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ABSTRACT

Knowing how exactly a bug has been introduced into the code
can help developers debug the bug efficiently. However, techniques
currently used to retrieve Bug Inducing Commits (BICs) from the
repository timeline are limited in their accuracy. Automated bisec-
tion of the version history depends on the bug revealing test case
being executable against all candidate previous versions, whereas
blaming the last commits that touched the same parts as the fixing
commit (à la SZZ) requires that the bug has already been fixed. We
show that filtering commits using the coverage of the bug revealing
test cases can effectively reduce the search space for both bisection
and SZZ-like blame models by 87.6% and 27.9%, respectively, signif-
icantly reducing the cost of BIC retrieval. The application of our
approach to bugs in Defects4J also reveals inconsistencies in some
of their BICs known in the literature.
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1 INTRODUCTION

Given a bug in an evolving software system, a Bug Inducing Commit
(BIC) refers to the specific commit that introduced the bug into
the system [8]. Identifying and collecting BICs can be beneficial in
many ways [2]. An existing survey of Microsoft developers reveals
that over 75% of those who responded have used version history
when debugging their code [9]. In particular, over 90% of those who
said version history helps specifically pointed out BICs as the most
useful information from version histories. It has also been suggested
that the knowledge of BICs can boost automated debugging [10, 12].
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Unfortunately, there is no technique that can identify BICs from
the version history for debugging activities both accurately and
efficiently. The standard approach for finding a specific commit
that introduced a bug is bisecting, i.e., to perform a binary search
between the known good and bad commits, inspectingwhether each
successive middle commit is buggy or not. Despite the support from
version control systems (e.g., git bisect1), this is often expensive
due to a couple of reasons. First, the inspection may have to be
manual, as the bug revealing tests may not always be executable
against the previous versions. Second, if the last good commit is
not explicitly known, one may have to perform bisection over the
complete version history, resulting in numerous inspections.

A closely related BIC identification technique is the popular
SZZ [8] and its variants, which require a Bug Fixing Commit (BFC)
as the starting point. Intuitively, given a BFC, SZZ returns a set
of commits that last modified each element of the BFC, under the
assumption that BFC aims to fix a problem in those commits. Com-
pared to bisecting, this establishes only traceability and not the
bugginess of the retrieved commits (the corresponding feature of
git would be git blame2). Many filters have been proposed to
identify and exclude intermediate commits that have little to do
with the actual bug: for example, RA-SZZ skips any refactoring
commits [6]. The lack of explicit inspection, as well as the heuristic
nature of filtering, can result in low precision in BIC identifica-
tion [3, 4, 12]. Furthermore, SZZ and its variants are not applicable
in a debugging scenario, because the fix does not exist yet. IR based
techniques share a similar limitation due to the lack of bug reports
at debugging time [11, 14].

We propose a technique that can reduce the bisection search
space for BIC dramatically. The technique is based on our obser-
vation that BICs are likely to be traceable from the parts of the
program covered by the bug revealing executions. Consequently,
the bisection only needs to consider the commits that are traceable
from the coverage of bug revealing tests. We show that we can eas-
ily filter out commits that are unrelated to a given failing execution.
An empirical evaluation on Defects4J shows that the search space
is reduced to only 12.4% of the complete version history from the
beginning up to the buggy snapshot, not only reducing the cost of
manual bisection but also improving the precision of SZZ.

2 BIC SEARCH SPACE REDUCTION

2.1 A Motivating Example

Listing 1 contains commit c95eb0b (nicknamed Cactus) made to
the Apache Commons Math project: Cactus has been identified as

1https://git-scm.com/docs/git-bisect
2https://git-scm.com/docs/git-blame
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1 --- a/src/java/org/apache/commons/math/ode/nonstiff/

AdaptiveStepsizeIntegrator.java

2 +++ b/src/java/org/apache/commons/math/ode/nonstiff/

AdaptiveStepsizeIntegrator.java

3 @@ -108,8 +108 ,8 @@ public abstract class

AdaptiveStepsizeIntegrator

4 this.scalAbsoluteTolerance = 0;

5 this.scalRelativeTolerance = 0;

6 - this.vecAbsoluteTolerance = vecAbsoluteTolerance;

7 - this.vecRelativeTolerance = vecRelativeTolerance;

8 + this.vecAbsoluteTolerance = vecAbsoluteTolerance.clone ();

9 + this.vecRelativeTolerance = vecRelativeTolerance.clone ();

10

11 resetInternalState ();

Listing 1: Changes introduced by c95eb0b that is identified

as a BIC of Math-74 by Wen et al. [12]

1 <method name="&lt;init&gt;" signature="(Ljava/lang/String;DD[D[D

)V" line -rate="0.0" branch -rate="1.0">

2 <lines >

3 <line number="123" hits="0" branch="false"/>

4 // ... skipped ...

5 <line number="131" hits="0" branch="false"/> //*

6 <line number="132" hits="0" branch="false"/> //*

7 <line number="134" hits="0" branch="false"/>

8 <line number="136" hits="0" branch="false"/>

9 </lines>

10 </method >

Listing 2: Coverage results of the bug-revealing test of

Math-74, AdamsMoultonIntegratorTest:polynomial, on the

initialiser of the class AdaptiveStepsizeIntegrator.

the BIC for the bug Math-74 in Defects4J, as part of a BIC dataset
for 91 bugs in Defects4J recently released by Wen et al. [12].3

Cactus changes the class named AdaptiveStepsizeIntegrator

by appending ".clone()" to two of its statements.
Defects4J provides a single bug revealing test case for Math-74.

Part of the coverage measured from its failure against the buggy
snapshot of Math-74, 034b4d6 (nicknamed Burger), is shown in
Listing 2. The two line elements marked with * correspond to the
two lines added by Cactus, respectively (Line 8-9 in Listing 1), and
the attribute hits stores the number of times the corresponding
element has been executed. From this, we find that the lines added
by Cactus are not executed by the failing test case on the buggy
snapshot, which suggests that the change in Cactus may not be
the cause of the failure in Math-74. This can be verified by the fact
that the failure still occurs when Cactus is reverted on Burger.

From this observation of inconsistency, we posit a simple yet
effective and important necessary condition for a BIC: a bug-

inducing commit should change what eventually is covered

by failing executions. Using this condition, we can eliminate com-
mits that are irrelevant to the specific bug being analysed.

2.2 Efficient BIC Search using Failure Coverage

Our motivating example shows that the failure coverage, the code
coverage of failing executions, can be used to filter out the commits
that are irrelevant to the currently observed failure. This filtering
approach can reduce the search space for both bisection and the
SZZ algorithm and is available at debugging time, because it only
requires the execution traces of the failing test cases and not the
availability of the fixing commit like SZZ.

3https://github.com/justinwm/InduceBenchmark/blob/master/Defects4J.csv
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Figure 1: Reducing theBIC candidates using failure coverage

Consider a BIC 𝑐 for a bug 𝑏: the changes introduced by 𝑐 should
eventually result in the program failure caused by 𝑏. Except for
omission faults, i.e., the non-existence of needed code, a failing
execution should cover at least one of the faulty program elements
(note that this is the same assumption shared by fault localisation
techniques). If we are to suspect all program elements covered by
failing test cases as potential candidates of the fault, it follows that
commits not involved in the evolution of those elements can be
safely filtered out.

More formally, let 𝐶 = {𝐶1, . . . ,𝐶𝑛} be a set of commits for a
program 𝑃 such that𝐶𝑖 is older than𝐶𝑖+1. Suppose 𝐸 = {𝑒1, . . . , 𝑒𝑁 }

is the set of executable program elements of 𝑃 , and𝑇𝐹 = {𝑡1, . . . , 𝑡𝑀 }

is the set of failing test cases for 𝑃 . Here, we assume that 𝑃 is a faulty
program and 𝑇𝐹 is non-empty. For each failing test case 𝑡 ∈ 𝑇𝐹 , let
𝐸𝑡 ⊆ 𝐸 denote the set of program elements covered by 𝑡 . If the fault
that caused the failure is not an omission fault, for all 𝑡 ∈ 𝑇𝐹 , at
least one of the program elements in 𝐸𝑡 should be faulty. Since we
do not exactly know which of them are faulty, we may suspect the
entire 𝐸𝑡 as fault candidates. Therefore, all possible fault candidates,
𝐸𝐹 , can be defined by 𝐸𝐹 =

⋃
𝑡 ∈𝑇𝐹 𝐸𝑡 .

In a version control system such as Git, one can trace the set
of commits that are involved in the evolution of a specific source
code line. By leveraging that functionality, given a program element
𝑒 , we define 𝐶𝑒 ⊆ 𝐶 as the set of commits that either created or
modified 𝑒 . For the fault candidates 𝐸𝐹 , we regard all commits
involved in the evolution of at least one of the faulty candidates as
bug-inducing candidates. Therefore, our reduced search space of
BIC can be defined as 𝐶𝐵𝐼𝐶 =

⋃
𝑒∈𝐸𝐹

𝐶𝑒 , as depicted in Figure 1. In
terms of identifying non-BIC, this analysis is theoretically sound:
if a commit 𝑐 is not in 𝐶𝐵𝐼𝐶 , then 𝑐 is not a BIC.

3 EVALUATION ON DEFECTS4J

We apply our BIC search space reduction method to Defects4J [5]
version 2.0.0, a real-world Java faults dataset. It contains a total
of 835 bugs from various open-source projects, with a set of bug-
revealing test cases for each bug. Table 1 shows the number of faults
included for each of the 16 projects, as well as the average number
of commits that precede the faulty snapshot. We have excluded
Chart because its version control system is not Git. Note that we
apply our method on the real buggy version,4 and not the buggy
version in Defects4J that only contains the isolated and minimised

4One can get "revision.id.buggy" (commit hash of the buggy version) using
"defects4j query" command.
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Table 1: Application subjects in Defects4J. (JS: Jackson)

Project
#Faults Avg.

Project
#Faults Avg.

Used / All #Commits Used / All #Commits
Cli 32 / 39 493.7 Closure 173 / 174 1421.7
Codec 18 / 18 922.2 Collections 4 / 4 2816.0
Compress 47 / 47 1387.8 Csv 16 / 16 821.6
Gson 18 / 18 1218.4 JSCore 25 / 26 1218.4
JSDatabind 111 / 112 3025.8 JSXml 6 / 6 656.3
Jsoup 8 / 93 1195.2 JxPath 22 / 22 368.1
Lang 64 / 64 2393.3 Math 106 / 106 2928.7
Mockito 33 / 38 1828.0 Time 20 / 26 1624.4

buggy change. Therefore, any buggy version against which we
cannot execute the bug revealing tests provided by Defects4J has
also been excluded. In total, we use 703 faults in our evaluation.
Our replication package, which is publicly available5, contains the
reason for excluding each subject. The remainder of this section
contains the implementation details and the experimental findings.

3.1 Implementation Details

Git can produce the entire list of commits that have modified code
lines with line numbers in the range [𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑] with the following
command: git log -C -M -L [begin],[end]:[path_to_file].
The options -C and -M allow us to track the copies and renames
of files, respectively. Let us consider our motivating example. By
running this command on the buggy snapshot of Math-74 (Burger),
we can retrieve two commits that modified the lines 131 and 132
corresponding to Line 5-6 in Listing 2. The first commit (89ac173)
introduced the original code lines (Line 6-7 in Listing 1), while the
second one (Cactus) changed the lines (Line 8-9 in Listing 1). It is
worth noting that the option -M enables us to retrieve the commits
even though the file path at the commit time was different from
the one in Burger. Furthermore, we implement our approach at a
method-level granularity. To do so, we first measure the statement-
level coverage using Cobertura and subsequently use JavaParser to
extract the line range of the method surrounding each statement. 6

3.2 Result and Discussion

This section presents the results of failure-coverage-based filtering
to BIC retrieval for Defects4J faults.

3.2.1 Search Space Reduction. Boxplots in Figure 2 show the ratio
of BIC search space reduction, i.e., |𝐶𝐵𝐼𝐶 |/|𝐶 |, for bugs in each
project. On average, using the failure coverage, we can filter out
87.6% of commits from the search space. In case of Collections
and Lang, the BIC candidates are only 0.6% and 0.5% of the total
commits up to the buggy version, respectively. For example, while
the buggy version of Lang-51 has 1,682 preceding commits, there
are only two commits in 𝐶𝐵𝐼𝐶 , showing that the failure coverage
can drastically narrow down the BIC candidates.

Finding 1: Leveraging only the coverage of failing test cases,
we can dramatically reduce the BIC search space by 87.6% on
average. The reduction can ultimately improve the efficiency of
any BIC retrieval techniques, such as bisection or SZZ.

5https://github.com/coinse/FSE2021-IVR-BIC
6Cobertura: https://cobertura.github.io/cobertura/, JavaParser: http://javaparser.org
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Figure 2: Ratio of BIC candidates for each project. The text

on the right side of each box represents the median value.

Fault BIC Inspection Result

Lang-65b fe70395 - Modifies no source code (◼︎)

Closure-12b df223ef

- Modifies comments only (◼︎)Closure-90b
4c6e103

Closure-125b

Closure-127b a0a3968 - Not exist in the commit log (◼︎)

Math-13b 2885ba1

- Not a failure starting pointClosure-19b 6700b61

Closure-75b 70f817a

Math-12b c1de4ed

- Modified lines are not executed by 
the failing tests 

Math-74b c95eb0b

Closure-107b

f322be0
Closure-114b

Closure-118b

Closure-130b

Figure 3: Inspection results for the commits that were iden-

tified as BIC [12] but not contained in 𝐶𝐵𝐼𝐶

3.2.2 Soundness Verification. To verify the soundness of our filter-
ing technique, we use the existing curated BIC dataset provided
by Wen et al. [12] (referred to asWen-BIC). Among the 91 bugs in
the dataset, we have excluded nine from Chart and one from Time,
that are not in our application subjects. For the remaining 81 bugs,
we check whether our reduced BIC search space, 𝐶𝐵𝐼𝐶 , contains
the Wen-BIC or not.

The pie chart in Figure 3 shows that 67 out of 81 Wen-BICs are
found in 𝐶𝐵𝐼𝐶 (marked in blue), whereas the remaining 14 Wen-
BICs are filtered out by our technique. We manually inspected the
14 cases to evaluate the soundness of the filtering and conclude that
all BICs in those 14 cases are not real BICs. The table in Figure 3
presents the inspection results. For five Wen-BICs (marked with ■),
based on the lines they changed, we can confirm that the commits
have not, in fact, introduced the bug. For example, 4c6e103, which
was identified as the BIC of bugs 90 and 125 of Closure, only
modifies comments of multiple files without changing any source
code. Since it does not introduce any semantic changes, it cannot be
a BIC. In another case, the commit a0a3968, which was identified
as the BIC of Closure-127, does not exist in the commit history of
the project. The remaining nine commits present more challenging
cases that are difficult to conclude based on the inspection of the
changed lines only. However, the empirical evidence still suggests
that these are not BICs, either because the bug revealing test cases
fail on preceding snapshots too, or because they modify lines that
are not covered by the bug revealing test cases. Detailed results of
the manual inspection are available in our public repository.
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Figure 4: Ratio of SZZ-identified BIC that are not contained

in our BIC candidates

Finding 2: Our investigation of the existing BIC ground-truth
dataset shows that we can safely filter out irrelevant commits
from the search space for BICs. The results also reveal that some
of the ground-truth BICs in the dataset cannot be BICs.

3.2.3 Improving SZZ. SZZ and its variants can be imprecise [1, 3,
7, 12]. We investigate whether our filtering technique can improve
the precision of the SZZ algorithm. We apply SZZUnleashed [2],
an open-source implementation of the SZZ [8] algorithm with line

number mappings [13], to the commits that correspond to the fixed
versions identified by Defects4J. Using the associated bug reports
to extract information required by SZZUnleashed, such as report
creation date or bug resolution date, we successfully collected data
for 524 out of 703 bugs in Table 1. Let 𝐶𝑆𝑍𝑍 denote the set of BICs
retrieved by SZZUnleashed. Figure 4 shows the ratio of commits in

𝐶𝑆𝑍𝑍 which are not in𝐶𝐵𝐼𝐶 , i.e.,
|𝐶𝑆𝑍𝑍 \𝐶𝐵𝐼𝐶 |

|𝐶𝑆𝑍𝑍 |
. On average, 27.9% of

commits that have been blamed by SZZUnleashed are filtered out
by our technique, confirming that the precision of SZZUnleashed
is less than 72.1% on average. Combined with Finding 2, this shows
that utilising failure coverage can safely eliminate the irrelevant
commits found by the other BIC retrieval technique.

Finding 3: Our dynamic analysis not only increases the effi-
ciency of BIC search in a debugging phase but can also improve
the precision of the SZZ algorithm when the BFC is known.

3.2.4 Discussion of Omission Faults and Their BICs. Figure 3 shows
that BICs of omission faults are found in 𝐶𝐵𝐼𝐶 . Since omission
faults refer to the absence of needed code, the concept of their BICs,
as well as why they are in 𝐶𝐵𝐼𝐶 , requires some discussion. The
nature of omission faults implies that certain code has been omitted,
while other closely related code lines being added or modified.
Consequently, we can define the BIC of an omission fault as the
commit in which the related lines were added. Failing test cases
are likely to execute those closely related lines, but not the omitted
lines, hence the failure. We conjecture that this is how and why we
can include the BICs of omission faults in 𝐶𝐵𝐼𝐶 .

Consider Lang-51 as an example: it is an omission fault that can
be fixed by adding one line to the method toBoolean in the class
BooleanUtils. Since both neighbouring lines of the omitted line
are executed by failing test cases, the ground-truth BIC 49b8c60

that was introduced the lines can be found in 𝐶𝐵𝐼𝐶 .

4 CONCLUSION AND FUTUREWORK

We propose using the coverage of failing tests to filter out commits
irrelevant to the program elements that may have cause the test
failures. An evaluation using Defects4J shows that our filtering
technique can significantly reduce the search space of BICs, with
over 87% of all commits being safely excluded from the search for
BICs. Our filtering also shows that some BICs reported in the lit-
erature may be incorrect. While the proposed technique may not
be capable of pinpointing a single BIC, the preliminary evaluation
shows that dynamic information can improve BIC retrieval. For fu-
ture work, we will consider additional dynamic information, such as
fault localisation results, to further refine and rank BIC candidates.
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