
FONTE: Finding Bug Inducing Commits
from Failures

Gabin An
School of Computing, KAIST
Daejeon, Republic of Korea

agb94@kaist.ac.kr

Jingun Hong
SAP Labs Korea

Seoul, Republic of Korea

jingun.hong@sap.com

Naryeong Kim
School of Computing, KAIST
Daejeon, Republic of Korea

kimnal1234@kaist.ac.kr

Shin Yoo
School of Computing, KAIST
Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

Abstract—A Bug Inducing Commit (BIC) is a commit that
introduces a software bug into the codebase. Knowing the
relevant BIC for a given bug can provide valuable information
for debugging as well as bug triaging. However, existing BIC
identification techniques are either too expensive (because they
require the failing tests to be executed against previous versions
for bisection) or inapplicable at the debugging time (because
they require post hoc artefacts such as bug reports or bug fixes).
We propose FONTE, an efficient and accurate BIC identification
technique that only requires test coverage. FONTE combines Fault
Localisation (FL) with BIC identification and ranks commits
based on the suspiciousness of the code elements that they
modified. FONTE reduces the search space of BICs using failure
coverage as well as a filter that detects commits that are merely
style changes. Our empirical evaluation using 130 real-world
BICs shows that FONTE significantly outperforms state-of-the-
art BIC identification techniques based on Information Retrieval
as well as neural code embedding models, achieving at least 39%
higher MRR. We also report that the ranking scores produced
by FONTE can be used to perform weighted bisection, further
reducing the cost of BIC identification. Finally, we apply FONTE
to a large-scale industry project with over 10M lines of code, and
show that it can rank the actual BIC within the top five commits
for 87% of the studied real batch-testing failures, and save the
BIC inspection cost by 32% on average.

Index Terms—Bug Inducing Commit, Fault Localisation, Git,
Weighted Bisection, Batch Testing

I. INTRODUCTION

A Bug Inducing Commit (BIC) [1] refers to a commit

that introduces buggy source code into the program. Accurate

identification of BICs can have many benefits. Existing work

has shown that simply reverting BICs may suffice for bug

fixes [2], [3], while the knowledge of BICs can aid manual

debugging by developers [4]. Considering the finding that 78%

of bugs are fixed by those who introduced them in the first

place [5], the knowledge of BICs can help effective assignment

of a newly revealed bug to the right team or developers [6].

Finally, for software engineering researchers, a BIC dataset

can be used to study how bugs are created [1], [7], eventually

resulting in better software defect prediction techniques [8].

Many approaches have been proposed to identify BICs:

existing approaches can be categorised into three groups. The

first group is bisection, i.e., a binary search on the commit

history that checks whether each snapshot in the commit

history is buggy or not [9]. The actual inspection can be

done either manually, or automatically by executing the bug-

revealing test cases. While the binary search itself is efficient,

the inspection cost required for each snapshot can render

bisection impractical. For example, with large-scale software

projects, the cost of simply building and executing test cases

for a specific snapshot can be significantly high.

While bisection depends on explicitly checking each snap-

shot, other approaches are static, i.e., they only concern com-

mit histories or bug reports. The second group is represented

by SZZ [1] and its variants. Given a Bug Fixing Commit

(BFC), SZZ essentially seeks to identify a set of commits

that last modified each element of BFC. However, SZZ-like

approaches require BFCs as input, which are only available

when the bug has already been patched. Consequently, these

techniques are not applicable at the debugging time. The

third group is IR-based BIC identification [5], [10], which

reformulates BIC identification as Information Retrieval (IR)

where the bug report is the query, and the commits are the

documents. Given a query, i.e., the bug report that contains

various information about the failure in question, the BIC is

likely to be the commit that is the most lexically similar to the

query. While IR-based approaches do not incur the cost of their

dynamic counterparts (e.g., compilation and test execution),

they cannot be applied if a bug report for the latest failure is

not available yet, or if it does but its quality is too low.

In this paper, we aim to propose a BIC identification

technique that is accurate, efficient, and available at debugging

time. Intuitively, our technique, FONTE1, distributes the sus-

piciousness computed by a Fault Localisation (FL) technique

for the current bug to commits in the development history,

expanding the dimensions of FL techniques from the location

within the codebase (i.e., spatial) to the history of the codebase

(i.e., temporal). FONTE starts by collecting the test coverage

at the time of failure and computing suspiciousness scores

for code elements using a FL technique [11]. Subsequently,

FONTE traces back the commits that are relevant to the

code covered by failing tests [12]. Commits that are mere

style changes are filtered out based on Abstract Syntax Tree

(AST) level comparisons. Finally, the remaining commits are

ranked according to the suspiciousness of the current code

that is modified by each candidate commit. Compared to

bisection, FONTE does not require inspection of each snapshot

1FONTE is an Italian word meaning “source” or “origin”.

589

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00059

20
23

 IE
EE

/A
CM

 4
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 S
of

tw
ar

e 
En

gi
ne

er
in

g 
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

59

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



it considers and therefore more efficient. Instead, FONTE uses

the failure coverage to improve accuracy. It also does not

require bug reports or bug fixes, and therefore can be applied

at debugging time once a test failure is observed.

We evaluate FONTE with a benchmark of 130 real-world

bugs: 67 from an existing BIC dataset, and 63 that are

manually curated by us. The results show that the ranking of

BICs produced by FONTE achieves 242% of MRR compared

to the random baseline. Furthermore, exploiting the fact that

FONTE assigns scores to each candidate BIC, we also propose

a weighted bisection method that leverages the commit scores

during the search. Weighted bisection combined with FONTE

can save the number of bisection iterations for 98% of the

cases. Since FONTE does not require any manual human effort,

it can be easily incorporated into CI pipelines to provide

developers with candidate BICs when reporting test failures.

The contributions of this paper are summarised as follows:

• We present FONTE, a BIC identification technique that

only requires information from the failed test execution

and the commit history. Since it does not require bug

patches or bug reports, FONTE can be used to aid debug-

ging by providing developers with the relevant BICs, once

a test failure is observed. FONTE builds upon our previous

work [12] by actually quantifying the suspiciousness of

commits instead of simply reducing search space.

• We evaluate FONTE with 130 real-world bugs and show

that FONTE can accurately rank BIC candidates: it

achieves an MRR of 0.528, which outperforms a state-

of-the-art IR-based BIC identification technique by 39%.

• We introduce weighted bisection that uses the scores as-

signed to candidate BICs by FONTE. Weighted bisection

can reduce the required number of iterations for about

98% of studied bugs when compared to the standard

bisection algorithm applied to the entire commit history.

• We apply FONTE to the batch testing scenario of large-

scale industry software. It achieves 547% of MRR com-

pared to the random baseline and can reduce the bisection

iterations in 78% of cases.

• We release a new BIC benchmark dataset for 130 De-

fects4J version 2.0 bugs. FONTE is publicly available

at https://github.com/coinse/fonte, along with artefacts of

the empirical evaluation in this paper.

The remainder of the paper is structured as follows. Sec-

tion II explains the research context of this paper and defines

the basic notations. Section III and IV propose FONTE and

the novel weighted bisection method, respectively. Section V

describes the empirical evaluation settings for FONTE along

with the research questions, and Section VI presents the

results. Section VII shows the application results of FONTE to

the batch testing scenario in industry software. Section VIII

addresses the threats to validity, and Section IX covers the

related work of FONTE. Finally, Section X concludes.

II. BACKGROUND

This section provides the background of this paper.

A. Research Context

Debugging is usually initiated by observing a failure that

reveals a bug in the program. Even when a field failure is

reported by users, the debugging activities typically start with

reproducing the field failure [13]–[15]: this is because failure-

triggering test cases are essential to confirm whether the bug

is fixed or not. Once observed, the test failure goes through

the bug triage phase to be assigned to a developer or a team,

who will analyse the buggy behaviour and produce a patch.

Knowing the BIC responsible for the observed failure can

not only contribute to more efficient bug triage [6] but also

help developers better understand the context of the buggy

behaviour [5]. To identify BICs as soon as the bug is detected,

we cannot rely on any information that is produced later in

the debugging process, such as bug fixes or bug reports.

While some BIC identification techniques [6], [10] are based

on the information from failures, they only use the stack

traces or the exception messages, which may only be indirectly

linked to the contents of actual BICs. Given that commits

are directly coupled to specific locations in the source code,

we focus on the actual coverage of the failing tests as the

main source of information. Our previous work shows that the

coverage of failing test executions (i.e., failure coverage) can

reduce the BIC search space very effectively [12]: simply by

filtering out any commit that is not related to the evolution of

code elements covered by the failing tests, the search spaces of

BICs for 703 bugs in Defects4J [16] were reduced to 12.4% of

their original size on average. The high reduction rate suggests

that failure coverage has the potential to provide the basis for

a BIC identification technique available at the debugging time.

In this work, we aim to accurately locate the BIC using

only the information that is available at the debugging time,

just after the observation of test failure. We build upon the

previous technique of BIC search space reduction [12], and

present a technique that can accurately measure the relevance

of each commit in the reduced search space to the failure. Intu-

itively, our approach distributes the code level suspiciousness

measured in the current buggy version to the past commits.

B. Basic Notations

Let us define the following properties of a program P :

• A set of commits C = {c1, c2, . . .} made to P
• A set of code elements E = {e1, e2, . . .} of P , such as

statements or methods

• A set of test cases T = {t1, t2, . . .} where TF ⊆ T is a

set of failing test cases

We assume that the bug responsible to the failing tests

resides in the source code, i.e., some elements in E cause

the failure of TF . We also define the following relations on

sets C, T , and E:

• A relation Cover ⊆ T × E defines the relation between

test cases and code elements. For every t ∈ T and e ∈ E,

(t, e) ∈ Cover if and only if the test t covers e during the

execution.

590

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Overview of FONTE

• A relation Evolve ⊆ C × E defines the relation between

commits and code elements. For every c ∈ C and e ∈ E,

(c, e) ∈ Evolve if and only if the commit c is in the

change history of the code element e.

As our ultimate goal is to find the BIC in C, we aim to

design a scoring function s : C → R that gives higher scores

to commits that have a higher probability of being the BIC.

III. FONTE: AUTOMATED BIC IDENTIFICATION VIA

DYNAMIC, SYNTACTIC, AND HISTORICAL ANALYSIS

This paper presents FONTE, a technique to automatically

identify the BIC, based on the assumption that a commit is
more likely to be a bug inducing commit if it introduced or
modified a code element that is more relevant to the observed
failure. The key idea behind FONTE is that the relevancy of the

code elements to the observed failures can be quantified using

existing FL techniques [11], such as SBFL. FONTE distributes

the code-level suspiciousness, computed by an FL technique

for the observed failures, to commits in the development

history. Fig. 1 illustrates the three stages of FONTE, which

are described below:

1) FONTE identifies all suspicious code elements using the

coverage of failing test cases and discards the commits

that are irrelevant to the code elements from the BIC

search space [12].

2) FONTE additionally filters out the commits that contain

only style changes to the suspicious files using AST level

comparisons.

3) FONTE assigns scores to the remaining commits in the

search space using the FL scores and evolution history

of the suspicious code elements.

The rest of this section describes each stage in more detail.

A. Stage 1: Filtering Out Failure-Irrelevant Commits

Using the notations defined in Section II-B, we can rep-

resent the failure-coverage-based BIC search space reduc-

tion [12] as follows. First, let EF ⊆ E denote the set of

all code elements that are covered by the failing test cases:

EF =
⋃

t∈TF

{e ∈ E|(t, e) ∈ Cover} (1)

1 @@ -74,7 +74,7 @@ import org.apache.commons.lang.
exception.NestableRuntimeException;

2 * @author Phil Steitz
3 * @author Pete Gieser
4 * @since 2.0
5 - * @version $Id: StringEscapeUtils.java,v 1.26

2003/09/07 14:32:34 psteitz Exp $
6 + * @version $Id: StringEscapeUtils.java,v 1.27

2003/09/13 03:23:24 psteitz Exp $
7 */
8 public class StringEscapeUtils {
9

10 @@ -242,7 +242,9 @@ public class StringEscapeUtils {
11 } else {
12 switch (ch) {
13 case ’\’’:
14 - if (escapeSingleQuote) out.write

(’\\’);
15 + if (escapeSingleQuote) {
16 + out.write(’\\’);
17 + }
18 out.write(’\’’);
19 break;
20 case ’"’:

Fig. 2. Changes by the commit 5814f50 in Defects4J Lang-46

Subsequently, we obtain CF ⊆ C, a set of commits that are

involved in the evolution of at least one code element in EF :

CF =
⋃

e∈EF

{c ∈ C|(c, e) ∈ Evolve} (2)

Then, all commits not contained in CF can be discarded

from our BIC search space because the changes introduced by

those commits are not related to any code element executed

by failing executions. Consequently, the BIC search space is

reduced from C to CF .

B. Stage 2: Filtering Out Style Change Commits

The reduced set of candidate BICs, CF , may still contain

style change commits, i.e., commits that do not introduce

any semantic change to the suspicious code elements. These

commits can be further excluded from the BIC search space,

as they cannot have altered the functional behaviour of the

relevant code elements [17]. An example of such a commit is

shown in Fig. 2, which modifies the comments and encloses

the single statement in the if block.

We use the AST level comparison [18] to identify whether

a given commit c ∈ CF is a style change commit or not. First,

we identify the set of source files, S, that are modified by the

commit c and covered by the failing test cases. Formally, any

file in S contains at least one code element in:

Ec
F = {e ∈ EF |(c, e) ∈ Evolve} (3)

Then, for each file s ∈ S, we compare the ASTs derived

from s before and after the commit c. If the ASTs are identical

for all files in S, we consider the commit c as a style-change

commit. Note that this approach does not guarantee 100%

recall, as it is possible for two source files to yield different

ASTs while sharing the same semantic. However, it can safely

prune the search space due to its soundness, i.e., if it identifies

a commit as a style change commit, it is guaranteed to be a

style change commit. Consequently, the search space for BIC

591

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
EXAMPLE OF THE VOTING POWER OF CODE ELEMENTS

Code Element e1 e2 e3 e4 e5

Score 1.0 0.6 0.6 0.6 0.3

rankmax 1 4 4 4 5
rankdense 1 2 2 2 3

vote

α = 0, τ = max 1.00 0.25 0.25 0.25 0.20
α = 1, τ = max 1.00 0.15 0.15 0.15 0.06
α = 0, τ = dense 1.00 0.50 0.50 0.50 0.33
α = 1, τ = dense 1.00 0.30 0.30 0.30 0.10

can be further reduced to CBIC = CF \ CSC , in which CSC

denotes all identified style change commits in CF .

C. Stage 3: Scoring Commits using FL Scores and History

We are now left with the reduced BIC search space CBIC ,

which only contains commits related to the evolution of the

suspicious code elements and are also identified as non-style-

change commits. The remaining task is to rank the commits

in CBIC in the order of their likelihood of being the BIC. As

mentioned earlier, our basic intuition is that if a commit had

created, or modified, more suspicious code elements for the

observed failures, it is more likely to be a BIC.

The suspiciousness of code elements can be quantified via

an FL technique. For example, we can apply SBFL [11] using

the coverage of the test suite T : note that SBFL uses only test

coverage and result information, both of which are available

at the time of observing a test failure. Assuming that we are

given the suspiciousness scores, let susp : EF → [0,∞) be the

mapping function from each suspicious code element in EF to

its non-negative FL score.2 To convert the code-level scores to

the commit level, we propose a voting-based commit scoring

model where the FL score of a code element is distributed to

its relevant commits. The model has two main components:

rank-based voting power and depth-based decay.

Rank-based Voting Power: Recent work [19]–[21] showed

that, when aggregating FL scores from finer granularity ele-

ments (e.g, statements) to a coarser level (e.g., methods), it is

better to use the relative rankings from the original level only,

rather than directly using the scores. The actual aggregation

takes the form of voting: the higher the ranking of a code

element is in the original level, the more votes it is assigned

with for the target level. Subsequently, each code element casts

its votes to the related elements in the target level. We adopt

this voting-based method to aggregate the statement level FL

scores to commits. The voting power of each code element e
based on their FL rankings (and scores) as follows:

vote(e) =
α ∗ susp(e) + (1− α) ∗ 1

rankτ (e)
(4)

where α ∈ {0, 1} is a hyperparameter that decides whether

to use the suspiciousness value (α = 1) as a numerator or

2The constraint of FL-score being non-negative is adopted for the sake of
simplicity. Note that any FL results can be easily transformed so that the
lowest score is 0.

Fig. 3. Example of computing the commit scores when λ = 0.1

not (α = 0), and τ a hyperparameter that defines the tie-

breaking scheme. We vary τ ∈ {max, dense}: the max tie-

breaking scheme gives the lowest (worst) rank in the tied group

to all tied elements, while dense gives the highest but does not

skip any ranks after ties. By design, τ = max will penalise

tied elements more severely than τ = dense. The example in

Table I shows how the hyperparameters affect voting. Note that

the relative order between FL scores is preserved in the voting

power regardless of hyperparameters, i.e., vote(e) > vote(e′)
if and only if susp(e) > susp(e′).

Depth-based Decay: Wen et al. [5] showed that using the

information about commit time can boost the accuracy of

the BIC identification. Similarly, Wu et al. [2] observed that

the commit time of crash-inducing changes is closer to the

reporting time of the crashes. Based on those findings, we

hypothesise that older commits are less likely to be responsible

for the currently observed failure, because if an older commit

was a BIC, it is more likely that the resulting bug has already

been found and fixed. To capture this intuition, we propose a

depth-based decay function that decreases the voting power of

a code element as the depth of the commit in the history of

the code element increases. The historical depth of a commit

c, with respect to a code element e ∈ Ec
F (Eq. 3), is defined

as follows:

depth(e, c) =|{c′ ∈ CBIC |
(c′, e) ∈ Evolve ∧ c′.time > c.time}| (5)

Note that, unlike existing work that considered the depth at the

level of commit, we consider the depth of each code element

and use this to adjust the voting power of each element.

Bringing it all together (Eq. 4 and Eq. 5), we use the

following model to assign a score to each commit c in CBIC :

commitScore(c) =
∑
e∈Ec

F

vote(e) ∗ (1− λ)depth(e,c) (6)

where λ ∈ [0, 1) is the decay factor: when λ = 0, there is

no penalty for older commits. Figure 3 shows the example of

calculating the score of commits when λ = 0.1.

592

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Example of applying the weighted bisection to Math-87

Finally, based on commitScore, the commit scoring func-

tion s : C → [0,∞) of FONTE is defined as follows:

s(c) =

{
commitScore(c) if c ∈ CBIC

0 otherwise

IV. WEIGHTED BISECTION

Bisection is a traditional way of finding the BIC by repeat-

edly narrowing down the search space in half using binary

search: it is implemented in popular Version Control Systems

(VSCs), e.g., git bisect or svn-bisect. A standard

bisection is performed as follows: given the earliest bad and

last good versions, it iteratively checks whether the midpoint

of those two versions, referred to as a pivot, contains the bug.

If there is a bug, the earliest bad point is updated to the pivot,

otherwise, the last good point is updated to the pivot. If there

is a bug-revealing test case that can automatically check the

existence of a bug, the search process can be fully automated.

However, as pointed out in previous work [6], even though

the bug existence check can be automated, each bisect iteration

may still require a significant amount of time and computing

resources, especially when the program is large and complex,

or the bug-revealing test takes a long time to execute. Since

a lengthy bisection process can block the entire debugging

pipeline, we aim to explore whether the bisection can be

accelerated using the commit score information.

We propose a weighted bisection algorithm, where the

search pivot is set to a commit that will halve the amount of
remaining commit scores instead of the number of remaining
commits, in order to reduce the number of highly suspicious

commits more quickly. For example, let us consider the

example in Fig. 4 that shows the score distribution of the

commits in the reduced BIC search space of Math-87 in

Defects4J. For Math-87, the score distribution is biased

towards a small number of recent commits including the real

BIC (marked in red) with the third highest score. In this

case, simply using the midpoint as a search pivot might not

be a good choice because all highly suspicious commits still

remain together on one side of the split search space: as a

result, the standard bisection requires five iterations to finish.

Alternatively, if we pivot at the commit that halves the amount

of remaining scores, the bisection reaches the actual BIC more

Algorithm 1: Weighted Bisection Algorithm

Input: Set of commits C
Input: Commit score (weight) function s : C → [0,∞)
Output: Bug inducing commit c ∈ C
// Remove irrelevant commits

1 C ← {c ∈ C|s(c) > 0}
2 C′ ← C.orderByTimeDesc()
// C′[i] is newer than C′[i+ 1]

3 bad← 0
4 good← |C′|
5 while good > bad+ 1 do

// S(a, b) =
∑b

i=a s(C′[i])
6 pivot← argmin

good−1
i=bad+1|S(bad, i− 1)− S(i, good− 1)|

7 if C′[pivot].ContainsBug() then
8 bad← pivot

9 else
10 good← pivot

// assert bad = good− 1

11 return C′[bad]

quickly, completing the search in three iterations. Note that this

algorithm is a generalised version of the standard bisection:

the standard bisection is a special case of weighted bisection

with all commits sharing the same non-zero score.
Algorithm 1 presents the weighted bisection algorithm. It

takes the set of commits C, and the commit score function s ∈
C → [0,∞), as input, and returns the BIC. First, it removes all

commits with a score of zero (Line 1), and sorts the remaining

commits in the descending order of their commit time (Line 2).

Assuming that there is at least one BIC in the sorted sequence

C ′, the earliest bad index bad is set to 0, the index of the

most recent commit (Line 3). Since all commits in C ′ are

BIC candidates, we set the last good index good to the index

just after the oldest commit (Line 4). Then, a new pivot index

is iteratively selected from the range [bad+1, good− 1], until

there is no remaining commit between bad and good (Line

5). As mentioned earlier, we select a pivot that minimises the

difference between the left (not including pivot) and the right

(including pivot) sum of the scores (Line 6). Once a new pivot

is selected, the commit C ′[pivot] is inspected for the bug,

either using the bug-revealing tests or manually (Line 7). If

a bug is detected, the bad index is updated to pivot (Line

8), otherwise, the good index is updated to pivot (Line 10).

Finally, it returns the identified BIC at the bad index when the

loop terminates (Line 11).

V. EVALUATION SETUP

This section presents our research questions and describes

the experimental setup.

A. Research Questions
We ask the following research questions in this paper:

• RQ1: How accurately does FONTE rank the BIC?

• RQ2: How efficient is the weighted bisection compared

to the standard bisection?

• RQ3: What is the impact of FL accuracy to the perfor-

mance of FONTE?

593

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



B. Dataset of Bug Inducing Commits
We choose Defects4J v2.0.0 [16], a collection of 835 real-

world bugs in Java open-source programs, as the source of

our experimental subjects. While Defects4J provides test suites

containing the bug-revealing tests for every bug, as well as the

entire commit history for each buggy version, it lacks the BIC

information for each bug. We, therefore, start with a readily-

available BIC dataset for 91 Defects4J bugs3 constructed by

Wen et al. [4]. This dataset was created by running the bug-

revealing test cases on the past versions and finding the

earliest buggy version that makes the tests fail. However,

in our experiment, we are forced to exclude 24 out of 91

data points. Since FONTE is implemented using Git, it cannot

trace the commit history of nine bugs from the JFreeChart
project which uses SVN as its version control system. Further,

we exclude 14 data points that are shown to be inaccurate

by previous work [12]. Lastly, Time-23 is also discarded,

because we found that the identified commit in the dataset

does not contain any change to code, but only to the license

comments. The detailed reasons can be found in our repository.

We augment the remaining 67 BIC data points from Wen et

al. [4] by inspecting some of the remaining bugs in Defects4J.

Two of the authors manually and independently identified the

BIC for each bug, consulting the bug reports, failure symp-

toms, and developer patches. To reduce the manual inspection

cost, we only targeted the bugs for which the cardinality of the

reduced BIC search space, CBIC , is less than or equal to ten.

Two authors reached on consensus for 70 data points, which

have been added to the dataset. In summary, a total of 130

data points (67 from Wen et al. [4] + 70 manually curated

- 7 overlapped) are used for the evaluation of FONTE. The

combined BIC dataset and the provenance of each data point

are available in our repository for further scrutiny.

C. Implementation Details
We apply FONTE at the statement-level granularity, i.e., E is

a set of statements composing the target buggy program. The

initial BIC search space, C, is set to all commits from the very

first commit up to the commit correspond to the buggy version,

i.e., revision.id.buggy in Defects4J. Among the given

test suite in Defects4J, we only use the bug-revealing (i.e.,

failing) test cases as well as their relevant test cases as T . A

test case is relevant if and only if its full name contains the

name of at least one class executed by the failing test cases.

Table II shows the example of the relevant test selection.
1) Construction of the Cover relation: To construct the

Cover relation between T and E, we measure the statement-

level coverage of each test case in T using Cobertura
v2.0.3 which is included in Defects4J.

2) Construction of the Evolve relation: To construct the

Evolve relation between C and E, we need to retrieve the

commit history of each code element: we use the git log
command4 following our previous work [12]. We also at-

3https://github.com/justinwm/InduceBenchmark
4git log -C -M -L<start_line>,<end_line>:<file>. The

options -C and -M detect file rename/copy/move between versions.

TABLE II
EXAMPLE OF RELEVANT TEST SELECTION (TIME-15)

Failing Test (TF )

org.joda.time.field.TestFieldUtils::testSafeMultiplyLongInt

Classes Covered by the Failing Test

org.joda.time.field.FieldUtils
org.joda.time.IllegalFieldValueException

Relevant Tests (T \ TF )

org.joda.time.TestIllegalFieldValueException::testGJCutover
org.joda.time.TestIllegalFieldValueException::testJulianYearZero
org.joda.time.TestIllegalFieldValueException::testOtherConstructors
org.joda.time.TestIllegalFieldValueException::testReadablePartialValidate
org.joda.time.TestIllegalFieldValueException::testSetText
org.joda.time.TestIllegalFieldValueException::testSkipDateTimeField
org.joda.time.TestIllegalFieldValueException::testVerifyValueBounds
org.joda.time.TestIllegalFieldValueException::testZoneTransition
org.joda.time.field.TestFieldUtils::testSafeAddInt
org.joda.time.field.TestFieldUtils::testSafeAddLong
org.joda.time.field.TestFieldUtils::testSafeMultiplyLongLong
org.joda.time.field.TestFieldUtils::testSafeSubtractLong

tempted using CodeShovel [22], a state-of-the-art method his-

tory retrieval tool, instead of git log, but found that the tool

sometimes produces incorrect histories. Since it is infeasible

to manually validate all commits retrieved by CodeShovel, we

only report the results with git log in this paper. However,

we include the commit history retrieved by CodeShovel (with

the incorrect outputs) in our artefact for further validation and

comparison.
Please note that for each statement, we retrieve the commit

history of its enclosing method and create the Evolve relations

between the statements and the retrieved commits to ensure

high recall for commit histories. This is also to deal with

omission bugs [23]: if a bug is caused by omission of some

statements, we cannot trace the log of the missing statements

because they literally do not exist in the current version. In

that case, tracing the log of the neighbouring statements (in the

enclosing method) will enable to find the inducing commit, as

the method that encloses the omission bug should have been

covered by the failing tests [12].
3) Detection of Style-Change Commits: For Stage 2, we

use OpenRewrite v7.21.05 to ensure the same coding standard

between the two versions of files. More specifically, we use

the Cleanup recipe6 that fixes any errors that violate Check-

Style rules.7 This ensures that trivial differences between two

versions that do not lead to semantic differences are ignored: a

good example is a commit in Lang, which is shown in Fig. 2.

To compare ASTs, we use the isomorphism test of GumTree

v3.0.0 [18] that has time complexity of O(1).
4) Fault Localisation: To obtain the FL score of each

statement, we use a widely-used SBFL formula, Ochiai [24],

which can be expressed in our context as follows:

Ochiai(e) =
|{t ∈ TF |(t, e) ∈ Cover}|√|TF | ∗ |{t ∈ T |(t, e) ∈ Cover}|

5https://github.com/openrewrite/rewrite
6https://docs.openrewrite.org/reference/recipes/java/cleanup
7https://checkstyle.sourceforge.io/

594

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



By definition, Ochiai(e) > 0 if and only if e ∈ EF (Eq. 1).

D. Evaluation Metrics

If the scoring model works well, BICs will have higher

scores and ranks than other commits. Therefore, we use the

following widely-adopted ranking-based evaluation metrics.

When there are tied elements, the max-tiebreaker is used.

• Accuracy@n: The number of subjects where the ranking

of the BIC is within the top n positions (higher is better)

• Mean Reciprocal Rank (MRR) [25]: The average recip-

rocal rank of the BIC (higher is better)

E. Baselines

We compare FONTE to the following baselines.

1) Other Voting Schemes:
• Equal: All lines that are covered by failing test cases are

assigned the same weight, i.e., vote(e) = 1 (7).

• Only Score: The voting power of a method is simply

defined as its FL score without considering the ranking,

i.e., vote(e) = susp(e) (8).

2) Other Scoring/Ranking Techniques:
• Random: This strategy randomly shuffles the commits in

the search space. The random strategy is a meaningful

baseline for ranking-based evaluation because the ranking

result can be overestimated when the size of the search

space is small. When there are n commits in the search

space, the expected rank of the BIC is 1+n
2 .

• Max (Eq. 9): Instead of Eq. 6, the score of a commit

is defined as the highest suspiciousness score of code

elements that are modified by the commit:

commitScore(c) = max
e∈Ec

F

susp(e) (9)

Similarly, in Orca [10], the file-level scores are converted

into the commit level using max-aggregation. Many FL

techniques have used this scheme when the granularity of

the code elements in the coverage matrix and the target

FL granularity are different [26], [27].

• FBL-BERT [28]: FBL-BERT is a recently proposed

changeset localisation technique based on a pre-trained

BERT model called BERTOverflow [29]. Given a bug

report, it retrieves the relevant changesets using their

scores obtained by the BERT-based model. We fine-

tune the model using the training dataset from the JDT
project, which is the largest training dataset provided by

their repository8: this is because no such training data

is available for our target projects. We use the ARC

changeset encoding strategy, which performed the best

for changeset-level retrieval in the original study [28].

As Defects4J contains the link to the original bug report

for every bug, we use the contents of the original bug

report as an input query.

• Bug2Commit [6]: Bug2Commit is a state-of-the-art IR-

based BIC identification method for large-scale systems:

8We confirm that the model fine-tuned with JDT performs better than that
fine-tuned with ZXing, which has the smallest training dataset.

Fig. 5. Distributions of the sizes of search space

TABLE III
THE DISTRIBUTION OF THE SIZE OF THE REDUCED SEARCH SPACE

|CBIC | ≤ 1 ≤ 2 ≤ 3 ≤ 5 ≤ 10 ≤ 20 ≤ 30

# Subjects 3 8 19 41 71 76 76

|CBIC | ≤ 50 ≤ 100 ≤ 200 ≤ 300 ≤ 500 ≤ 600 ≤ 700

# Subjects 83 94 106 112 123 128 130

it exploits multiple features of commits and bug reports.

When implementing Bug2Commit, we use the Vector

Space Model (VSM) because the word-embedding model

requires an additional training dataset of bug reports and

commits. As in the original paper, we use BM25 [30] as a

vectoriser and use the Ronin tokeniser, the most advanced

splitter in Spiral [31]9. We use two features of commit:

the commit message and the modified file names. From

bug reports, we use three features: the exception message

and stack traces from failing test cases, the title of bug

report, and the content of bug report.

VI. RESULTS

This section presents the results of our experiments.

A. RQ1: Ranking Performance of FONTE

Let us first check how much search space reduction is

achieved by Stages 1 and 2 of FONTE. Figure 5 shows the

distribution of the sizes of C (original), CF (after Stage 1),

and CBIC (after Stage 1+2), respectively, over all subjects.

The results show that Stage 1 significantly reduces the size

of the search space. On average, the size of search space can

be reduced to 7% of its original size using only the coverage

of the failing tests. The search space reduction by Stage 2

is relatively marginal compared to Stage 1: the style change

commits are detected in only 75 out of 130 subjects (58%). To

make it easier for readers to grasp the ranking-based evaluation

results that follow, we report the size distribution of the final

reduced search space CBIC in Table III.

We now turn to the ranking performance of FONTE: Fig. 6

presents the MRR metric achieved by FONTE with each

hyperparameter setting. The MRRs from our ranking-based

voting power (Eq. 4) are plotted in solid lines, while those

from the baseline voting schemes, (Eq. 7, and Eq. 8), are

plotted in dashed lines. We observe that any hyperparameter

setting of FONTE can outperform the baseline voting methods,

9https://github.com/casics/spiral

595

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
COMPARISON OF THE PERFORMANCE OF FONTE (WITH α = 0, τ = MAX, λ = 0.1) TO OTHER COMMIT RANKING TECHNIQUES APPLIED TO TWO

COMMIT SEARCH SPACE CBIC (AFTER STAGES 1 AND 2 OF FONTE) AND C , RESPECTIVELY. THE EVALUATION IS PERFORMED ON TWO SETS OF

SUBJECTS: THE DATASET FROM WEN ET AL. (67 SUBJECTS) AND OUR MANUALLY CURATED SET OF 63 SUBJECTS. THE PERFORMANCE WAS MEASURED

USING MRR (MEAN RECIPROCAL RANK) AND ACCURACY@K, WHERE K IS 1, 2, 3, 5, AND 10.

Subjects All (# subjects = 130) From Wen et al. [4] (# subjects = 67) Manually Curated (# subjects = 63)

Metric MRR
Accuracy

MRR
Accuracy

MRR
Accuracy

@1 @2 @3 @5 @10 @1 @2 @3 @5 @10 @1 @2 @3 @5 @10

FONTE 0.528 47 66 85 98 110
0.324 9 19 29 38 47 0.745 38 47 56 60 63

(36%) (51%) (65%) (75%) (85%)

Other Techniques (on CBIC )

Bug2Commit 0.380 27 42 64 85 96 0.235 7 13 19 26 33 0.534 20 29 45 59 63
FBL-BERT 0.338 27 40 47 69 90 0.158 5 9 11 14 27 0.529 22 31 36 55 63
Random Baseline 0.218 3 19 41 65 75 0.065 0 2 4 6 12 0.381 3 17 37 59 63
Theoretical Lower Bound 0.145 3 8 19 41 71 0.039 0 1 2 4 8 0.258 3 7 17 37 63

Other Techniques (on C)

Bug2Commit 0.155 11 18 22 25 39 0.123 4 7 9 11 16 0.189 7 11 13 14 23
FBL-BERT 0.037 1 3 5 7 10 0.037 1 2 2 3 4 0.036 0 1 3 4 6
Random Baseline 0.002 0 0 0 0 0 0.002 0 0 0 0 0 0.002 0 0 0 0 0
Theoretical Lower Bound 0.001 0 0 0 0 0 0.001 0 0 0 0 0 0.001 0 0 0 0 0

Ablation Study for FONTE

Skip Stage 2 0.490 39 64 82 97 110 0.317 9 18 28 37 47 0.675 30 46 54 60 63
Use Equal Vote (No FL) 0.436 39 56 67 79 88 0.193 7 9 12 19 25 0.694 32 47 55 60 63
Max Aggr. (Eq. 9) 0.317 17 36 50 73 97 0.142 0 5 9 18 34 0.503 17 31 41 55 63

Fig. 6. MRR for each hyperparameter configuration of FONTE

which demonstrates the effectiveness of using the FL rank of

code elements in allocating voting power. Regarding the depth-

based decay of voting power, we observe that decay weights

λ ∈ {0.1, 0.2, 0.3} perform better than λ = 0.0 (i.e., no

decay). In particular, setting λ to 0.1 consistently outperforms

other combinations of τ and α.

Table IV shows the comparison between the performance

of FONTE with its best hyperparameter setting (α = 0,

τ = max, λ = 0.1) and other baseline ranking techniques,

Bug2Commit and FBL-BERT, in ranking commits in CBIC

for all subjects. We provide the breakdown of the results based

on the source of the datasets, Wen et al. [4] and our manual

curation (see Section V-B), because they have different size

distributions of the reduced search space CBIC . Our manually

created dataset contains only the subjects with |CBIC | ≤ 10,

so that the worst rank of the BIC in CBIC is still within

the top 10. Furthermore, in addition to the performance of

Bug2Commit and FBL-BERT, we also provide a random

baseline, which involves randomly shuffling the commits in

CBIC and ranking them, and a theoretical lower bound, which

assigns the worst possible rank to the actual BIC, to assist

readers in comprehending the results for each of the datasets.
The results show that FONTE surpasses all other baseline

techniques in terms of evaluation metrics, with a 39% and

56% higher MRR compared to Bug2Commit and FBL-BERT,

respectively, and also achieves the highest accuracy for all

studied n values. As the size of the search space, |CBIC |,
increases10, the BIC identification problem becomes more

challenging, which is reflected in the lower performance of all

techniques in the dataset from Wen et al. [4] compared to the

manually curated dataset. Nonetheless, FONTE outperforms

other techniques regardless of the size of CBIC .
To study how much contribution the search space reduction

(Stage 1 and 2 of FONTE) makes, we also present the perfor-

mance of Bug2Commit and FBL-BERT when applied to the

entire commit search space, C. The results show a significant

decrease in the ranking performance of both techniques when

the search space is not reduced before ranking.
Furthermore, the ablation experiments (Ablation Study

for FONTE in Table IV) show that filtering out the style

change commits can increase the MRR of FONTE by 8%,

showing that Stage 2 is making a significant contribution to the

ranking despite the marginal contribution to the search space

reduction. However, also note that FONTE still outperforms

all other baseline techniques even without Stage 2, which

shows the effectiveness of our voting-based scoring model

with SBFL. Interestingly, the equal voting model (Eq. 7)

with λ = 0.1, which does not leverage any FL result except

the failure coverage, yet performs better than all ranking

10The size of the search space can be estimated by the theoretical lower
bound of the performance.

596

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. The number of saved search iterations required until finding the BIC
using the weighted bisection compared to the standard bisection on the entire
commit history, C

Fig. 8. The number of saved search iterations required until finding the
BIC using the weighted bisection compared to the standard bisection on the
reduced commit history, CBIC

baselines in terms of MRR. This shows that even without

using the FL techniques, simply giving equal voting power to

every code element covered by the failing test cases can rank

BICs more effectively than the baselines. On the other hand,

given the same FL results with FONTE, the max-aggregation

method achieves only 60% of MRR compared to FONTE,

demonstrating the importance of the voting-based aggregation.

Answer to RQ1: FONTE can rank the actual BICs in the top

1 and 5 commits for 36% and 75% of studied bugs. It is

significantly more effective than the random baseline and the

state-of-the-art IR-based BIC ranking method.

B. RQ2: Standard Bisection vs. Weighted Bisection

We simulate the standard and weighted bisection algorithms

on all subjects, assuming that the bug-revealing tests can

perfectly reveal the existence of bugs. Fig. 7 contains a sorted

bar chart that shows the number of saved search iterations,

for all subjects, until finding the BIC using our weighted

bisection algorithm compared to the standard bisection on

the entire commit history. The results show that using the

weighted bisection with FONTE-generated scores11 can reduce

the search cost for about 98% of subjects compared to the

standard bisection while saving up to 11 search iterations.

On average, the number of iterations is reduced by 67%.

There is no case where the weighted bisection degrades the

performance.

For a more conservative comparison, we also compare the

weighted bisection to the standard bisection when both are

applied to the reduced search space, CBIC . Fig. 8 shows that

the weighted bisection can reduce the number of required

search iterations for 78 out of 130 subjects (60.0%), while the

number of iterations is increased in only nine out of 130 sub-

jects (6.9%). In the remaining 33.1% of cases, the number of

iterations is the same as the standard bisection. To ensure that

11FONTE with α = 0, τ = max, λ = 0.1

Fig. 9. BIC ranks of FONTE with the more and less accurate FL results

the median of the number of saved iterations is positive (which

would indicate that there is a performance improvement), we

perform the one-sided Wilcoxon signed rank test [32], whose

null hypothesis is that the median of is negative (performance
degradation). The p-value is 1.51∗10−11, allowing us to reject

the null hypothesis in favour of the alternative that the median
of the number of saved iterations is greater than zero.

We also investigate why the weighted bisection worsens the

search efficiency for those nine subjects (6.9%) and report that

the BIC is not ranked well in the cases, i.e. either not in the

top 10 or even top 50%. The BIC rank (in percentage) and

the number of saved iterations are negatively correlated with

each other with a Pearson correlation coefficient of -0.58.

Answer to RQ2: Weighted bisection combined with FONTE

can save the search cost in 98% of studied bugs compared

to the standard bisection applied to the entire commit history,

saving 7.2 inspections on average. When the bisection is per-

formed only with the reduced candidates, weighted bisection

saves the number of search iterations in 60% of cases while

increasing it in only 7% of cases with lower BIC ranks.

C. RQ3: Impact of FL Accuracy on FONTE

To see how the accuracy of FL affects the performance of

FONTE on each individual subject, we provide less accurate

FL results to FONTE and observe how it affects the ranking

performance. We intentionally weaken the test suite by remov-

ing some of the relevant passing test cases, as it is known that

the accuracy of SBFL is highly dependent on the quality of

the used test suite [33]. By doing so, we limit the test suite

to only the test cases that are contained in the failing test

classes. For example, in the case of Table II, the relevant test

cases are limited to the last four test cases that are in the

TestFieldUtils class containing the failing test case.

Among the 99 out of 130 subjects whose sets of relevant

test cases are reduced, we observe that, in 57 subjects, the FL

accuracy (in terms of the highest rank of buggy methods) is

decreased as a result. For those 57 subjects, we see whether

the performance of FONTE is affected by the accuracy of

FL. In Figure 9, the x- and y-axis represent the BIC ranks

produced by FONTE with the more (original) and less accurate

FL results, respectively. Green markers (above the dashed line)

represent the cases where the better FL yields the better BIC

rank, while red markers indicate the opposite. The overall

597

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10. Simplified batch testing scenario

tendency is that higher FL accuracy leads to a better ranking

performance of FONTE, as shown by the fact that the number

of green dots above the dotted line is much higher than the

number of red dots below the line.12 The one-sided Wilcoxon

signed rank test for the paired ranking samples also results

in the p-value of 2.56 ∗ 10−6 showing that the median rank

difference is greater than zero when the FL accuracy increases.

Answer to RQ3: FONTE performs better when the FL results

used as its input become better. Consequently, we expect that

FONTE can benefit from more precise and sophisticated FL

techniques in the future.

VII. APPLICATION TO INDUSTRY SOFTWARE

SAP HANA is a large-scale commercial software that con-

sists of more than 10M lines of C++ and C. In the CI system of

SAP HANA, multiple commits that have individually passed

the pre-submit testing are merged into the delivery branch and

tested together using a more extensive test suite on a daily

basis. Considering the set of multiple commits as a single

batch, this is a type of Batch Testing [34]. While batch testing

reduces the overall test execution cost for SAP HANA, it

also has some practical drawbacks: when a test fails, it is not

immediately clear which change in the batch is responsible

for the failure [35]. The current CI system of SAP HANA

identifies the BIC in the batch using automatic bisection to aid

the bug assignments [36]. However, each individual inspection

during the bisection can take up to several hours due to the

compilation, installation, and test execution cost, resulting

in severe bottlenecks in the overall debugging process. The

bottleneck can be particularly problematic if integration or

system-level tests fail.

This motivates us to see whether FONTE and its weighted

bisection can reduce the number of bisection iterations. To

evaluate the effectiveness of applying FONTE, we collect

23 batch testing failures that occurred from July to August

2022 and their BICs identified by the bisection from the

internal CI logs of SAP HANA. Using the data, we first

check if FONTE can find the BIC inside the batch accurately

(Fig. 10). As the test coverage of SAP HANA is regularly

and separately updated, instead of being measured at each

of the batch testings, we use the latest line-level coverage

information to calculate the Ochiai scores. Note that we do

not need to compute the Ochiai scores for all lines, but only

the lines covered by the failing tests. When applying FONTE,

depth-based voting decay is not used (λ = 0) because all

candidate commits are submitted on the same day and have

12FONTE with the worse FL results still outperforms all baselines in RQ1.

TABLE V
EVALUATION OF FONTE ON THE 23 BATCH TESTING FAILURES OF SAP

HANA

MRR
Accuracy

@1 @2 @3 @5 @10

FONTE 0.600
10 14 15 20 23

(43%) (61%) (65%) (87%) (100%)

Random 0.110 0 0 0 1 17

not yet been merged into the main codebase. For the remaining

hyperparameters, we use α = 1 and τ = max that performed

the best with λ = 0 in RQ1.

Table V shows the BIC ranking performance of FONTE in

terms of MRR and Accuracy@n. While each batch contains

18.48 commits on average, FONTE can locate the actual BIC

within the top 1 and 5 for 43% and 87% of the failures,

respectively. Compared to the random baseline, it achieves

5.5-fold increase in MRR. Further, we also report that the

weighted bisection can reduce the bisection iterations for 18

out of 23 cases (78%), while it increases the cost in only

three cases (13%). Based on this result, we plan to incorporate

weighted bisection into the CI process of SAP HANA, which

is expected to save 32% of required iterations. Considering

that each iteration can take up to several hours, we expect a

significant reduction in the average BIC identification cost for

SAP HANA in the long run.

VIII. THREATS TO VALIDITY

Threats to internal validity concern factors that can affect

how confident we are about the causal relationship between the

treated factors and the effects. FONTE relies on widely-adopted

open-source tools to establish Cover and Evolve relations

to ensure the chain of causality between the test failure

and BIC identification. Further evaluation of FONTE using

other code history mining tools such as CodeShovel [22] or

CodeTracker [37], which have been demonstrated to be more

accurate than git log, is necessary to further strengthen

our claims and will be addressed as future work. Additionally,

other baselines rely on multiple sources of information, such

as bug reports. We choose Defects4J as our benchmark as it

provides well-established links between real-world bug reports

and the buggy version, not to mention human-written bug-

revealing test cases that withheld scrutiny from the community.

Threats to external validity concern factors that may affect

how well our findings can be generalised to unseen cases.

Our key findings are primarily based on experiments with the

open-source Java programs in Defects4J. Since they are not

representative of the entire population of real-world programs,

only further evaluations can strengthen our claim of general-

isation. We tried to support our claim by evaluating FONTE

with industry-scale software written in C and C++. We do

note that FONTE does not generalise to bugs that are caused

by non-executable files, such as configuration changes, as its

base assumption is that the test failure is caused by a bug in

598

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



the source code. We leave extension of FONTE to bugs caused

by non-executable changes as our primary future work.

Threats to construct validity concern how well the used

metrics measure the properties we aim to evaluate. We adopt

two ranking-evaluation metrics, MRR and accuracy@n, to

evaluate FONTE: both have been widely used in the IR and SE

literature. Since they are based on absolute ranks, we do note

that the results can be overrated when the number of ranking

candidates is small. To mitigate the threat, we also present the

expected and worst values for the measures as baselines.

IX. RELATED WORK

Locus [5] is the first work that proposed to localise the bug

at the software change level. It takes a bug report as an input

query and locates the relevant change hunk based on the token

similarities. IR-based techniques, such as Locus, and FONTE

can complement each other depending on circumstances.

When the failure cannot be reproduced from the bug report,

IR-based techniques can be used instead of FONTE. However,

if the coverage of the failing and passing tests are available,

we can apply FONTE with SBFL to more precisely rank the

commits without relying on IR. ChangeLocator [2] aims to

find a BIC for crashes using the call stack information. It is a

learning-based approach that requires data from fixed crashes.

Unlike ChangeLocator, FONTE is not limited to crashes and

can be applied to general failures. Orca [10] takes symptoms of

bugs, such as an exception message or customer complaints, as

an input query and outputs a ranked list of commits ordered by

their relevance to the query. It uses the TF-IQF [38] to compute

the relevance scores of files, and aggregate them to a commit

level. Subsequently, it uses machine learning to predict the risk

of candidate commits for breaking ties. Bug2Commit [6] uses

multiple features extracted from bug reports and commits, and

aggregates all features by taking the average of their vector

representations. Although Bug2Commit uses an unsupervised

learning approach, it needs the historical data of project-

specific bug reports and commits to train the word embedding

model. FBL-BERT [28] retrieves the relevant changeset for

the input bug report using a fine-tuned BERT model that

can capture the semantics in the text. It proposes fine-grained

changeset encoding methods and accelerates the retrieval by

offline indexing [39]. The major difference between FONTE

and the techniques mentioned above is that FONTE does not

require any training. Further, FONTE can be combined with

any code-level FL technique, without being coupled to specific

sources of information, as long as the coverage of failing

executions is available.

The weighted bisection algorithm we propose is similar to

FACF (Flaky Aware Culprit Finding) [40], which formulates

the flake-aware bisection problem as a Bayesian inference, in

that both guide the bisection process based on the probability

of commits being a source of test failure. The difference be-

tween the two algorithms is that ours uses commit scores from

FONTE to establish the initial probability distribution, while

FACF updates the probability based on the test results during

the search taking into account the potential for flakiness. The

original work notes that FACF can take into account any prior

information about the bug inducing change in the form of

an initial probability distribution. Hence, we believe that the

commit scores generated by FONTE can be used as an effective

prior distribution for the FACF framework.
There exist studies that are highly relevant to FONTE despite

not being specifically about the BIC identification domain.

FaultLocator [41] is similar to FONTE as both use code-level

FL scores to identify suspicious changes. FaultLocator com-

bines spectrum information with the change impact analysis to

precisely identify the failure-inducing atomic edits out of all

edits between two versions, whereas FONTE aims to pinpoint

BICs in the commit history. WhoseFault [42] is a method that

utilises code-level FL scores and commit history to determine

the developer responsible for a bug. While it provides insights

into the assignment of bugs, it does not specifically target BIC

identification. As a result, it cannot be directly compared with

FONTE in our evaluation, nor can it be integrated with our

bisection algorithm. Our belief is that accurately identifying

the BIC can also be used to find the developer responsible

for fixing the bug, based on the authorship of the changes,

in addition to helping developers to understand the context in

which the failure occurred.

X. CONCLUSION

This paper proposes FONTE, a BIC identification technique

that is available upon the observation of a failure. It prunes

the BIC search space using failure coverage and the syntactic

analysis of commits, and assigns scores to the remaining

commits using the FL scores as well as change histories of

code elements. Our experiments with 130 bugs in Defects4J

show that FONTE can effectively identify BICs with an MRR

of 0.528, which significantly outperforms the baselines in-

cluding state-of-the-art BIC identification techniques. Along

with FONTE, we also propose the weighted bisection to accel-

erate the BIC search utilising the commit score information

and show that it can save the search cost in 97.7% of the

studied cases compared to the standard bisection. Finally, the

application of FONTE to a large-scale industry software SAP

HANA shows that FONTE can successfully reduce the cost of

BIC identification in a batch testing CI scenario. Future work

includes the actual deployment of FONTE to SAP HANA as

well as expanding the scope of bugs FONTE can handle.

ACKNOWLEDGMENT

We thank three anonymous reviewers whose suggestions

helped us improve this paper. Gabin An and Shin Yoo are

supported by National Research Foundation of Korea (NRF)

Grant (NRF-2020R1A2C1013629), Institute for Information

& communications Technology Promotion grant funded by the

Korean government (MSIT) (No.2021-0-01001), and Samsung

Electronics (Grant No. IO201210-07969-01).

REFERENCES

[1] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp.
1–5, jul 2005. [Online]. Available: https://doi.org/10.1145%2F1082983.
1083147

599

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



[2] R. Wu, M. Wen, S.-C. Cheung, and H. Zhang, “ChangeLocator: locate
crash-inducing changes based on crash reports,” Empirical Software
Engineering, vol. 23, no. 5, pp. 2866–2900, nov 2017. [Online].
Available: https://doi.org/10.1007%2Fs10664-017-9567-4

[3] M. Wen, Y. Liu, and S.-C. Cheung, “Boosting automated program
repair with bug-inducing commits,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas
and Emerging Results. ACM, jun 2020. [Online]. Available:
https://doi.org/10.1145%2F3377816.3381743

[4] M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung, and Z. Su,
“Exploring and exploiting the correlations between bug-inducing and
bug-fixing commits,” in Proceedings of the 27th ACM European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, aug 2019. [Online]. Available:
https://doi.org/10.1145%2F3338906.3338962

[5] M. Wen, R. Wu, and S.-C. Cheung, “Locus: locating bugs from
software changes,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, aug 2016.
[Online]. Available: https://doi.org/10.1145%2F2970276.2970359

[6] V. Murali, L. Gross, R. Qian, and S. Chandra, “Industry-scale IR-based
bug localization: A perspective from facebook,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, may 2021. [Online].
Available: https://doi.org/10.1109%2Ficse-seip52600.2021.00028

[7] G. Rodrı́guez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M.
Germán, and J. M. Gonzalez-Barahona, “How bugs are born: a model to
identify how bugs are introduced in software components,” Empirical
Software Engineering, vol. 25, no. 2, pp. 1294–1340, feb 2020.
[Online]. Available: https://doi.org/10.1007%2Fs10664-019-09781-y

[8] C. Catal, “Software fault prediction: A literature review and current
trends,” Expert Systems with Applications, vol. 38, no. 4, pp. 4626–
4636, apr 2011. [Online]. Available: https://doi.org/10.1016%2Fj.eswa.
2010.10.024

[9] “Git-bisect-lk2009 documentation.” [Online]. Available: https://git-scm.
com/docs/git-bisect-lk2009.html

[10] R. Bhagwan, R. Kumar, C. S. Maddila, and A. A. Philip, “Orca:
Differential bug localization in large-scale services,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 493–509.

[11] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A
survey on software fault localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707–740, aug 2016. [Online]. Available:
https://doi.org/10.1109%2Ftse.2016.2521368

[12] G. An and S. Yoo, “Reducing the search space of bug inducing
commits using failure coverage,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, aug
2021. [Online]. Available: https://doi.org/10.1145%2F3468264.3473129

[13] S. Artzi, S. Kim, and M. D. Ernst, “ReCrash: Making software failures
reproducible by preserving object states,” in ECOOP 2008 – Object-
Oriented Programming. Springer Berlin Heidelberg, pp. 542–565.
[Online]. Available: https://doi.org/10.1007%2F978-3-540-70592-5 23

[14] W. Jin and A. Orso, “BugRedux: Reproducing field failures for
in-house debugging,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, jun 2012. [Online]. Available:
https://doi.org/10.1109%2Ficse.2012.6227168

[15] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618–643, sep 2010. [Online].
Available: https://doi.org/10.1109%2Ftse.2010.63

[16] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis - ISSTA 2014. ACM Press, 2014. [Online]. Available:
https://doi.org/10.1145%2F2610384.2628055

[17] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead,
“Automatic identification of bug-introducing changes,” in 21st
IEEE/ACM International Conference on Automated Software
Engineering (ASE'06). IEEE, sep 2006. [Online]. Available:
https://doi.org/10.1109%2Fase.2006.23

[18] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE

’14, Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.
[Online]. Available: http://doi.acm.org/10.1145/2642937.2642982

[19] J. Sohn and S. Yoo, “Why train-and-select when you can use them
all?” in Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, jul 2019. [Online]. Available: https://doi.org/10.
1145%2F3321707.3321873

[20] J. Sohn, G. An, J. Hong, D. Hwang, and S. Yoo, “Assisting bug
report assignment using automated fault localisation: An industrial
case study,” in 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, apr 2021. [Online].
Available: https://doi.org/10.1109%2Ficst49551.2021.00041

[21] S. Habchi, G. Haben, J. Sohn, A. Franci, M. Papadakis, M. Cordy,
and Y. Le Traon, “What made this test flake? pinpointing classes
responsible for test flakiness,” arXiv e-prints, pp. arXiv–2207, 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2207.10143

[22] F. Grund, S. A. Chowdhury, N. C. Bradley, B. Hall, and
R. Holmes, “CodeShovel: Constructing method-level source code
histories,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, may 2021. [Online]. Available:
https://doi.org/10.1109%2Ficse43902.2021.00135

[23] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards locating
execution omission errors,” in Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation -
PLDI '07. ACM Press, 2007. [Online]. Available: https://doi.org/10.
1145%2F1250734.1250782

[24] R. Abreu, P. Zoeteweij, and A. V. Gemund, “An evaluation of similarity
coefficients for software fault localization,” in 2006 12th Pacific Rim
International Symposium on Dependable Computing (PRDC'06). IEEE,
2006. [Online]. Available: https://doi.org/10.1109%2Fprdc.2006.18

[25] N. Craswell, “Mean reciprocal rank,” in Encyclopedia of Database
Systems. Springer US, 2009, pp. 1703–1703. [Online]. Available:
https://doi.org/10.1007%2F978-0-387-39940-9 488

[26] J. Sohn and S. Yoo, “FLUCCS: using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, jul
2017. [Online]. Available: https://doi.org/10.1145%2F3092703.3092717

[27] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang,
“Can automated program repair refine fault localization? a unified
debugging approach,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, jul
2020. [Online]. Available: https://doi.org/10.1145%2F3395363.3397351

[28] A. Ciborowska and K. Damevski, “Fast changeset-based bug localization
with BERT,” in Proceedings of the 44th International Conference
on Software Engineering. ACM, may 2022. [Online]. Available:
https://doi.org/10.1145%2F3510003.3510042

[29] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, “Code and named
entity recognition in StackOverflow,” in Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics,
2020, pp. 4913–4926. [Online]. Available: https://doi.org/10.18653/v1/
2020.acl-main.443

[30] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gat-
ford et al., “Okapi at TREC-3,” Nist Special Publication Sp, vol. 109,
p. 109, 1995.

[31] M. Hucka, “Spiral: splitters for identifiers in source code files,” Journal
of Open Source Software, vol. 3, no. 24, p. 653, Apr. 2018. [Online].
Available: http://joss.theoj.org/papers/10.21105/joss.00653

[32] F. Wilcoxon, “Individual comparisons by ranking methods,” in Springer
Series in Statistics. Springer New York, 1992, pp. 196–202. [Online].
Available: https://doi.org/10.1007%2F978-1-4612-4380-9 16

[33] A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosability
metric for spectrum-based fault localization approaches,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, may 2017. [Online]. Available: https://doi.org/10.
1109%2Ficse.2017.66

[34] A. Najafi, P. C. Rigby, and W. Shang, “Bisecting commits and
modeling commit risk during testing,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, aug
2019. [Online]. Available: https://doi.org/10.1145%2F3338906.3338944

[35] M. J. Beheshtian, A. H. Bavand, and P. C. Rigby, “Software batch
testing to save build test resources and to reduce feedback time,”
IEEE Transactions on Software Engineering, vol. 48, no. 8, pp.
2784–2801, aug 2022. [Online]. Available: https://doi.org/10.1109%
2Ftse.2021.3070269

600

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 



[36] T. Bach, A. Andrzejak, C. Seo, C. Bierstedt, C. Lemke, D. Ritter, D. W.
Hwang, E. Sheshi, F. Schabernack, F. Renkes, G. Gaumnitz, J. Martens,
L. Hoemke, M. Felderer, M. Rudolf, N. Jambigi, N. May, R. Joy,
R. Scheja, S. Schwedes, S. Seibel, S. Seifert, S. Haas, S. Kraft, T. Kroll,
T. Scheuer, and W. Lehner, “Testing very large database management
systems: The case of SAP HANA,” Datenbank-Spektrum, nov 2022.
[Online]. Available: https://doi.org/10.1007%2Fs13222-022-00426-x

[37] M. Jodavi and N. Tsantalis, “Accurate method and variable tracking
in commit history,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, nov 2022. [Online]. Available:
https://doi.org/10.1145%2F3540250.3549079

[38] J.-M. Yang, R. Cai, F. Jing, S. Wang, L. Zhang, and W.-Y. Ma, “Search-
based query suggestion,” in Proceeding of the 17th ACM conference on
Information and knowledge mining - CIKM '08. ACM Press, 2008.
[Online]. Available: https://doi.org/10.1145%2F1458082.1458321

[39] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp.
535–547, 2019. [Online]. Available: https://doi.org/10.1109/TBDATA.
2019.2921572

[40] B. Dorward, C. Johnston, E. Nickell, and T. Hen-
derson, Eds., Flake-Aware Culprit Finding, 2021.
[Online]. Available: https://conf.researchr.org/details/cciw-2021/
cciw-2021-ci-cd-industry-workshop/6/Flake-Aware-Culprit-Finding

[41] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM). IEEE,
2011, pp. 23–32. [Online]. Available: https://doi.org/10.1109/ICSM.
2011.6080769

[42] F. Servant and J. A. Jones, “WhoseFault: Automatic developer-to-fault
assignment through fault localization,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, jun 2012.
[Online]. Available: https://doi.org/10.1109%2Ficse.2012.6227208

601

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on August 04,2023 at 12:00:14 UTC from IEEE Xplore.  Restrictions apply. 


