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ABSTRACT
The performance of many Fault Localisation (FL) techniques di-
rectly depends on the quality of the used test suites. Consequently,
it is extremely useful to be able to precisely measure how much
diagnostic power each test case can introduce when added to a test
suite used for FL. Such a measure can help us not only to prioritise
and select test cases to be used for FL, but also to e!ectively aug-
ment test suites that are too weak to be used with FL techniques.
We propose FDG, a new measure of Fault Diagnosability Gain for
individual test cases. The design of FDG is based on our analysis of
existing metrics that are designed to prioritise test cases for better
FL. Unlike other metrics, FDG exploits the ongoing FL results to
emphasise the parts of the program for which more information
is needed. Our evaluation of FDG with Defects4J shows that it
can successfully help the augmentation of test suites for better FL.
When given only a few failing test cases (2.3 test cases on average),
FDG can e!ectively augment the given test suite by prioritising the
test cases generated automatically by EvoSuite: the augmentation
can improve the acc@1 and acc@10 of the FL results by 11.6x and
2.2x on average, after requiring only ten human judgements on the
correctness of the assertions EvoSuite generates.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Fault Localisation (FL) techniques aim to reduce the cost of software
debugging by automatically identifying the root cause of the ob-
served test failures [54]. While some FL techniques use only static
data such as lexical proximity between bug reports and source
code [48], the majority of FL techniques are based on dynamic
analysis: Spectrum Based Fault Localisation (SBFL) relies on both
the test coverage and the test results [25, 38, 53], whereas Mutation
Based Fault Localisation exploits the relationship between mutants
and test cases [22, 37, 40, 41]. In both cases, the quality of the test
suite used with an FL technique can signi"cantly a!ect its perfor-
mance. It is widely known that FL techniques thrive only when
accompanied by a rich and diverse test suite [44].

In reality, however, it is not always the case that the given test
suite is su#ciently diverse to ensure successful fault localisation.
In fact, it is not unusual to start the debugging process only with a
single failing test input, calling for the need of test augmentation.
Many techniques have been developed to guide the test augmenta-
tion, i.e., to add the test case that can maximise the diagnosability
of the augmented test suite [3, 11]. Equally relevant are the tech-
niques that prioritise the given test cases for better and earlier
fault localisation [17, 58], as well as techniques that aim to mea-
sure the diagnostic capability of the given test suite. Most of these
techniques are built around a metric that measures the diagnosabil-
ity of either a single test, or a set of tests. However, our analysis
of existing test diagnosability metrics reveals room for improve-
ment. Speci"cally, while some of the techniques are result-aware,
i.e., incorporate the result of test executions (pass/fail) into the
diagnosability computation, none of them directly uses the suspi-
ciousness scores of individual program elements during localisation,
even though they can provide critical information by pinpointing
where the prioritisation should focus on next.

Based on our analysis of existing techniques, we propose FDG,
a metric that can precisely measure the Fault Diagnosability Gain
that a test case can bring to a test suite. FDG is designed to be
used during fault localisation, and uses the current suspiciousness
scores to precisely capture which part of the target program re-
quires additional diagnostic information from the test case under
consideration. We "rst evaluate FDG with developer-written test
cases in Defects4J, i.e., under existing and reliable test oracles
and with all test coverage available, to study its performance un-
der an ideal setting. We construct "xed-sized test suites by adding
test cases in the descending order of their diagnosability measured
by FDG and other existing metrics. Test suites constructed based
on FDG produce much more accurate fault localisation, achieving
acc@10 values that are 23% and 14% higher than those produced
by the state-of-the-art metrics.
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In a more realistic setting, we also evaluate FDG using automati-
cally generated test cases to augment the initial set of failing test
inputs. We posit that the true cost of test suite augmentation is not
the cost of test data generation, as it can be automated. Rather, the
major cost of test augmentation is the human e!ort required to
produce the test oracles for the generated test data. Our evaluation
of FDG assumes an iterative FL scenario, in which an insu#cient
test suite is augmented, on the $y, with test data automatically
generated by EvoSuite. Here, FDG is used to choose the next test
case to be presented to the human engineer for the oracle labelling.
We show that after only ten interactions with the human engineer,
FDG can boost acc@1 and acc@10 by 11.6 (from 5 to 58) and 2.2
(from 63 to 147) times, respectively, compared to the initial test
suites that contain only a few failing test cases. In addition, we also
show that FDG is fairly resilient to labelling errors with an error
rate of up to 30%.

The main contributions of this paper are as follows:

• We analyse, and empirically compare, existing metrics that
measure the diagnosability of test cases for fault localisation.
Our evaluation compares how quickly existing metrics can
improve the accuracy of SBFL techniques by prioritising the
human-written test cases in Defects4J.

• We propose a novel diagnosability metric for fault localisa-
tion, FDG, based on the analysis of existing metrics. FDG
distinguishes itself from existing metrics in that it actively
uses the available suspiciousness scores to capture which
part of the target program needs additional diagnostic infor-
mation while localisation is ongoing.

• We "rst evaluate FDG with human-written tests, to investi-
gate its performance under perfect test oracles. When forced
to use a limited number of test cases, using those chosen by
FDG can achieve up to 23% higher acc@10 when compared
to the localisation driven by state-of-the-art metrics.

• We also report "ndings from a more realistic scenario, where
the developer labels oracles that are generated by EvoSuite

to augment an initial set of failing inputs for fault localisation:
we use FDG to choose which test data to present to the
human engineer for test oracle labelling. FDG can boost
acc@1 by 11.6 times after only ten human labels.

• We make our replication package publicly available at: https:
//github.com/agb94/FDG-artifact [2]

The remainder of the paper is organised as follows. Section 2
presents the basic notations that will be used throughout the paper,
as well as the fundamental concepts in SBFL. Section 3 analyses
existing diagnosability metrics and presents a comparison of their
performance using human-written tests in Defects4J. Section 4
proposes our novel metric, FDG, based on our analysis. Section 5
describes the experimental setup for our empirical evaluation, the
results of which are presented in Section 6. Section 7 discusses impli-
cations of this work, while Section 8 presents the related work, and
Section 9 considers threats to validity. Finally, Section 10 concludes.

2 PRELIMINARIES
This section introduces the basic notations, the background of SBFL
techniques, and the de"nition of ambiguity groups.

2.1 Basic Notation
Given a program ! , let us de"ne the following:

• Let " = {#1, . . . , #!} be the set of program elements that con-
sist ! , such as statements or methods, and $ = {%1, . . . , %"}
be the test suite for ! .

• Let &# be the' × ( coverage matrix of $ :

&# =









)11 · · · )1!
...

. . .
...

)"1 · · · )"!









∈ B"×!

where &# [*, +] = )$ % = 1 if %$ covers # % and 0 otherwise.
• Given an arbitrary test case % , let ,& ∈ B1×! be the coverage
vector of % , where ,& [ +] = 1 if % executes # % , and 0 otherwise.

• Let - : $ → B be the function that maps a test in $ to its
result: -(%) = 0 if % reveals a fault in ! , and 1 otherwise.
Subsequently, the set of failing tests, $' , can be de"ned as
{% ∈ $ |-(%) = 0}. ! is faulty when $' is not empty.

2.2 Spectrum-Based Fault Localisation (SBFL)
SBFL is a statistical approach for the automated localisation of
software faults [54]. It utilises program spectrum, a summary of
the runtime information collected from the program executions,
to "nd the faulty program elements. A representative program
spectrum of a program element # % ∈ " consists of four values:
(#( ,(( , #' ,(' ) = (.11,.01,.10,.00) where

.)* = | {%$ ∈ $ |&# [*, +] = ) ∧ -(%$ ) = /} |

SBFL statistically estimates the suspiciousness of each program
element based on the following rationale: “The more the execution
of an element is correlated with failing tests (high #' , low (' ) and less
with passing ones (high (( , low #( ), the more suspicious the program

element is, and vice versa”. A risk evaluation formula 0 : I4 → R
is a formula that converts the four program spectrum values to
a suspiciousness score. Many risk evaluation formulas [1, 25, 38,
53] have been designed to implement this core idea. For example,
Ochiai [1], one of the most widely studied risk evaluation formulas,
computes the suspiciousness as follows:

1,ℎ*)* (#( ,(( , #' ,(' ) = #' /
√
(#' + (' ) × (#' + #( ) (1)

Fig. 1 illustrates a concrete example of calculating Ochiai scores
from the coverage matrix and test results.

SBFL is one of the most widely studied FL techniques [54] as it is
applicable as long as test coverage is available. Due to the applica-
bility, SBFL scores are often used as features for more complicated
learn-to-rank FL techniques [31, 33, 51], motivating us to improve
its e!ectiveness.

2.3 Ambiguity Groups
An ambiguity group [16, 52] is a set of program elements that are
only executed by the same set of test cases. Given a program ! and
its elements ", we de"ne 34 ($ ) as a set of such ambiguity groups
under the test suite $ . The size of 34 ($ ) is equal to the number of
unique columns in &# . More formally, 34 ($ ) is a partition [18] of
the set " that satis"es the following properties:

(1) ∀# ∈ " . ∃5 ∈ 34 ($ ) . # ∈ 5
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Program Elements #1 #2 #3 #4 #5

Tests
%1 • PASS
%2 • • • • FAIL
%3 • • FAIL

Spectrum

#( 0 0 0 0 1
(( 1 1 1 1 0
#' 1 1 2 2 0
(' 1 1 0 0 2

Ochiai 0.71 0.71 1.00 1.00 0.00

Rank 4 4 2 2 5

Additional
Tests

% ′1 • PASS
% ′2 • • PASS
% ′3 • • • • FAIL
% ′4 • FAIL

Ochiai

w/ % ′1 0.71 0.71 1.00 1.00 0.00
w/ % ′2 0.50 0.71 1.00 1.00 0.00
w/ % ′3 0.82 0.82 1.00 1.00 0.00
w/ % ′4 0.71 0.71 1.00 0.82 0.00

Figure 1: A simple motivating example with one faulty el-
ement #3. The dots (•) show the coverage relation, and the
ranks are computed using the max tie-breaker.

(2) ∀5 ∈ 34 ($ ).∀#$ , # % ∈ 5.&# [:, *] = &# [:, +]
(3) ∀51,52 ∈ 34 ($ ) .51 ≠ 52 ∧ #$ ∈ 51 ∧ # % ∈ 52

=⇒ &# [:, *] ≠ &# [:, +]

Elements in the same ambiguity groups are assigned the same
suspiciousness score, since their program spectra are identical. For
example, in Fig. 1, 34 ({%1, %2, %3}) is {{#1, #2} , {#3, #4} , {#5}}, and
all the elements in an ambiguity group are tied in the "nal ranking
and hence cannot be uniquely diagnosed as faulty. Therefore, the
performance of an SBFL technique increases when there are more
ambiguity groups, and their size is smaller.

3 ANALYSIS OF EXISTING DIAGNOSABILITY
METRICS

Fig. 1 contains a motivating example that shows the role of a di-
agnosability metric in FL. In the existing SBFL results based on
original test cases {%1, %2, %3}, program elements #3 and #4 form an
ambiguity group. They share the highest suspiciousness score, i.e.,
1.0, even though only #3 is the actual faulty element. In this case,
to further distinguish which one is more suspicious between them,
we need an additional test case that can break the ambiguity group,
i.e., covering either one of the program elements.

Let us now consider the four additional test cases, % ′1 to % ′4, to
augment the existing test suite. Adding % ′1 or %

′
3 does not provide

additional diagnostic information, as the program elements in the
same ambiguity group are either executed or not executed together.
In comparison, % ′2 and %

′
4 can provide more information because they

can break an ambiguity group, {#1, #2} and {#3, #4}, respectively.
Between them, % ′4 should be prioritised over % ′2 since the ambiguity
group {#3, #4} is currently more suspicious than {#1, #2}. Fig. 1
shows how Ochiai scores change as each test case is added to the
original test suite. When % ′4 is added, the faulty element #3 is "nally
ranked at top as the suspiciousness score of the non-faulty element
#4 decreases. Quantifying such diagnostic contribution made by

individual test cases can inform our test suite augmentation, or
even the order of test execution.

There are many existing diagnosability metrics that are designed
to capture the information gain contributed by individual test cases.
In many cases, these metrics are used as part of a test prioritisation
technique that is designed to achieve more accurate fault locali-
sation earlier, or with fewer test cases [16, 19, 58]. We can also
derive such metrics from diagnosability measures of the entire test
suites [8, 44] by looking at the di!erence in diagnosability gain
achieved by the addition a single test. To the best of our knowledge,
these metrics have never been directly compared to each other
using the same benchmark. The remainder of this section describes
existing diagnosability metrics, and empirically compares them
using Defects4J, a collection of real-world faults in Java programs.

3.1 Analysis of Existing Diagnosability Metrics
We analyse nine diagnosability metrics for SBFL from the relevant
literature published after 2010. Two of these are simply coverage
based Test Case Prioritisation [57] techniques that serve as base-
lines. Out of the seven remaining metrics, four metrics have been
introduced as part of test prioritisation techniques that aim to im-
prove FL performance, while the remaining three are derived from
the diagnosability metrics for entire test suites. Given a diagnos-
ability metric 6 , we use the notation 6 ($ , %) to denote the estimated
diagnosability gain brought by a newly chosen single test case % to
the set of already executed test cases $ .

3.1.1 Test Case Prioritisation Metrics. Since SBFL techniques are
based on an aggregation of test coverage, we include two coverage-
based test case prioritisation techniques, total and additional [12,
46], as baselines. Total prioritisation greedily selects the test case
with the highest coverage over all program elements, while addi-
tional prioritisation favours the test case with the highest coverage
over remaining uncovered program elements only:

Total($ , %) = |
{
# % ∈ " |,& [ +] = 1

}
|

Add($ , %) = |
{
# % ∈ " |,& [ +] = 1 ∧ ∀%$ ∈ $ .&# [*, +] = 0

}
|

In both cases, our rationale is that increasing coverage as early as
possiblemay lead to an earlier increase in the amount of information
provided to SBFL techniques.

Renieris and Reiss proposed Nearest Neighbours fault localisa-
tion [45], which selects the passing test cases whose execution trace
is the closest to the given failing execution. They use a program-
dependency-based metric to measure the proximity. Motivated by
this work, Bandyopadhyay et al. put weights to test cases using the
average of Jaccard similarity between the coverage of a given test
case and the failing ones [5]. Although Bandyopadhyay et al. do
not use this metric to prioritise test cases, we include the metric
since it aims to measure the diagnosability of individual test cases.
We call this metric as Prox hereafter:

Prox($ , %) =

∑
&! ∈#" 7),,)89 (&# [*, :], ,& )

|$' |

Hao et al. [19] select a representative subset of test cases from a
given test suite to reduce the oracle cost (i.e., to reduce the number
of outputs to inspect). Among the three coverage-based strategies
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introduced, S1, S2, and S3, the most e!ective one for fault local-
isation was S3: it takes into account the relative importance of
ambiguity groups, which in turn is de"ned as the ratio of failing
tests that execute each group, :8* (5) = #' /(#' + (' ).

S3($ , %) =
∑

+∈,-′ (# )

:8* (5) · 9*; (%,5)

where 34 ′ denotes a variation of ambiguity group, which includes
program elements that share the same spectrum values, and9*; (%,5)
denotes the size of the smaller subset when % is used to divide
5 to two subsets based on coverage, i.e., the minimum between
|{# % ∈ 5|,& [ +] = 1}| and |{# % ∈ 5|,& [ +] = 0}|. Therefore, S3 as-
signs higher priority to tests that can more evenly split the more
important ambiguity groups.

RAPTER [16] prioritises test cases by the amount of ambiguity
group reduction achieved by individual test cases. While the aim
of reducing ambiguity group is similar to S3, RAPTER considers
only the size of ambiguity groups, and not the test results.1 Here,
: (5) = |5 |/( is the probability that 5 contains a faulty element,

which is assigned in proportion to the size of the group, and
|+ |−1
2

refers to the expectedwasted e!ort if a developer considers program
elements in 5 randomly.

RAPTER($ , %) = −
∑

+∈,- (#∪{& })

: (5) ·
|5| − 1

2

FLINT [58] is an information-theoretic approach that formulates
test case prioritisation as an entropy reduction process. In FLINT,
a test case is given higher priority when it is expected to reduce
more entropy (H) [49] in the suspiciousness distribution across
program elements. The expected entropy reduction of each test
case is predicted based on the conditional probability of the test case
failing; the probability of a new test case failing is approximated as
the failure rate observed among the test cases executed so far.

FLINT($ , %) = −< · = (!' ) − (1 − <) · = (!( )

Here, < is the observed failure rate, |$' |/|$ |, and !( and !' are
the suspiciousness distributions of $ ∪ {%}, computed under the
assumption that % passes and fails, respectively. The suspiciousness
distributions are computed by normalising the Tarantula [25] scores.
Among the studied existing metrics, FLINT is the only one that does
use suspiciousness scores to measure the diagnosability of a new
test to execute. However, it only considers the overall distribution
of suspiciousness via Shannon entropy, and does not use scores of
individual program elements to focus the prioritisation. Note that
we negate the original RAPTER and FLINT metrics so that a higher
score means a higher diagnosability gain.

3.1.2 Test Suite Diagnosability Metrics. This section describes test
suite diagnosability metrics that are designed to measure the diag-
nosability of entire test suites. Despite originally being designed
for test suites, a test suite diagnosability metric > can also be used
to quantify the diagnosability gain of an individual test, % , by com-
puting the di!erence between the diagnosability of an original test
suite, > ($ ), and that of the enhanced test suite, > ($ ∪ {%}):

6 ($ , %) = > ($ ∪ {%}) − > ($ )

1S3, on the other hand, considers test results via (.$ (+) .

Baudry et al. [8] analysed the features of a test suite that are
related to the fault diagnosis accuracy and introduced the Test-
for-Diagnosis (TfD) metric that measures the number of ambiguity
groups (referred to as Dynamic Basic Blocks (DBB) in their paper).
They proposed composing a test suite that maximises the number
of DBBs for high diagnosability.

TfD($ ) = |34 ($ ) |

EntBug [11] evaluates a test suite based on its coverage matrix
density, which is de"ned as the ratio of ones in the coverage matrix.
EntBug augments an existing test suite with additionally generated
test cases with the goal of balancing the density of the coverage
matrix to 0.5.

EntBug($ ) = 1 − |1 − 2 · ? ($ ) |

where ? ($ ) =
∑
&# [*, +]/(|" | · |$ |). Note that this de"nition is

the normalised version [44] of EntBug.
More recently, Perez et al. propose DDU [44], a test suite diagnos-

ability metric for SBFL, that combines three key properties, density,
diversity, and uniqueness, all being properties that a test suite
should exhibit to achieve high localisation accuracy. The density
component is identical to EntBug, while the uniqueness component
is the ratio of the number of ambiguity groups over the number of
all program elements, i.e., |34 ($ ) |/|" |. Lastly, the diversity compo-
nent is designed to ensure the diversity of test executions, i.e., the
contents of the rows in the coverage matrix. Formally, it is de"ned
as the Gini-Simpson index [26] among the rows.

DDU($ ) = density($ ) × diversity($ ) × uniqueness($ )

3.1.3 Classification of Diagnostic Capability Metrics. Among the
aforementioned metrics, some can be calculated with only the test
coverage, while others require the test results plus the coverage.
Thereby, we broadly classify them into two categories based on the
utilised information:

• Result-Agnostic: metrics utilising only coverage informa-
tion; total coverage, additional coverage, RAPTER, TfD, Ent-
Bug, and DDU belong to this category.

• Result-Aware: metrics utilising coverage information and
previous test results; Prox, S3, and FLINT belong here.

When we order tests according to diagnosability metrics, the
result-agnostic metrics are not a!ected by the results of previously
chosen, whereas the result-aware metrics are.

3.2 Evaluation of Existing Metrics
We empirically compare and analyse the performance of existing
metrics by studying how much each metric can accelerate fault lo-
calisation of real world bugs. For this, we apply the studied existing
metrics to the bugs and human-written test cases in the version
2.0 of Defects4J, a widely studied real world fault benchmark (for
details about subject programs and bugs, please refer to Section 5.2).
We adopt a ranking-based evaluation protocol stated below: while
there are questions about whether the ranking form is the most
e!ective way for humans to consume results of FL techniques [42],
we posit that test suites capable of producing more accurate rank-
ings are also capable of providing higher diagnosability due to the
diversity in its coverage.
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Figure 2: The mAP values for each prioritisation metric dur-
ing ten iterations

3.2.1 Protocol. For every studied fault, we create a test suite that
initially only contains one of the failing test cases provided by
Defects4J: therefore, we create multiple such test suites based
on a single Defects4J fault, if it has multiple failing test cases.
Subsequently, we iteratively add ten test cases from the remaining
test cases, in the order given by one of the studied existing metrics:
after each iteration, we evaluate the accuracy of fault localisation
performed using test cases added up to that point. In total, we study
810 test orderings generated from 351 studied faults.

To evaluate the SBFL accuracy at each iteration, we compute the
line level Ochiai (Eq. 1) scores, and aggregate them at the method
level [51] by assigning each method the score of its most suspicious
line. We use max-tiebreaker to break ties in the ranking. Finally, we
use Mean Average Precision (mAP) to compare rankings produced
by di!erent metrics. mAP is a widely used metric in Information
Retrieval, and is de"ned as the Average Precision (AP) values across
multiple queries (in our case, multiple test orderings). Average
Precision, in turn, stands for the average of precision values at
each rank of all positive samples (in our case, faulty methods). For
example, if a program contains two faulty methods, A and B, placed
at the second and the "fth places, the AP is 1

2 (
1
2 + 2

5 ) = 0.45: the
higher the mAP value is, the better the overall ranking is.

3.2.2 Comparison Results. Figure 2 shows the trends of mAP val-
ues produced by di!erent metrics at each iteration. Lines are colour-
coded for each metric; metrics in result-agnostic and result-aware
categories are shown in solid and dashed lines, respectively. While
we only show the results for the "rst ten iterations, note that the
mAP values will eventually converge to the same value per a De-
fects4J fault, as the Ochiai ranking produced using all test cases
should be identical w.r.t. a deterministic tie-breaker. A metric is
more e!ective if the line converges faster.

The results show that two result-aware metrics, S3 and Prox,
outperform all other result-agnostic metrics. With S3, the initial
mAP value, 0.076, is increased to 0.271 (an increase of 257%) after
the ten test cases are selected, whereas TfD, the best performing
result-agnostic metric, only achieves 172% improvement during
the same number of iterations. Prox, which sorts test cases by
their similarity to failing tests, shows faster initial convergence,
while S3 achieves higher localisation performance after the "fth
iteration. Both S3 and TfD, metrics that aim to split ambiguity

groups, show the best result at the tenth iteration among the result-
aware and result-agnostic metrics, respectively. Compared to S3
and Prox, FLINT does not perform as well, despite being a result-
aware metric. FLINT is originally designed to initially prioritise for
coverage and switch to prioritisation for fault localisation once a
test fails, whereas our evaluation scenario starts with a failing test
case. Consequently, the observed failure rate starts at 1.0 for FLINT,
which signi"cantly skews its following analysis.

Among the result-agnostic metrics, Total and EntBug perform
identically on our subjects. Total gives higher priority to tests that
cover more program elements. Similarly, EntBug also takes into
account the number of covered program elements, while aiming
to reach the optimal density of 0.5. However, since the level of
coverage achieved by individual human-written test cases in our
subject is fairly low, EntBug ends up trying to increase the coverage
for all ten iterations, which in turn increases the density. Another
interesting observation is that TfD outperforms DDU, even though
TfD is conceptually identical to the uniqueness component of DDU.
DDU gives high priority to test cases that are either not similar to
existing failing test cases or cover more elements, thanks to the
diversity and the density metrics. However, the results of Prox show
that choosing tests similar to failing tests can be e!ective, while
Total and EntBug show that relying on coverage density alone may
not be e!ective. Based on this, we posit that, when a failing test
already exists and is known, it is better to prioritise tests that are
similar to the failing test than to focus on test diversity.

In summary, our evaluation using Defects4J shows that two
result-aware metrics, S3 and Prox, outperform all result-agnostic
metrics. When diagnosing faults that have already been observed by
failing executions, result-agnostic metrics cannot e#ciently priori-
tise test cases because they cannot distinguish the more suspicious
elements from those that are less so.

4 FAULT DIAGNOSABILITY GAIN
This section proposes a novel diagnosability metric, FDG (Fault
Diagnosability Gain), that better measures the fault diagnosability
gain by leveraging the ongoing FL results during the prioritisation.

4.1 Design of FDG (Fault Diagnosability Gain)
Our new diagnosability metric, FDG, consists of two subcompo-
nents, Split and Cover: Split is designed to break more suspicious
ambiguity groups, and Cover is designed to focus on covering more
suspicious elements.

4.1.1 Breaking the Suspicious Ambiguity Groups. Split measures
the expected wasted localisation e!ort when a new test % is added
to $ . It extends RAPTER by weighting each ambiguity group using
the previous test results as in S3, instead of the size of the ambiguity
group. However, while S3 only considers the number of failing test
cases, Split uses suspiciousness scores, which take into account
both the number of failing test cases and passing ones.

Let us "rst de"ne the probability of an ambiguity group contain-
ing the fault, : (5), as the sum of the probabilities of its elements
being faulty:

: (5) =
∑

/ # ∈+

: (# % )
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Figure 3: Overview of Iterative Fault Localisation with Test
Augmentation

where : (# % ) refers to the probability of each program element # %
being faulty. We obtain : (# % ) by applying the softmax function on
the suspiciousness scores calculated using$ , i.e., : (# % ) = @ %/

∑
$ @$ ,

where @ % is the suspiciousness score2 of # % . Using : (5), Split is
de"ned as follows:

Split($ , %) = 1 −
∑

+∈,- (#∪{& })

: (5) ·

(
|5 | − 1

2

)

/

(
( − 1

2

)

= 1 −
1

( − 1
·

∑

+∈,- (#∪{& })

: (5) · ( |5| − 1)

Here, ((−1)/2 is the normalisation constant, which is the maximum
localisation e!ort when all program elements belong to a single
ambiguity group. In general, if $ ∪ {%} produces larger and more
suspicious ambiguity groups, Split will penalise % more heavily.

4.1.2 Covering the Suspicious Program Elements. Cover quanti"es
how much a new test case covers current suspicious elements.
More formally, it measures weighted coverage, where the weights
of program elements are simply their suspiciousness scores.

Cover($ , %) =

∑!
%=1@ % · ,& [ +]

(

Cover shares motivation with Prox [5, 45], which directly uses
coverage similarity to failing tests. However, this direct comparison
is its downfall: if there are multiple failing tests with signi"cantly
di!erent coverage patterns, averaging similarities may not be the
best way to measure the similarity between test cases. We instead
use the suspiciousness score, which can be thought of as an aggre-
gation of failing and passing test executions, to weight coverage.

4.1.3 A Combined Metric, FDG. As both Split and Cover are nor-
malised, we de"ne FDG as the weighted sum of both3:

FDG($ , %) = < · Split($ , %) + (1 − <) · Cover($ , %) (2)

The coe#cient < can be tuned using the information of known
faults: we study the impact of < with RQ4 (see Section 5.1).

2Note that we use min-max scaled Ochiai scores throughout this paper.
3Our internal evaluation showed that adding two metrics performs better than multi-
plying them for aggregation.

4.2 Iterative Fault Localisation with Test
Augmentation

Let us propose an Iterative Fault Localisation (IFL) scenario, in
which FDG is used to guide the augmentation of the test suite: an
overview of the proposed scenario is presented in Fig. 3.

First, an automated test generation tool, such as EvoSuite [13]
or Randoop [39], produces regression tests for the given faulty pro-
gram (Test Generation): to reduce the number of generated test
cases, we limit the scope of regression test generation only to the
program elements covered by the initial failing test cases. Since
regression tests simply capture and record the current behaviour of
the program, some assertions in the generated tests may capture the
buggy behaviour of the program [43]. Note that the regression test
cases generated by EvoSuite always capture the behaviour of the
current system as identity assertions [14]. Fig. 4 shows an example
of a test case automatically generated for the Defects4JMath-59
buggy version by EvoSuite: when calling FastMath.max(0.0F,

(-1653.0F)) (Line 3), the assertion generated from the buggy pro-
gram expects the return value to be -1653.0F (Line 4), and not
0.0F, which is the buggy behaviour of Math-59.

1 @Test(timeout = 4000)

2 public void test03 () throws Throwable {

3 float f0 = FastMath.max (0.0F, ( -1653.0F));

4 // wrong assertion! (f0 should be 0.0F)

5 assertEquals (( -1653.0F), f0, 0.01F);

6 }

Figure 4: An EvoSuite-generated test case for the class
FastMath of Math-59 in Defects4J

Consequently, unless the failure is detectable by implicit ora-
cles [7] such as program crashes or uncaught exceptions, a human
engineer has to determine whether the program behaviour cap-
tured in the test case is correct or incorrect (Human Labelling, or
Oracle Elicitation). For example, an engineer will say that the test
case in Fig. 4 is capturing the incorrect behaviour. However, since
manual oracle elicitation can be costly, tests should be presented
to the engineer in the order of their relative diagnostic capabilities
so that the more relevant tests to the fault localisation are labelled
earlier. Therefore, at each iteration, all remaining test cases in the
generated test suite are prioritised based on their diagnosability
gain, and the best one is selected to be labelled by the engineer.
(Test Prioritisation). Note that the only cost not shown in Fig. 3 is
that of measuring the coverage of generated tests, which we expect
to be automatable for EvoSuite generated tests.

Algorithm 1 formally describes the work$ow. The test genera-
tion tool, TestGenerator, generates tests $ ′ for the suspicious
part !010( of a given faulty program ! within the time budget /&
(Line 1-2). Then, until either the oracle querying budget, /2 , is ex-
hausted or $ ′ becomes empty, a test case %0 with the maximum
diagnosability value is iteratively selected from from $ ′ (Line 4-5).
If the test %0 reveals buggy behaviour of a program, the user labels
it as Incorrect (i.e., -(%0 ) = 0), or otherwise as Correct (i.e.,
-(%0 ) = 1) (Line 6). Once labelled, the test is moved from $ ′ to $
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Algorithm 1: Iterative FL with Test Augmentation

Input: Faulty program ! , Initial test suite $ , Test results -,
Test generation tool TestGenerator, SBFL formula
FaultLocaliser, Diagnosability gain metric 6 , Test
generation time budget /& , Querying budget /2

Precondition: ∃% ∈ $ .-(%) = 0
Output: Fault localisation result

1 !010( ← GetSuspiciousParts($ ,-)

2 $ ′ ← TestGenerator(!010( ,/& )

3 * ← 1

4 while * ≤ /2 ∧$
′
≠ ∅ do

5 %0 ← argmax& ∈# ′ 6 ($ , %) // select &$ from # ′

6 -(%0 ) ← GetHumanLabel(%0 ) // label &$

7 $ ← $ ∪ {%0 } // add &$ to #

8 $ ′ ← $ ′ \ {%0 } // remove &$ from # ′

9 * ← * + 1

10 end

11 return FaultLocaliser($ ,-)

(Line 7-8). Finally, after the loop terminates, the "nal FL result is
returned (Line 11).

5 EXPERIMENTAL SETUP
This section presents the research questions and describes the setup
and the environment of our empirical evaluation.

5.1 Research Questions
We ask the following research questions to evaluate both our newly
proposed diagnosability gain metric, FDG, and our IFL approach.

5.1.1 RQ1. E!ectiveness. Howe!ective is FDGwhen compared
to the existing metrics? To answer RQ1, we use the same evalu-
ation protocol used for existing metrics, and compare the results
produced by FDG to those produced by existing metrics. RQ1 is de-
signed to investigate the performance of FDG in an ideal situation
with the perfect knowledge of coverage of all test cases as well as
human-written test oracles. While some of the assumptions may
be infeasible in practice, we aim to establish the upper bound of
FDG in an ideal setting, as a baseline to our subsequent evaluation
of IFL scenario. We set < to 0.5 for FDG.

In addition to mAP, we also report theTop-nAccuracy (acc@n),
a widely-adopted measure of fault localisation performance. For
all faulty subjects, acc@n counts the number of subjects where at
least one of the faulty program elements are ranked within the top
( locations. As in mAP, we report acc@n after each iteration using
the test cases chosen up to that point. When there are multiple test
orderings for a single Defects4J bug due to multiple failing test
cases (see Section 3.2.1), we average all relevant acc@n values.

5.1.2 RQ2. IFL Performance. How e!ectively does FDG facil-
itate fault localisation by prioritising automatically gener-
ated test cases? RQ2 aims to investigate the performance of FDG
when used in the IFL scenario described in Section 4.2. We conduct
IFL as shown in Algorithm 1, starting with an initial test suite, $ ,

which contains only the Defects4J-provided failing test cases. Our
IFL scenario for RQ2 consists of the following elements:
Test Generation: We employ EvoSuite [13] version 1.0.74 as a test
data generation tool. The target of regression test generation is
restricted to only the methods covered by initial failing test cases, as
speci"ed in the property relevant.classes in Defects4J. We use
two time budgets (/& ), 3 and 10 minutes, and allocate the physical
time budget to a class proportionally to the number of suspicious
methods in the class. For example, consider suspicious classes A
and B that contain "ve and ten suspicious methods, respectively.
Under the 3-minute budget, we allocate 1 and 2 minutes to class A
and B, respectively. We generate 10 test suites for each fault and
time budget to cater for the randomness of EvoSuite.
Coverage & FL: We measure the coverage achieved by generated

test cases against all suspicious classes using Cobertura.We perform
method level SBFL using Ochiai as described in Section 3.2.1.
Test Prioritisation: FDG (with < = 0.5) is used as the test prioritisa-
tion metric 6 in Line 5 of Algorithm 1.
Human Labelling: We simulate a perfect human oracle querying by

running the generated test cases on the "xed version. If a regression
test case fails on the "xed version (due to oracle violation or compile
error), we consider the test as a failing test case for the buggy
version. We report results from {1, 3, 5, 10} iterations by setting the
oracle querying budget, /2 , accordingly.

5.1.3 RQ3. Robustness. How robust is FDG against human er-
rors, when used to guide oracle querying? Our third research
question concerns the assumption of the perfect human oracle
because, in reality, the human engineer may make incorrect judge-
ments about the generated oracles that capture the current be-
haviour of a buggy program. To study how robust our IFL scenario
is against such mistakes, we simulate labelling errors by apply-
ing the probability : ∈ {0.1, 0.3, 0.5, 0.7, 0.9} of $ipping the perfect
judgement, and observe how much the localisation performance
deteriorates.

5.1.4 RQ4. Parameter Tuning. What is the ideal parameter <
for FDG? FDG has a parameter < that adjusts the relative weights
of Split and Cover. For previous research questions, < has been set
to 0.5 to assume equal contribution from Split and Cover to the mea-
sure of diagnosability gain and, consequently, to the prioritisation.
Our "nal research question studies the impact of the parameter <
on the performance of FDG. To answer RQ4, we perform a grid
search for < ∈ {0.1, 0.3, 0.5, 0.7, 0.9} to "nd its value that leads to
the best prioritisation performance for EvoSuite-generated tests.

5.2 Subject
Our empirical evaluation considers 357 faults in "ve di!erent projects
provided by Defects4J version 2.0.0 [27], a real-world fault bench-
mark of Java programs. Each fault in Defects4J is in the program
source code, not in the con"guration nor test "les, and the cor-
responding patch is provided as a !xing commit. For each faulty
program, human-written test cases, at least one of which is bound
to fail due to the fault, are provided. The failing tests all pass once

4This is not an o#cial release but is the most recent version on GitHub (commit
800e12). For each fault, the maximum number of tests per class is set to 200, and the
length of a test case is limited to 20 to avoid too complex test cases being generated,
which is di#cult for engineers to investigate.
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Table 1: Experimental Subject - Defects4J

Subject
# Faults kLoC

Avg. # Tests Avg. # Methods

Total Failing Total
Suspi
cious

Faulty

Commons-lang 65 22 1,527 1.9 2,245 14.7 1.5

Commons-math 106 85 2,713 1.7 3,602 53.2 1.7

JFreeChart 26 96 4,903 3.5 2,205 127.5 4.5

Joda-Time 27 28 1,946 2.8 4,130 375.4 2.0

Closure compiler 133 90 5,038 2.6 7,927 855.4 1.8

Total 357

the "xing commit is applied to the faulty version. Table 1 shows
the statistics of our subjects. The Suspicious column contains the
average number of methods covered by at least one failing test.

For RQ1, we exclude a total of six faults from the 357 in Table 1:
two omission faults, Lang-23 and Lang-56, as they cannot be lo-
calised within the faulty version by SBFL techniques, as well as four
deprecated faults (Lang-2, Time-21, Closure-63, and Closure-93).

For RQ2 to RQ4, we exclude two additional faults, Time-5 and
Closure-105, because the Defects4J-provided lists of relevant (sus-
picious) classes of those faults do not contain the actual faulty class
due to an unknown reason. Overall, 349 faults are used, with 2.3
failing test cases on average per fault in the initial test suites.

5.3 Implementation & Environment
All our experiment have been performed on machines equipped
with Intel Core i7-7700 CPU and 32GB memory, running Ubuntu
16.04. We use Java 8 for EvoSuite and Cobertura. Our replica-
tion package, available online at https://github.com/agb94/FDG-
artifact [2], includes all implementation as well as the data required
to reproduce our work.

6 RESULTS
This section presents the answers to our research questions based
on the results of our empirical evaluations.

6.1 RQ1: E!ectiveness
Table 2 shows the localisation performance of each metric on De-

fects4J human-written tests. Each row presents acc@n values
(( ∈ [1, 3, 5, 10]) of SBFL results at each iteration; rows Init. and Full
represent the results when using a single initial failing test case
and full test suite (about 4.2K tests on average), respectively. The
numbers in bold represent the highest values in the iteration for
the corresponding ( value. Additionally, the mAP values after ten
iterations are shown next to the name of each metric.

The results show that FDG outperforms all nine studied metrics
by achieving the highest acc@3, 5, 10 values in all iterations except
for the "rst. Especially at the tenth iteration, acc@10 is 23% and
14% higher than those obtained by the state-of-the-art metrics, S3
and Prox, respectively. Furthermore, we report the performance
of Split and Cover as stand-alone metrics. Although they do not
perform as well as FDG, the two subcomponents still achieve higher
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Figure 5: The acc@n values for each time and query budgets.
The error bars show the standard error from di!erent seeds.
(# total subjects = 349)

mAP values than all existing metrics after ten iterations, showing
each of them can outperform the existing metrics as a stand-alone
diagnosability metric.

Additionally, we also compare the FL accuracy at the tenth it-
eration to the accuracy obtained using the initial test set only, as
well as the full test suites. After adding ten test cases based on
FDG, acc@1 and acc@10 values are increased by 17.0 and 3.4 times,
respectively, compared to the initial test set. Notably, FDG achieves
62% of acc@1 and 80% of acc@10 compared to the full test suite,
after ten iterations, despite the fact that the full test suites have
approximately 380 times (=4.2K/11) more tests than the 11 test cases
obtained using FDG (one initial + ten additional).

Answer to RQ1: FDG signi"cantly outperforms all nine studied
metrics achieving the highest acc@n values at almost every
iteration.When ten additional test cases are selected, FDG shows
at least 14% higher acc@10 compared to other metrics.

6.2 RQ2: IFL Performance
Table 3 shows the average number of total and failing test cases
generated by EvoSuite for the studied faults, using 3 and 10 min-
utes as time budgets, /& , respectively (hereafter denoted by T3 and
T10). These tests correspond to $ ′ in Algorithm 1. Using these gen-
erated test cases, we evaluate fault localisation performance after a
di!erent number of oracle queries.

Fig. 5 shows how the acc@n values change as the query budget
increases for T3 (top) and T10 (bottom) scenarios. Overall, T10 has
slightly better localisation results and less standard deviation in
performance than T3, although the di!erence is not signi"cant. This
is as expected, for T10 is larger, thus more likely to contain diverse
test cases. We note that the e!ectiveness of test suite augmentation
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Table 2: The acc@n values with the selected human-written test cases of Defects4J at each iteration (# total subjects = 351)

acc

@1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10

Metric EntBug (mAP=0.119) Total (mAP=0.119) DDU (mAP=0.149) Add. (mAP=0.158) RAPTER (mAP=0.158) TfD (mAP=0.208)

Iter.

Init. 4 30 45 65 4 30 45 65 4 30 45 65 4 30 45 65 4 30 45 65 4 30 45 65

1 9 40 61 80 9 40 61 80 10 43 64 85 9 39 60 80 9 39 60 80 21 51 67 84

2 9 41 63 85 9 41 63 85 12 49 74 99 10 44 67 94 10 44 67 94 28 67 81 100

3 9 40 64 90 9 40 64 90 14 53 76 107 11 47 71 99 12 48 72 100 32 71 88 112

4 9 40 64 94 9 40 64 94 15 54 77 112 12 52 76 104 13 53 76 104 33 81 95 127

5 9 41 67 95 9 41 67 95 15 54 79 115 12 54 80 112 13 53 81 112 35 82 98 130

6 9 41 67 96 9 41 67 96 15 55 79 118 14 56 82 115 16 56 83 117 35 87 100 134

7 9 41 68 96 9 41 68 96 15 56 81 123 15 57 85 119 16 57 84 117 36 89 105 142

8 9 41 68 99 9 41 68 99 15 56 81 125 17 60 86 121 18 59 85 123 37 89 109 145

9 11 43 68 99 11 43 68 99 16 58 82 127 19 62 87 125 20 61 87 126 37 91 111 149

10 12 44 68 101 12 44 68 101 17 59 84 127 19 65 88 127 20 63 87 127 39 93 111 149

Full 110 208 250 277 110 208 250 277 110 208 250 277 110 208 250 277 110 208 250 277 110 208 250 277

Metric FLINT (mAP=0.113) Prox (mAP=0.250) S3 (mAP=0.271) Split (mAP=0.277) Cover (mAP=0.278) FDG (mAP=0.298)

Iter.

Init. 4 30 45 65 4 30 45 65 4 30 45 65 4 30 45 65 4 30 45 65 4 30 45 65

1 4 31 47 69 27 71 97 130 22 51 69 92 22 51 69 92 25 75 94 122 24 64 87 109

2 8 45 66 79 34 87 118 145 32 70 93 124 31 70 92 121 35 93 113 145 41 100 124 155

3 8 47 68 79 40 97 122 158 40 88 108 137 40 91 112 146 46 105 130 164 48 107 135 175

4 8 48 69 81 42 107 130 168 47 97 124 151 46 106 126 153 53 114 145 181 52 115 145 190

5 8 48 70 82 45 109 137 174 54 105 128 158 52 114 135 160 54 121 154 188 57 121 158 204

6 9 49 72 83 47 112 140 182 56 113 135 160 59 122 141 164 55 128 155 192 60 130 164 212

7 9 49 72 86 47 115 144 185 63 118 141 164 60 125 144 171 57 131 162 198 64 135 170 221

8 9 50 73 86 48 120 153 188 66 120 146 171 62 129 151 176 61 133 167 204 65 139 174 219

9 11 52 75 86 49 122 155 190 66 124 149 179 64 130 153 178 62 133 175 209 66 145 178 220

10 11 52 75 86 50 125 160 195 70 127 153 180 68 134 157 189 63 139 170 212 68 148 179 222

Full 110 208 250 277 110 208 250 277 110 208 250 277 110 208 250 277 110 208 250 277 110 208 250 277

Table 3: Average number of tests generated by EvoSuite

(number of failing tests in parenthesis)

Time Project

Budget Lang Math Chart Time Closure

3 mins 32 (1.0) 97 (0.8) 225 (2.4) 442 (0.7) 832 (0.2)

10 mins 34 (1.1) 102 (0.9) 233 (2.5) 475 (0.8) 964 (0.4)

with automatically generated test cases is less than that of aug-
mentation with human-written test cases. However, augmenting
the test suite with generated test cases also increases the SBFL
accuracy signi"cantly. The test suite with ten newly labelled test
cases achieves 11.6x acc@1 (= 58/5) and 2.2x acc@10 (= 147/68)
compared to those of the initial test suite (# queries = 0).

Interestingly, we note that accurate fault localisation does not
always require many additional failing test cases to be generated.

The localisation results tend to be positive despite the small number
of failing test cases that have been generated (see Table 3). This is
because generated passing test cases can still e!ectively contribute
to decreasing the suspiciousness of non-faulty program elements.

Answer to RQ2: Given a small set of failing test cases only, the
accuracy of SBFL can be greatly improved by querying human
engineers about the oracles for a small number of automatically
generated tests prioritised by FDG.

6.3 RQ3: Robustness
Fig. 6 shows how localisation performance varies against di!erent
labelling error rates. The results show that localisation performance,
acc@10, gradually deteriorates as the error rate (:) increases. How-
ever, we observe that the localisation results are fairly robust up
to the error rate of : = 0.3: the acc@10 values still increase as the
query budget increases. Based on the report from Pastore et al. [43]
that shows a quali"ed crowd can achieve accuracy above 0.69 when
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Figure 6: The acc@10 values for each labelling error rate and
query budget. Each band shows the standard error of the ob-
servations from di!erent seeds.

classifying incorrect assertions for EvoSuite-generated test cases,
the error rate tolerance of up to 0.3 shows the robustness of FDG.

Overall, the results show that, despite some errors in labelling,
adding new test cases signi"cantly increases the SBFL accuracy
compared to the initial test suite. This is because the correctly
labelled subsequent test cases can mitigate the impact of earlier
labelling errors. Further, we observe that T10 is slightly more robust
than T3 against the same error rate. This suggests that the richer
the generated test suite is, the more likely it contains tests that can
adjust the errors caused by the incorrect labels.

Answer to RQ3: Although SBFL performance deteriorates as
the labelling error rate increases, the results show that FDG can
be resilient to labelling errors, especially up to the error rate
of 30%. A richer and larger test suites are also more resilient to
labelling errors than smaller test suites.

6.4 RQ4: Parameter Tuning
Table 4 shows the performance of FDG obtained while varying
< from 0.1 to 0.9 with the interval of 0.2: a value higher than 0.5
means that FDG puts more emphasis on Split, while lower than 0.5
puts more emphasis on Cover. When only one query is made, FL
performance measured using acc@10 is best at < = 0.5. However,
as more queries are made, the higher < values, e.g. 0.7, 0.9, or 1.0,
tend to produce better performance. These results show that it is
better to balance the weights of two metrics (< = 0.5) when the
query budget is low, whereas it is better to focus on splitting the
ambiguity groups (< > 0.5) when there are multiple chances to
query test oracles from developers. Since both program structure
and test suite composition can signi"cantly a!ect the ambiguity
groups, we suggest that < needs to be tuned based on actual fault
data when used in practice. However, the results also show that
FDG can outperform state-of-the-art diagnosability metrics even
with the default value of < = 0.5.

Answer to RQ4:When oracle querying is performed only once,
FL performance increases themost when using FDGwith< = 0.5.
However, as more queries are made, the higher < values lead to
higher FL performance improvement.

Table 4: The averaged acc@10 values for T10 test suites

Diagnosability Metric
# Queries

0 1 3 5 10

FDG (< = 0.0) = Cover 68 98.4 121.2 131.4 144.0

FDG (< = 0.1) 68 98.7 122.1 131.8 144.9

FDG (< = 0.3) 68 98.7 125.3 135.9 146.6

FDG (< = 0.5) 68 101.1 123.1 135.1 148.0

FDG (< = 0.7) 68 98.1 126.1 135.9 148.7

FDG (< = 0.9) 68 93.3 125.7 135.3 151.7

FDG (< = 1.0) = Split 68 91.8 120.7 139.8 151.0

Prox 68 99.5 119.7 126.6 137.8

S3 68 91.8 117.3 133.9 146.3

7 DISCUSSION
We discuss some assumptions and implications related to FDG.

7.1 Rankings and FL
Whether reporting in the form of linear rankings is the best vessel
for fault localisation remains under debate: Parnin and Orso state
that human developers do not really follow a given ranking linearly
while debugging [42], while Xia et al. state that they do help, espe-
cially if they are of high quality [55]. In this work, we simply adopt
the ranking based evaluation as one possible way of quantitatively
measuring the diagnosability gain.

Note that higher SBFL rankings mean more diverse patterns and
fewer ambiguity groups in the achieved coverage, both of which
contribute to the general diagnosability of a test suite. In fact, it is
entirely possible that the human labelling phase (see Section 4.2)
can be the debugging activity itself, as the labeller will have to
consider program behaviour and test results for the given task.
However, even in such a scenario, we expect that FDG will still
prioritise test results e#ciently for the labeller. Such a human study
would be a very interesting future work.

7.2 Retaining Generated Test Cases
The test suite augmentation scenario proposed in Section 4.2 as-
sumes that 1) there is no other test case apart from the failing test
cases, and 2) the new test cases are generated for the purpose of
FL only. What if there already exists a test suite, but the newly
generated test cases can further improve its diagnosability? The
generated test cases do not have to be single-use only: once labelled,
selected test cases can be retained to be part of the existing test
suites, as long as the testing budget can a!ord them.

7.3 FDG as Test Generation Objective
Instead of prioritising already generated test cases using FDG, it
may also be possible to use to directly adopt FDG as a "tness (or
an objective) function that guides test case generation. Note that
FDG itself can be considered as a weighted-sum of Cover and Split,
which will try to achieve coverage and break ambiguity groups,
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respectively. As such, we expect that search-based test data genera-
tion guided by FDG may yield test suites with high coverage and
high diagnosability.

8 RELATEDWORK
We have discussed existing work on diagnosability metrics for test
cases in Section 3.1. This section further discusses fault localisa-
tion techniques that involve human-in-the-loop, as well as a test
suite augmentation for fault localisation and algorithmic debugging,
which are related to our IFL scenario in Section 4.2.

8.1 Human-in-the-Loop Debugging
Many debugging techniques depend on user feedback. Types of
required feedback include the correctness of a speci"c program
element [6, 15], the correctness of a speci"c variable value [35], the
correctness of a speci"c execution [32], and the relative location of
the fault with respect to breakpoints [20]; some techniques provide
visual feedback [21, 28, 29]. FDG requires the user to check the auto-
matically generated test assertions, which is similar to checking the
correctness of executions [32]. However, the main contribution of
FDG lies in the way it chooses which test to get the feedback about.
ENLIGHTEN [34] asks the developer to investigate input-output
pairs of the most suspicious method invocations: the feedback is
then encoded as a virtual test and used to update the localisation
results. Recently, Böhme et al. proposed Learn2Fix [9], a human-in-
the-loop program repair technique. Learn2Fix generates test cases
by mutating the failing test and allowing the user to label them in
the order of their likelihood of failing. Learn2Fix trains an automatic
bug oracle using user feedback, which is in turn used to amplify
the test suite for better patch generation. While our iterative lo-
calisation scenario also requires human interaction, the scenario
di!ers from existing techniques in that it only requires judgements
on the correctness of automatically generated assertions.

8.2 Test Augmentation for Fault Localisation
Automated test generation has been widely used to support fault
localisation by augmenting insu#cient test suites. Artzi et al. [3]
used dynamic symbolic execution to generate test cases that are
similar to failing executions [45]. This type of methodology also
can be plugged into the part of our debugging scenario as a test
generation tool. BUGEX [47] generates additional test cases similar
to a given failing one using EvoSuite and uses an automated oracle
to di!erentiate between passing and failing executions. Finally,
BUGEX identi"es the runtime properties that are relevant to the
failure by comparing passing and failing executions. Compared to
BUGEX, our debugging scenario does not assume the existence
of an automated bug oracle and instead uses test prioritisation to
reduce the cost of querying oracles from a developer. > 3 [24] is a
fault localisation technique for "eld failures, which extends a bug
reproduction technique, BugRedux [23]: it synthesises failing and
passing executions similar to the "eld failure and uses them for its
customised fault localisation technique. While > 3 can only debug
program crashes that can be detected implicitly, our scenario aims
to localise faults where no such automatic oracle is available.

Xuan et al. [56] split test cases into smaller test cases to increase
the fault diagnosability of the given test suite. In comparison, we

consider cases in which only a few failing test cases are available
and use an automated test data generation technique to support
fault localisation. Recently, Kuma et al. [30] presented several strate-
gies for selecting the minimum number of test cases out of many
automatically generated test cases. However, they only focus on
di!erences in a program spectrum and do not quantify the diag-
nosability of test cases, which is why we exclude this work from
our analysis. Moreover, Kuma et al. use the behaviour of the past
version as the test oracle, which may limit its applicability due to
limited access to the past versions or version compatibility issues.

8.3 Algorithmic Debugging
Algorithmic debugging [10] was "rst proposed by Shapiro [50] for
logic programming languages such as PROLOG. Shapiro introduces
an approach that can systemically narrow down the cause of in-
correct computation using what is called a debugging tree, whose
root node corresponds to the "nal outcome of the computation,
while each subtree represents an intermediate computation whose
result is used to compute its parent node. The debugger can sys-
tematically guide the user through the debugging tree, narrowing
down the possible root cause of the incorrect computation. FDG
shares a few similarities with algorithmic debugging: the user is
expected to judge the correctness of the "nal computation (i.e., the
test oracle), and the technique tries to systematically narrow down
the root cause by breaking ambiguity groups. However, FDG does
not require the user to make any judgement about any target pro-
gram elements, allowing anyone who understands the input-output
speci"cation to use it.

9 THREATS TO VALIDITY
Threats to internal validity regard factors that may in$uence the
observed e!ects, such as the integrity of the coverage and test
results data, as well as the test data generation and fault localisation.
Tomitigate such threats, we have used the widely studied Cobertura
and EvoSuite, as well as the publicly available scripts inDefects4J,
to collect or generate data.

Threats to external validity concern any factors that may limit
the generalisation of our results. Our results are based onDefects4J,
a benchmark against which many fault localisation techniques are
evaluated. However, only further experimentations using more
diverse subject programs and faults can strengthen the general-
isability of our claims. We also consider an iterative scenario, in
which tests are chosen and added one by one. It is possible that non-
constructive heuristics such as Genetic Algorithm may produce
di!erent and potentially better orderings. Our approach is based
on the assumption that an iterative process will make it easier for
the human engineer to make the oracle judgement.

Finally, threats to construct validity concern situations where
used metrics may not re$ect the actual properties they claim to
measure. All evaluation metrics used in our study are widely used
in fault localisation literature, leaving little room for misunder-
standing. It is possible that Coincidental Correctness (CC) [36] has
interfered with our measurements, as it is known to exist in De-

fects4J [4]. However, it is theoretically impossible to entirely "lter
out CC from test results. We also note that all coverage-based fault
localisation techniques are equally a!ected by CC.
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10 CONCLUSION
We propose FDG, a novel measure of the diagnosability of test
cases for SBFL. When evaluated with the human-written test cases
in Defects4J, FDG can successfully augment single failing test
cases, so that adding only ten more test cases improves acc@10
by 3.4 times. The augmentation based on FDG also achieves 23%
and 14% higher acc@10 when compared to those based on state-
of-the-art metrics, S3 and Prox, respectively. We also introduce an
iterative fault localisation scenario, in which the localisation starts
with insu#cient test suites that contain only failing test cases. By
automatically generating test cases using EvoSuite, and prioritising
them for human oracle judgements using FDG, we show that acc@1
can be improved by 11.6 times after only ten human interactions.
Future work will consider closer integration of FDG and test data
generation to improve the overall e#ciency of our approach. In
particular, we expect that FDG can provide guidance for search
based test data generation to improve the the diagnosability of the
generated test cases.
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