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Program Slicing

Generates a subset of the original program,
while preserving the specific behavior of
the original program.

Specific behavior: Slicing Criterion <i, V >
(i:line number, V: variable name)

Testing, Debugging, Maintenance, etc.
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Program Slicing

Generates a subset of the original program,
while preserving the specific behavior of
the original program.

Specific behavior: Slicing Criterion <i, V >
(i:line number, V: variable name)

Testing, Debugging, Maintenance, etc.

Limitations:
- scalability of static analysis

- lack of supports on multi-lingual systems.
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“ORBS: Language-Independent Program Slicing”, FSE14

Observation Based Slicing (ORBS)

Purely dynamic & Language Independent

Makes a series of deletions of code lines, which
1) leaves the code (still) compilable, and

2) preserves the trajectory of the slicing criterion.

Approximate the program dependence via observations of
test executions.



Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1+1;

}

printf (“%d \n”, sum);

printf (“d \n”, 1i);
}

“ORBS: Language-Independent Program Slicing”, FSE14



Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1+1;

}

printf (“%d \n”, sum);

printf(*d \n”, 1i);
}

“ORBS: Language-Independent Program Slicing”, FSE14



Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1+1;

}

printf (“%d \n”, sum);

printf(*d \n”, 1i);

“ORBS: Language-Independent Program Slicing”, FSE14



Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<11l) {

sum = sum+i;
i=1i+1;
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Observation-Based Slicing (ORBS)

int main|() {
int sum = 0;
int 1 = 1;
while (i<11l) {

sum = sum+i;
i=1i+1;

}
printf(*d \n”, 1i);

}
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Observation-Based Slicing (ORBS)

int main|() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1i+4+1;

}

printf(*d \n”, 1i);
}

Window-Deletion
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Observation-Based Slicing (ORBS)

int main () {

int 1 = 1;
while (i<1l1l) {

i=1+1;

}

printf(*d \n”, 1i);
}

Window-Deletion
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Observation-Based Slicing (ORBS)

. Purely dynamic & Language Independent
- Able to slice programs on which

- static slicers are guaranteed to err,
[3] ORBS and the Limits of Static Slicing, SCAM15

- have highly unconventional semantics.

[9] Observational slicing based on visual semantics, ] SS17



Limitations of ORBS

. Scalability



Limitations of ORBS

Scalability

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1++1;
}
printf (“%d \n”, sum);
1 printf(*d \n”, 1i);
}



Limitations of ORBS

Scalability

Takes around 7200 s
to delete 220 lines.
=> 0.03 del/s
= 32.7 s/del

‘escape’ package
on Guava

int main() {

int sum = 0;

int 1 = 1;

while (i<11l) {
sum = sum+i;
i=1++1;

}

printf (“%d \n”, sum);

printf(*d \n”, 1i);



Scalability
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Deletion based on Lexical Similarity



Deletion based on Lexical Similarity
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Deletion based on Lexical Similarity

- Vector Space Model

Traditional method for calculating distances between
text documents and a query.

- Latent Dirichlet Allocation

Probabilistic model that describes which topics are
present in a given document.

. Consider each code lines as a document.

- Attempts to delete code lines whose similarity is above
certain threshold.
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Deletion based on Lexical Similarity

- Vector Space Model = VSM-Deletion

Traditional method for calculating distances between
text documents and a query.

- Latent Dirichlet Allocation = [DA-Deletion

Probabilistic model that describes which topics are
present in a given document.

=> Line Similarity based ORBS (LS-ORBS)

[7] Using source code lexical similarity to improve efficiency of observation based slicing



Deletion based on Lexical Similarity
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Strategy Strategy

53.3% less compilations, 34.3% less executions, 39.3% less time

per 1 deleted lines.
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Compare Strategies
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# of delted lines
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Q. How to select the operator
among various kind of
deletion operators ?
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Hyperheuristic Observation Based Slicing

il  (vobbES)
(On selecﬁng deletion opeva‘cors)
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HOBBES Algorithm
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HOBBES Algorithm

- Initialize selection probability of
deletion operators with uniform
distribution
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HOBBES Algorithm

&

e ‘Roulette Wheel Selection’
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HOBBES Algorithm
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e ‘Roulette Wheel Selection’
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HOBBES Algorithm

&

- Apply selected deletion operator
on source code.
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Weomp * P(DK) when compile fails
new P (DK) Wegee * P(DK) when compile suceeds, trajectory changes
(1 +logypl) - P(DK) otherwise

Probability update formula ‘UPDATE’

w: penalty value (w € [0,1]), [: # of deleted lines




HOBBES Algorithm

- Update the probability.
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HOBBES Algorithm

- Update the probability.

Success to delete
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HOBBES Algorithm

- Update the probability.

Compilation error /
Trajectory Change
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HOBBES Algorithm

- Update the probability.
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HOBBES - Configuration

Studied Deletion Operators

Window-Deletion of size 1, 2, 3, 4.

VSM-, LDA-Deletion of threshold 0.6, 0.7, 0.8, 0.9.
Subject: Guava library

2 slice criteria for each of subpackage ‘escape’ and ‘net’.

Machine
Intel Core i7-6700K running Ubuntu 14.04.5 LTS.
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HOBBES - Results

Iterl Iter2 Iter3 Iterd Iterd
Subject Strategy C ED/T C ED/T C ED/T C ED/T C ED/T
escapel HOBBES 502 66 0.20 926 104 0.13 1321 135 0.11 1699 165 0.09 2060 192 0.09
W-ORBS 1711 183 0.10 3137 267 0.06 4523 342 0.04 5840 415 0.03 NA NA NA
escape2 HOBBES 1332 214 0.21 2424 309 0.15 3430 388 0.12 4384 455 0.11 5289 516 0.09
W-ORBS 4179 655 0.13 7383 922 0.08 10436 1159 0.06 13460 1390 0.05 14116 1558 0.05
netl HOBBES 513 70 0.17 955114 0.11 1374 154 0.09 1771 189 0.08 2154 224 0.07
W-ORBS 1759 189 0.09 3251 280 0.06 4707 364 0.04 6141 448 0.03 7174 517 0.03
net2 HOBBES 1341 222 0.20 2444 324 0.14 3460 402 0.11 4425 473 0.10 5346 536 0.09
W-ORBS 4332 667 0.11 7781 963 0.07 11077 1237 0.05 14337 1504 0.04 14993 1672 0.04
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HOBBES - Results
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HOBBES - Results

# of Deleted Lines
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HOBBES - Results
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« HOBBES can delete about 71 % of the number of lines that ORBS deletes.

* However, HOBBES only takes about 30% of the time spent by ORBS.
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Again, Compare Strategies
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Again, Compare Strategies
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Future Work

- Investigate non-iterative application of deletions.
* Apply more sophisticated lexical analysis.
- For example, token normalization

[“open file”] —=["open",“file”]
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Limitations of ORBS

int main() {
int sum = 0;
int i = 1;
while (i<11) {
sum = sumti;
i=1i+1;

+ Scalability

Takes around 7200 s

to delete 220 lines. N
=> 0.03 del/s printf(“%d \n”, sum);
= 32.7 s/del ) printf(“d \n”, i);
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+ HOBBES can delete about 71% of the number of lines that ORBS deletes.
+ However, HOBBES only takes about 30 % of the time spent by ORBS.
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Probability

How the selection probability of deletion operators changed?
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