
Just-in-Time Flaky Test Detection via Abstracted
Failure Symptom Matching

1st Gabin An
KAIST

Daejeon, Korea
gabin.an@kaist.ac.kr

2nd Juyeon Yoon
KAIST

Daejeon, Korea
juyeon.yoon@kaist.ac.kr

3rd Thomas Bach
SAP

Waldorf, Germany
thomas.bach03@sap.com

4th Jingun Hong
SAP Labs Korea

Seoul, Korea
jingun.hong@sap.com

5th Shin Yoo
KAIST

Daejeon, Korea
shin.yoo@kaist.ac.kr

Abstract—We report our experience of using failure symptoms,
such as error messages or stack traces, to identify flaky test
failures in a Continuous Integration (CI) pipeline for a large
industrial software system, SAP HANA. Although failure symp-
toms are commonly used to identify similar failures, they have
not previously been employed to detect flaky test failures. Our
hypothesis is that flaky failures will exhibit symptoms distinct
from those of non-flaky failures. Consequently, we can identify
recurring flaky failures, without rerunning the tests, by matching
the failure symptoms to those of historical flaky runs. This can
significantly reduce the need for test reruns, ultimately resulting
in faster delivery of test results to developers. To facilitate the
process of matching flaky failures across different execution in-
stances, we abstract newer test failure symptoms before matching
them to the known patterns of flaky failures, inspired by previous
research in the fields of failure deduplication and log analysis.
We evaluate our symptom-based flakiness detection method using
actual failure symptoms gathered from CI data of SAP HANA
during a six-month period. Our method shows the potential
of using failure symptoms to identify recurring flaky failures,
achieving a precision of at least 96%, while saving approximately
58% of the machine time compared to the traditional rerun
strategy. Analysis of the false positives and the feedback from
developers underscore the importance of having descriptive and
informative failure symptoms for both the effective deployment
of this symptom-based approach and the debugging of flaky tests.

Index Terms—flaky test, continuous integration, error message,
failure symptoms

I. INTRODUCTION

SAP HANA is an in-memory Database Management Sys-
tem (DBMS) that is used by many of the largest enterprises
around the world, offering both an on-premise installation
and a database-as-a-service solution. A commercial database
service like SAP HANA requires tremendous effort in testing
because the cost incurred by production errors is prohibitively
expensive. Therefore, SAP HANA is tested systematically
against every incoming code change to detect bugs as early as
possible in its Continuous Integration (CI) environment [1].

As pointed out in previous work [1], one of the main
challenges of testing SAP HANA is flaky tests [2], [3] that
both fail and pass against the same version of the source
code, making their results less actionable. The flakiness of
tests not only diminishes the reliability of test results [4],
but also increases the cost of testing in SAP HANA. This is
because failed test cases are often re-executed multiple times

to determine if they consistently fail or not, in the so-called
rerun strategy [5], [6]. Our investigation on the pre-submit
testing data of SAP HANA shows that 87% of test failures
are discovered to be flaky, and a significant portion of the total
testing time per test run, with a maximum of 67% and an
average of 10%, is spent on rerunning the failed tests. Such
increase in testing time means that developers have to wait
longer for test results, diminishing their productivity [7], [4].

To address these challenges, researchers have proposed
various flaky test detection techniques that do not require
reruns. Some techniques rely on only static features, such as
the vocabulary of source code [8], [9], [10] or test smells [11].
While these approaches are useful for identifying source code
patterns that are indicative of potential flakiness in a test suite,
they cannot accurately handle a single test case that can result
in both flaky and non-flaky failures. Note that flaky failure
refers to a failure that is not consistently reproduced against
the same version of the program. Dynamic techniques, on
the other hand, focus on failing test executions. DeFlaker [7],
for example, determines the flakiness of test failure based on
whether it executes the recently changed code or not. However,
by design, this technique is unable to detect the flaky failures
whose coverage overlaps with the changed code. Moreover, it
requires precise code coverage, the cost of which makes it less
practical for use in extensive testing of large-scale projects.

Meanwhile, there has been a significant amount of research
on failure deduplication [12], [13], [14], [15], [16], [17], which
uses easily obtainable failure symptoms such as stack traces
or error messages to identify and group failures that have
the same root cause. These studies have demonstrated that
failure symptoms can be valuable information sources for
identifying duplicate failures. In the context of flaky tests,
it is also assumed that failure symptoms contain information
about the cause of flakiness. For example, Flakes, a flaky
test management system offered by CloudBuild [18], uses
failure symptoms in the bug report assignment process, linking
multiple flaky tests with similar error messages to the same
bug report [19]. Additionally, FlakeRepro [20], a flaky test
reproduction technique, uses error messages to determine
whether a flaky failure has been successfully reproduced.
However, to the best of our knowledge, failure symptoms have
not yet been explicitly used to detect recurring flaky failures in
CI systems, despite their usefulness in failure deduplication.

In this paper, we propose a lightweight and black-box
approach to detect recurring flaky tests in a CI environment
using failure symptoms and information from historical test
executions. Our approach is based on the idea that failure
symptoms can be linked to the root cause of the flakiness and
therefore can be used as an indicator of the flakiness. During
the CI cycle, we gather the symptoms of the flaky failures,
which are discovered by the rerun strategy, and subsequently
use them to predict whether a new failure is flaky or not. If the
symptoms of a new failure have been frequently observed in
previous flaky failures, the new failure is regarded as flaky
without re-executions of tests. To increase the chances of
matching symptoms from failures with the same root cause
across different execution instances, we abstract the symptoms
to include only the most relevant information related to
the failure. When evaluated with historical CI data of SAP
HANA, our approach achieves a 96% precision and a 76%
recall in detecting flaky failures. The ablation study outcomes
reveal that the abstraction of symptoms has a great impact on
the performance, increasing recall from 50% to 76% while
retaining a similar level of precision. Additionally, we find
that our prediction can potentially save about 58% of machine
time spent for rerunning the failed tests. Furthermore, the
abstraction also enables the grouping of similar and recurring
flaky failures, which can help the manual investigation by
developers. Overall, these results demonstrate the substantial
promise of using failure symptoms to identify recurring flaky
failures in a CI pipeline.

We summarise the contributions of this work as follows:
• Novel Black-box Flakiness Detection: While failure symp-

toms have previously been used to group similar failures,
we are the first, to the best of our knowledge, to apply
and evaluate their effectiveness specifically in the context
of flakiness detection.

• Enhanced Detection Through Abstraction: We demon-
strate the benefits of using two abstraction methods, number
masking from the log analysis and stack trace purification
from the failure deduplication, in detecting flaky failures.

• Real-World Evaluation: We extensively evaluate our ap-
proach using a substantial volume of real-world failure data
obtained from SAP HANA.
The remainder of this paper is organised as follows. Sec-

tion II provides background information on our target soft-
ware, SAP HANA, and discusses the problem of flaky tests.
Section III describes our method for identifying flaky failures
using failure symptoms. We describe the evaluation settings
in Section IV, and present the results and discussions in
Section V and Section VI, respectively. In Section VII, we
survey related work in the areas of flaky test detection and
failure deduplication. Finally, we conclude in Section VIII.

II. BACKGROUND

This section outlines the testing pipeline, and discusses the
issue of flaky tests, in our target project, SAP HANA, a large-
scale DBMS that consists of millions of lines of C++ code and
about 1 million test cases [1].

F F P P

(a) Flaky

F F F F

(b) Non-Flaky

Fig. 1: Example of flaky (left) and non-flaky (right) test
results. Red and green rectangles represent failed and passed
executions, respectively. After the first failure, each test is re-
executed three times, which is denoted by the dashed line.

A. Testing Pipeline of SAP HANA

SAP HANA is rigorously and methodically tested across
multiple stages within its CI environment: details have been
reported by Bach et al. [1]. To briefly summarise, the testing
pipeline consists of four main phases: local testing, pre-submit
testing, post-submit testing, and extended testing. During
development, developers locally validate the new changes by
creating new tests or reusing existing regression tests. Once
new changes are submitted, they are once again tested in the
pre-submit testing stage, before being integrated into their
respective components and, ultimately, the main branch. A
change is incorporated into the main branch if and only if
it passes the pre-submit testing. After being merged into the
main branch, changes go through post-submit testing, which
is conducted daily using additional tests that require more
resources: this further ensures that the current version of the
software functions properly. Finally, once the main codebase
is ready to be released, extended testing is conducted, using
both automated and manual testing, to ensure that the release
candidate satisfies all requirements and lacks any regression.

We note that, in SAP HANA, tests are executed in the form
of test suites, each of which includes multiple test cases.1

Test cases are modular and can share helper functions. The
automated testing runs a set of selected test suites in parallel.

B. Flaky Test Problem in SAP HANA

We consider a test result flaky when the test both passes
and fails in multiple executions against the same version of
the program [3]. Flaky test results are frequently observed
during the testing of SAP HANA [1]. To identify flakiness
in automated testing, SAP HANA adopts the popular rerun
strategy: if a test suite reports a failure, it is rerun typically
three times to determine whether the failure is flaky or not.
The process is depicted in Figure 1.

This work specifically focuses on addressing the issue of
flaky tests in the pre-submit testing phase of SAP HANA.
Although flaky test results can be detrimental to any testing
stage, they are particularly harmful to the pre-submit testing
due to its higher frequency: according to Bach et al. [1],
the pre-submit testing is performed about 80 times a day
for the main branch, whereas the post-submit testing is done
on a daily basis. Specifically, the flaky test issue induces the
following two main problems in the pre-submit testing.

1Due to its large size and complexity, SAP HANA contains multiple test
suites, each of which validates a certain functionality.

First, since pre-submit testing is performed more frequently
than the subsequent phases, the rerun strategy consumes a
much higher amount of machine resources when applied
to the pre-submit testing. Our analysis of the historical CI
data reveals that, often, hundreds of flaky test outcomes are
produced per day. Consequently, multiple executions required
by reruns not only incur a significant computational cost but
also increase the overall turnaround time of testing, harming
developer productivity. Our analysis of the past testing history
of SAP HANA shows that on average 10% of total testing
time is spent on reruns to diagnose flakiness, with a maxi-
mum of 67% when there are a large number of failures. A
lightweight yet accurate technique that can predict whether
an observed failure is flaky or not can reduce the rerun cost,
particularly for test cases that are resource-intensive or time-
consuming to execute [21].

Second, the large number of flaky results produced during
the pre-submit testing phase also means that analysing and
improving test flakiness would require a significant amount
of human effort. Given its complexity, SAP HANA contains
many potential causes of flakiness, such as bugs in source or
test code, infrastructure issues, or external factors like errors
in third-party libraries. The overwhelming number of flaky
failures can lead developers to ignore flaky tests instead of
analysing and improving them, potentially resulting in lower
software quality standards. Such a loss of trust in the outcomes
of tests can have a negative impact on the overall quality of
the product [22]. An automated analysis technique that groups
flaky results according to their shared root causes can help
developers deal with flaky tests more effectively.

To sum up, we aim not only to predict whether the observed
failure is flaky or not, but also to precisely group flaky results
that share the same root cause, in the pre-submit testing phase.

C. Motivating Example

Figure 2 provides a detailed example to demonstrate the
motivation behind our proposed approach. We have selected a
test case in SAP HANA that has exhibited both flaky and
non-flaky behaviour in the past. Figure 2a shows parts of
Python stack traces and error messages observed from two
flaky failures of the test case. We can observe that the root
cause of this flakiness is related to a database connectivity
issue, as well as the specific call sequences that triggered this
issue. Furthermore, the symptoms of flaky failures in this test
case are distinguishable from those of non-flaky failures of the
same test case, which are presented in Figure 2b. Based on
this example, we conjecture that flaky failures sharing a root
cause will result in similar error messages or stack traces, that
are distinct from those of non-flaky failures. We also observe
that it is common for flaky failures to be recurring across
different pre-submit testing runs, as the underlying cause of
the failure may not have been fully identified or resolved: in
our example, the test case failed in 54 pre-submit testing runs
between January and June in 2022. Out of these 54 failures, 52
(96%) were caused by the same database connectivity issue,
and their symptoms were exactly identical to those shown in

/* stack trace #1, #2 */
Traceback (most recent call last):
File NewDbTestCase.py line 937, in run
self.setUp()

File testCrossDBAtrMultiDB.py line 303, in setUp
super(testCrossDBAtrMultiDB, self).setUp()

File testCrossDBQuery.py line 1359, in setUp
self.conn2 = self.conman2.createConnection()

File connectionManager.py line 629, in createConnection
return self.createNamedConnection(conn_id, **kw_args)

File connectionManager.py line 704, in
↪→createNamedConnection

**props)
File connectionManager.py line 113, in __init__
retryChecker(dbapi.Connection.__init__, self, **keys)

File RetryChecker.py line 20, in __call__
return function(*args, **kwargs)

/* error message #1 */
Error: (-10709, Connection failed (RTE:[89006] System call ’

↪→connect’ failed, rc=111:Connection refused {
↪→1.2.3.3:30024 -> 1.2.3.3:31144} (1.2.3.3:30024 ->
↪→1.2.3.3:31144)))

/* error message #2 */
Error: (-10709, "Connection failed (RTE:[89006] System call

↪→’connect’ failed, rc=111:Connection refused {
↪→1.2.3.4:29616 -> 1.2.3.4:31144} (1.2.3.4:29616 ->
↪→1.2.3.4:31144))")

(a) Symptoms of flaky failures

/* stack trace */
Traceback (most recent call last):
File NewDbTestCase.py line 952, in run
testMethod() # actually run the test

File testCrossDBAtrMultiDB.py line 12487, in
↪→testCrossDB_ATR_BinaryDataSync_SubTable

self._execute(cursors[1], """ALTER REMOTE SUBSCRIPTION "%
↪→s"."SUB_%s" DISTRIBUTE """ % (schemas[1], tables
↪→[1]))

File testCrossDBAtrMultiDB.py line 429, in _execute
self.fail("%s failed with %s" % (statement, str(err)))

/* error message */
AssertionError: ALTER REMOTE SUBSCRIPTION "db2"."SUB_tbl2"

↪→DISTRIBUTE failed with (129, ’transaction rolled back
↪→ by an internal error: table REP::db2:TARGET_tbl2 (t
↪→2030) not locked by tablelock(false) or rowlock(false
↪→); $condition$=xlocked rowlocked’)

(b) Symptoms of a non-flaky failure

Fig. 2: Symptoms from both flaky and non-flaky failures
observed from the same test case in SAP HANA.

Figure 2a, except for the IP addresses highlighted in the grey
background colour. These observations motivate us to detect
recurring flaky failures using their symptoms.

III. JUST-IN-TIME FLAKINESS DETECTION USING
ABSTRACTED FAILURE SYMPTOMS

This section presents our approach to detect flaky test
failures during the pre-submit testing of SAP HANA using
failure symptoms, e.g., stack traces and error messages. These
are lightweight and black-box information sources that can be
accessed without incurring additional execution or instrumen-
tation costs. This allows us to design an efficient flakiness
detection technique that can be seamlessly integrated into the
CI pipeline in a just-in-time manner. The remainder of this
section explains the details of our approach.

Failure symptoms from a test suite

Abstract failure symptoms Are symptoms of flakiness? (T) Flaky
true

Rerun the test suite (K)

false Update case memory (W)

All reruns failed?

false

Non-Flaky

true

Case Memory
read

write

Fig. 3: The overview of our flakiness detection approach during a pre-submit testing phase. The solid and dashed lines represent
the control and data flow, respectively. The hyperparameters T , K, and W respectively denote the minimum frequency threshold,
the number of reruns, and the minimum word count for symptoms.

A. Overview

We propose a novel flakiness detection approach which is
a hybrid of the conventional rerun strategy and the symptom-
based flakiness detection. In our approach, the rerun strategy
is used to systematically collect flaky test failures in a sound
way, i.e., producing no false positives, whereas the symptoms
of those failures are then regarded as a signal of flakiness and
used to detect future flaky failures in a just-in-time manner.

The overall workflow of the proposed method is depicted in
Figure 3. Suppose that a test suite fails during the pre-submit
testing phase. To decide whether to rerun the test suite, we
first collect the set of failure symptoms, S, i.e., stack traces
and error messages of the test suite failure. For example, if
N test cases within the test suite have failed, we collect the
failure symptoms from each test case (|S| = N). Subsequently,
we abstract each of the collected failure symptoms in S by
discarding less relevant details (Figure 3: Abstract failure
symptoms, see Section III-B for details). The set of abstracted
symptoms, denoted as S′, are used to look up the case memory,
FFS, which contains the known Flaky Failure Symptoms.
FFS is a hash memory, where the key is the abstracted
symptoms, and the value is the past observation count (default
is 0). To determine whether the currently observed symptoms
S′ are the symptoms of flakiness or not, we use the following
count-based matching function:

AreF laky(S′) :=

{
true, if ∀s ∈ S, FFS(s) ≥ T

false, otherwise

If all collected symptoms in S have a past observation count
greater than a pre-defined threshold, T , the failure of the test
suite is classified as flaky, and no further reruns are performed.
However, if at least one of their observation count is lower
than T , we explicitly check the flakiness by rerunning it K
times (Figure 3: Rerun the test suite). If all K reruns fail
consistently, the failure is classified as non-flaky. Otherwise,
the failure is classified as flaky, and the case memory is
updated accordingly by incrementing the observation count
of the symptoms of the failed test cases (Figure 3: Update
case memory). During this process, we heuristically filter out
symptoms that are less likely to contain sufficient information
about the root cause of the flakiness. We only store symptoms

that have at least W unique tokens with only alphabetic
characters in their error messages. Let S′

W ⊆ S′ denote the
set of symptoms that satisfy such a condition. Then, the case
memory is updated for each of the symptoms in S′

W , i.e.,
FFS(s) := FFS(s) + 1 for all s ∈ S′

W .
Note that we maintain the case memory of flaky failures

instead of the non-flaky ones for a specific reason. While
the opposite approach, i.e., collecting and matching symptoms
of non-flaky failures, is possible, it would be less accurate
because of the inherent limitations of testing: a finite number
of reruns can only prove flakiness, not non-flakiness. Conse-
quently, symptoms of flaky failures can be collected reliably,
while those of non-flaky failures cannot.

Our approach is matching-based [16] rather than similarity-
based [23], [24], [12], [14], because matching is more effi-
cient and scalable. Unlike hash-based matching with constant
computational complexity, a similarity-based approach would
require comparing the current symptoms with every past
symptom, which is computationally expensive to be performed
during testing. To further increase the effectiveness of match-
ing, we abstract the failure symptoms to include only the
information most relevant to the failure. The next subsection
describes the details of the abstraction.

B. Abstraction of Failure Symptoms

Symptoms of flaky failures with the same root cause may
not be exact matches to each other, due to subtle differences
such as the IP addresses in Figure 2a. To achieve better
matching, we propose to abstract the failure symptoms to
include only essential information related to the potential
root causes, and to prevent minor differences from hindering
correct matches. We apply purification and number masking
to stack traces and error messages, respectively.
Stack Trace Purification: Since test cases of SAP HANA
are written as Python functions, most of the test failures are
reported with their Python stack traces. The traces contain
function names, line numbers, file names, and the source code
line for each call frame unless the corresponding test suite
terminates abnormally. We purify the raw stack traces to con-
tain only the essential information that captures the dynamic
flow of the test execution: we first extract only the file and
function names using regular expressions to filter out subtle

testCrossDBQuery.py,setUp
connectionManager.py,createConnection
connectionManager.py,createNamedConnection
connectionManager.py,__init__
RetryChecker.py,__call__

(a) Example of the purified stack trace. After extracting only the file
and function names from the original stack trace (Figure 2a), the
entry points for the test execution, i.e, the first two calls run and
setUp, are discarded.

Error: (-#, Connection failed (RTE:[#] System call ’
↪→connect’ failed, rc=#:Connection refused {
↪→#.#.#.#:# -> #.#.#.#:#} (#.#.#.#:# -> #.#.#.#:#))
↪→)

(b) Example of the abstracted error message. The numbers in the
original error message (Figure 2a) are replaced with # by masking.

[callstack]
testCrossDBQuery.py,setUp
connectionManager.py,createConnection
connectionManager.py,createNamedConnection
connectionManager.py,__init__
RetryChecker.py,__call__
[message]
Error: (-#, Connection failed (RTE:[#] System call ’

↪→connect’ failed, rc=#:Connection refused {#.#.#.#:#
↪→ -> #.#.#.#:#} (#.#.#.#:# -> #.#.#.#:#)))

(c) The abstracted stack trace and the error message are concatenated
to form the symptom of a failure.

Fig. 4: Example of the abstracted failure symptom

differences, such as line number or source code style change.
Subsequently, we remove entry points for test execution, i.e.,
the functions that are called to initiate the testing process,
from the stack trace. This is to enable the matching of failure
symptoms across different test suites that eventually trigger the
same function sequences containing the root cause of flakiness.
As a result, the stack trace is represented as a sequence of file
and function pairs. Figure 4a shows the purified version of the
raw stack trace from Figure 2a.
Number Masking: We observe that many dynamic parts in
the error message are specific numbers, e.g., IP addresses,
dates, memory addresses, etc. To filter out such details, we
replace all numbers with the character #. For example, the IP
addresses in Figure 2a are masked to #.#.#.#:# as shown
in Figure 4b. All hexadecimal numbers are also masked using
the regular expression 0[xX][0-9a-fA-F]+. This strategy
is motivated by anonymization [25], abstraction [26], removal
of variables [27], and removal of numbers [28] in previous
test log analysis techniques.

Finally, the abstracted stack traces and error messages are
then concatenated as shown in Figure 4c.

IV. EXPERIMENTAL SETUP

We describe the experimental setup for evaluation.

TABLE I: Statistics of 4,576 pre-submit testing records col-
lected from SAP HANA. “F” represents flaky test failures,
and “NF” represents non-flaky test failures.

Statistics Total

executed test suites 8,750,036

failed test suites (F+NF) 58,927
failed test suites (F) 51,183
failed test suites (NF) 7,744

failed test suites w/ test case failures (F+NF) 15,114
failed test suites w/ test case failures (F) 11,599
failed test suites w/ test case failures (NF) 3,545

failed test suites w/ valid symptoms (F+NF) 13,168
failed test suites w/ valid symptoms (F) 9,857
failed test suites w/ valid symptoms (NF) 3,311

A. Dataset Construction

We evaluate our approach using the past pre-submit testing
records from SAP HANA. Specifically, after collecting pre-
submit testing results from January to June 2022, we assume
that our technique was deployed in January 2022, with an
empty corpus of flaky failure symptoms, and was used to
detect the flakiness of future failures until June 2022. While
SAP HANA has various combinations for the compiler and
platform options for testing, we consider a single combination
in our evaluation for the sake of simplicity. As a result, 4,576
pre-submit testing records are collected from the specified
date range. Table I shows the detailed statistics of the dataset,
including the total number of executed test suites, the number
of failed test suites (both flaky and non-flaky), the number
of failed test suites with test case failures (both flaky and
non-flaky), and the number of failed test suites with valid
symptoms (both flaky and non-flaky). We observe that test
suites often fail outside their test cases. For example, a test
suite can crash during its setup or teardown process performed
before and after the actual test case execution, or can be
terminated due to timeout constraints. In such cases, the test
suite cannot be associated with any test case failures. The
data retention policy of SAP HANA does not keep the error
messages in such cases for a long time, as such failures are out-
side the main testing processes. Therefore, we only consider
the failures that occur during the execution of test cases in
our analysis.2 Further, we found that some failure symptoms
are not informative to be used as a signal for flakiness: for
example, an error message “Unit test failed - Log Preview not
supported.” does not provide any helpful information about its
root cause. Therefore, we have manually mined a set of non-
useful patterns of error messages and filtered out failures in our
dataset that match the mined patterns. In total, we collected
13,168 test suite failures that occurred during the execution
of test cases and have valid symptoms for every test case,
corresponding to 22.3% of the total failures. Among them,
9,857 failures are flaky, while 3,311 failures are non-flaky.

2We note that our method can be extended to failures outside of test cases
as long as the failure symptoms can be collected. This is discussed further in
Section VI.

This flakiness label is assigned based on the previous three
rerun results of the failures. It should be noted that the non-
flaky label may not be accurate as the reruns are not complete,
i.e., they may not detect all flaky failures.

B. Hyperparameter Settings and Other Details

Three hyperparameters, T , W , and K, can be adjusted
to optimise performance. First, the matching threshold, T ,
determines whether a given set of failure symptoms is an
indicator of a flaky failure. A higher value of T would lead to
a more conservative detection. During our evaluation, T is set
with values of {1, 2, 3, 4, 5, 6}. Second, the minimum required
number of unique words in error messages, W , is used to
heuristically control the quality of the failure symptoms. Like
T , a higher value of W would be more conservative. During
our evaluation, W is set with values of {1, 2, 3, 4, 5, 6}. Lastly,
the hyperparameter K is used to determine the number of
times each failed test suite should be rerun, and set to 3 to
align with the established practice in SAP HANA.

Furthermore, we assume that the pre-submit testing runs are
executed sequentially in order of their starting time, for the
sake of simplicity. In addition, in a single pre-submit testing
run, the case memory, FFS, is updated all at once after all
necessary reruns for any failed test suites have been completed,
because the test suites are executed in parallel in SAP HANA.
We assume a sequential order between pre-submit test runs to
ensure that the case memory is fully updated after each run,
before the subsequent run starts.

V. RESULTS

In this section, we present the findings from our evalua-
tion. Section V-A reports the accuracy of our symptom-based
flakiness detection approach. Section V-B studies the impact
of abstraction on the effectiveness of flakiness detection.
Section V-C analyses the potential savings in test resources
achievable through our approach. Finally, Section V-D pro-
vides a more in-depth analysis of false positive cases and
discusses their implications.

A. Detection Accuracy

We measure the precision and recall of our flakiness detec-
tion approach based on the simulation results. As a baseline
for precision, we calculate the precision obtained from a naive
model that always predicts positive, which is equivalent to the
proportion of flaky examples (among all failures with valid
symptoms) in our dataset, 9,857

13,168 ≈ 0.749. To assess the overall
performance of the detection, we also compute the F1 score.

The performance of our symptom-based detection approach
is presented in Figure 5, where we examine the precision,
recall, and F1 scores for different hyperparameter settings of
T and W . Our approach consistently achieves precision of at
least 0.958, which is 28% higher than the naive baseline. These
results indicate that the failure symptoms can serve as effective
indicators of flakiness. In contrast, the recall values show a
wider distribution, ranging from 0.423 to 0.758, which in turn
results in F1 scores ranging from 0.591 to 0.847. Overall,

the best performing hyperparameter configuration is T = 1,
W = 1, with the F1 score of 0.847. Note that, due to the
inherent nature of our method, recall values are sensitive to
the frequency of recurring flaky failures. If a specific root
cause of flaky failure manifests itself only once, our method
will not be able to detect it, even under the least conservative
hyperparameter configuration of T = 1. As such, we note that
the reported recall values are dependent on the specific data
we used, i.e., the CI history from the six-month period.

We observe a trade-off between precision and recall against
different hyperparameter settings. Increasing T and W leads
to a more conservative detection approach, thereby increasing
the precision, whereas lowering them would match more flaky
symptoms and result in higher recall, saving more testing
resources for reruns (See Section V-C). This trade-off provides
the flexibility to finetune hyperparameters for meeting the
specific requirements of the testing process. For example, if
saving computational resources is the more pressing concern,
one can opt for higher recall at the cost of spending human
analysis cost to filter out false positives. On the other hand,
if human analysis cost is the more pressing concern, one
can finetune for higher precision and instead accept more
reruns. In addition, other aspects can influence the selection
of hyperparameters, such as whether there exists a subsequent
safeguard (e.g., re-execution of all tests in the later post-submit
testing stage) in the CI pipeline.

B. Impact of Abstraction

We perform an ablation study to see the impact of each of
the abstraction methods on the performance of our flakiness
detection approach. The boxplots in Figure 6 show the pre-
cision and recall of our approach with different abstraction
settings (y-axis). Note that each boxplot shows the precision
and recall values across all tested hyperparameter settings. Ab-
stracting the failure symptoms increases recall on average by
about 0.220 (from 0.352 to 0.572) against all hyperparameter
values. At the best-performing hyperparameter configuration,
T = 1 and W = 1, the abstraction increases the recall by
0.255 (from 0.503 to 0.758). While applying the symptom
abstraction significantly increases recall, we can see that it
does not sacrifice precision much; the precision drop is only
0.002 on average. These results show that abstraction can help
effectively matching flaky failure instances that have slightly
different symptoms from each other.

We also evaluate the direct impact of the abstraction on the
symptoms. Figure 7 shows the average number of characters
in failure symptoms (i.e., length) and the number of unique
failure symptoms of test cases at each abstraction setting. The
average length of failure symptoms decreases via abstraction,
which is expected because the abstraction removes unneces-
sary information from the symptoms. We observe that the
decrease in the number of unique failure symptoms is much
more significant than the decrease in the length of symptoms:
the number of unique failure symptoms is significantly reduced
by the abstraction, from 102,529 to 16,345 (-84%). Especially,
masking numbers in error messages is effective in reducing the

1 2 3 4 5 6
W

6
5

4
3

2
1

T

0.973 0.973 0.973 0.974 0.980 0.981
0.973 0.972 0.972 0.973 0.979 0.980
0.972 0.971 0.971 0.972 0.977 0.979
0.968 0.966 0.966 0.967 0.972 0.973
0.965 0.964 0.964 0.965 0.969 0.970
0.960 0.958 0.958 0.960 0.963 0.964

Precision

1 2 3 4 5 6
W

6
5

4
3

2
1

T

0.567 0.546 0.526 0.513 0.446 0.423
0.590 0.567 0.545 0.532 0.463 0.439
0.617 0.592 0.568 0.554 0.485 0.459
0.649 0.622 0.595 0.580 0.509 0.482
0.697 0.667 0.637 0.622 0.549 0.521
0.758 0.724 0.691 0.674 0.598 0.568

Recall

1 2 3 4 5 6
W

6
5

4
3

2
1

T

0.717 0.700 0.683 0.672 0.613 0.591
0.734 0.716 0.698 0.688 0.629 0.606
0.754 0.735 0.717 0.706 0.648 0.625
0.777 0.757 0.737 0.726 0.669 0.645
0.809 0.788 0.767 0.756 0.701 0.678
0.847 0.825 0.803 0.792 0.738 0.715

F1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 5: The performance of flaky failure detection on different hyperparameter settings. Each heatmap represents the precision,
recall, and F1 of the detection results for each combination of T and W . The darker the cell is, the higher the value is.

0.0 0.2 0.4 0.6 0.8 1.0

No Abstraction

Only Purifying

Only Masking

Purifying + Masking

Precision

0.0 0.2 0.4 0.6 0.8 1.0

No Abstraction

Only Purifying

Only Masking

Purifying + Masking

Recall

Fig. 6: Precision and Recall for each abstraction setting:
without abstraction, after only purifying stack trace, after only
masking numbers, and after both purifying and masking. Each
box shows the results for all hyperparameters.

0 100 200 300 400 500

No Abstraction

Only Purifying

Only Masking

Purifying + Masking

Avg. # Characters

0 20000 40000 60000 80000 100000

No Abstraction

Only Purifying

Only Masking

Purifying + Masking

Unique Symptoms

Fig. 7: The average character length of symptoms and the
number of unique failure symptoms for each abstraction stage:
without abstraction, after only purifying stack trace, after only
masking numbers, and after both purifying and masking.

2022-01 2022-02 2022-03 2022-04 2022-05 2022-06 2022-07
date

0

20

40

60

80

100

%
 sa

ve
d

m
ac

hi
ne

 ti
m

e max = 100%

average (62%)
1 day average
2 week moving average

(a) The reduction ratio of machine time

2022-01 2022-02 2022-03 2022-04 2022-05 2022-06 2022-07
date

0

20

40

60

80

100

%
 sa

ve
d

te
st

 e
xe

cu
tio

ns

max = 100%

average (58%)
1 day average
2 week moving average

(b) The reduction ratio of the number of test executions

Fig. 8: Percentages of the potential savings in the machine time
and the number of test executions by our approach (T = 1 and
W = 1) compared to the rerun strategy for each day

number of unique failure symptoms. This demonstrates that the
abstraction of symptoms not only enhances the recall of our
approach but also facilitates the grouping of similar failures
into a single class based on the symptoms. For example,
the abstracted symptoms in Figure 4c are matched to raw
symptoms from 1,522 failures across 120 test cases in 56
pre-submit testing runs. We expect that this automated failure
grouping can help developers identify the root cause of flaky
failures more efficiently.

C. Resource Savings

We compute the percentages of the machine time and the
number of test executions that can be saved by using our
flakiness detection approach, compared to the conventional
rerun strategy. Originally, each pre-submit testing run requires,

1 2 3 4 5 6
T

6
5

4
3

2
1

W
% saved machine time

1 2 3 4 5 6
T

6
5

4
3

2
1

W

% saved test executions

35

40

45

50

55

60

35

40

45

50

55

60

Fig. 9: Heatmaps showing the average percentages of the
machine time and the number of test executions saved by
using our flakiness detection approach at each hyperparameter
setting compared to the conventional rerun strategy

on average, nine additional test executions and 3.13 hours
of machine time for rerunning the studied failures (i.e., the
13,168 test failures with valid symptoms), which amounts to
219 executions and 78 hours spent per day.

Figure 8a and Figure 8b show the total average, one-day
average, and two-week moving average of the percentages of
the machine time and the number of test executions saved
by our approach with T = 1 and W = 1. Our approach
can save up to 100% of both test executions and machine
time associated with reruns a day. On average across the
entire period of evaluation, 62% of test executions and 58%
of machine time can be saved when compared to the rerun
strategy. Figure 9 shows the trend in the resource savings for
every hyperparameter setting. Higher T and W values lead
to lower resource savings, as they lead to fewer flaky failures
being detected (i.e., lower recall). At the most conservative
hyperparameter setting, T = 6 and W = 6, test executions
and machine time could be potentially saved by 33% and
32%, respectively. The results show that, although reducing
both the values of T and W may not always be ideal (due
to more false positives), it can effectively increase the cost
savings in testing, particularly if coupled with an additional
safeguard in subsequent testing stages. In the case of SAP
HANA, since our symptom-based matching targets only the
pre-submit testing stage, subsequent post-submit testing will
still consider tests that have been flagged to be flaky in the pre-
submit stage. Consequently, any false positives can be rectified
through reruns in the post-submit testing.

D. Analysis of False Positives

The previous results in Section V-A show that our approach
achieves a high precision of above 96%. However, there is
still a small number of false positive test suite failures that
are labelled as non-flaky in the dataset but predicted as flaky
by our approach. Theoretically, these false positives can be
classified into two categories:

• (Case 1) The Non-Flaky label is incorrect: As discussed in
Section IV-A, test suites are labelled based on the reruns
with K = 3. However, a limited number of reruns can
still result in an incorrect ”non-flaky” label [29]. Failures

/* example 1 */
failureException: one or more single tests failed in <

↪→UnitTests>
/* example 2 */
Test is marked as failed because it generated 1 unexpected

↪→ output
/* example 3 */
Test failed. Most likely, the test crashed or hit the test

↪→ timeout.
There could be other reasons as well, e.g., subsequent XML

↪→ update could not be written.
/* example 4 */
AssertionError: Test returned errorcode (rc = 2), error:
/* example 5 */
Failure in 1 out of 32 batched results. Failed tests:

↪→_traceMdsSc3.QMDS5781Queries in batch:
↪→test_traceMdsSc3.QMDS5755,<... stripped ...>,
↪→test_traceMdsSc3.QMDS5787

Fig. 10: Examples of uninformative error messages

in this category are not real false positives from our
approach, but rather the result of the limitations of the
rerun strategy.

• (Case 2) The Flaky prediction is incorrect: In instances
where symptoms stored in the case memory are not a
valid indicator of flakiness, they may lead our approach
to incorrectly predict non-flaky test suite failures as flaky.
Samples in this category are real false positives.

Based on this categorisation, we analysed 82 false positive
predictions that are shared by all hyperparameter settings. To
categorise false positive results, we first consult the historical
manual review of the pre-submit test results. We conjecture
that, if a failure belongs to Case 2 and is actually non-flaky
(called test breakages in SAP HANA), the corresponding code
change will not be merged into the main branch. However, we
find that, for 39 out of 82 false positive failures (48%), the
corresponding code changes have been successfully merged
into the main branch after developers manually reviewed the
test results. This suggests that the flaky label for these 39
failures is likely to be incorrect, i.e., they actually belong to
Case 1 (we hereby refer to them as C1 candidates). Since the
testing system of SAP HANA allows us to re-trigger past
pre-submit testing runs whose corresponding code change has
been successfully merged, we attempted to rerun the C1 candi-
dates to actually verify whether they are incorrectly labelled.
Among the 39 C1 candidates, we were unable to verify 15
candidates due to limitations in the testing infrastructure or
technical issues. The additional reruns for the remaining 24
C1 candidates reveal that all 24 are indeed verified to be flaky,
i.e., their non-flaky labels are incorrect. The analysis of C1
candidates suggests that at least 29% (=24/82) of the initial
false positive samples are actually true positives (i.e., Case
1) so that the actual precision and recall of our approach are
higher than those reported in Section V-A.

To determine the cause of incorrect predictions for Case
2, we have manually examined the failure symptoms of the
remaining 43 false positive predictions. By definition, false
positives in Case 2 mean that some symptoms stored in, and
matched from, the case memory are not exclusive to flaky fail-

ures. We find that most of these symptoms are uninformative
and vague, despite our attempt to filter out such symptoms
(see Section IV-A). Figure 10 shows false positive symptoms
from Case 2: they only indicate that a failure has occurred,
without providing any information on the internal program
states or the location where the crash occurred. This shows
that, in order to further enhance the precision of our approach,
it is necessary to either construct a more thorough list of
patterns of uninformative symptoms to filter them out or, more
fundamentally, improve the quality of the test cases so that
their failure symptoms contain more meaningful information.
In this regard, a careful manual analysis of false positives
from the historical data (i.e., non-flaky test runs confirmed by
reruns) can be useful not only for improving the precision of
the proposed technique (by filtering out unhelpful symptoms),
but also for improving the overall quality of tests (by rewriting
them to be more informative).

VI. DISCUSSION

This section presents the developer feedback on the useful-
ness of failure symptoms and discusses a potential extension
of our approach to detect other flaky failures in SAP HANA.

A. Developer Feedback on the Usefulness of Failure Symptoms
in Debugging

We collected a subset of abstracted failure symptoms for
flaky failures whose observation counts are more than 20. We
asked developers of SAP HANA for their assessments of the
usefulness of these symptoms in identifying the root causes of
the flakiness. This is to gain an understanding of the develop-
ers’ perspectives on the utility of the failure symptoms in the
debugging process. Note that the answers and feedback can be
biased by the experience of the developers. The feedback from
developers about the abstracted failure symptoms collected so
far is mixed. Some of the failure symptoms are considered
to be valuable in determining the source of the flakiness. For
example, symptoms that display specific types of errors (such
as timeouts, missing attribute errors, or import issues), or those
that include specific file names or program components known
to cause flakiness, are considered to be effective indicators of
potential root causes. However, some more general symptoms
are seen as not specific enough to provide enough information
to pinpoint the source of the problem. For instance, some
symptoms consist only of a stack trace with generic file and
method names frequently used by many test cases, or an error
message that is too brief, e.g., AssertionError: # !=
#. Essentially, these are symptoms that are similar to Case 2
false positives, described in Section V-D. They do not highlight
the cause of flakiness and can be produced by failures due
to a variety of reasons, including the test suite, the testing
environment, or the program being tested.

The feedback collectively highlights the importance of hav-
ing informative failure symptoms for effectively detecting and
debugging flaky tests. Without detailed symptoms, it becomes
challenging or even impossible for developers to accurately
determine the source of the failure. In turn, this points to

the importance of writing test cases of SAP HANA with
more descriptive error messages that clearly indicate the issue
including information about relevant program states and any
other details that can aid in diagnosis.

B. Addressing Failures Outside of the Main Testing Body

Let us consider the test failures that occur outside the scope
of our evaluation. As explained in Section II-B, the test suite
of SAP HANA is composed of multiple test cases, which
form the main testing body that validates the behaviour of the
program. To run the test cases, the test suite first sets up the
testing environment, executes the test cases, and then tears
down the environment. In Section IV-A, we observe that a
large number of flaky failures in SAP HANA happen outside
of the main testing body. Only 15,114 (or 30%) of the failures
occur during the execution of test cases. We have sampled
and manually investigated some of the remaining 70% of
failures, and identified two primary reasons for these failures:
(1) the setup/teardown part outside of the test cases leads to
exceptions or errors (including a timeout) (2) a timeout occurs
while executing the test cases, but is not handled gracefully,
leaving no meaningful symptom. These points are in line
with the results from a previous study [4], which found that
developers rate issues with setup/teardown to be the most
common causes of flakiness. During the evaluation, we have
focused on the flaky failures that occur in the main body of
the test suites, because those are the only failures for which
we can collect past symptom data. However, we argue that our
approach can be extended to flaky failures that occur during
the setup and teardown process, as long as they produce valid
failure symptoms. Under these circumstances, the set of failure
symptoms for a given test suite (S in Section III-A) can be a
singleton set containing a symptom from the failure. Similarly,
test suites that time out without leaving any symptoms should
be improved with better graceful shutdown mechanisms, so
that they can produce more informative error messages that
summarise the timeout context. We believe that these sug-
gestions, along with the recommendations mentioned in the
previous section, can serve as a guide for improving the failure
handling practices in SAP HANA.

VII. RELATED WORK

This section covers the related work on flaky test detection
and failure deduplication.

A. Flaky Test Detection

A widely adopted way to detect flaky tests is the rerun
strategy [5], [6], i.e., to rerun the failed test cases multiple
times and check if they eventually pass or not. Gruber et
al. [30] find that a large number of reruns is needed to diagnose
test flakiness. However, doing numerous reruns is not feasible
in practice due to its high cost. To address this challenge,
several techniques have been proposed to detect flaky tests
without rerunning them.

First, there is a group of techniques that use dynamic
features of test executions to detect flakiness. DeFlaker [7]

uses coverage information to detect flaky tests that do not
execute any of the changed code. FlakeFlagger [29] trains a
machine learning model that takes both static code features
including test smells and dynamic features such as coverage
as input, and predicts whether a given test failure is flaky, with
up to 86% accuracy. Among the studied features, dynamic
information such as execution time and coverage is found to
be the most important features. In case of SAP HANA, its
size as well as the overhead for coverage collection forces
us to collect coverage only on a weekly basis, making it
difficult to apply DeFlaker to our use case. However, in cases
where coverage data for the changed code is available, we
propose a two-step approach. First, DeFlaker could be used
to detect flaky failures by identifying tests that fail without
executing any of the changed code. For the remaining failures
that cannot be detected by DeFlaker, we would then apply our
symptom-based detection technique. This combined approach
is expected to enhance the precision of flaky test detection by
identifying a broader range of flaky failures.

Second, some approaches look at previous test execution
histories to detect flaky failures. Herzig et al. [31] collect
both test features (e.g., test case identifier) and test results
(i.e., passed or failed), and subsequently use association rule
learning to identify patterns of the flaky test results. Kowalczyk
et al. [32] quantitatively model the flakiness of a test case
based on the temporal variance of its results during test history.
Gruber et al. [33] uses several features related to the code
evolution and test history data, such as the number of changed
files in the most recent pull request or the flip rates of test
outcomes, to detect flakiness without reruns.

Last, there are approaches that use static features of the
given program, such as source code tokens contained in the
test code [8], [9], [10] or test smells [34], [11], to detect the
flaky tests. Pinto et al. [8] identify the vocabulary of flaky
test cases, i.e., tokens such as job, action, and services that
are highly associated with flakiness, and show that a model
that solely depends on static code features can achieve high
accuracy on flakiness detection. Pontillo et al. [34] investigate
the difference between flaky and non-flaky tests in terms of 25
code metrics and smells, which has later been replicated [11]
using a different dataset from another study [29].

Our approach can be considered a hybrid of all existing
techniques. We use dynamic features from test executions, but
only those that do not require costly code instrumentation
such as stack traces and error messages. We consider test
execution history, but instead of focusing on the overall test
outcome of pass or fail, we maintain a case memory focused
on the symptoms of flaky failures. Finally, while some of the
symptoms we collect are part of the source code, they are not
static, as we obtain them via test executions. Note that the
same test case can result in both flaky and non-flaky failures
without changing its source code, as shown in Figure 2. Our
approach can accommodate such variability because it collects
failure symptoms dynamically: in contrast, a static approach
will permanently label a test case as flaky or not as long as
its source code does not change.

B. Failure Deduplication

Flakiness detection can be considered a specific form of
failure root cause analysis. Jiang et al. [35] aim at identifying
causes of test failures from predefined categories, including
test flakiness. By matching test log outputs with textually
similar past logs, the technique can suggest detailed causes
of the current test failure, which could be more informative
than a binary flakiness label.

Another form of failure root cause analysis is failure dedu-
plication, i.e., grouping test failures based on shared root
causes [15], [14], [36], [12], [23], [13]. Since deduplication
typically follows test execution, outputs of failures, such as
stack traces and error messages, are often adopted as inputs:
the intuition is that the more similar two stack traces or error
messages are, the more likely that the corresponding failures
share the common root cause. Bartz et al. [14] confirmed that
the edit distance between two stack traces is an important
feature for a machine learning classifier trained to identify
failures with shared root causes. Lerch et al. [13] reported
that stack traces are the most valuable information contained
in bug reports that can be used for deduplication.

Since not all failures caused by the same root cause exhibit
the exactly same stack trace, various ways of abstracting stack
traces have been suggested. Brodie et al. [15] filter out entry
points and common error handling routines using a “stop-
words” list provided by a domain expert, and remove recursive
function calls, before matching stack traces. Modani et al. [17]
also remove less relevant functions from stack traces before
measuring either the edit distance or the length of the longest
common subsequence between them. Joshy et al. [36] use only
the top N calls on the stack trace to group the failures. Our
stack trace purification is similarly motivated.

There are more complicated approaches for comparing two
stack traces to group similar failures. Dang et al. [12] proposed
a weighted common subsequence measure to quantify the
similarity between two stack traces. Rodrigues et al. [23]
designed a new similarity metric between two stack traces
based on the optimal global alignment between them. How-
ever, as similarity calculation is computationally expensive,
these approaches are hard to be applied to our just-in-time
flakiness detection.

In addition to the stack traces, error messages, which contain
unstructured information about exception types and output
values, have been also used to group similar failures. Erman
et al. [37] used raw error messages, together with the test case
names, to cluster test results. CloudBuild [18], a Microsoft’s
build-and-test system, contains a flaky test management sys-
tem called Flakes, which groups and reports flaky failures with
similar error messages together [19]. However, our approach
differs from the similarity-based approaches as it uses hash-
based matching. While matching is much more efficient, it is
susceptible to irrelevant details. We apply the number masking
to prevent such details from hindering exact matching between
similar flaky failures; our masking method is inspired by prior
studies on test log analysis [25], [26], [28].

VIII. CONCLUSION

We report our experience of using failure symptoms as a
means to detect flaky failures in SAP HANA in a just-in-time
manner. Our approach is inspired by previous failure dedupli-
cation studies. We collect symptoms of flaky failure using the
conventional rerun strategy, and later detect flaky failures by
matching their symptoms to the previous flaky failures, with
a precision of up to 98%. Our empirical evaluation with real-
world CI data from SAP HANA, along with feedback from
developers, yields the following takeaways: 1) Stack traces and
error messages are a valuable resource for recognising flaky
test failures in a CI pipeline; 2) Abstracting failure symptoms
can significantly increase the recall of flakiness prediction,
while allowing the automated grouping of flaky failures; 3)
Having tests produce detailed and informative failure symp-
toms is crucial to the accurate detection and debugging of flaky
tests. SAP is planning to deploy our symptom-based flaky
failure detection technique into the CI/CD pipeline of SAP
HANA. In future work, we aim to reduce the false positive
rate of our approach by automatically detecting and filtering
out uninformative symptoms. In the longer term, we hope that
our analysis of the failure symptoms can guide the developers
to improve the quality of test outputs.

ACKNOWLEDGMENT

Gabin An, Juyeon Yoon, and Shin Yoo have been sup-
ported by SAP Labs, Samsung Electronics (Grant No.
IO201210-07969-01), the National Research Foundation of
Korea (NRF) funded by the Korean Government MSIT (RS-
2023-00208998), the Engineering Research Center Program
(2021R1A5A1021944), as well as the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government MSIT (2021-0-01001).

REFERENCES

[1] T. Bach, A. Andrzejak, C. Seo, C. Bierstedt, C. Lemke, D. Ritter, D. W.
Hwang, E. Sheshi, F. Schabernack, F. Renkes, G. Gaumnitz, J. Martens,
L. Hoemke, M. Felderer, M. Rudolf, N. Jambigi, N. May, R. Joy,
R. Scheja, S. Schwedes, S. Seibel, S. Seifert, S. Haas, S. Kraft, T. Kroll,
T. Scheuer, and W. Lehner, “Testing very large database management
systems: The case of SAP HANA,” Datenbank-Spektrum, nov 2022.
[Online]. Available: https://doi.org/10.1007%2Fs13222-022-00426-x

[2] W. Zheng, G. Liu, M. Zhang, X. Chen, and W. Zhao, “Research Progress
of Flaky Tests,” in 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), Mar. 2021, pp. 639–
646, iSSN: 1534-5351.

[3] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A Survey
of Flaky Tests,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 1, pp. 17:1–17:74, Oct. 2021. [Online].
Available: https://doi.org/10.1145/3476105

[4] ——, “Surveying the Developer Experience of Flaky Tests,” in 2022
IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), May 2022, pp. 253–262.

[5] [Online]. Available: https://testing.googleblog.com/2016/05/
flaky-tests-at-google-and-how-we.html

[6] S. Engineering, “Test flakiness - methods for
identifying and dealing with flaky tests,” Nov
2019. [Online]. Available: https://engineering.atspotify.com/2019/11/
test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/

[7] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically Detecting Flaky Tests,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), May
2018, pp. 433–444, iSSN: 1558-1225.

[8] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude,
and A. Bertolino, “What is the Vocabulary of Flaky Tests?” in
Proceedings of the 17th International Conference on Mining Software
Repositories, ser. MSR ’20. New York, NY, USA: Association for
Computing Machinery, Jun. 2020, pp. 492–502. [Online]. Available:
https://doi.org/10.1145/3379597.3387482

[9] B. H. P. Camara, M. A. G. Silva, A. T. Endo, and S. R. Vergilio, “What
is the Vocabulary of Flaky Tests? An Extended Replication,” in 2021
IEEE/ACM 29th International Conference on Program Comprehension
(ICPC), May 2021, pp. 444–454, iSSN: 2643-7171.

[10] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. Le Traon, “A
Replication Study on the Usability of Code Vocabulary in Predicting
Flaky Tests,” in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), May 2021, pp. 219–229, iSSN:
2574-3864.

[11] V. Pontillo, “Static Test Flakiness Prediction,” in 2022 IEEE/ACM
44th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), May 2022, pp. 325–327, iSSN: 2574-
1926.

[12] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “Rebucket: A
method for clustering duplicate crash reports based on call stack simi-
larity,” in 2012 34th International Conference on Software Engineering
(ICSE), Jun 2012, pp. 1084–1093.

[13] J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten bug
report,” in 2013 17th European conference on software maintenance and
reengineering (CSMR). IEEE, 2013, pp. 69–78.

[14] K. Bartz, J. Stokes, J. Platt, R. Kivett, D. Grant, S. Calinoiu, and
G. Loihile, “Finding similar failures using callstack similarity,”
in SysML08: Third Workshop on Tackling Computer Systems
Problems with Machine Learning Techniques. USENIX, December
2008. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/finding-similar-failures-using-callstack-similarity/

[15] M. Brodie, S. Ma, G. Lohman, L. Mignet, N. Modani, M. Wilding,
J. Champlin, and P. Sohn, “Quickly finding known software problems
via automated symptom matching,” in Second International Conference
on Autonomic Computing (ICAC'05). IEEE. [Online]. Available:
https://doi.org/10.1109%2Ficac.2005.49

[16] M. Brodie, S. Ma, L. Rachevsky, and J. Champlin, “Automated problem
determination using call-stack matching,” Journal of Network and
Systems Management, vol. 13, no. 2, pp. 219–237, jun 2005. [Online].
Available: https://doi.org/10.1007%2Fs10922-005-4443-8

[17] N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet,
“Automatically identifying known software problems,” in 2007 IEEE
23rd International Conference on Data Engineering Workshop. IEEE,
apr 2007. [Online]. Available: https://doi.org/10.1109%2Ficdew.2007.
4401026

[18] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula, “CloudBuild,” in Proceedings
of the 38th International Conference on Software Engineering
Companion. ACM, may 2016. [Online]. Available: https://doi.org/10.
1145%2F2889160.2889222

[19] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A Study on
the Lifecycle of Flaky Tests,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), Oct. 2020, pp. 1471–1482,
iSSN: 1558-1225.

[20] T. Leesatapornwongsa, X. Ren, and S. Nath, “FlakeRepro:
automated and efficient reproduction of concurrency-related flaky
tests,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, nov 2022. [Online]. Available:
https://doi.org/10.1145%2F3540250.3558956

[21] F. Leinen, D. Elsner, A. Pretschner, A. Stahlbauer, M. Sailer, and
E. Jürgens, “Cost of flaky tests in continuous integration: An industrial
case study,” in 2024 IEEE Conference on Software Testing, Verification
and Validation (ICST), 2024.

[22] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and
high failure tests on the number of crash reports associated with
firefox builds,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, oct 2018. [Online].
Available: https://doi.org/10.1145%2F3236024.3275529

[23] I. M. Rodrigues, A. Khvorov, D. Aloise, R. Vasiliev, D. Koznov,
E. R. Fernandes, G. Chernishev, D. Luciv, and N. Povarov, “TraceSim:
An alignment method for computing stack trace similarity,” Empirical
Software Engineering, vol. 27, no. 2, mar 2022. [Online]. Available:
https://doi.org/10.1007%2Fs10664-021-10070-w

[24] J. C. Campbell, E. A. Santos, and A. Hindle, “The unreasonable
effectiveness of traditional information retrieval in crash report
deduplication,” in Proceedings of the 13th International Conference on
Mining Software Repositories. ACM, may 2016. [Online]. Available:
https://doi.org/10.1145%2F2901739.2901766

[25] A. Amar and P. C. Rigby, “Mining historical test logs to predict bugs and
localize faults in the test logs,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 140–151.

[26] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event
types for mining software system logs,” in 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010). IEEE, may
2010. [Online]. Available: https://doi.org/10.1109%2Fmsr.2010.5463281

[27] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in 2017 IEEE International
Conference on Web Services (ICWS). IEEE, jun 2017. [Online].
Available: https://doi.org/10.1109%2Ficws.2017.13

[28] F. Salfner and S. Tschirpke, “Error log processing for accurate failure
prediction,” in Proceedings of the First USENIX conference on Analysis
of system logs, ser. WASL’08. USA: USENIX Association, 2008, p. 4.

[29] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “FlakeFlagger:
Predicting Flakiness Without Rerunning Tests,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), May 2021,
pp. 1572–1584, iSSN: 1558-1225.

[30] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser, “An Empirical Study
of Flaky Tests in Python,” in 2021 14th IEEE Conference on Software

Testing, Verification and Validation (ICST), Apr. 2021, pp. 148–158,
iSSN: 2159-4848.

[31] K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 39–48.

[32] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and Ranking Flaky Tests at Apple,” in 2020 IEEE/ACM 42nd
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), Oct. 2020, pp. 110–119.

[33] M. Gruber, M. Heine, N. Oster, M. Philippsen, and G. Fraser, “Practical
flaky test prediction using common code evolution and test history data,”
arXiv preprint arXiv:2302.09330, 2023.

[34] V. Pontillo, F. Palomba, and F. Ferrucci, “Toward static test flakiness
prediction: a feasibility study,” in Proceedings of the 5th International
Workshop on Machine Learning Techniques for Software Quality
Evolution, ser. MaLTESQuE 2021. New York, NY, USA: Association
for Computing Machinery, Aug. 2021, pp. 19–24. [Online]. Available:
https://doi.org/10.1145/3472674.3473981

[35] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
automatic cause analysis for test alarms in system and integration
testing,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017, pp. 712–723.

[36] A. K. Joshy and W. Le, “Fuzzeraid: Grouping fuzzed crashes based on
fault signatures,” p. 12, 2022.

[37] N. Erman, V. Tufvesson, M. Borg, P. Runeson, and A. Ardo, “Navigating
information overload caused by automated testing-a clustering approach
in multi-branch development,” in 2015 IEEE 8th International Confer-
ence on Software Testing, Verification and Validation (ICST). IEEE,
2015, pp. 1–9.

