
FONTE: Finding Bug Inducing Commits
from Failures

Gabin An
School of Computing, KAIST
Daejeon, Republic of Korea

agb94@kaist.ac.kr

Jingun Hong
SAP Labs Korea

Seoul, Republic of Korea
jingun.hong@sap.com

Naryeong Kim
School of Computing, KAIST
Daejeon, Republic of Korea

kimnal1234@kaist.ac.kr

Shin Yoo
School of Computing, KAIST
Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

Abstract—A Bug Inducing Commit (BIC) is a commit that
introduces a software bug into the codebase. Knowing the
relevant BIC for a given bug can provide valuable information
for debugging as well as bug triaging. However, existing BIC
identification techniques are either too expensive (because they
require the failing tests to be executed against previous versions
for bisection) or inapplicable at the debugging time (because
they require post hoc artefacts such as bug reports or bug fixes).
We propose FONTE, an efficient and accurate BIC identification
technique that only requires test coverage. FONTE combines Fault
Localisation (FL) with BIC identification and ranks commits
based on the suspiciousness of the code elements that they
modified. FONTE reduces the search space of BICs using failure
coverage as well as a filter that detects commits that are merely
style changes. Our empirical evaluation using 130 real-world
BICs shows that FONTE significantly outperforms state-of-the-
art BIC identification techniques based on Information Retrieval
as well as neural code embedding models, achieving at least 39%
higher MRR. We also report that the ranking scores produced
by FONTE can be used to perform weighted bisection, further
reducing the cost of BIC identification. Finally, we apply FONTE
to a large-scale industry project with over 10M lines of code, and
show that it can rank the actual BIC within the top five commits
for 87% of the studied real batch-testing failures, and save the
BIC inspection cost by 32% on average.

Index Terms—Bug Inducing Commit, Fault Localisation, Git,
Weighted Bisection, Batch Testing

I. INTRODUCTION

A Bug Inducing Commit (BIC) [1] refers to a commit
that introduces buggy source code into the program. Accurate
identification of BICs can have many benefits. Existing work
has shown that simply reverting BICs may suffice for bug
fixes [2], [3], while the knowledge of BICs can aid manual
debugging by developers [4]. Considering the finding that 78%
of bugs are fixed by those who introduced them in the first
place [5], the knowledge of BICs can help effective assignment
of a newly revealed bug to the right team or developers [6].
Finally, for software engineering researchers, a BIC dataset
can be used to study how bugs are created [1], [7], eventually
resulting in better software defect prediction techniques [8].

Many approaches have been proposed to identify BICs:
existing approaches can be categorised into three groups. The
first group is bisection, i.e., a binary search on the commit
history that checks whether each snapshot in the commit
history is buggy or not [9]. The actual inspection can be
done either manually, or automatically by executing the bug-

revealing test cases. While the binary search itself is efficient,
the inspection cost required for each snapshot can render
bisection impractical. For example, with large-scale software
projects, the cost of simply building and executing test cases
for a specific snapshot can be significantly high.

While bisection depends on explicitly checking each snap-
shot, other approaches are static, i.e., they only concern com-
mit histories or bug reports. The second group is represented
by SZZ [1] and its variants. Given a Bug Fixing Commit
(BFC), SZZ essentially seeks to identify a set of commits
that last modified each element of BFC. However, SZZ-like
approaches require BFCs as input, which are only available
when the bug has already been patched. Consequently, these
techniques are not applicable at the debugging time. The
third group is IR-based BIC identification [5], [10], which
reformulates BIC identification as Information Retrieval (IR)
where the bug report is the query, and the commits are the
documents. Given a query, i.e., the bug report that contains
various information about the failure in question, the BIC is
likely to be the commit that is the most lexically similar to the
query. While IR-based approaches do not incur the cost of their
dynamic counterparts (e.g., compilation and test execution),
they cannot be applied if a bug report for the latest failure is
not available yet, or if it does but its quality is too low.

In this paper, we aim to propose a BIC identification
technique that is accurate, efficient, and available at debugging
time. Intuitively, our technique, FONTE1, distributes the sus-
piciousness computed by a Fault Localisation (FL) technique
for the current bug to commits in the development history,
expanding the dimensions of FL techniques from the location
within the codebase (i.e., spatial) to the history of the codebase
(i.e., temporal). FONTE starts by collecting the test coverage
at the time of failure and computing suspiciousness scores
for code elements using a FL technique [11]. Subsequently,
FONTE traces back the commits that are relevant to the
code covered by failing tests [12]. Commits that are mere
style changes are filtered out based on Abstract Syntax Tree
(AST) level comparisons. Finally, the remaining commits are
ranked according to the suspiciousness of the current code
that is modified by each candidate commit. Compared to
bisection, FONTE does not require inspection of each snapshot

1FONTE is an Italian word meaning “source” or “origin”.

ar
X

iv
:2

21
2.

06
37

6v
2

 [
cs

.S
E

]
 7

 F
eb

 2
02

3

it considers and therefore more efficient. Instead, FONTE uses
the failure coverage to improve accuracy. It also does not
require bug reports or bug fixes, and therefore can be applied
at debugging time once a test failure is observed.

We evaluate FONTE with a benchmark of 130 real-world
bugs: 67 from an existing BIC dataset, and 63 that are
manually curated by us. The results show that the ranking of
BICs produced by FONTE achieves 242% of MRR compared
to the random baseline. Furthermore, exploiting the fact that
FONTE assigns scores to each candidate BIC, we also propose
a weighted bisection method that leverages the commit scores
during the search. Weighted bisection combined with FONTE
can save the number of bisection iterations for 98% of the
cases. Since FONTE does not require any manual human effort,
it can be easily incorporated into CI pipelines to provide
developers with candidate BICs when reporting test failures.

The contributions of this paper are summarised as follows:
• We present FONTE, a BIC identification technique that

only requires information from the failed test execution
and the commit history. Since it does not require bug
patches or bug reports, FONTE can be used to aid debug-
ging by providing developers with the relevant BICs, once
a test failure is observed. FONTE builds upon our previous
work [12] by actually quantifying the suspiciousness of
commits instead of simply reducing search space.

• We evaluate FONTE with 130 real-world bugs and show
that FONTE can accurately rank BIC candidates: it
achieves an MRR of 0.528, which outperforms a state-
of-the-art IR-based BIC identification technique by 39%.

• We introduce weighted bisection that uses the scores as-
signed to candidate BICs by FONTE. Weighted bisection
can reduce the required number of iterations for about
98% of studied bugs when compared to the standard
bisection algorithm applied to the entire commit history.

• We apply FONTE to the batch testing scenario of large-
scale industry software. It achieves 547% of MRR com-
pared to the random baseline and can reduce the bisection
iterations in 78% of cases.

• We release a new BIC benchmark dataset for 130 De-
fects4J version 2.0 bugs. FONTE is publicly available
at https://github.com/coinse/fonte, along with artefacts of
the empirical evaluation in this paper.

The remainder of the paper is structured as follows. Sec-
tion II explains the research context of this paper and defines
the basic notations. Section III and IV propose FONTE and
the novel weighted bisection method, respectively. Section V
describes the empirical evaluation settings for FONTE along
with the research questions, and Section VI presents the
results. Section VII shows the application results of FONTE to
the batch testing scenario in industry software. Section VIII
addresses the threats to validity, and Section IX covers the
related work of FONTE. Finally, Section X concludes.

II. BACKGROUND

This section provides the background of this paper.

A. Research Context

Debugging is usually initiated by observing a failure that
reveals a bug in the program. Even when a field failure is
reported by users, the debugging activities typically start with
reproducing the field failure [13]–[15]: this is because failure-
triggering test cases are essential to confirm whether the bug
is fixed or not. Once observed, the test failure goes through
the bug triage phase to be assigned to a developer or a team,
who will analyse the buggy behaviour and produce a patch.
Knowing the BIC responsible for the observed failure can
not only contribute to more efficient bug triage [6] but also
help developers better understand the context of the buggy
behaviour [5]. To identify BICs as soon as the bug is detected,
we cannot rely on any information that is produced later in
the debugging process, such as bug fixes or bug reports.

While some BIC identification techniques [6], [10] are based
on the information from failures, they only use the stack
traces or the exception messages, which may only be indirectly
linked to the contents of actual BICs. Given that commits
are directly coupled to specific locations in the source code,
we focus on the actual coverage of the failing tests as the
main source of information. Our previous work shows that the
coverage of failing test executions (i.e., failure coverage) can
reduce the BIC search space very effectively [12]: simply by
filtering out any commit that is not related to the evolution of
code elements covered by the failing tests, the search spaces of
BICs for 703 bugs in Defects4J [16] were reduced to 12.4% of
their original size on average. The high reduction rate suggests
that failure coverage has the potential to provide the basis for
a BIC identification technique available at the debugging time.

In this work, we aim to accurately locate the BIC using
only the information that is available at the debugging time,
just after the observation of test failure. We build upon the
previous technique of BIC search space reduction [12], and
present a technique that can accurately measure the relevance
of each commit in the reduced search space to the failure. Intu-
itively, our approach distributes the code level suspiciousness
measured in the current buggy version to the past commits.

B. Basic Notations

Let us define the following properties of a program P :

• A set of commits C = {c1, c2, . . .} made to P
• A set of code elements E = {e1, e2, . . .} of P , such as

statements or methods
• A set of test cases T = {t1, t2, . . .} where TF ⊆ T is a

set of failing test cases

We assume that the bug responsible to the failing tests
resides in the source code, i.e., some elements in E cause
the failure of TF . We also define the following relations on
sets C, T , and E:

• A relation Cover ⊆ T × E defines the relation between
test cases and code elements. For every t ∈ T and e ∈ E,
(t, e) ∈ Cover if and only if the test t covers e during the
execution.

https://github.com/coinse/fonte

Fig. 1. Overview of FONTE

• A relation Evolve ⊆ C × E defines the relation between
commits and code elements. For every c ∈ C and e ∈ E,
(c, e) ∈ Evolve if and only if the commit c is in the
change history of the code element e.

As our ultimate goal is to find the BIC in C, we aim to
design a scoring function s : C → R that gives higher scores
to commits that have a higher probability of being the BIC.

III. FONTE: AUTOMATED BIC IDENTIFICATION VIA
DYNAMIC, SYNTACTIC, AND HISTORICAL ANALYSIS

This paper presents FONTE, a technique to automatically
identify the BIC, based on the assumption that a commit is
more likely to be a bug inducing commit if it introduced or
modified a code element that is more relevant to the observed
failure. The key idea behind FONTE is that the relevancy of the
code elements to the observed failures can be quantified using
existing FL techniques [11], such as SBFL. FONTE distributes
the code-level suspiciousness, computed by an FL technique
for the observed failures, to commits in the development
history. Fig. 1 illustrates the three stages of FONTE, which
are described below:

1) FONTE identifies all suspicious code elements using the
coverage of failing test cases and discards the commits
that are irrelevant to the code elements from the BIC
search space [12].

2) FONTE additionally filters out the commits that contain
only style changes to the suspicious files using AST level
comparisons.

3) FONTE assigns scores to the remaining commits in the
search space using the FL scores and evolution history
of the suspicious code elements.

The rest of this section describes each stage in more detail.

A. Stage 1: Filtering Out Failure-Irrelevant Commits

Using the notations defined in Section II-B, we can rep-
resent the failure-coverage-based BIC search space reduc-
tion [12] as follows. First, let EF ⊆ E denote the set of
all code elements that are covered by the failing test cases:

EF =
⋃
t∈TF

{e ∈ E|(t, e) ∈ Cover} (1)

1 @@ -74,7 +74,7 @@ import org.apache.commons.lang.
exception.NestableRuntimeException;

2 * @author Phil Steitz
3 * @author Pete Gieser
4 * @since 2.0
5 - * @version $Id: StringEscapeUtils.java,v 1.26

2003/09/07 14:32:34 psteitz Exp $
6 + * @version $Id: StringEscapeUtils.java,v 1.27

2003/09/13 03:23:24 psteitz Exp $
7 */
8 public class StringEscapeUtils {
9

10 @@ -242,7 +242,9 @@ public class StringEscapeUtils {
11 } else {
12 switch (ch) {
13 case ’\’’:
14 - if (escapeSingleQuote) out.write

(’\\’);
15 + if (escapeSingleQuote) {
16 + out.write(’\\’);
17 + }
18 out.write(’\’’);
19 break;
20 case ’"’:

Fig. 2. Changes by the commit 5814f50 in Defects4J Lang-46

Subsequently, we obtain CF ⊆ C, a set of commits that are
involved in the evolution of at least one code element in EF :

CF =
⋃
e∈EF

{c ∈ C|(c, e) ∈ Evolve} (2)

Then, all commits not contained in CF can be discarded
from our BIC search space because the changes introduced by
those commits are not related to any code element executed
by failing executions. Consequently, the BIC search space is
reduced from C to CF .

B. Stage 2: Filtering Out Style Change Commits

The reduced set of candidate BICs, CF , may still contain
style change commits, i.e., commits that do not introduce
any semantic change to the suspicious code elements. These
commits can be further excluded from the BIC search space,
as they cannot have altered the functional behaviour of the
relevant code elements [17]. An example of such a commit is
shown in Fig. 2, which modifies the comments and encloses
the single statement in the if block.

We use the AST level comparison [18] to identify whether
a given commit c ∈ CF is a style change commit or not. First,
we identify the set of source files, S, that are modified by the
commit c and covered by the failing test cases. Formally, any
file in S contains at least one code element in:

EcF = {e ∈ EF |(c, e) ∈ Evolve} (3)

Then, for each file s ∈ S, we compare the ASTs derived
from s before and after the commit c. If the ASTs are identical
for all files in S, we consider the commit c as a style-change
commit. Note that this approach does not guarantee 100%
recall, as it is possible for two source files to yield different
ASTs while sharing the same semantic. However, it can safely
prune the search space due to its soundness, i.e., if it identifies
a commit as a style change commit, it is guaranteed to be a
style change commit. Consequently, the search space for BIC

TABLE I
EXAMPLE OF THE VOTING POWER OF CODE ELEMENTS

Code Element e1 e2 e3 e4 e5

Score 1.0 0.6 0.6 0.6 0.3

rankmax 1 4 4 4 5
rankdense 1 2 2 2 3

vote

α = 0, τ = max 1.00 0.25 0.25 0.25 0.20
α = 1, τ = max 1.00 0.15 0.15 0.15 0.06
α = 0, τ = dense 1.00 0.50 0.50 0.50 0.33
α = 1, τ = dense 1.00 0.30 0.30 0.30 0.10

can be further reduced to CBIC = CF \ CSC , in which CSC
denotes all identified style change commits in CF .

C. Stage 3: Scoring Commits using FL Scores and History

We are now left with the reduced BIC search space CBIC ,
which only contains commits related to the evolution of the
suspicious code elements and are also identified as non-style-
change commits. The remaining task is to rank the commits
in CBIC in the order of their likelihood of being the BIC. As
mentioned earlier, our basic intuition is that if a commit had
created, or modified, more suspicious code elements for the
observed failures, it is more likely to be a BIC.

The suspiciousness of code elements can be quantified via
an FL technique. For example, we can apply SBFL [11] using
the coverage of the test suite T : note that SBFL uses only test
coverage and result information, both of which are available
at the time of observing a test failure. Assuming that we are
given the suspiciousness scores, let susp : EF → [0,∞) be the
mapping function from each suspicious code element in EF to
its non-negative FL score.2 To convert the code-level scores to
the commit level, we propose a voting-based commit scoring
model where the FL score of a code element is distributed to
its relevant commits. The model has two main components:
rank-based voting power and depth-based decay.

Rank-based Voting Power: Recent work [19]–[21] showed
that, when aggregating FL scores from finer granularity ele-
ments (e.g, statements) to a coarser level (e.g., methods), it is
better to use the relative rankings from the original level only,
rather than directly using the scores. The actual aggregation
takes the form of voting: the higher the ranking of a code
element is in the original level, the more votes it is assigned
with for the target level. Subsequently, each code element casts
its votes to the related elements in the target level. We adopt
this voting-based method to aggregate the statement level FL
scores to commits. The voting power of each code element e
based on their FL rankings (and scores) as follows:

vote(e) =
α ∗ susp(e) + (1− α) ∗ 1

rankτ (e)
(4)

where α ∈ {0, 1} is a hyperparameter that decides whether
to use the suspiciousness value (α = 1) as a numerator or

2The constraint of FL-score being non-negative is adopted for the sake of
simplicity. Note that any FL results can be easily transformed so that the
lowest score is 0.

Fig. 3. Example of computing the commit scores when λ = 0.1

not (α = 0), and τ a hyperparameter that defines the tie-
breaking scheme. We vary τ ∈ {max, dense}: the max tie-
breaking scheme gives the lowest (worst) rank in the tied group
to all tied elements, while dense gives the highest but does not
skip any ranks after ties. By design, τ = max will penalise
tied elements more severely than τ = dense. The example in
Table I shows how the hyperparameters affect voting. Note that
the relative order between FL scores is preserved in the voting
power regardless of hyperparameters, i.e., vote(e) > vote(e′)
if and only if susp(e) > susp(e′).

Depth-based Decay: Wen et al. [5] showed that using the
information about commit time can boost the accuracy of
the BIC identification. Similarly, Wu et al. [2] observed that
the commit time of crash-inducing changes is closer to the
reporting time of the crashes. Based on those findings, we
hypothesise that older commits are less likely to be responsible
for the currently observed failure, because if an older commit
was a BIC, it is more likely that the resulting bug has already
been found and fixed. To capture this intuition, we propose a
depth-based decay function that decreases the voting power of
a code element as the depth of the commit in the history of
the code element increases. The historical depth of a commit
c, with respect to a code element e ∈ EcF (Eq. 3), is defined
as follows:

depth(e, c) =|{c′ ∈ CBIC |
(c′, e) ∈ Evolve ∧ c′.time > c.time}|

(5)

Note that, unlike existing work that considered the depth at the
level of commit, we consider the depth of each code element
and use this to adjust the voting power of each element.

Bringing it all together (Eq. 4 and Eq. 5), we use the
following model to assign a score to each commit c in CBIC :

commitScore(c) =
∑
e∈Ec

F

vote(e) ∗ (1− λ)depth(e,c) (6)

where λ ∈ [0, 1) is the decay factor: when λ = 0, there is
no penalty for older commits. Figure 3 shows the example of
calculating the score of commits when λ = 0.1.

0 10 20 30 40
Commit Index (in Desending Order of Time)

0

1

2

3
Sc

or
e Pivot (Standard Bisection): 21 10 5 2 1

Pivot (Weighted Bisection): 4 3 1

Math-87b (BIC index: 0)

Fig. 4. Example of applying the weighted bisection to Math-87

Finally, based on commitScore, the commit scoring func-
tion s : C → [0,∞) of FONTE is defined as follows:

s(c) =

{
commitScore(c) if c ∈ CBIC
0 otherwise

IV. WEIGHTED BISECTION

Bisection is a traditional way of finding the BIC by repeat-
edly narrowing down the search space in half using binary
search: it is implemented in popular Version Control Systems
(VSCs), e.g., git bisect or svn-bisect. A standard
bisection is performed as follows: given the earliest bad and
last good versions, it iteratively checks whether the midpoint
of those two versions, referred to as a pivot, contains the bug.
If there is a bug, the earliest bad point is updated to the pivot,
otherwise, the last good point is updated to the pivot. If there
is a bug-revealing test case that can automatically check the
existence of a bug, the search process can be fully automated.

However, as pointed out in previous work [6], even though
the bug existence check can be automated, each bisect iteration
may still require a significant amount of time and computing
resources, especially when the program is large and complex,
or the bug-revealing test takes a long time to execute. Since
a lengthy bisection process can block the entire debugging
pipeline, we aim to explore whether the bisection can be
accelerated using the commit score information.

We propose a weighted bisection algorithm, where the
search pivot is set to a commit that will halve the amount of
remaining commit scores instead of the number of remaining
commits, in order to reduce the number of highly suspicious
commits more quickly. For example, let us consider the
example in Fig. 4 that shows the score distribution of the
commits in the reduced BIC search space of Math-87 in
Defects4J. For Math-87, the score distribution is biased
towards a small number of recent commits including the real
BIC (marked in red) with the third highest score. In this
case, simply using the midpoint as a search pivot might not
be a good choice because all highly suspicious commits still
remain together on one side of the split search space: as a
result, the standard bisection requires five iterations to finish.
Alternatively, if we pivot at the commit that halves the amount
of remaining scores, the bisection reaches the actual BIC more

Algorithm 1: Weighted Bisection Algorithm
Input: Set of commits C
Input: Commit score (weight) function s : C → [0,∞)
Output: Bug inducing commit c ∈ C
// Remove irrelevant commits

1 C ← {c ∈ C|s(c) > 0}
2 C′ ← C.orderByTimeDesc()
// C′[i] is newer than C′[i+ 1]

3 bad← 0
4 good← |C′|
5 while good > bad+ 1 do

// S(a, b) =
∑b

i=a s(C
′[i])

6 pivot← argmingood−1
i=bad+1|S(bad, i− 1)− S(i, good− 1)|

7 if C′[pivot].ContainsBug() then
8 bad← pivot

9 else
10 good← pivot

// assert bad = good− 1

11 return C′[bad]

quickly, completing the search in three iterations. Note that this
algorithm is a generalised version of the standard bisection:
the standard bisection is a special case of weighted bisection
with all commits sharing the same non-zero score.

Algorithm 1 presents the weighted bisection algorithm. It
takes the set of commits C, and the commit score function s ∈
C → [0,∞), as input, and returns the BIC. First, it removes all
commits with a score of zero (Line 1), and sorts the remaining
commits in the descending order of their commit time (Line 2).
Assuming that there is at least one BIC in the sorted sequence
C ′, the earliest bad index bad is set to 0, the index of the
most recent commit (Line 3). Since all commits in C ′ are
BIC candidates, we set the last good index good to the index
just after the oldest commit (Line 4). Then, a new pivot index
is iteratively selected from the range [bad+1, good− 1], until
there is no remaining commit between bad and good (Line
5). As mentioned earlier, we select a pivot that minimises the
difference between the left (not including pivot) and the right
(including pivot) sum of the scores (Line 6). Once a new pivot
is selected, the commit C ′[pivot] is inspected for the bug,
either using the bug-revealing tests or manually (Line 7). If
a bug is detected, the bad index is updated to pivot (Line
8), otherwise, the good index is updated to pivot (Line 10).
Finally, it returns the identified BIC at the bad index when the
loop terminates (Line 11).

V. EVALUATION SETUP

This section presents our research questions and describes
the experimental setup.

A. Research Questions
We ask the following research questions in this paper:
• RQ1: How accurately does FONTE rank the BIC?
• RQ2: How efficient is the weighted bisection compared

to the standard bisection?
• RQ3: What is the impact of FL accuracy to the perfor-

mance of FONTE?

B. Dataset of Bug Inducing Commits

We choose Defects4J v2.0.0 [16], a collection of 835 real-
world bugs in Java open-source programs, as the source of
our experimental subjects. While Defects4J provides test suites
containing the bug-revealing tests for every bug, as well as the
entire commit history for each buggy version, it lacks the BIC
information for each bug. We, therefore, start with a readily-
available BIC dataset for 91 Defects4J bugs3 constructed by
Wen et al. [4]. This dataset was created by running the bug-
revealing test cases on the past versions and finding the
earliest buggy version that makes the tests fail. However,
in our experiment, we are forced to exclude 24 out of 91
data points. Since FONTE is implemented using Git, it cannot
trace the commit history of nine bugs from the JFreeChart
project which uses SVN as its version control system. Further,
we exclude 14 data points that are shown to be inaccurate
by previous work [12]. Lastly, Time-23 is also discarded,
because we found that the identified commit in the dataset
does not contain any change to code, but only to the license
comments. The detailed reasons can be found in our repository.

We augment the remaining 67 BIC data points from Wen et
al. [4] by inspecting some of the remaining bugs in Defects4J.
Two of the authors manually and independently identified the
BIC for each bug, consulting the bug reports, failure symp-
toms, and developer patches. To reduce the manual inspection
cost, we only targeted the bugs for which the cardinality of the
reduced BIC search space, CBIC , is less than or equal to ten.
Two authors reached on consensus for 70 data points, which
have been added to the dataset. In summary, a total of 130
data points (67 from Wen et al. [4] + 70 manually curated
- 7 overlapped) are used for the evaluation of FONTE. The
combined BIC dataset and the provenance of each data point
are available in our repository for further scrutiny.

C. Implementation Details

We apply FONTE at the statement-level granularity, i.e., E is
a set of statements composing the target buggy program. The
initial BIC search space, C, is set to all commits from the very
first commit up to the commit correspond to the buggy version,
i.e., revision.id.buggy in Defects4J. Among the given
test suite in Defects4J, we only use the bug-revealing (i.e.,
failing) test cases as well as their relevant test cases as T . A
test case is relevant if and only if its full name contains the
name of at least one class executed by the failing test cases.
Table II shows the example of the relevant test selection.

1) Construction of the Cover relation: To construct the
Cover relation between T and E, we measure the statement-
level coverage of each test case in T using Cobertura
v2.0.3 which is included in Defects4J.

2) Construction of the Evolve relation: To construct the
Evolve relation between C and E, we need to retrieve the
commit history of each code element: we use the git log
command4 following our previous work [12]. We also at-

3https://github.com/justinwm/InduceBenchmark
4git log -C -M -L<start_line>,<end_line>:<file>. The

options -C and -M detect file rename/copy/move between versions.

TABLE II
EXAMPLE OF RELEVANT TEST SELECTION (TIME-15)

Failing Test (TF)

org.joda.time.field.TestFieldUtils::testSafeMultiplyLongInt

Classes Covered by the Failing Test

org.joda.time.field.FieldUtils
org.joda.time.IllegalFieldValueException

Relevant Tests (T \ TF)

org.joda.time.TestIllegalFieldValueException::testGJCutover
org.joda.time.TestIllegalFieldValueException::testJulianYearZero
org.joda.time.TestIllegalFieldValueException::testOtherConstructors
org.joda.time.TestIllegalFieldValueException::testReadablePartialValidate
org.joda.time.TestIllegalFieldValueException::testSetText
org.joda.time.TestIllegalFieldValueException::testSkipDateTimeField
org.joda.time.TestIllegalFieldValueException::testVerifyValueBounds
org.joda.time.TestIllegalFieldValueException::testZoneTransition
org.joda.time.field.TestFieldUtils::testSafeAddInt
org.joda.time.field.TestFieldUtils::testSafeAddLong
org.joda.time.field.TestFieldUtils::testSafeMultiplyLongLong
org.joda.time.field.TestFieldUtils::testSafeSubtractLong

tempted using CodeShovel [22], a state-of-the-art method his-
tory retrieval tool, instead of git log, but found that the tool
sometimes produces incorrect histories. Since it is infeasible
to manually validate all commits retrieved by CodeShovel, we
only report the results with git log in this paper. However,
we include the commit history retrieved by CodeShovel (with
the incorrect outputs) in our artefact for further validation and
comparison.

Please note that for each statement, we retrieve the commit
history of its enclosing method and create the Evolve relations
between the statements and the retrieved commits to ensure
high recall for commit histories. This is also to deal with
omission bugs [23]: if a bug is caused by omission of some
statements, we cannot trace the log of the missing statements
because they literally do not exist in the current version. In
that case, tracing the log of the neighbouring statements (in the
enclosing method) will enable to find the inducing commit, as
the method that encloses the omission bug should have been
covered by the failing tests [12].

3) Detection of Style-Change Commits: For Stage 2, we
use OpenRewrite v7.21.05 to ensure the same coding standard
between the two versions of files. More specifically, we use
the Cleanup recipe6 that fixes any errors that violate Check-
Style rules.7 This ensures that trivial differences between two
versions that do not lead to semantic differences are ignored: a
good example is a commit in Lang, which is shown in Fig. 2.
To compare ASTs, we use the isomorphism test of GumTree
v3.0.0 [18] that has time complexity of O(1).

4) Fault Localisation: To obtain the FL score of each
statement, we use a widely-used SBFL formula, Ochiai [24],
which can be expressed in our context as follows:

Ochiai(e) =
|{t ∈ TF |(t, e) ∈ Cover}|√
|TF | ∗ |{t ∈ T |(t, e) ∈ Cover}|

5https://github.com/openrewrite/rewrite
6https://docs.openrewrite.org/reference/recipes/java/cleanup
7https://checkstyle.sourceforge.io/

By definition, Ochiai(e) > 0 if and only if e ∈ EF (Eq. 1).

D. Evaluation Metrics

If the scoring model works well, BICs will have higher
scores and ranks than other commits. Therefore, we use the
following widely-adopted ranking-based evaluation metrics.
When there are tied elements, the max-tiebreaker is used.
• Accuracy@n: The number of subjects where the ranking

of the BIC is within the top n positions (higher is better)
• Mean Reciprocal Rank (MRR) [25]: The average recip-

rocal rank of the BIC (higher is better)

E. Baselines

We compare FONTE to the following baselines.
1) Other Voting Schemes:
• Equal: All lines that are covered by failing test cases are

assigned the same weight, i.e., vote(e) = 1 (7).
• Only Score: The voting power of a method is simply

defined as its FL score without considering the ranking,
i.e., vote(e) = susp(e) (8).

2) Other Scoring/Ranking Techniques:
• Random: This strategy randomly shuffles the commits in

the search space. The random strategy is a meaningful
baseline for ranking-based evaluation because the ranking
result can be overestimated when the size of the search
space is small. When there are n commits in the search
space, the expected rank of the BIC is 1+n

2 .
• Max (Eq. 9): Instead of Eq. 6, the score of a commit

is defined as the highest suspiciousness score of code
elements that are modified by the commit:

commitScore(c) = max
e∈Ec

F

susp(e) (9)

Similarly, in Orca [10], the file-level scores are converted
into the commit level using max-aggregation. Many FL
techniques have used this scheme when the granularity of
the code elements in the coverage matrix and the target
FL granularity are different [26], [27].

• FBL-BERT [28]: FBL-BERT is a recently proposed
changeset localisation technique based on a pre-trained
BERT model called BERTOverflow [29]. Given a bug
report, it retrieves the relevant changesets using their
scores obtained by the BERT-based model. We fine-
tune the model using the training dataset from the JDT
project, which is the largest training dataset provided by
their repository8: this is because no such training data
is available for our target projects. We use the ARC
changeset encoding strategy, which performed the best
for changeset-level retrieval in the original study [28].
As Defects4J contains the link to the original bug report
for every bug, we use the contents of the original bug
report as an input query.

• Bug2Commit [6]: Bug2Commit is a state-of-the-art IR-
based BIC identification method for large-scale systems:

8We confirm that the model fine-tuned with JDT performs better than that
fine-tuned with ZXing, which has the smallest training dataset.

it exploits multiple features of commits and bug reports.
When implementing Bug2Commit, we use the Vector
Space Model (VSM) because the word-embedding model
requires an additional training dataset of bug reports and
commits. As in the original paper, we use BM25 [30] as a
vectoriser and use the Ronin tokeniser, the most advanced
splitter in Spiral [31]9. We use two features of commit:
the commit message and the modified file names. From
bug reports, we use three features: the exception message
and stack traces from failing test cases, the title of bug
report, and the content of bug report.

VI. RESULTS

This section presents the results of our experiments.

A. RQ1: Ranking Performance of FONTE

100 101 102 103

Size (log scale)

C
(mean:1941.5)

Csusp
(mean:106.5)

CBIC
(mean:104.7)Se

ar
ch

 S
pa

ce

Fig. 5. Distributions of the sizes of search space

TABLE III
THE DISTRIBUTION OF THE SIZE OF THE REDUCED SEARCH SPACE

|CBIC | ≤ 1 ≤ 2 ≤ 3 ≤ 5 ≤ 10 ≤ 20 ≤ 30

Subjects 3 8 19 41 71 76 76

|CBIC | ≤ 50 ≤ 100 ≤ 200 ≤ 300 ≤ 500 ≤ 600 ≤ 700

Subjects 83 94 106 112 123 128 130

Let us first check how much search space reduction is
achieved by Stages 1 and 2 of FONTE. Figure 5 shows the
distribution of the sizes of C (original), C ′ (after Stage 1),
and CBIC (after Stage 1+2), respectively, over all subjects.
The results show that Stage 1 significantly reduces the size
of the search space. On average, the size of search space can
be reduced to 7% of its original size using only the coverage
of the failing tests. The search space reduction by Stage 2
is relatively marginal compared to Stage 1: the style change
commits are detected in only 75 out of 130 subjects (58%). To
make it easier for readers to grasp the ranking-based evaluation
results that follow, we report the size distribution of the final
reduced search space CBIC in Table III.

We now turn to the ranking performance of FONTE: Fig. 6
presents the MRR metric achieved by FONTE with each
hyperparameter setting. The MRRs from our ranking-based
voting power (Eq. 4) are plotted in solid lines, while those
from the baseline voting schemes, (Eq. 7, and Eq. 8), are
plotted in dashed lines. We observe that any hyperparameter
setting of FONTE can outperform the baseline voting methods,

9https://github.com/casics/spiral

TABLE IV
COMPARISON OF THE PERFORMANCE OF FONTE (WITH α = 0, τ = MAX, λ = 0.1) TO OTHER COMMIT RANKING TECHNIQUES APPLIED TO TWO
COMMIT SEARCH SPACE CBIC (AFTER STAGES 1 AND 2 OF FONTE) AND C , RESPECTIVELY. THE EVALUATION IS PERFORMED ON TWO SETS OF

SUBJECTS: THE DATASET FROM WEN ET AL. (67 SUBJECTS) AND OUR MANUALLY CURATED SET OF 63 SUBJECTS. THE PERFORMANCE WAS MEASURED
USING MRR (MEAN RECIPROCAL RANK) AND ACCURACY@K, WHERE K IS 1, 2, 3, 5, AND 10.

Subjects All (# subjects = 130) From Wen et al. [4] (# subjects = 67) Manually Curated (# subjects = 63)

Metric MRR Accuracy MRR Accuracy MRR Accuracy

@1 @2 @3 @5 @10 @1 @2 @3 @5 @10 @1 @2 @3 @5 @10

FONTE 0.528 47 66 85 98 110 0.324 9 19 29 38 47 0.745 38 47 56 60 63
(36%) (51%) (65%) (75%) (85%)

Other Techniques (on CBIC)

Bug2Commit 0.380 27 42 64 85 96 0.235 7 13 19 26 33 0.534 20 29 45 59 63
FBL-BERT 0.338 27 40 47 69 90 0.158 5 9 11 14 27 0.529 22 31 36 55 63
Random Baseline 0.218 3 19 41 65 75 0.065 0 2 4 6 12 0.381 3 17 37 59 63
Theoretical Lower Bound 0.145 3 8 19 41 71 0.039 0 1 2 4 8 0.258 3 7 17 37 63

Other Techniques (on C)

Bug2Commit 0.155 11 18 22 25 39 0.123 4 7 9 11 16 0.189 7 11 13 14 23
FBL-BERT 0.037 1 3 5 7 10 0.037 1 2 2 3 4 0.036 0 1 3 4 6
Random Baseline 0.002 0 0 0 0 0 0.002 0 0 0 0 0 0.002 0 0 0 0 0
Theoretical Lower Bound 0.001 0 0 0 0 0 0.001 0 0 0 0 0 0.001 0 0 0 0 0

Ablation Study for FONTE

Skip Stage 2 0.490 39 64 82 97 110 0.317 9 18 28 37 47 0.675 30 46 54 60 63
Use Equal Vote (No FL) 0.436 39 56 67 79 88 0.193 7 9 12 19 25 0.694 32 47 55 60 63
Max Aggr. (Eq. 9) 0.317 17 36 50 73 97 0.142 0 5 9 18 34 0.503 17 31 41 55 63

0.0 0.1 0.2 0.3

0.40

0.42

0.44

0.46

0.48

0.50

0.52

M
RR

voting
= 0, = max
= 1, = max
= 1, = dense
= 0, = dense

score
equal
category
ours
baseline

Fig. 6. MRR for each hyperparameter configuration of FONTE

which demonstrates the effectiveness of using the FL rank of
code elements in allocating voting power. Regarding the depth-
based decay of voting power, we observe that decay weights
λ ∈ {0.1, 0.2, 0.3} perform better than λ = 0.0 (i.e., no
decay). In particular, setting λ to 0.1 consistently outperforms
other combinations of τ and α.

Table IV shows the comparison between the performance
of FONTE with its best hyperparameter setting (α = 0,
τ = max, λ = 0.1) and other baseline ranking techniques,
Bug2Commit and FBL-BERT, in ranking commits in CBIC
for all subjects. We provide the breakdown of the results based
on the source of the datasets, Wen et al. [4] and our manual
curation (see Section V-B), because they have different size
distributions of the reduced search space CBIC . Our manually
created dataset contains only the subjects with |CBIC | ≤ 10,
so that the worst rank of the BIC in CBIC is still within
the top 10. Furthermore, in addition to the performance of
Bug2Commit and FBL-BERT, we also provide a random

baseline, which involves randomly shuffling the commits in
CBIC and ranking them, and a theoretical lower bound, which
assigns the worst possible rank to the actual BIC, to assist
readers in comprehending the results for each of the datasets.

The results show that FONTE surpasses all other baseline
techniques in terms of evaluation metrics, with a 39% and
56% higher MRR compared to Bug2Commit and FBL-BERT,
respectively, and also achieves the highest accuracy for all
studied n values. As the size of the search space, |CBIC |,
increases10, the BIC identification problem becomes more
challenging, which is reflected in the lower performance of all
techniques in the dataset from Wen et al. [4] compared to the
manually curated dataset. Nonetheless, FONTE outperforms
other techniques regardless of the size of CBIC .

To study how much contribution the search space reduction
(Stage 1 and 2 of FONTE) makes, we also present the perfor-
mance of Bug2Commit and FBL-BERT when applied to the
entire commit search space, C. The results show a significant
decrease in the ranking performance of both techniques when
the search space is not reduced before ranking.

Furthermore, the ablation experiments (Ablation Study
for FONTE in Table IV) show that filtering out the style
change commits can increase the MRR of FONTE by 8%,
showing that Stage 2 is making a significant contribution to the
ranking despite the marginal contribution to the search space
reduction. However, also note that FONTE still outperforms
all other baseline techniques even without Stage 2, which
shows the effectiveness of our voting-based scoring model
with SBFL. Interestingly, the equal voting model (Eq. 7)
with λ = 0.1, which does not leverage any FL result except
the failure coverage, yet performs better than all ranking

10The size of the search space can be estimated by the theoretical lower
bound of the performance.

0
1
2
3
4
5
6
7
8
9

10
11 97.7%

saved search iterations by changing the search algorithm to the weighted bisection
Average Saved Iterations: 7.2

Fig. 7. The number of saved search iterations required until finding the BIC
using the weighted bisection compared to the standard bisection on the entire
commit history, C

3
2
1
0
1
2
3
4
5

60.0% 33.1% 6.9%

saved search iterations by changing the search algorithm to the weighted bisection

Fig. 8. The number of saved search iterations required until finding the
BIC using the weighted bisection compared to the standard bisection on the
reduced commit history, CBIC

baselines in terms of MRR. This shows that even without
using the FL techniques, simply giving equal voting power to
every code element covered by the failing test cases can rank
BICs more effectively than the baselines. On the other hand,
given the same FL results with FONTE, the max-aggregation
method achieves only 60% of MRR compared to FONTE,
demonstrating the importance of the voting-based aggregation.
Answer to RQ1: FONTE can rank the actual BICs in the top
1 and 5 commits for 36% and 75% of studied bugs. It is
significantly more effective than the random baseline and the
state-of-the-art IR-based BIC ranking method.

B. RQ2: Standard Bisection vs. Weighted Bisection

We simulate the standard and weighted bisection algorithms
on all subjects, assuming that the bug-revealing tests can
perfectly reveal the existence of bugs. Fig. 7 contains a sorted
bar chart that shows the number of saved search iterations,
for all subjects, until finding the BIC using our weighted
bisection algorithm compared to the standard bisection on
the entire commit history. The results show that using the
weighted bisection with FONTE-generated scores11 can reduce
the search cost for about 98% of subjects compared to the
standard bisection while saving up to 11 search iterations.
On average, the number of iterations is reduced by 67%.
There is no case where the weighted bisection degrades the
performance.

For a more conservative comparison, we also compare the
weighted bisection to the standard bisection when both are
applied to the reduced search space, CBIC . Fig. 8 shows that
the weighted bisection can reduce the number of required
search iterations for 78 out of 130 subjects (60.0%), while the
number of iterations is increased in only nine out of 130 sub-
jects (6.9%). In the remaining 33.1% of cases, the number of
iterations is the same as the standard bisection. To ensure that

11FONTE with α = 0, τ = max, λ = 0.1

100 101 102

BIC rank w/ more accurate FL

100

101

102

BI
C

ra
nk

 w
/ l

es
s a

cc
ru

at
e

FL

Fig. 9. BIC ranks of FONTE with the more and less accurate FL results

the median of the number of saved iterations is positive (which
would indicate that there is a performance improvement), we
perform the one-sided Wilcoxon signed rank test [32], whose
null hypothesis is that the median of is negative (performance
degradation). The p-value is 1.51∗10−11, allowing us to reject
the null hypothesis in favour of the alternative that the median
of the number of saved iterations is greater than zero.

We also investigate why the weighted bisection worsens the
search efficiency for those nine subjects (6.9%) and report that
the BIC is not ranked well in the cases, i.e. either not in the
top 10 or even top 50%. The BIC rank (in percentage) and
the number of saved iterations are negatively correlated with
each other with a Pearson correlation coefficient of -0.58.
Answer to RQ2: Weighted bisection combined with FONTE
can save the search cost in 98% of studied bugs compared
to the standard bisection applied to the entire commit history,
saving 7.2 inspections on average. When the bisection is per-
formed only with the reduced candidates, weighted bisection
saves the number of search iterations in 60% of cases while
increasing it in only 7% of cases with lower BIC ranks.

C. RQ3: Impact of FL Accuracy on FONTE

To see how the accuracy of FL affects the performance of
FONTE on each individual subject, we provide less accurate
FL results to FONTE and observe how it affects the ranking
performance. We intentionally weaken the test suite by remov-
ing some of the relevant passing test cases, as it is known that
the accuracy of SBFL is highly dependent on the quality of
the used test suite [33]. By doing so, we limit the test suite
to only the test cases that are contained in the failing test
classes. For example, in the case of Table II, the relevant test
cases are limited to the last four test cases that are in the
TestFieldUtils class containing the failing test case.

Among the 99 out of 130 subjects whose sets of relevant
test cases are reduced, we observe that, in 57 subjects, the FL
accuracy (in terms of the highest rank of buggy methods) is
decreased as a result. For those 57 subjects, we see whether
the performance of FONTE is affected by the accuracy of
FL. In Figure 9, the x- and y-axis represent the BIC ranks
produced by FONTE with the more (original) and less accurate
FL results, respectively. Green markers (above the dashed line)
represent the cases where the better FL yields the better BIC
rank, while red markers indicate the opposite. The overall

Fig. 10. Simplified batch testing scenario

tendency is that higher FL accuracy leads to a better ranking
performance of FONTE, as shown by the fact that the number
of green dots above the dotted line is much higher than the
number of red dots below the line.12 The one-sided Wilcoxon
signed rank test for the paired ranking samples also results
in the p-value of 2.56 ∗ 10−6 showing that the median rank
difference is greater than zero when the FL accuracy increases.
Answer to RQ3: FONTE performs better when the FL results
used as its input become better. Consequently, we expect that
FONTE can benefit from more precise and sophisticated FL
techniques in the future.

VII. APPLICATION TO INDUSTRY SOFTWARE

SAP HANA is a large-scale commercial software that con-
sists of more than 10M lines of C++ and C. In the CI system of
SAP HANA, multiple commits that have individually passed
the pre-submit testing are merged into the delivery branch and
tested together using a more extensive test suite on a daily
basis. Considering the set of multiple commits as a single
batch, this is a type of Batch Testing [34]. While batch testing
reduces the overall test execution cost for SAP HANA, it
also has some practical drawbacks: when a test fails, it is not
immediately clear which change in the batch is responsible
for the failure [35]. The current CI system of SAP HANA
identifies the BIC in the batch using automatic bisection to aid
the bug assignments [36]. However, each individual inspection
during the bisection can take up to several hours due to the
compilation, installation, and test execution cost, resulting
in severe bottlenecks in the overall debugging process. The
bottleneck can be particularly problematic if integration or
system-level tests fail.

This motivates us to see whether FONTE and its weighted
bisection can reduce the number of bisection iterations. To
evaluate the effectiveness of applying FONTE, we collect
23 batch testing failures that occurred from July to August
2022 and their BICs identified by the bisection from the
internal CI logs of SAP HANA. Using the data, we first
check if FONTE can find the BIC inside the batch accurately
(Fig. 10). As the test coverage of SAP HANA is regularly
and separately updated, instead of being measured at each
of the batch testings, we use the latest line-level coverage
information to calculate the Ochiai scores. Note that we do
not need to compute the Ochiai scores for all lines, but only
the lines covered by the failing tests. When applying FONTE,
depth-based voting decay is not used (λ = 0) because all
candidate commits are submitted on the same day and have

12FONTE with the worse FL results still outperforms all baselines in RQ1.

TABLE V
EVALUATION OF FONTE ON THE 23 BATCH TESTING FAILURES OF SAP

HANA

MRR Accuracy

@1 @2 @3 @5 @10

FONTE 0.600 10 14 15 20 23
(43%) (61%) (65%) (87%) (100%)

Random 0.110 0 0 0 1 17

not yet been merged into the main codebase. For the remaining
hyperparameters, we use α = 1 and τ = max that performed
the best with λ = 0 in RQ1.

Table V shows the BIC ranking performance of FONTE in
terms of MRR and Accuracy@n. While each batch contains
18.48 commits on average, FONTE can locate the actual BIC
within the top 1 and 5 for 43% and 87% of the failures,
respectively. Compared to the random baseline, it achieves
5.5-fold increase in MRR. Further, we also report that the
weighted bisection can reduce the bisection iterations for 18
out of 23 cases (78%), while it increases the cost in only
three cases (13%). Based on this result, we plan to incorporate
weighted bisection into the CI process of SAP HANA, which
is expected to save 32% of required iterations. Considering
that each iteration can take up to several hours, we expect a
significant reduction in the average BIC identification cost for
SAP HANA in the long run.

VIII. THREATS TO VALIDITY

Threats to internal validity concern factors that can affect
how confident we are about the causal relationship between the
treated factors and the effects. FONTE relies on widely-adopted
open-source tools to establish Cover and Evolve relations
to ensure the chain of causality between the test failure
and BIC identification. Further evaluation of FONTE using
other code history mining tools such as CodeShovel [22] or
CodeTracker [37], which have been demonstrated to be more
accurate than git log, is necessary to further strengthen
our claims and will be addressed as future work. Additionally,
other baselines rely on multiple sources of information, such
as bug reports. We choose Defects4J as our benchmark as it
provides well-established links between real-world bug reports
and the buggy version, not to mention human-written bug-
revealing test cases that withheld scrutiny from the community.

Threats to external validity concern factors that may affect
how well our findings can be generalised to unseen cases.
Our key findings are primarily based on experiments with the
open-source Java programs in Defects4J. Since they are not
representative of the entire population of real-world programs,
only further evaluations can strengthen our claim of general-
isation. We tried to support our claim by evaluating FONTE
with industry-scale software written in C and C++. We do
note that FONTE does not generalise to bugs that are caused
by non-executable files, such as configuration changes, as its
base assumption is that the test failure is caused by a bug in

the source code. We leave extension of FONTE to bugs caused
by non-executable changes as our primary future work.

Threats to construct validity concern how well the used
metrics measure the properties we aim to evaluate. We adopt
two ranking-evaluation metrics, MRR and accuracy@n, to
evaluate FONTE: both have been widely used in the IR and SE
literature. Since they are based on absolute ranks, we do note
that the results can be overrated when the number of ranking
candidates is small. To mitigate the threat, we also present the
expected and worst values for the measures as baselines.

IX. RELATED WORK

Locus [5] is the first work that proposed to localise the bug
at the software change level. It takes a bug report as an input
query and locates the relevant change hunk based on the token
similarities. IR-based techniques, such as Locus, and FONTE
can complement each other depending on circumstances.
When the failure cannot be reproduced from the bug report,
IR-based techniques can be used instead of FONTE. However,
if the coverage of the failing and passing tests are available,
we can apply FONTE with SBFL to more precisely rank the
commits without relying on IR. ChangeLocator [2] aims to
find a BIC for crashes using the call stack information. It is a
learning-based approach that requires data from fixed crashes.
Unlike ChangeLocator, FONTE is not limited to crashes and
can be applied to general failures. Orca [10] takes symptoms of
bugs, such as an exception message or customer complaints, as
an input query and outputs a ranked list of commits ordered by
their relevance to the query. It uses the TF-IQF [38] to compute
the relevance scores of files, and aggregate them to a commit
level. Subsequently, it uses machine learning to predict the risk
of candidate commits for breaking ties. Bug2Commit [6] uses
multiple features extracted from bug reports and commits, and
aggregates all features by taking the average of their vector
representations. Although Bug2Commit uses an unsupervised
learning approach, it needs the historical data of project-
specific bug reports and commits to train the word embedding
model. FBL-BERT [28] retrieves the relevant changeset for
the input bug report using a fine-tuned BERT model that
can capture the semantics in the text. It proposes fine-grained
changeset encoding methods and accelerates the retrieval by
offline indexing [39]. The major difference between FONTE
and the techniques mentioned above is that FONTE does not
require any training. Further, FONTE can be combined with
any code-level FL technique, without being coupled to specific
sources of information, as long as the coverage of failing
executions is available.

The weighted bisection algorithm we propose is similar to
FACF (Flaky Aware Culprit Finding) [40], which formulates
the flake-aware bisection problem as a Bayesian inference, in
that both guide the bisection process based on the probability
of commits being a source of test failure. The difference be-
tween the two algorithms is that ours uses commit scores from
FONTE to establish the initial probability distribution, while
FACF updates the probability based on the test results during
the search taking into account the potential for flakiness. The

original work notes that FACF can take into account any prior
information about the bug inducing change in the form of
an initial probability distribution. Hence, we believe that the
commit scores generated by FONTE can be used as an effective
prior distribution for the FACF framework.

There exist studies that are highly relevant to FONTE despite
not being specifically about the BIC identification domain.
FaultLocator [41] is similar to FONTE as both use code-level
FL scores to identify suspicious changes. FaultLocator com-
bines spectrum information with the change impact analysis to
precisely identify the failure-inducing atomic edits out of all
edits between two versions, whereas FONTE aims to pinpoint
BICs in the commit history. WhoseFault [42] is a method that
utilises code-level FL scores and commit history to determine
the developer responsible for a bug. While it provides insights
into the assignment of bugs, it does not specifically target BIC
identification. As a result, it cannot be directly compared with
FONTE in our evaluation, nor can it be integrated with our
bisection algorithm. Our belief is that accurately identifying
the BIC can also be used to find the developer responsible
for fixing the bug, based on the authorship of the changes,
in addition to helping developers to understand the context in
which the failure occurred.

X. CONCLUSION

This paper proposes FONTE, a BIC identification technique
that is available upon the observation of a failure. It prunes
the BIC search space using failure coverage and the syntactic
analysis of commits, and assigns scores to the remaining
commits using the FL scores as well as change histories of
code elements. Our experiments with 130 bugs in Defects4J
show that FONTE can effectively identify BICs with an MRR
of 0.528, which significantly outperforms the baselines in-
cluding state-of-the-art BIC identification techniques. Along
with FONTE, we also propose the weighted bisection to accel-
erate the BIC search utilising the commit score information
and show that it can save the search cost in 97.7% of the
studied cases compared to the standard bisection. Finally, the
application of FONTE to a large-scale industry software SAP
HANA shows that FONTE can successfully reduce the cost of
BIC identification in a batch testing CI scenario. Future work
includes the actual deployment of FONTE to SAP HANA as
well as expanding the scope of bugs FONTE can handle.

ACKNOWLEDGMENT

We thank three anonymous reviewers whose suggestions
helped us improve this paper. Gabin An and Shin Yoo are
supported by National Research Foundation of Korea (NRF)
Grant (NRF-2020R1A2C1013629), Institute for Information
& communications Technology Promotion grant funded by the
Korean government (MSIT) (No.2021-0-01001), and Samsung
Electronics (Grant No. IO201210-07969-01).

REFERENCES

[1] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp.
1–5, jul 2005. [Online]. Available: https://doi.org/10.1145%2F1082983.
1083147

https://doi.org/10.1145%2F1082983.1083147
https://doi.org/10.1145%2F1082983.1083147

[2] R. Wu, M. Wen, S.-C. Cheung, and H. Zhang, “ChangeLocator: locate
crash-inducing changes based on crash reports,” Empirical Software
Engineering, vol. 23, no. 5, pp. 2866–2900, nov 2017. [Online].
Available: https://doi.org/10.1007%2Fs10664-017-9567-4

[3] M. Wen, Y. Liu, and S.-C. Cheung, “Boosting automated program
repair with bug-inducing commits,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas
and Emerging Results. ACM, jun 2020. [Online]. Available:
https://doi.org/10.1145%2F3377816.3381743

[4] M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung, and Z. Su,
“Exploring and exploiting the correlations between bug-inducing and
bug-fixing commits,” in Proceedings of the 27th ACM European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, aug 2019. [Online]. Available:
https://doi.org/10.1145%2F3338906.3338962

[5] M. Wen, R. Wu, and S.-C. Cheung, “Locus: locating bugs from
software changes,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, aug 2016.
[Online]. Available: https://doi.org/10.1145%2F2970276.2970359

[6] V. Murali, L. Gross, R. Qian, and S. Chandra, “Industry-scale IR-based
bug localization: A perspective from facebook,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, may 2021. [Online].
Available: https://doi.org/10.1109%2Ficse-seip52600.2021.00028

[7] G. Rodrı́guez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M.
Germán, and J. M. Gonzalez-Barahona, “How bugs are born: a model to
identify how bugs are introduced in software components,” Empirical
Software Engineering, vol. 25, no. 2, pp. 1294–1340, feb 2020.
[Online]. Available: https://doi.org/10.1007%2Fs10664-019-09781-y

[8] C. Catal, “Software fault prediction: A literature review and current
trends,” Expert Systems with Applications, vol. 38, no. 4, pp. 4626–
4636, apr 2011. [Online]. Available: https://doi.org/10.1016%2Fj.eswa.
2010.10.024

[9] “Git-bisect-lk2009 documentation.” [Online]. Available: https://git-scm.
com/docs/git-bisect-lk2009.html

[10] R. Bhagwan, R. Kumar, C. S. Maddila, and A. A. Philip, “Orca:
Differential bug localization in large-scale services,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 493–509.

[11] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A
survey on software fault localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707–740, aug 2016. [Online]. Available:
https://doi.org/10.1109%2Ftse.2016.2521368

[12] G. An and S. Yoo, “Reducing the search space of bug inducing
commits using failure coverage,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, aug
2021. [Online]. Available: https://doi.org/10.1145%2F3468264.3473129

[13] S. Artzi, S. Kim, and M. D. Ernst, “ReCrash: Making software failures
reproducible by preserving object states,” in ECOOP 2008 – Object-
Oriented Programming. Springer Berlin Heidelberg, pp. 542–565.
[Online]. Available: https://doi.org/10.1007%2F978-3-540-70592-5 23

[14] W. Jin and A. Orso, “BugRedux: Reproducing field failures for
in-house debugging,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, jun 2012. [Online]. Available:
https://doi.org/10.1109%2Ficse.2012.6227168

[15] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618–643, sep 2010. [Online].
Available: https://doi.org/10.1109%2Ftse.2010.63

[16] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis - ISSTA 2014. ACM Press, 2014. [Online]. Available:
https://doi.org/10.1145%2F2610384.2628055

[17] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead,
“Automatic identification of bug-introducing changes,” in 21st
IEEE/ACM International Conference on Automated Software
Engineering (ASE'06). IEEE, sep 2006. [Online]. Available:
https://doi.org/10.1109%2Fase.2006.23

[18] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE

’14, Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.
[Online]. Available: http://doi.acm.org/10.1145/2642937.2642982

[19] J. Sohn and S. Yoo, “Why train-and-select when you can use them
all?” in Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, jul 2019. [Online]. Available: https://doi.org/10.
1145%2F3321707.3321873

[20] J. Sohn, G. An, J. Hong, D. Hwang, and S. Yoo, “Assisting bug
report assignment using automated fault localisation: An industrial
case study,” in 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, apr 2021. [Online].
Available: https://doi.org/10.1109%2Ficst49551.2021.00041

[21] S. Habchi, G. Haben, J. Sohn, A. Franci, M. Papadakis, M. Cordy,
and Y. Le Traon, “What made this test flake? pinpointing classes
responsible for test flakiness,” arXiv e-prints, pp. arXiv–2207, 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2207.10143

[22] F. Grund, S. A. Chowdhury, N. C. Bradley, B. Hall, and
R. Holmes, “CodeShovel: Constructing method-level source code
histories,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, may 2021. [Online]. Available:
https://doi.org/10.1109%2Ficse43902.2021.00135

[23] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards locating
execution omission errors,” in Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation -
PLDI '07. ACM Press, 2007. [Online]. Available: https://doi.org/10.
1145%2F1250734.1250782

[24] R. Abreu, P. Zoeteweij, and A. V. Gemund, “An evaluation of similarity
coefficients for software fault localization,” in 2006 12th Pacific Rim
International Symposium on Dependable Computing (PRDC'06). IEEE,
2006. [Online]. Available: https://doi.org/10.1109%2Fprdc.2006.18

[25] N. Craswell, “Mean reciprocal rank,” in Encyclopedia of Database
Systems. Springer US, 2009, pp. 1703–1703. [Online]. Available:
https://doi.org/10.1007%2F978-0-387-39940-9 488

[26] J. Sohn and S. Yoo, “FLUCCS: using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, jul
2017. [Online]. Available: https://doi.org/10.1145%2F3092703.3092717

[27] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang,
“Can automated program repair refine fault localization? a unified
debugging approach,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, jul
2020. [Online]. Available: https://doi.org/10.1145%2F3395363.3397351

[28] A. Ciborowska and K. Damevski, “Fast changeset-based bug localization
with BERT,” in Proceedings of the 44th International Conference
on Software Engineering. ACM, may 2022. [Online]. Available:
https://doi.org/10.1145%2F3510003.3510042

[29] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, “Code and named
entity recognition in StackOverflow,” in Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics,
2020, pp. 4913–4926. [Online]. Available: https://doi.org/10.18653/v1/
2020.acl-main.443

[30] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gat-
ford et al., “Okapi at TREC-3,” Nist Special Publication Sp, vol. 109,
p. 109, 1995.

[31] M. Hucka, “Spiral: splitters for identifiers in source code files,” Journal
of Open Source Software, vol. 3, no. 24, p. 653, Apr. 2018. [Online].
Available: http://joss.theoj.org/papers/10.21105/joss.00653

[32] F. Wilcoxon, “Individual comparisons by ranking methods,” in Springer
Series in Statistics. Springer New York, 1992, pp. 196–202. [Online].
Available: https://doi.org/10.1007%2F978-1-4612-4380-9 16

[33] A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosability
metric for spectrum-based fault localization approaches,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, may 2017. [Online]. Available: https://doi.org/10.
1109%2Ficse.2017.66

[34] A. Najafi, P. C. Rigby, and W. Shang, “Bisecting commits and
modeling commit risk during testing,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, aug
2019. [Online]. Available: https://doi.org/10.1145%2F3338906.3338944

[35] M. J. Beheshtian, A. H. Bavand, and P. C. Rigby, “Software batch
testing to save build test resources and to reduce feedback time,”
IEEE Transactions on Software Engineering, vol. 48, no. 8, pp.
2784–2801, aug 2022. [Online]. Available: https://doi.org/10.1109%
2Ftse.2021.3070269

https://doi.org/10.1007%2Fs10664-017-9567-4
https://doi.org/10.1145%2F3377816.3381743
https://doi.org/10.1145%2F3338906.3338962
https://doi.org/10.1145%2F2970276.2970359
https://doi.org/10.1109%2Ficse-seip52600.2021.00028
https://doi.org/10.1007%2Fs10664-019-09781-y
https://doi.org/10.1016%2Fj.eswa.2010.10.024
https://doi.org/10.1016%2Fj.eswa.2010.10.024
https://git-scm.com/docs/git-bisect-lk2009.html
https://git-scm.com/docs/git-bisect-lk2009.html
https://doi.org/10.1109%2Ftse.2016.2521368
https://doi.org/10.1145%2F3468264.3473129
https://doi.org/10.1007%2F978-3-540-70592-5_23
https://doi.org/10.1109%2Ficse.2012.6227168
https://doi.org/10.1109%2Ftse.2010.63
https://doi.org/10.1145%2F2610384.2628055
https://doi.org/10.1109%2Fase.2006.23
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1145%2F3321707.3321873
https://doi.org/10.1145%2F3321707.3321873
https://doi.org/10.1109%2Ficst49551.2021.00041
https://doi.org/10.48550/arXiv.2207.10143
https://doi.org/10.1109%2Ficse43902.2021.00135
https://doi.org/10.1145%2F1250734.1250782
https://doi.org/10.1145%2F1250734.1250782
https://doi.org/10.1109%2Fprdc.2006.18
https://doi.org/10.1007%2F978-0-387-39940-9_488
https://doi.org/10.1145%2F3092703.3092717
https://doi.org/10.1145%2F3395363.3397351
https://doi.org/10.1145%2F3510003.3510042
https://doi.org/10.18653/v1/2020.acl-main.443
https://doi.org/10.18653/v1/2020.acl-main.443
http://joss.theoj.org/papers/10.21105/joss.00653
https://doi.org/10.1007%2F978-1-4612-4380-9_16
https://doi.org/10.1109%2Ficse.2017.66
https://doi.org/10.1109%2Ficse.2017.66
https://doi.org/10.1145%2F3338906.3338944
https://doi.org/10.1109%2Ftse.2021.3070269
https://doi.org/10.1109%2Ftse.2021.3070269

[36] T. Bach, A. Andrzejak, C. Seo, C. Bierstedt, C. Lemke, D. Ritter, D. W.
Hwang, E. Sheshi, F. Schabernack, F. Renkes, G. Gaumnitz, J. Martens,
L. Hoemke, M. Felderer, M. Rudolf, N. Jambigi, N. May, R. Joy,
R. Scheja, S. Schwedes, S. Seibel, S. Seifert, S. Haas, S. Kraft, T. Kroll,
T. Scheuer, and W. Lehner, “Testing very large database management
systems: The case of SAP HANA,” Datenbank-Spektrum, nov 2022.
[Online]. Available: https://doi.org/10.1007%2Fs13222-022-00426-x

[37] M. Jodavi and N. Tsantalis, “Accurate method and variable tracking
in commit history,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, nov 2022. [Online]. Available:
https://doi.org/10.1145%2F3540250.3549079

[38] J.-M. Yang, R. Cai, F. Jing, S. Wang, L. Zhang, and W.-Y. Ma, “Search-
based query suggestion,” in Proceeding of the 17th ACM conference on
Information and knowledge mining - CIKM '08. ACM Press, 2008.
[Online]. Available: https://doi.org/10.1145%2F1458082.1458321

[39] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp.
535–547, 2019. [Online]. Available: https://doi.org/10.1109/TBDATA.
2019.2921572

[40] B. Dorward, C. Johnston, E. Nickell, and T. Hen-
derson, Eds., Flake-Aware Culprit Finding, 2021.
[Online]. Available: https://conf.researchr.org/details/cciw-2021/
cciw-2021-ci-cd-industry-workshop/6/Flake-Aware-Culprit-Finding

[41] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM). IEEE,
2011, pp. 23–32. [Online]. Available: https://doi.org/10.1109/ICSM.
2011.6080769

[42] F. Servant and J. A. Jones, “WhoseFault: Automatic developer-to-fault
assignment through fault localization,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, jun 2012.
[Online]. Available: https://doi.org/10.1109%2Ficse.2012.6227208

https://doi.org/10.1007%2Fs13222-022-00426-x
https://doi.org/10.1145%2F3540250.3549079
https://doi.org/10.1145%2F1458082.1458321
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://conf.researchr.org/details/cciw-2021/cciw-2021-ci-cd-industry-workshop/6/Flake-Aware-Culprit-Finding
https://conf.researchr.org/details/cciw-2021/cciw-2021-ci-cd-industry-workshop/6/Flake-Aware-Culprit-Finding
https://doi.org/10.1109/ICSM.2011.6080769
https://doi.org/10.1109/ICSM.2011.6080769
https://doi.org/10.1109%2Ficse.2012.6227208

	I Introduction
	II Background
	II-A Research Context
	II-B Basic Notations

	III Fonte: Automated BIC Identification via Dynamic, Syntactic, and Historical Analysis
	III-A Stage 1: Filtering Out Failure-Irrelevant Commits
	III-B Stage 2: Filtering Out Style Change Commits
	III-C Stage 3: Scoring Commits using FL Scores and History

	IV Weighted Bisection
	V Evaluation Setup
	V-A Research Questions
	V-B Dataset of Bug Inducing Commits
	V-C Implementation Details
	V-C1 Construction of the Cover relation
	V-C2 Construction of the Evolve relation
	V-C3 Detection of Style-Change Commits
	V-C4 Fault Localisation

	V-D Evaluation Metrics
	V-E Baselines
	V-E1 Other Voting Schemes
	V-E2 Other Scoring/Ranking Techniques

	VI Results
	VI-A RQ1: Ranking Performance of Fonte
	VI-B RQ2: Standard Bisection vs. Weighted Bisection
	VI-C RQ3: Impact of FL Accuracy on Fonte

	VII Application to Industry Software
	VIII Threats to Validity
	IX Related Work
	X Conclusion
	References

