts with a program, and looks for I/O pairs that charac-
terise every aspect of both the intended and actual behav-
iours, while inference starts with a set of I/O pairs, and
derives a program to fit the given behaviour. Weyuker
defined this relation for assessing test adequacy which can
be stated informally as follows.

A set of I/O pairs T is an inference adequate test set for the
program P intended to fulfil specification S iff the program
Ir inferred from T (using some inference procedure) is
equivalent to both P and S. Any difference would imply
that the inferred program is not equivalent to the actual pro-
gram and, therefore, that the test set 7" used to infer the pro-
gram P is inadequate.

This inference procedure mainly depends upon the set of
I/O pairs used to infer behaviours. These pairs can be
obtained from system executions either passively, e.g., by
runtime monitoring, or actively, e.g., by querying the sys-
tem [105]. However, equivalence checking is undecidable in
general, and therefore inference is only possible for pro-
grams in a restricted class, such as those whose behaviour
can be modelled by finite state machines [194]. With this,
equivalence can be accomplished by experiment [89]. Nev-
ertheless, serious practical limitations are associated with
such experiments (see the survey by Lee and Yannakakis
[111] for complete discussion).

The marriage between inference and testing has pro-
duced wealth of techniques, especially in the context of

517

“black-box” systems, when source code/behavioural mod-
els are unavailable. Most work has applied L*, a well-
known learning algorithm, to learn a black-box system B as
a finite state machine with n states [7]. The algorithm infers
an FSM by iteratively querying B and observing the corre-
sponding outputs. A string distinguishes two FSMs when
only one of the two machines ends in a final state upon con-
suming the string. At each iteration, an inferred model M/;
with ¢ < n states is given. Then, the model is refined with
the help of a string that distinguishes B and M; to produce
a new model, until the number of states reaches n.

Lee and Yannakakis [111] showed how to use L* for con-
formance testing of B with a specification S. Suppose L*
starts by inferring a model M;, then we compute a string
that distinguishes M; from S and refine M; through the
algorithm. If, for i = n, M, is S, then we declare B to be cor-
rect, otherwise faulty.

Apart from conformance testing, inference techniques
have been used to guide test generation to focus on particu-
lar system behavior and to reduce the scope of analysis. For
example, Li et al. applied L* to the integration testing of a
system of black-box components [113]. Their analysis archi-
tecture derives a test oracle from a test suite by using L* to
infer a model of the systems from dynamically observing
system’s behavior; this model is then searched to find incor-
rect behaviors, such as deadlocks, and used to verify the
system’s behaviour under fuzz testing (Section 6).

To find concurrency issues in asynchronous black-box
systems, Groz et al. proposed an approach that extracts
behavioural models from systems through active learning
techniques [78] and then performs reachability analysis on
the models [27] to detect issues, notably races.

Further work in this context has been compiled by Shah-
baz [165] with industrial applications. Similar applications
of inference can be found in system analysis [21], [78], [134],
[188], [189], component interaction testing [114], [121],
regression testing [200], security testing [168] and verifica-
tion [53], [771, [1471].

Zheng et al. [208] extract item sets from web search
queries and their results, then apply association rule mining
to infer rules. From these rules, they construct derived test
oracles for web search engines, which had been thought to
be untestable. Image segmentation delineates objects of
interest in an image; implementing segmentation programs
is a tedious, iterative process. Frouchni et al. successfully
apply semi-supervised machine learning to create test
oracles for image segmentation programs [67]. Memon et al.
[132], [133], [198] introduced and developed the GUITAR
tool, which has been evaluated by treating the current ver-
sion of the SUT as correct, inferring the specification, and
then executing the generated test inputs. Artificial Neural
Networks have also been applied to learn system behaviour
and detect deviations from it [162], [163].

The majority of specification mining techniques adopt
finite state machines as the output format to capture the
functional behaviour of the SUT [21], [27], [53], [77], [78],
[89], [111], [113], [134], [147], [165], [168], [189], sometimes
extended with temporal constraints [188] or data constraints
[114], [121] which are, in turn, inferred by Daikon [56].
Biichi automata have been used to check properties against
black-box systems [147]. Annotated call trees have been

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

used to represent the program behaviour of different ver-
sions in the regression testing context [200]. GUI widgets
have been directly modelled with objects and properties for
testing [132], [133], [198]. Artificial Neural Nets and
machine learning classifiers have been used to learn the
expected behaviour of SUT [67], [162], [163]. For dynamic
and fuzzy behaviours such as the result of web search
engine queries, association rules between input (query) and
output (search result strings) have been used as the format
of an inferred oracle [208].

5.5 Textual Documentation

Textual documentation ranges from natural language
descriptions of requirements to structured documents detail-
ing the functionalities of APIs. These documents describe the
functionalities expected from the SUT to varying degrees,
and can therefore serve as a basis for generating test oracles.
They are usually informal, intended for other humans, not to
support formal logical or mathematical reasoning. Thus,
they are often partial and ambiguous, in contrast to specifica-
tion languages. Their importance for test oracle construction
rests on the fact that developers are more likely to write them
than formal specifications. In other words, the documenta-
tion defines the constraints that the test oracle D, as defined
in Section 2, enforces over testing activities.

At first sight, it may seem impossible to derive test
oracles automatically because natural languages are inher-
ently ambiguous and textual documentation is often impre-
cise and inconsistent. The use of textual documentation has
often been limited to humans in practical testing applica-
tions [143]. However, some partial automation can assist the
human in testing using documentation as a source of test
oracle information.

Two approaches have been explored. The first category
builds techniques to construct a formal specification out of an
informal, textual artefact, such as an informal textual specifi-
cation, user and developer documentation, and even source
code comments. The second restricts a natural language to a
semi-formal fragment amenable to automatic processing.
Next, we present representative examples of each approach.

5.5.1 Converting Text into Specifications

Prowell and Poore [152] introduced a sequential enumera-
tion method for developing a formal specification from an
informal one. The method systematically enumerates all
sequences from the input domain and maps the correspond-
ing outputs to produce an arguably complete, consistent,
and correct specification. However, it can suffer from an
exponential explosion in the number of input/output
sequences. Prowell and Poore employ abstraction techni-
ques to control this explosion. The end result is a formal
specification that can be transferred into a number of nota-
tions, e.g., state transition systems. A notable benefit of this
approach is that it tends to discover many inconsistent and
missing requirements, making the specification more com-
plete and precise.

5.5.2 Restricting Natural Language

Restrictions on a natural language reduce complexities in
its grammar and lexicon and allow the expression of

NO.5, MAY 2015

requirements in a concise vocabulary with minimal ambigu-
ity. This, in turn, eases the interpretation of documents and
makes the automatic derivation of test oracles possible. The
researchers who have proposed specification languages
based on (semi-) formal subsets of a natural language are
motivated by the fact that model-based specification lan-
guages have not seen wide-spread adoption, and believe
the reason is the inaccessibility their formalism and set-the-
oretic underpinnings to the average programmer.

Schwitter introduced a computer-processable, restricted
natural language called PENG [159]. It covers a strict subset
of standard English with a restricted grammar and a
domain specific lexicon for content words and predefined
function words. Documents written in PENG can be trans-
lated deterministically into first-order predicate logic.
Schwitter et al. [30] provided guidelines for writing test sce-
narios in PENG that can automatically judge the correctness
of program behaviours.

6 ImPLICIT TEST ORACLES

An implicit test oracle is one that relies on general, implicit
knowledge to distinguish between a system’s correct and
incorrect behaviour. This generally true implicit knowledge
includes such facts as “buffer overflows and segfaults are
nearly always errors”. The critical aspect of an implicit test
oracle is that it requires neither domain knowledge nor a
formal specification to implement, and it applies to nearly
all programs.

Implicit test oracle can be built on any procedure that
detects anomalies such as abnormal termination due to a
crash or an execution failure [34], [167]. This is because such
anomalies are blatant faults; that is, no more information is
required to ascertain whether the program behaved cor-
rectly or not. Under our formalism, an implicit oracle
defines a subset of stimulus and response relations as
guaranteed failures, in some context.

Implicit test oracles are not universal. Behaviours abnor-
mal for one system in one context may be normal for that
system in a different context or normal for a different sys-
tem. Even crashing may be considered acceptable, or even
desired behaviour, as in systems designed to find crashes.

Research on implicit oracles is evident from early work in
software engineering. The very first work in this context
was related to deadlock, livelock and race detection to
counter system concurrency issues [24], [106], [185], [16],
[169]. Similarly, research on testing non-functional attrib-
utes have garnered much attention since the advent of the
object-oriented paradigm. In performance testing, system
throughput metrics can highlight degradation errors [120],
[123], as when a server fails to respond when a number of
requests are sent simultaneously. A case study by Weyuker
and Vokolos showed how a process with excessive CPU
usage caused service delays and disruptions [195]. Simi-
larly, test oracles for memory leaks can be built on a profil-
ing technique that detects dangling references during the
run of a program [12], [57], [87], [211]. For example, Xie and
Aiken proposed a boolean constraint system to represent
the dynamically allocated objects in a program [201]. Their
system raises an alarm when an object becomes unreachable
but has not yet been deallocated.

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

Fuzzing is an effective way to find implicit anomalies,
such a crashes [136]. The main idea is to generate random,
or “fuzz”, inputs and feed them to the system to find anom-
alies. This works because the implicit specification usually
holds over all inputs, unlike explicit specifications which
tend to relate subsets of inputs to outputs. If an anomaly is
detected, the fuzz tester reports it along with the input
that triggers it. Fuzzing is commonly used to detect security
vulnerabilities, such as buffer overflows, memory leaks,
unhandled exceptions, denial of service, etc. [18], [177].

Other work has focused on developing patterns to detect
anomalies. For instance, Ricca and Tonella [154] considered
a subset of the anomalies that Web applications can harbor,
such as navigation problems, hyperlink inconsistencies, etc.
In their empirical study, 60 percent of the web applications
exhibited anomalies and execution failures.

7 THE HUMAN ORACLE PROBLEM

The above sections give solutions to the test oracle problem
when some artefact exists that can serve as the foundation
for either a full or partial test oracle. In many cases, how-
ever, no such artefact exists so a human tester must verify
whether software behaviour is correct given some stimuli.
Despite the lack of an automated test oracle, software engi-
neering research can still play a key role: finding ways to
reduce the effort that the human tester has to expend in
directly creating, or in being, the test oracle.

This effort is referred to as the Human Oracle Cost [125].
It aims to reduce the cost of human involvement along two
dimensions: 1) writing test oracles and 2) evaluating test
outcomes. Concerning the first dimension, the work of
Staats et al. is a representative. They seek to reduce the
human oracle cost by guiding human testers to those parts
of the code they need to focus on when writing test oracles
[173]. This reduces the cost of test oracle construction, rather
than reducing the cost of a human involvement in testing in
the absence of an automated test oracle. Additional recent
work on test oracle construction includes Dodona, a tool
that suggests oracle data to a human who then decides
whether to use it to define a test oracle realized as a Java
unit test [115]. Dodona infers relations among program vari-
ables during execution, using network centrality analysis
and data flow.

Research that seeks to reduce the human oracle cost
broadly focuses on finding a quantitative reduction in the
amount of work the tester has to do for the same amount of
test coverage or finding a qualitative reduction in the work
needed to understand and evaluate test cases.

7.1 Quantitative Human Oracle Cost

Test suites can be unnecessarily large, covering few test goals
in each individual test case. Additionally, the test cases
themselves may be unnecessarily long—for example con-
taining large numbers of method calls, many of which do not
contribute to the overall test case. The goal of quantitative
human oracle cost reduction is to reduce test suite and test case
size so as to maximise the benefit of each test case and each
component of that test case. This consequently reduces the
amount of manual checking effort that is required on behalf
of a human tester performing the role of a test oracle. Cast in

519

terms of our formalism, quantitative reduction aims to parti-
tion the set of test activity sequences so the human need only
consider representative sequences, while test case reduction
aims to shorten test activity sequences.

7.1.1 Test Suite Reduction

Traditionally, test suite reduction has been applied as a
post-processing step to an existing test suite, e.g. the work
of Harrold et al, [85], Offutt et al. [140] and Rothermel et al.
[156]. Recent work in the search-based testing literature has
sought to combine test input generation and test suite
reduction into one phase to produce smaller test suites.

Harman et al. proposed a technique for generating test
cases that penetrate the deepest levels of the control depen-
dence graph for the program, in order to create test cases
that exercise as many elements of the program as possible
[82]. Ferrer et al. [61] attack a multi-objective version of the
problem in which they sought to simultaneously maximize
branch coverage and minimize test suite size; their focus
was not this problem per se, but its use to compare a num-
ber of multi-objective optimisation algorithms, including
the well-known Non-dominated Sorting Genetic Algorithm
II (NSGA-ID), Strength Pareto EA 2 (SPEA2), and MOCell.
On a series of randomly-generated programs and small
benchmarks, they found MOCell performed best.

Taylor et al. [178] use an inferred model as a semantic test
oracle to shrink a test suite. Fraser and Arcuri [65] generate
test suites for Java using their EvoSuite tool. By generating the
entire suite at once, they are able to simultaneously maximize
coverage and minimize test suite size, thereby aiding human
oracles and alleviating the human oracle cost problem.

7.1.2 Test Case Reduction

When using randomised algorithms for generating test
cases for object-oriented systems, individual test cases can
generate very long traces very quickly—consisting of a large
number of method calls that do not actually contribute to a
specific test goal (e.g. the coverage of a particular branch).
Such method calls unnecessarily increase test oracle cost, so
Leitner et al. remove such calls [112] using Zeller's and
Hildebrandt’s Delta Debugging [206]. JWalk simplifies test
sequences by removing side-effect free functions from
them, thereby reducing test oracle costs where the human is
the test oracle [170]. Quick tests seek to efficiently spend a
small test budget by building test suites whose execution is
fast enough for it to be run after compilations [76]. These
quick tests must be likely to trigger bugs and therefore gen-
erate short traces, which, as a result, are easier for humans
to comprehend.

7.2 Qualitative Human Oracle Cost

Human oracle costs may also be minimised from a qualita-
tive perspective. That is, the extent to which test cases, more
generally testing activities, may be easily understood and
processed by a human. The input profile of a SUT is the dis-
tribution of inputs it actually processes when running in its
operational environment. Learning an input profile requires
domain knowledge. If such domain knowledge is not built
into the test data generation process, machine-generated
test data tend to be drawn from a different distribution over

520 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

the SUT’s inputs than its input profile. While this may be
beneficial for trapping certain types of faults, the utility of
the approach decreases when test oracle costs are taken into
account, since the tester must invest time comprehending the
scenario represented by test data in order to correctly evalu-
ate the corresponding program output. Arbitrary inputs are
much harder to understand than recognisable pieces of
data, thus adding time to the checking process.

All approaches to qualitatively alleviating the human
oracle cost problem incorporate human knowledge to
improve the understandability of test cases. The three
approaches we cover are

1) augmenting test suites designed by the developers;

2) computing “realistic” inputs from web pages, web

services, and natural language; and

3) mining usage patterns to replicate them in the test

cases.

In order to improve the readability of automatically-gen-
erated test cases, McMinn et al. propose the incorporation
of human knowledge into the test data generation process
[125]. With search-based approaches, they proposed inject-
ing this knowledge by “seeding” the algorithm with test
cases that may have originated from a human source such
as a “sanity check” performed by the programmer, an
already existing, partial test suite, or input—-output examples
generated by programming paradigms that involve the
developer in computation, like prorogued programming [2].

The generation of string test data is particularly problem-
atic for automatic test data generators, which tend to gener-
ate nonsensical strings. These nonsensical strings are, of
course, a form of fuzz testing (Section 6) and good for
exploring uncommon, shallow code paths and finding cor-
ner cases, but they are unlikely to exercise functionality
deeper in a program’s control flow. This is because string
comparisons in control expressions are usually stronger
than numerical comparisons, making one of a control
point’s branches much less likely to traverse via uniform
fuzzing. We see here the seminal computer science trade-off
between breadth first and depth first search in the choice
between fuzz testing with nonsensical inputs and testing
with realistic inputs.

Bozkurt and Harman, introduced the idea of mining
web services for realistic test inputs, using the outputs
of known and trusted test services as more realistic
inputs to the service under test [32]. The idea is that real-
istic test cases are more likely to reveal faults that devel-
opers care about and yield test cases that are more
readily understood. McMinn et al. also mine the web for
realistic test cases. They proposed mining strings from
the web to assist in the test generation process [129],
[166]. Since web page content is generally the result of
human effort, the strings contained therein tend to be
real words or phrases with high degrees of semantic and
domain relevant context that can thus be used as sources
of realistic test data.

Afshan et al. [1] combine a natural language model and
metahueristics, strategies that guide a search process [25], to
help generate readable strings. The language model scores
how likely a string is to belong to a language based on the
character combinations. Incorporating this probability score

NO.5, MAY 2015

into a fitness function, a metaheuristic search can not only
cover test goals, but generate string inputs that are more
comprehensible than the arbitrary strings generated by the
previous state of the art. Over a number of case studies,
Afshan et al. found that human oracles more accurately and
more quickly evaluated their test strings.

Fraser and Zeller [66] improve the familiarity of test cases
by mining the software under test for common usage pat-
terns of APIs. They then seek to replicate these patterns in
generated test cases. In this way, the scenarios generated
are more likely to be realistic and represent actual usages of
the software under test.

7.3 Crowdsourcing the Test Oracle

A recent approach to handling the lack of a test oracle is to
outsource the problem to an online service to which large
numbers of people can provide answers—i.e., through
crowdsourcing. Pastore et al. [146] demonstrated the feasi-
bility of the approach but noted problems in presenting the
test problem to the crowd such that it could be easily under-
stood, and the need to provide sufficient code documenta-
tion so that the crowd could determine correct outputs from
incorrect ones. In these experiments, crowdsourcing was
performed by submitting tasks to a generic crowdsourcing
platform—Amazon’s Mechanical Turk.* However, some
dedicated crowdsourcing services now exist for the testing
of mobile applications. They specifically address the prob-
lem of the exploding number of devices on which a mobile
application may run, and which the developer or tester may
not own, but which may be possessed by the crowd at large.
Examples of these services include Mob4Hire,” MobTest®
and uTest.”

8 FUTURE DIRECTIONS AND CONCLUSION

This paper has provided a comprehensive survey of test
oracles, covering specified, derived and implicit oracles and
techniques that cater for the absence of test oracles. The
paper has also analyzed publication trends in the test oracle
domain. This paper has necessarily focused on the tradi-
tional approaches to the test oracle problem. Much work on
test oracles remains to be done. In addition to research
deepening and interconnecting these approaches, test oracle
problem is open to new research directions. We close with a
discussion of two of these that we find noteworthy and
promising: test oracle reuse and test oracle metrics.

As this survey has shown, test oracles are difficult to con-
struct. Oracle reuse is therefore an important problem that
merits attention. Two promising approaches to oracle reuse
are generalizations of reliable reset and the sharing of oracular
data across software product lines (SPLs). Generalizing reli-
able reset to arbitrary states allows the interconnection of dif-
ferent versions of a program, so we can build test oracles that
based on older versions of a program, using generalized reli-
able reset to ignore or handle new inputs and functionality.
SPLs are sets of related versions of a system [47]. A product

4. http:/ /www.mturk.com

5. http:/ /www.mob4hire.com
6. http:/ /www.mobtest.com
7. http:/ /www.utest.com/

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

line can be thought of as a tree of related software products in
which branches contain new alternative versions of the sys-
tem, each of which shares some core functionality enjoyed by
a base version. Research on test oracles should seek to lever-
age these SPL trees to define trees of test oracles that share
oracular data where possible.

Work has already begun on using test oracle as the mea-
sure of how well the program has been tested (a kind of test
oracle coverage) [103], [176], [186] and measures of oracles
such as assessing the quality of assertions [158]. More work
is needed. “Oracle metrics” is a challenge to, and an oppor-
tunity for, the “software metrics” community. In a world in
which test oracles become more prevalent, it will be impor-
tant for testers to be able to assess the features offered by
alternative test oracles.

A repository of papers on test oracles accompanies this
paper at http:/ /crestweb.cs.ucl.ac.uk/resources/oracle_rep
ository.

ACKNOWLEDGMENTS

The authors would like to thank Bob Binder for helpful
information and discussions when we began work on this
paper. We would also like thank all who attended the
CREST Open Workshop on the Test Oracle Problem (21-22
May 2012) at University College London, and gave feedback
on an early presentation of the work. We are further
indebted to the very many responses to our emails from
authors cited in this survey, who provided several useful
comments on an earlier draft of our paper. P. McMinn is
corresponding author.

REFERENCES

[1] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable
string test inputs using a natural language model to reduce
human oracle cost,” in Proc. Int. Conf. Softw. Testing, Verification
Validation, Mar. 2013, pp. 352-361.

[2] M. Afshari, E. T. Barr, and Z. Su, “Liberating the programmer
with prorogued programming,” in Proc ACM Int. Symp. New
Ideas, New Paradigms, Reflections Programm. Softw., 2012, pp. 11-
26.

[3] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-
based testing for non-functional system properties,” Inf. Softw.
Technol., vol. 51, no. 6, pp. 957-976, 2009.

[4] B. K. Aichernig, “Automated black-box testing with abstract
VDM oracles,” in Proc. 18th Int. Conf. Comput. Comput. Safety, Rel.
Security, 1999, pp. 250-259.

[5] S. Al L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investiga-
tion of search-based test-case generation,” IEEE Trans. Softw.
Eng., vol. 36, no. 6, pp. 742-762, Nov. 2010.

[6] N. Alshahwan and M. Harman, “Automated session data repair
for web application regression testing,” in Proc. Int. Conf. Softw.
Testing, Verification, Validation, 2008, pp. 298-307.

[71 D. Angluin, “Learning regular sets from queries and counter-
examples,” Inf. Comput., vol. 75, no. 2, pp. 87-106, 1987.

[8] W. Araujo, L. C. Briand, and Y. Labiche, “Enabling the runtime
assertion checking of concurrent contracts for the Java modeling
language,” in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 786-795.

[9] W. Araujo, L. C. Briand, and Y. Labiche, “On the effectiveness of

contracts as test oracles in the detection and diagnosis of race

conditions and deadlocks in concurrent object-oriented

software,” in Proc. Int. Symp. Empirical Softw. Eng. Meas., 2011,

pp- 10-19.

S. Artzi, M. D. Ernst, A. Kiezun, C. Pacheco, and J. H. Perkins,

“Finding the needles in the haystack: Generating legal test inputs

for object-oriented programs,” in Proc. 1st Workshop Model-Based

Testing Object-Oriented Syst., Oct. 23, 2006.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

521

E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Briickner, P. D.
Mosses, D. Sannella, and A. Tarlecki, “CASL: The common alge-
braic specification language,” Theor. Comput. Sci., vol. 286, no. 2,
pp- 153-196, 2002.

T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of
all pointer and array access errors,” in Proc. ACM SIGPLAN 1994
Conf. Programm. Lang. Des. Implementation, 1994, pp. 290-301.

A. Avizienis, “The N-version approach to fault-tolerant
software,” IEEE Trans. Softw. Eng., vol. 11, no. 12, pp. 1491-1501,
Dec. 1985.

A. Avizienis and L. Chen, “On the implementation of N-version
programming for software fault-tolerance during execution,” in
Proc. 1st Int. Comput. Softw. Appl. Conf., 1977, pp. 149-155.

F. Baader, and T. Nipkow, Term Rewriting and All That. New
York, NY, USA: Cambridge Univ. Press, 1998.

A. F. Babich, “Proving total correctness of parallel programs,”
IEEE Trans. Softw. Eng., vol. 5, no. 6, pp. 558-574, Nov. 1979.

L. Baresi and M. Young. (2001, Aug.). Test oracles. Univ. of Ore-
gon, Dept. Comput. Inform. Sci., Eugene, OR, USA. Tech. Rep.
CIS-TR-01-02. [Online]. Available: http:/ /www.cs.uoregon.edu/
~michal/pubs/oracles.html

S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “Finding software
vulnerabilities by smart fuzzing,” in IEEE 4th Int. Conf. Softw.
Testing, Verification Validation, 2011, pp. 427-430.

G. Bernot, “Testing against formal specifications: A theoretical
view,” in Proc. Int. Joint Conf. Theory Prac. Softw. Develop. Adv.
Distrib. Comput. Colloquium Combining Paradigms Softw. Develop.,
1991, pp. 99-119.

G. Bernot, M. C. Gaudel, and B. Marre, “Software testing based
on formal specifications: A theory and a tool,” Softw. Eng. J.,
vol. 6, no. 6, pp. 387-405, Nov. 1991.

A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli,
“Automatic synthesis of behavior protocols for composable web-
services,” in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM
SIGSOFT Symp. Found. Softw. Eng., 2009, pp. 141-150.

D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar, “Checking
memory safety with Blast,” in Proc. 8th Int. Conf. Held as Part Joint
Eur. Conf. Theory Pract. Softw. Conf. Fundam. Approaches Softw.
Eng., 2005, pp. 2-18.

R. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools. Reading, MA, USA: Addison-Wesley, 2000.

A. Blikle, “Proving programs by sets of computations,” in Proc.
3rd Symp. Math. Found. Comput. Sci., 1975, pp. 333-358.

C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Comput.
Surveys, vol. 35, no. 3, pp. 268-308, 2003.

G. V. Bochmann and A. Petrenko, “Protocol testing: Review
of methods and relevance for software testing,” in Proc. ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 1994, pp. 109-124.

G. V. Bochmann, “Finite state description of communication pro-
tocols,” Comput. Netw., vol. 2, no. 4, pp. 361-372, 1978.

E. Borger, A. Cavarra, and E. Riccobene, “Modeling the dynam-
ics of UML state machines,” in Abstract State Machines-Theory and
Applications. New York, NY, USA: Springer, 2000, pp. 167-186.

E. Borger, “High level system design and analysis using abstract
state machines,” in Proc. Int. Workshop Current Trends Appl.
Formal Method: Appl. Formal Methods, 1999, pp. 1-43.

K. Bottger, R. Schwitter, D. Molla, and D. Richards, “Towards
reconciling use cases via controlled language and graphical mod-
els,” in Proc. Appl. Prolog 14th Int. Conf. Web Knowl. Manag. Decis.
Support, 2003, pp. 115-128.

F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet,
and M. Utting, “A subset of precise UML for model-based
testing,” in Proc. 3rd Int. Workshop Adv. Model-Based Testing, 2007,
pp- 95-104.

M. Bozkurt and M. Harman, “Automatically generating realistic
test input from web services,” in Proc. IEEE 6th Int. Symp. Serv.
Oriented Syst. Eng., 2011, pp. 13-24.

L. C. Briand, Y. Labiche, and H. Sun, “Investigating the use of
analysis contracts to improve the testability of object-oriented
code,” Softw. Pract. Exp., vol. 33, no. 7, pp. 637672, Jun. 2003.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Eng-
ler, “EXE: Automatically generating inputs of death,” ACM
Trans. Inf. Syst. Secur., vol. 12, no. 2, pp. 10:1-10:38, Dec. 2008.

J. Callahan, F. Schneider, and S. Easterbrook, “Automated
software testing using model-checking,” in Proc. SPIN Workshop,
volume 353, 1996.

522

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and S. M. Yiu,
“Application of metamorphic testing in numerical analysis,” in
Proc. IASTED Int. Conf. Softw. Eng., 1998, pp. 191-197.

W. K. Chan, S. C. Cheung, and Karl R. P. H. Leung, “A metamor-
phic testing approach for online testing of service-oriented software
applications,” in Software Applications: Concepts, Methodologies,
Tools, and Applications. Hershey, PA, USA: IGI Global, 2009, ch. 7,
pp. 2894-2914.

W. K. Chan, S. C. Cheung, and K. R. P. H. Leung, “Towards a
metamorphic testing methodology for service-oriented software
applications,” in Proc. 5th Int. Conf. Quality Softw., Sep. 2005,
pp. 470-476.

F. Chen, N. Tillmann, and W. Schulte, “Discovering specifica-
tions,” Microsoft Research, Tech. Rep. MSR-TR-2005-146,
Oct. 2005.

H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In black and
white: An integrated approach to class-level testing of object-ori-
ented programs,” ACM Trans. Softw. Eng. Methodol., vol. 7,
pp- 250-295, Jul. 1998.

H.Y.Chen, T. H. Tse, and T. Y. Chen, “TACCLE: A methodology
for object-oriented software testing at the class and cluster lev-
els,” ACM Trans. Softw. Eng. Methodol., vol. 10, no. 1, pp. 56-109,
Jan. 2001.

T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou, “Metamorphic
testing and beyond,” in Proc. Int. Workshop Softw. Technol. Eng.
Prac., Sep. 2004, pp. 94-100.

T. Chen, D. Huang, H. Huang, T.-H. Tse, Z. Yang, and Z. Zhou,
“Metamorphic testing and its applications,” in Proc. 8th Int.
Symp. Future Softw. Technol., 2004, pp. 310-319.

Y. Cheon, “Abstraction in assertion-based test oracles,” in Proc.
7th Int. Conf. Quality Softw., 2007, pp. 410-414.

Y. Cheon and G. T. Leavens, “A simple and practical approach to
unit testing: The JML and JUnit way,” in Proc. 16th Eur. Conf.
Object-Oriented Programm., 2002, pp. 231-255.

L. A. Clarke, “A system to generate test data and symbolically
execute programs,” IEEE Trans. Softw. Eng., vol. 2, no. 3, pp. 215-
222, Sep. 1976.

P. C. Clements, “Managing variability for software product lines:
Working with variability mechanisms,” in Proc. 10th Int. Conf.
Softw Product Lines, 2006, pp. 207-208.

M. Clermont and D. Parnas, “Using information about functions
in selecting test cases,” in Proc. 1st Int. Workshop Adv. Model-Based
Testing, 2005, pp. 1-7.

D. Coppit and J. M. Haddox-Schatz, “On the use of specification-
based assertions as test oracles,” in Proc. 29th Annu. IEEE/[NASA
Softw. Eng. Workshop, 2005, pp. 305-314.

M. Davies and E. Weyuker, “Pseudo-oracles for non-testable pro-
grams,” in Proc. ACM 81 Conf., 1981, pp. 254-257.

L. K. Dillon, “Automated support for testing and debugging of
real-time programs using oracles,” SIGSOFT Softw. Eng. Notes,
vol. 25, no. 1, pp. 45-46, Jan. 2000.

R.-K. Doong and P. G. Frankl, “The ASTOOT approach to testing
object-oriented programs,” ACM Trans. Softw. Eng. Methodol.,
vol. 3, pp. 101-130, Apr. 1994.

E. Elkind, B. Genest, D. Peled, and H. Qu, “Grey-box checking,”
in Proc. 26th IFIP WG 6.1 Int. Conf. Formal Techn. Netw. Distrib.
Syst., 2006, pp. 420-435.

J. Ellsberger, D. Hogrefe, and A. Sarma, SDL: Formal Object-Ori-
ented Language for Communicating Systems. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1997.

M. D. Ernst, J. H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.
S. Tschantz, and C. Xiao, “The Daikon system for dynamic detec-
tion of likely invariants,” Sci. Comput. Programm., vol. 69, no. 1,
pp- 35-45, 2007.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” IEEE Trans. Softw. Eng., vol. 27, no. 2, pp.
99-123, Feb. 2001.

R. A. Eyre-Todd, “The detection of dangling references in C++
programs,” ACM Lett. Programm. Lang. Syst., vol. 2, no. 14,
pp. 127-134, 1993.

R. Feldt, “Generating diverse software versions with genetic pro-
gramming: An experimental study,” in Soffw., IEE Proc., vol. 145,
pp- 228-236, Dec. 1998.

X. Feng, D. L. Parnas, T. H. Tse, and T. O’Callaghan, “A compari-
son of tabular expression-based testing strategies,” IEEE Trans.
Softw. Eng., vol. 37, no. 5, pp. 616-634, Sep./Oct. 2011.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[711

[72]

[73]

[74]

[75]

[76]

[771

[78]

[791

[80]

[81]

[82]

[83]

NO.5, MAY 2015

X. Feng, D. L. Parnas, and T. H. Tse, “Tabular expression-based
testing strategies: A comparison,” in Proc. Testing: Acad. Indus.
Conf. Prac. Res. Techn—MUTATION, 2007, p. 134.

J. Ferrer, F. Chicano, and E. Alba, “Evolutionary algorithms for
the multi-objective test data generation problem,” Softw.: Prac.
Exp., vol. 42, no. 11, pp. 1331-1362, 2011.

J. S. Fitzgerald and P. G. Larsen, “Modelling Systems—Practical
Tools and Techniques in Software Development, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 2009.

C. Flanagan and K. R. M. Leino, “Houdini, an annotation assis-
tant for ESC/Java,” Lecture Notes in Comput. Sci., vol. 2021,
pp- 500-517, 2001.

R. W. Floyd, “Assigning meanings to programs,” in Mathematical
Aspects of Computer Science, volume 19 of Symposia in Applied
Mathematics,]. T. Schwartz Ed., American Providence, RI, USA:
Mathematical Society, 1967, pp. 19-32. .

G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Trans. Softw. Eng., vol. 39, no. 2, pp. 276-291, Feb. 2013.

G. Fraser and A. Zeller, “Exploiting common object usage in test
case generation,” in Proc. 4th IEEE Int. Conf. Softw. Testing, Verifi-
cation Validation, 2011, pp. 80-89.

K. Frounchi, L. C. Briand, L. Grady, Y. Labiche, and R. Subra-
manyan, “Automating image segmentation verification and vali-
dation by learning test oracles,” Inf. Softw. Technol., vol. 53,
no. 12, pp. 1337-1348, 2011.

P. Gall and A. Arnould, “Formal specifications and test: Correct-
ness and oracle,” in Recent Trends in Data Type Specification, M.
Haveraaen, O. Owe, and O.-]. Dahl, Ed. Berlin, Germany,
Springer, 1996, pp. 342-358.

J. Gannon, P. McMullin, and R. Hamlet, “Data abstraction,
implementation, specification, and testing,” ACM Trans. Pro-
gramm. Lang. Syst, vol. 3, no. 3, pp. 211-223, 1981.

A. Gargantini and E. Riccobene, “ASM-based testing: Coverage
criteria and automatic test sequence,” J. Universal Comput. Sci.,
vol. 7, no. 11, pp. 1050-1067, Nov. 2001.

S. J. Garland, J. V. Guttag, and J.]J. Horning, “An overview of
Larch,” in Functional Programming, Concurrency, Simulation and
Automated Reasoning, Springer Berlin Heidelberg, 1993, pp. 329-348.
M.-C. Gaudel, “Testing from formal specifications, a generic
approach,” in Proc. 6th Ade-Eur. Int. Conf. Leuven Rel. Softw. Tech-
nol., 2001, pp. 35-48.

M.-C. Gaudel and P. R. James, “Testing algebraic data types and
processes: A unifying theory,” Formal Asp. Comput., vol. 10,
no. 5-6, pp. 436451, 1998.

G. Gay, S. Rayadurgam, and M. Heimdah, “Improving the accu-
racy of oracle verdicts through automated model steering,” in
Proc. 29th ACMJIEEE Int. Conf. Automated Softw. Eng., 2014,
pp. 527-538.

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed auto-
mated random testing,” in Proc. ACM SIGPLAN Conf. Programm.
Lang. Des. Implementation, 2005, pp. 213-223.

A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and]. Regehr,
“Cause reduction for quick testing,” in Proc. IEEE Int. Conf. Softw.
Testing, Verification, Validation, 2014, pp. 243-252.

A. Groce, D. Peled, and M. Yannakakis, “AMC: An adaptive
model checker,” in Proc. Int. Conf. Comput. Aided Verification,
2002, pp. 521-525.

R. Groz, K. Li, A. Petrenko, and M. Shahbaz, “Modular system
verification by inference, testing and reachability analysis,” in
Proc. TestCom/FATES, 2008, pp. 216-233.

Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really
been fixed?” in Proc. Int. Conf. Softw. Eng., 2010, pp. 55-64.

R. Guderlei and J. Mayer, “Statistical metamorphic testing testing
programs with random output by means of statistical hypothesis
tests and metamorphic testing,” in 7th Int. Conf. Quality Softw.,
Oct. 2007, pp. 404—409.

D. Harel, “Statecharts: A visual formalism for complex systems,”
Sci. Comput. Programm., vol. 8, no. 3, pp. 231-274, 1987.

M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo,
“Optimizing for the number of tests generated in search based
test data generation with an application to the oracle cost prob-
lem,” in Proc. Int. Workshop Search-Based Softw. Testing, Apr. 2010,
pp- 182-191.

M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: A comprehensive analysis and review of trends
techniques and applications,” Dept. of Comput. Sci., King’s
College London, London, U.K., Tech. Rep. TR-09-03, Apr. 2009.

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

[84]

[85]

[86]

(871

[88]

[89]

[90]

[911

[92]

[93]

[94]
[95]

[96]

[97]

[98]

[99]

[100]

[101]
[102]

[103]

[104]

[105]
[106]
[107]

[108]

[109]
[110]

[111]

M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Search based
software engineering: Techniques, taxonomy, tutorial,” in Empir-
ical Software Engeneering and Verification, B. Meyer and M. Nordio,
Eds. New York, NY, USA: Springer, 2012 pp. 1-59.

M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for
controlling the size of a test suite,” ACM Trans. Softw. Eng. Meth-
odol., vol. 2, no. 3, pp. 270-285, Jul. 1993.

M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
empirical investigation of the relationship between spectra dif-
ferences and regression faults,” Softw. Testing, Verification Reli-
ability, vol. 10, no. 3, pp. 171-194, 2000.

D. L. Heine and M. S. Lam, “A practical flow-sensitive and con-
text-sensitive C and C++ memory leak detector,” in Proc. ACM
SIGPLAN Conf. Programm. Lang. Des. Implementation, 2003,
pp- 168-181.

J. Henkel and A. Diwan, “Discovering algebraic specifications
from Java classes,” Lecture Notes in Comput. Sci., vol. 2743,
pp- 431-456, 2003.

F. C. Hennie, Finite-State Models for Logical Machines. Hoboken,
NJ, USA: Wiley, 1968.

M. H. Heule and S. Verwer, “Software model synthesis using sat-
isfiability solvers,” Empirical Softw. Eng., vol. 18, pp. 825-856,
Aug. 2013.

R. M. Hierons, “Oracles for distributed testing,” IEEE Trans.
Softw. Eng., vol. 38, no. 3, pp. 629-641, May/Jun. 2012.

R. M. Hierons, “Verdict functions in testing with a fault domain
or test hypotheses,” ACM Trans. Softw. Eng. Methodol., vol. 18,
no. 4, pp. 14:1-14:19, Jul. 2009.

R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland,]J. Der-
rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G.
Liittgen, A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H.
Zedan, “Using formal specifications to support testing,” ACM
Comput. Surv., vol. 41, pp. 9:1-9:76, Feb. 2009.

C. A. R. Hoare, “An axiomatic basis of computer programming,”
Commun. ACM, vol. 12, pp. 576-580, 1969.

M. Holcombe, “X-machines as a basis for dynamic system speci-
fication,” Softw. Eng. J., vol. 3, no. 2, pp. 69-76, 1988.

M. Holcombe and F. Ipate, “Correct systems: Building a business
process solution,” Softw. Testing VerificationRel., vol. 9, no. 1, pp.
76-77,1999.

G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw.
Eng., vol. 23, no. 5, pp. 279-295, May 1997.

W. E. Howden, “A functional approach to program testing and
analysis,” IEEE Trans. Softw. Eng., vol. 12, no. 10, pp. 997-1005,
Oct. 1986.

W. E. Howden, “Theoretical and empirical studies of program
testing,” IEEE Trans. Softw. Eng., vol. 4, no. 4, pp. 293-298, Jul. 1978.
M. Hughes and D. Stotts, “Daistish: Systematic algebraic testing
for OO programs in the presence of side-effects,” SIGSOFT Softw.
Eng. Notes, vol. 21, no. 3, pp. 53-61, May 1996.

D. Jackson, “Software Abstractions: Logic, Language, and Analysis.
Cambridge, MA, USA: MIT Press, 2006.

C. Jard and G. V. Bochmann, “An approach to testing specifica-
tions,” J. Syst. Softw., vol. 3, no. 4, pp. 315-323, 1983.

D. Jeffrey and R. Gupta, “Test case prioritization using relevant
slices,” in Proc. 30th Annu. Int. Comput. Softw. Appl. Conf., 2006,
pp. 411-420, 2006.

Y. Jin and D. L. Parnas, “Defining the meaning of tabular mathe-
matical expressions,” Sci. Comput. Program., vol. 75, no. 11,
pp- 980-1000, Nov. 2010.

M. J. Kearns and U. V. Vazirani, An Introduction to Computational
Learning Theory. Cambridge, MA, USA: MIT Press, 1994.

R. M. Keller, “Formal verification of parallel programs,” Com-
mun. ACM, vol. 19, no. 7, pp. 371-384, 1976.

J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385-394, Jul. 1976.

K. Lakhotia, P. McMinn, and M. Harman, “An empirical
investigation into branch coverage for C programs using
CUTE and AUSTIN,” J. Syst. Softw., vol. 83, no. 12, pp. 2379-
2391, 2010.

A. van Lamsweerde, “Formal specification: A roadmap,” in Proc.
Conf. Future Softw. Eng., 2000, pp. 147-159.

K. Lano and H. Haughton, “Specification in B: An Introduction
Using the B Toolkit. London, U.K.: Imperial College Press, 1996.

D. Lee and M. Yannakakis, “Principles and methods of testing
finite state machines—a survey,” Proc. IEEE, vol. 84, no. 8,
pp- 1090-1123, Aug. 1996.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

523

A. Leitner, M. Oriol, A Zeller, I. Ciupa, and B. Meyer, “Efficient
unit test case minimization,” in Proc. Autom. Softw. Eng., 2007,
pp- 417-420.

K. Li, R. Groz, and M. Shahbaz, “Integration testing of compo-
nents guided by incremental state machine learning,” in Proc.
Testing: Acad. Ind. Conf. Prac. Res. Tech., 2006, pp. 59-70.

D. Lorenzoli, L. Mariani, and M. Pezze, “Automatic generation of
software behavioral models,” in Proc. 30th Int. Conf. Softw. Eng.,
2008, pp. 501-510.

P. Loyola, M. Staats, I.-Y. Ko, and G. Rothermel, “Dodona: Auto-
mated oracle data set selection,” in Proc. Int. Symp. Softw. Testing
Anal., 2014, pp. 193-203.

D. Luckham and F. W. Henke, “An overview of ANNA-a
specification language for ADA,” IEEE Soft., vol. 2, no. 2,
pp. 9-22, 1984.

N. A. Lynch and M. R. Tuttle, “An introduction to input/output
automata,” CWI Quarterly, vol. 2, pp. 219-246, 1989.

P.D. L. Machado, “On oracles for interpreting test results against
algebraic specifications,” in Proc. Int. Conf. Algebraic Methodol.
Softw. Technol., 1999, pp. 502-518.

P. Maker.(1998). GNU Nana: Improved support for assertion
checking and logging in GNU C/C++ [Online]. Available:
http://gnu.cs.pu.edu.tw/software/nana/

H. Malik, H. Hemmati, and A. E. Hassan, “Automatic detection
of performance deviations in the load testing of large scale sys-
tems,” in Proc. Int. Conf. Softw. Eng.—Softw. Eng. Prac. Track,
2013, pp. 1012-1021.

L. Mariani, F. Pastore, and M. Pezze, “Dynamic analysis for diag-
nosing integration faults,” IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp- 486-508, Jul./ Aug. 2011.

B. Marre, “Loft: A tool for assisting selection of test data sets
from algebraic specifications,” in Proc. 6th Int. Joint Conf. CAAP/
FASE Theory Pract. Softw. Develop., 1995, pp. 799-800.

A. P. Mathur, “Performance, effectiveness, and reliability issues
in software testing,” in Proc. 15th Annu. Int. Comput. Softw. Appl.
Conf., 1991, pp. 604-605.

J. Mayer and R. Guderlei, “Test oracles using statistical meth-
ods,” in Proc. 1st Int. Workshop Softw. Quality, Lecture Notes Inform.
P-58, Kllen Druck+Verlag GmbH, 2004, pp. 179-189.

P. McMinn, M. Stevenson, and M. Harman, “Reducing qualita-
tive human oracle costs associated with automatically generated
test data,” in Proc. 1st Int. Workshop Softw. Test Output Validation,
2010, pp. 1-4.

P. McMinn, “Search-based software test data generation: A
survey,” Softw. Test. Verif. Rel., vol. 14, no. 2, pp. 105-156, Jun. 2004.
P. McMinn, “Search-based failure discovery using testability
transformations to generate pseudo-oracles,” in Proc. Genetic
Evol. Comput. Conf., 2009, pp. 1689-1696.

P. McMinn, “Search-based software testing: Past, present and
future,” in Proc. Int. Workshop Search-Based Softw. Testing, 2011,
pp. 153-163.

P. McMinn, M. Shahbaz, and M. Stevenson, “Search-based test
input generation for string data types using the results of web
queries,” in Proc. IEEE 5th Int. Conf. Softw. Testing, Verification
Validation, 2012, pp. 141-150.

P. McMinn, M. Stevenson, and M. Harman, “Reducing qualita-
tive human oracle costs associated with automatically generated
test data,” in Proc. Int. Workshop Softw. Test Output Validation, Jul.
2010, pp. 1-4.

A. M. Memon, “Automatically repairing event sequence-based
GUI test suites for regression testing,” ACM Trans. Softw. Eng.
Methodol., vol. 18, no. 2, pp. 1-36, 2008.

A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated test
oracles for GUIs,” in Proc. 8th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2000, pp. 30-39.

A. M. Memon and Q. Xie, “Using transient/persistent errors
to develop automated test oracles for event-driven software,”
in Proc. 19th IEEE Int. Conf. Automated Softw. Eng., 2004,
pp- 186-195.

M. Merten, F. Howar, B. Steffen, P. Pellicione, and M. Tivoli,
“Automated inference of models for black box systems based on
interface descriptions,” in Proc. 5th Int. Conf. Leveraging Appl. For-
mal Methods, Verification Validation: Technol. Mastering Change—
Volume Part I, 2012, pp. 79-96.

B. Meyer, “Eiffel: A language and environment for software
engineering,” J. Syst. Softw., vol. 8, no. 3, pp. 199-246, Jun.
1988.

524

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12,
pp. 3244, 1990.

S. Mouchawrab, L. C. Briand, Y. Labiche, and M. Di Penta,
“Assessing, comparing, and combining state machine-based test-
ing and structural testing: A series of experiments,” IEEE Trans.
Softw. Eng., vol. 37, no. 2, pp. 161-187, Mar./ Apr. 2011.

C. Murphy, K. Shen, and G. Kaiser, “Automatic system testing of
programs without test oracles,” in Proc. 18th Int. Symp. Softw.
Testing Anal., 2009, pp. 189-200.

C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime asser-
tion checking to automate metamorphic testing in applications
without test oracles,” in Proc. Int. Conf. Softw. Testing Verification
and Validation, 2009, pp. 436-445.

A.]. Offutt,]. Pan, and J. M. Voas, “Procedures for reducing the
size of coverage-based test sets,” in Int. Conf. Testing Comput.
Softw., 1995, pp. 111-123.

C. Pacheco and M. Ernst, “Eclat: Automatic generation and
classification of test inputs,” in Proc. 19th Eur. Conf. Object-
Oriented Programming, pp. 734-734, 2005.

D. L. Parnas, J]. Madey, and M. Iglewski, “Precise documentation
of well-structured programs,” IEEE Trans. Softw. Eng., vol. 20,
no. 12, pp. 948-976, Dec. 1994.

D. L. Parnas, “Document based rational software development,”
J. Knowl. Based Syst., vol. 22, pp. 132-141, Apr. 2009.

D. L. Parnas, “Precise documentation: The key to better
software,” in The Future of Software Engineering, S. Nanz, Ed. Ber-
lin, Germany, Springer, 2011, pp. 125-148.

D. L. Parnas and J. Madey, “Functional documents for computer
systems,” Sci. Comput. Program., vol. 25, no. 1, pp. 41-61, Oct.
1995.

F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the
crowd solve the oracle problem?” in Proc. Int. Conf. Softw. Testing,
Verification Validation, 2013, pp. 342-351.

D. Peled, M. Y. Vardi, and M. Yannakakis, “Black box checking,”
J. Automata, Lang. Combinatorics, vol 7, no. 2, pp. 225-246, 2002.

D. K. Peters and D. L. Parnas, “Using test oracles generated from
program documentation,” IEEE Trans. Softw. Eng., vol. 24, no. 3,
pp- 161-173, Mar. 1998.

D. K. Peters and D. L. Parnas, “Requirements-based monitors for
real-time systems,” IEEE Trans. Softw. Eng., vol. 28, no. 2,
pp- 146-158, Feb. 2002.

M. Pezze, and C. Zhang, “Automated test oracles: A survey,” in
A. Hurson and A. Memon, Eds., Advances in Computers, vol. 95,
pp- 1-48. Elsevier Ltd., 2014.

N. Polikarpova, I. Ciupa, and B. Meyer, “A comparative study of
programmer-written and automatically inferred contracts,” in
Proc. 18th Int. Symp. Softw. Testing Anal., 2009, pp. 93-104.

S. J. Prowell and J. H. Poore, “Foundations of sequence-based
software specification,” IEEE Trans, Softw. Eng., vol. 29, no. 5,
pp- 417-429, May 2003.

S. Ratcliff, D. R. White, and J. A. Clark, “Searching for invariants
using genetic programming and mutation testing,” in Proc. 13th
Annu. Conf. Genetic Evol. Comput., 2011, pp. 1907-1914.

F. Ricca and P. Tonella, “Detecting anomaly and failure in web
applications,” IEEE Multimedia, vol. 13, no. 2, pp. 44-51, Apr.-
Jun. 2006.

D. S. Rosenblum, “A practical approach to programming with
assertions,” IEEE Trans., Softw. Eng., vol. 21, no. 1, pp. 19-31, Jan.
1995.

G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong,
“Empirical studies of test-suite reduction,” Softw. Testing, Verifi-
cation Rel., vol. 12, pp. 219-249, 2002.

N. Walkinshaw S. Ali, K. Bogdanov. (2007, Oct.). A comparative
study of methods for dynamic reverse-engineering of state mod-
els. The Univ. of Sheffield, Dept. of Comput. Sci., Sheffield, U.K,,
Tech. Rep. CS-07-16, Oct.[Online]. Available: http://www.dcs.
shef.ac.uk/intranet/research/resmes/CS0716.pdf

D. Schuler and A. Zeller, “Assessing oracle quality with checked
coverage,” in Proc. 4th IEEE Int. Conf. Softw. Testing, Verification
Validation, 2011, pp. 90-99.

R. Schwitter, “English as a formal specification language,” in
Proc. 13th Int. Workshop Database Expert Syst. Appl., Sep. 2002,
pp- 228-232.

S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés,
“Automated metamorphic testing on the analyses of feature
models,” Inf. Softw. Technol., vol. 53, no. 3, pp. 245-258, 2011.

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

NO.5, MAY 2015

K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proc. 10th Eur. Softw. Eng. Conf. Held Jointly 13th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2005, pp. 263-272.

S. Shahamiri, W. Wan-Kadir, S. Ibrahim, and S. Hashim,
“Artificial neural networks as multi-networks automated test
oracle,” Autom. Softw. Eng., vol. 19, no. 3, pp. 303-334, 2012.

S. R. Shahamiri, W. M. N. Wan-Kadir, S. Ibrahim, and S. Z. M.
Hashim, “An automated framework for software test oracle,”
Inf. Softw. Technol., vol. 53, no. 7, pp. 774-788, 2011.

S. R. Shahamiri, W. M. N. Wan-Kadir, and S. Z. M. Hashim, “A
comparative study on automated software test oracle methods,”
in Proc. 4th Int. Conf. Softw. Eng. Adv., Porto, 2009, pp. 140-145.
M. Shahbaz, “Reverse Engineering and Testing of Black-Box Software
Components. LAP Lambert Academic Publishing, 2012.

M. Shahbaz, P. McMinn, and M. Stevenson, “Automatic genera-
tion of valid and invalid test data for string validation routines,”
Sci. Comput. Programm., vol. 97, no. 4, pp. 405-425, 2015.

K. Shrestha and M.]J. Rutherford, “An empirical evaluation of
assertions as oracles,” in Proc. 4th IEEE Int. Conf. Softw. Testing,
Verification Validation, 2011, pp. 110-119.

G. Shu, Y. Hsu, and D. Lee, “Detecting communication protocol
security flaws by formal fuzz testing and machine learning,” in
Proc. 28th IFIP WG 6.1 Int. Conf. Formal Techn. Networked Distrib.
Syst., 2008, pp. 299-304.

J. Sifakis, “Deadlocks and livelocks in transition systems,” in
Proc. 9th Symp. Math. Found. Comput. Sci., 1980, pp. 587-600.

A.]J. H. Simons, “JWalk: A tool for lazy systematic testing of Java
classes by design introspection and user interaction,” Autom.
Softw. Eng., vol. 14, no. 4, pp. 369-418, Dec. 2007.

R. Singh, D. Giannakopoulou, and C. S. Pasareanu, “Learning
component interfaces with may and must abstractions,” in Proc.
22nd Int. Conf. Comput. Aided Verification, 2010, pp. 527-542.

J. M. Spivey, Z Notation—a Reference Manual, 2nd ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1992.

M. Staats, G. Gay, and M. P. E. Heimdahl, “Automated oracle
creation support, or: How I learned to stop worrying about fault
propagation and love mutation testing,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 870-880.

M. Staats, M. W. Whalen, and M. P. E. Heimdahl, “Programs,
tests, and oracles: The foundations of testing revisited,” in Proc.
33rd Int. Conf. Softw. Eng., 2011, pp. 391-400.

M. Staats, S. Hong, M. Kim, and G. Rothermel, “Understanding
user understanding: Determining correctness of generated pro-
gram invariants,” in Proc. Int. Symp. Softw. Testing Anal., 2012,
pp. 188-198.

M. Staats, P. Loyola, and G. Rothermel, “Oracle-centric test case
prioritization,” in Proc. 23rd Int. Symp. Softw. Rel. Eng., 2012, pp.
311-320.

A. Takanen,]. DeMott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance, 1st ed. Norwood, MA, USA: Artech
House, Inc., 2008.

R. Taylor, M. Hall, K. Bogdanov, and J. Derrick, “Using behav-
iour inference to optimise regression test sets,” in Proc. 24th IFIP
WG 601 Int. Conf. Testing Softw. Syst., 2012, pp. 184-199.

A. Tiwari. (2002). Formal semantics and analysis methods for
Simulink Stateflow models. SRI International, Menlo Park, CA,
USA: Tech. Rep. [Online]. Available: http://www.csl.sri.com/
users/tiwari/html/stateflow.html

J. Tretmans, “Test generation with inputs, outputs and repetitive
quiescence,” Softw.—Concepts Tools, vol. 17, no. 3, pp. 103-120,
1996.

A. M. Turing, “Checking a large routine,” in Report of a Conference
on High Speed Automatic Calculating Machines. Cambridge, Eng-
land, University Mathematical Laboratory, Jun. 1949, pp. 67-69.
M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann, 2007.

M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Softw. Test. Verif. Reliab.,
vol. 22, no. 5, pp. 297-312, Aug. 2012.

G. V. Bochmann, C. He, and D. Ouimet, “Protocol testing using
automatic trace analysis,” in Proc. Can. Conf. Elect. Comput. Eng.,
1989, pp. 814-820.

A. Van Lamsweerde and M. Sintzoff, “Formal derivation of
strongly correct concurrent programs,” Acta Informatica, vol. 12,
no. 1, pp. 1-31, 1979.

J. M. Voas, “PIE: A dynamic failure-based technique,” IEEE
Trans. Softw. Eng., vol. 18, no. 8, pp. 717-727, Aug. 1992.

BARRET AL.: THE ORACLE PROBLEM IN SOFTWARE TESTING: A SURVEY

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

N. Walkinshaw, K. Bogdanov, J. Derrick, and J. Paris, “Increasing
functional coverage by inductive testing: A case study,” in Proc.
22nd IFIP WG 6.1 Int. Conf. Testing Softw. Syst., 2010, pp. 126-141.
N. Walkinshaw and K. Bogdanov, “Inferring finite-state models
with temporal constraints,” in Proc. 23rd IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2008, pp. 248-257.

N. Walkinshaw, J. Derrick, and Q. Guo, “Iterative refinement of
reverse-engineered models by model-based testing,” in Proc. 2nd
World Congress Formal Methods, 2009, pp. 305-320.

Y. Wang and D. Parnas, “Trace rewriting systems,” in Conditional
Term Rewriting Systems, vol. 656, M. Rusinowitch and J.-L. Rémy
Eds. Berlin, Germany, Springer, 1993, pp. 343-356.

Y. Wang and D. L. Parnas, “Simulating the behaviour of software
modules by trace rewriting,” in Proc. 15th Int. Conf. Softw. Eng.,
1993, pp. 14-23.

Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer, “Inferring better
contracts,” in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 191-200.
Y. Wei, H. Roth, C. A. Furia, Y. Pei, A. Horton, M. Steindorfer, M.
Nordio, and B. Meyer, “Stateful testing: Finding more errors in
code and contracts,” in Proc. 26th IEEEJ/ACM Int. conf. Autom.
Softw. Eng., 2011, pp. 440-443.

E. J. Weyuker, “Assessing test data adequacy through program
inference,” ACM Trans. Programm. Lang. Syst., vol. 5, no. 4,
pp. 641-655, 1983.

E. J. Weyuker and F. I. Vokolos, “Experience with performance
testing of software systems: Issues, an approach, and case
study,” IEEE Trans. Softw. Eng., vol. 26, no. 12, pp. 1147-1156,
Dec. 2000.

E. J. Weyuker, “On testing non-testable programs,” Comput. |.,
vol. 25, no. 4, pp. 465-470, Nov. 1982.

J. M. Wing, “A specifier’s introduction to formal methods,” IEEE
Comput., vol. 23, no. 9, pp. 8-24, Sep. 1990.

Q. Xie and A. M. Memon, “Designing and comparing automated
test oracles for GUI-based software applications,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 1, p. 4, 2007.

T. Xie, “Augmenting automatically generated unit-test suites
with regression oracle checking,” in Proc. 20th Eur. Conf. Object-
Oriented Programm., Jul. 2006, pp. 380-403.

T. Xie and D. Notkin, “Checking inside the black box: Regression
testing by comparing value spectra,” IEEE Trans. Softw. Eng., vol.
31, no. 10, pp. 869-883, Oct. 2005.

Y. Xie and A. Aiken, “Context-and path-sensitive memory leak
detection,” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp.
115-125, 2005.

Z.Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed
test suite augmentation: Techniques and tradeoffs,” in Proc. 18th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 257-266.

S. Yoo, “Metamorphic testing of stochastic optimisation,” in Proc.
3rd Int. Conf. Softw. Testing, Verification, Validation Workshops,
2010, pp. 192-201.

S. Yoo and M. Harman, “Regression testing minimisation, selec-
tion and prioritisation: A survey,” Softw. Testing, Verification,
Rel., vol. 22, no. 2, pp. 67-120, Mar. 2012.

B. Yu, L. Kong, Y. Zhang, and H. Zhu, “Testing Java components
based on algebraic specifications,” in Proc. Int. Conf. Softw. Test-
ing, Verification, Validation, 2008, pp. 190-199.

A. Zeller and R Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183—
200, Feb. 2002.

S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static and
dynamic automated test generation,” in Proc. Int. Symp. Softw.
Testing Anal., 2011, vol. 11, pp. 353-363.

W. Zheng, H. Ma, M. R. Lyu, T. Xie, and I. King, “Mining test
oracles of web search engines,” in Proc. 26th IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2011, pp. 408-411.

Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo,
and T. Y. Chen, “Automated functional testing of online search
services,” Softw. Testing, Verification Rel., vol. 22, no. 4, pp. 221-
243, 2012.

H. Zhu, “A note on test oracles and semantics of algebraic speci-
fications,” in Proc. 3rd Int. Conf. Q. Softw., 2003, pp. 91-98.

B. Zorn and P. Hilfinger, “A memory allocation profiler for C and
Lisp programs,” in Proc. Summer USENIX Conf., 1988, pp. 223—
237.

525

Earl Barr received the PhD degree in computer
science in 2009 from the University of California
at Davis. He is a lecturer at the University
College London in its Systems and Software
Engineering Research Group and a member of
its CREST centre. His research interests include
testing and program analysis, empirical software
engineering, and cyber-security.

Mark Harman is a professor of software engi-
neering in the Department of Computer Science
at University College London, where he directs
the CREST centre and is the head of Software
Systems Engineering. He is widely known for
work on source code analysis (particularly pro-
gram slicing) and testing and cofounded the field
of search-based software engineering (SBSE).
SBSE research has rapidly grown over the past
five years and now includes over 1,600 authors,
from nearly 300 institutions spread over more

than 40 countries. A recent tutorial paper on SBSE can be found here:
http://www.cs.ucl.ac.uk/staff/mharman/laser.pdf

Phil McMinn is a senior lecturer in the Depart-
ment of Computer Science at the University of
Sheffield, where he has been researching and
teaching software engineering since 2006. He is
an assistant director at the University’s Advanced
Computing Research Centre, where he leads
the Software Quality team. His main research
interests include search-based software engi-
neering, software testing, program transforma-
tion, and reverse engineering.

Muzammil Shahbaz received the PhD degree in
software engineering from the Grenoble Institute
of Technology, France. He is senior engineer at
Ultra Electronics based in United Kingdom. He is
working on developing synergies between formal
methods and software testing in the aviation
industry. He was a researcher at Orange Labs,
France, Fraunhofer Institute of Experimental
Software Engineering, Germany and University
of Sheffield, United Kingdom.

Shin Yoo received the PhD degree in computer
science from King's College London, United
Kingdom. He is a lecturer (assistant professor) of
software engineering at Centre for Research on
Evolution, Search, and Testing at University
College London, United Kingdom. His research
interests include software testing and debugging,
evolutionary computation, program slicing,
and the use of Information Theory in software
engineering.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

