Hyperheuristic
Observation Based Slicing of Guava

Seongmin Lee and Shin Yoo

Korea Advanced Institute of Science and Technology
COINSE Lab

Program Slicing

Generates a subset of the original program,
while preserving the specific behavior of
the original program.

Specific behavior: Slicing Criterion <i, V >
(i:line number, V: variable name)

Testing, Debugging, Maintenance, etc.

Program Slicing

Generates a subset of the original program,
while preserving the specific behavior of
the original program.

Specific behavior: Slicing Criterion <i, V >
(i:line number, V: variable name)

Testing, Debugging, Maintenance, etc.

Program Slicing

Generates a subset of the original program,
while preserving the specific behavior of
the original program.

Specific behavior: Slicing Criterion <i, V >
(i:line number, V: variable name)

Testing, Debugging, Maintenance, etc.

Limitations:
- scalability of static analysis

- lack of supports on multi-lingual systems.

2

“ORBS: Language-Independent Program Slicing”, FSE14

Observation Based Slicing (ORBS)

Purely dynamic & Language Independent

Makes a series of deletions of code lines, which
1) leaves the code (still) compilable, and

2) preserves the trajectory of the slicing criterion.

Approximate the program dependence via observations of
test executions.

Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1+1;

}

printf (“%d \n”, sum);

printf (“d \n”, 1i);
}

“ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1+1;

}

printf (“%d \n”, sum);

printf(*d \n”, 1i);
}

“ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1+1;

}

printf (“%d \n”, sum);

printf(*d \n”, 1i);

“ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<11l) {

sum = sum+i;
i=1i+1;

4 “ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<11l) {

sum = sum+i;
i=1i+1;
}

printf (“%d \n”, sum);

I
}

4 “ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main() {
int sum = 0;
int 1 = 1;
while (i<11l) {

sum = sum+i;
i=1i+1;

printf(*d \n”, 1i);

}

I
}

4 “ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main|() {
int sum = 0;
int 1 = 1;
while (i<11l) {

sum = sum+i;
i=1i+1;

}
printf(*d \n”, 1i);

}

4 “ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main|() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1i+4+1;

}

printf(*d \n”, 1i);
}

Window-Deletion

“ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

int main () {

int 1 = 1;
while (i<1l1l) {

i=1+1;

}

printf(*d \n”, 1i);
}

Window-Deletion

“ORBS: Language-Independent Program Slicing”, FSE14

Observation-Based Slicing (ORBS)

. Purely dynamic & Language Independent
- Able to slice programs on which

- static slicers are guaranteed to err,
[3] ORBS and the Limits of Static Slicing, SCAM15

- have highly unconventional semantics.

[9] Observational slicing based on visual semantics,] SS17

Limitations of ORBS

. Scalability

Limitations of ORBS

Scalability

int main() {
int sum = 0;
int 1 = 1;
while (i<1l1l) {
sum = sum+i;
i=1++1;
}
printf (“%d \n”, sum);
1 printf(*d \n”, 1i);
}

Limitations of ORBS

Scalability

Takes around 7200 s
to delete 220 lines.
=> 0.03 del/s
= 32.7 s/del

‘escape’ package
on Guava

int main() {

int sum = 0;

int 1 = 1;

while (i<11l) {
sum = sum+i;
i=1++1;

}

printf (“%d \n”, sum);

printf(*d \n”, 1i);

Scalability

Efficiency

Efficiency
Number of

DeletedLiHYf
Time spent

Efficiency
Number of

Deleted Lines -
/De:etion

Attempt

1\ Efficiency
1
Number of

Deleted Lines -
/De:etion

Attempt

1\ Efficiency
1
Number of

Deleted Lines -
/De:etion

Attempt

()

Deletion based on Lexical Similarity

Deletion based on Lexical Similarity

yr »
!

“ Delete all lines of code that are related to a word ‘log

Deletion based on Lexical Similarity

yr »
!

“ Delete all lines of code that are related to a word ‘log

Dependence Approximation

Spatial
Neighborhood

— e R e N R

Deletion based on Lexical Similarity

yr »
!

“ Delete all lines of code that are related to a word ‘log

R I I — R R I — A e ———— e

Dependence Approximation

Lexical
Neighborhood

Spatial
Neighborhood

— e R e N R

Deletion based on Lexical Similarity

- Vector Space Model

Traditional method for calculating distances between
text documents and a query.

- Latent Dirichlet Allocation

Probabilistic model that describes which topics are
present in a given document.

. Consider each code lines as a document.

- Attempts to delete code lines whose similarity is above
certain threshold.

Deletion based on Lexical Similarity

- Vector Space Model = VSM-Deletion

Traditional method for calculating distances between
text documents and a query.

- Latent Dirichlet Allocation = [DA-Deletion

Probabilistic model that describes which topics are
present in a given document.

. Consider each code lines as a document.

- Attempts to delete code lines whose similarity is above
certain threshold.

Deletion based on Lexical Similarity

- Vector Space Model = VSM-Deletion

Traditional method for calculating distances between
text documents and a query.

- Latent Dirichlet Allocation = [DA-Deletion

Probabilistic model that describes which topics are
present in a given document.

=> Line Similarity based ORBS (LS-ORBS)

[7] Using source code lexical similarity to improve efficiency of observation based slicing

Deletion based on Lexical Similarity

Commons_cli_vsm_lIda

Loc # = 2081 Loc # = 2081
3 3
S i =4) re}
O 0O Compiles — & O Time AN
N @ Execcutes [Sp) @ Deletes
@ Deletes] 29.42 o Time/del
o o =) o
8 o Comp/del | 8 o b8624 ¢ L 8
1 X Exec/del B ’
& N S | Y
2.07 o Q
o . O 1.49 o -
S Q — - S
n o — 0 o — Te] c
LS © 1.65 L @ 18.05 - =
a o =) 7]
£ 7 -3 82 3 3
[e) o — X g o — o o
o 8 | w = 15} L O [}
S 8.93 o - S =
~ L o
o |
= o
g | S S - 8
e 3 47931
© - o - © © - &x)) - ©
\) QO \)
9’ © 9/& D& 9 ©
&/ @ Q@ R @ &/ @
o\ o\
v O © P v
2 O N CX
o &) o
«Qs/ N «Q\/
v/ V/
S NY
Strategy Strategy

53.3% less compilations, 34.3% less executions, 39.3% less time

per 1 deleted lines.

10

Compare Strategies

Efficiency ,

of delted lines

11

Compare Strategies

Efhciency ,

Window-Deletion

ORBS
&

of delted lines

11

Compare Strategies

Efhciency ,

¢ LS-ORBS

VSM-, LDA-Deletion

Window-Deletion

ORBS
&

of delted lines

11

Compare Strategies

@ @
LS-ORBS ORBS

11

Compare Strategies

VSM-, LDA-Deletion

+
Window-Deletion

@ & @
LS-ORBS ORBS

11

Compare Strategies

Efficiency |,

LS-ORBS
@

of delted lines

11

Q. How to select the operator
among various kind of
deletion operators ?

12

Hyperheuristic Observation Based Slicing

il (vobbES)
(On selecﬁng deletion opeva‘cors)

12

HOBBES Algorithm

13

HOBBES Algorithm

- Initialize selection probability of
deletion operators with uniform
distribution

13

HOBBES Algorithm

&

e ‘Roulette Wheel Selection’

13

HOBBES Algorithm

&

e ‘Roulette Wheel Selection’

13

HOBBES Algorithm

&

- Apply selected deletion operator
on source code.

13

Weomp * P(DK) when compile fails
new P (DK) Wegee * P(DK) when compile suceeds, trajectory changes
(1 +logypl) - P(DK) otherwise

Probability update formula ‘UPDATE’

w: penalty value (w € [0,1]), [: # of deleted lines

HOBBES Algorithm

- Update the probability.

13

HOBBES Algorithm

- Update the probability.

Success to delete

13

HOBBES Algorithm

- Update the probability.

Compilation error /
Trajectory Change

13

HOBBES Algorithm

- Update the probability.

13

HOBBES - Configuration

Studied Deletion Operators

Window-Deletion of size 1, 2, 3, 4.

VSM-, LDA-Deletion of threshold 0.6, 0.7, 0.8, 0.9.
Subject: Guava library

2 slice criteria for each of subpackage ‘escape’ and ‘net’.

Machine
Intel Core i7-6700K running Ubuntu 14.04.5 LTS.

14

HOBBES - Results

Iterl Iter2 Iter3 Iterd Iterd
Subject Strategy C ED/T C ED/T C ED/T C ED/T C ED/T
escapel HOBBES 502 66 0.20 926 104 0.13 1321 135 0.11 1699 165 0.09 2060 192 0.09
W-ORBS 1711 183 0.10 3137 267 0.06 4523 342 0.04 5840 415 0.03 NA NA NA
escape2 HOBBES 1332 214 0.21 2424 309 0.15 3430 388 0.12 4384 455 0.11 5289 516 0.09
W-ORBS 4179 655 0.13 7383 922 0.08 10436 1159 0.06 13460 1390 0.05 14116 1558 0.05
netl HOBBES 513 70 0.17 955114 0.11 1374 154 0.09 1771 189 0.08 2154 224 0.07
W-ORBS 1759 189 0.09 3251 280 0.06 4707 364 0.04 6141 448 0.03 7174 517 0.03
net2 HOBBES 1341 222 0.20 2444 324 0.14 3460 402 0.11 4425 473 0.10 5346 536 0.09
W-ORBS 4332 667 0.11 7781 963 0.07 11077 1237 0.05 14337 1504 0.04 14993 1672 0.04

15

HOBBES - Results

of Deleted Lines

Escape_1
o
] _
O W-ORBS Deletion o
@ HOBBES Deletion 8
S _| o W-ORBS Time =
™ x HOBBES Time B
o
R - S
N)
- L
© T o
A)
o
Al
o — — O
1 2 3 4
Iteration
Ce— -

Time(s)

15

of Deleted Lines

Escape_2
o
® | O W-ORBS Deletion
_| @ HOBBES Deletion

© W-ORBS Time
3 -| x HOBBES Time
(QV
o
LO p—
o _|
Tp]
O p—

1 2 3

lteration

4000 8000 12000

0

Time(s)

HOBBES - Results

of Deleted Lines

Net 1
O W-ORBS Deletion o
~| m HOBBES Deletion S
S o W-ORBS Time ~
= X HOBBES Time
—0) o
S
S 10
©
o S
S 3
o o
1 2 3 5
Iteration
L — R

Time(s)

15

of Deleted Lines

Net 2

o O W-ORBS Deletion

8 —| B HOBBES Deletion

~ o W-ORBS Time

X HOBBES Time

o

o p—

©

o

O p—

faY

O p—

1 2 3 4

lteration

15000 25000

0 5000

Time(s)

HOBBES - Results

Net 1 Net 2
O W-0ORBS Deletion o o O W-ORBS Deletion o
| @ HOBBES Deletion - 8 8 —| @ HOBBES Deletion - 8
o 3 o W-ORBS Time & @ = o W-ORBS Time &
c @ x HOBBES Time | c X HOBBES Time |
T T
ge] — o ge] o
2 | S 3 2 g | S
L Q| O = L © T}
a © T F a ~
5 . - 5 N B
H o B3 o o
o s s =)
< 3 S 3
o - - o o - - o
1 2 3 4 5 1 2 3 4 5
Iteration lteration

« HOBBES can delete about 71 % of the number of lines that ORBS deletes.

* However, HOBBES only takes about 30% of the time spent by ORBS.

15

Time(s)

Again, Compare Strategies

Efhciency ,

&
LS-ORBS

ORBS

of delted lines

16

Again, Compare Strategies

Efficiency |,

&
@ HOBBES

LS-ORBS

&
ORBS

of delted lines

16

Future Work

- Investigate non-iterative application of deletions.
* Apply more sophisticated lexical analysis.
- For example, token normalization

[“open file”] —=["open",“file”]

17

Limitations of ORBS

int main() {
int sum = 0;
int i = 1;
while (i<11) {
sum = sumti;
i=1i+1;

+ Scalability

Takes around 7200 s

to delete 220 lines. N
=> 0.03 del/s printf(“%d \n”, sum);
= 32.7 s/del) printf(“d \n”, i);

Deletion based on Lexical Similarity

Loc # = 2081 Commons_cli_vsm_Ida Loc # = 2081

265

5000 10000 15000 20000 25000
.
/"
A
0 S50 1000 1500 2000 2500 3000
S0 1000 1500 2000 2500

S g e g
g F
rEi
o' A
23 o o O
& & $ &
<
e
Strategy Strategy

53.3% less compilations, 34.3% less executions, 39.3% less time

per 1 deleted lines.

Compare Strategies

VSM-, LDA-Deletion
+
Window-Deletion

Hyperheuristic Observation Based Slicing
~ (HobbEs)

(On se[ecting deletion opera’cors)

———— N —
HOBBES - Results
Tterl Tter2 Iter3 Tterd Iterb

Subject Strategy C ED/T C ED/T C ED/T C ED/T C ED/T

escapel HOBBES 502 66 0.20 926 104 0.13 1321 135 0.11 1699 165 0.09 2060 192 0.09
W-ORBS 1711 183 0.10 3137 267 0.06 4523 342 0.04 5840 415 0.03 NA NA NA
escape2 HOBBES 1332 214 0.21 2424 309 0.15 3430 388 0.12 4384 455 0.11 5289 516 0.09
W-ORBS 4179 655 0.13 7383 922 0.08 10436 1159 0.06 13460 1390 0.05 14116 1558 0.05
netl HOBBES 513 70 0.17 955114 0.11 1374 154 0.09 1771 189 0.08 2154 224 0.07
W-ORBS 1759 189 0.09 3251 280 0.06 4707 364 0.04 6141 448 0.03 7174 517 0.03
net2 ~ HOBBES 1341 222 0.20 2444 324 0.14 3460 402 0.11 4425 473 0.10 5346 536 0.09
W-ORBS 4332 667 0.11 7781 963 0.07 11077 1237 0.05 14337 1504 0.04 14993 1672 0.04

+ HOBBES can delete about 71% of the number of lines that ORBS deletes.
+ However, HOBBES only takes about 30 % of the time spent by ORBS.

LS-ORBS ORBS

Again, Compare Strategies

Efficiency A

®
HOBBES

LS-ORBS

@
ORBS

Deletion Strength

L g

Probability

How the selection probability of deletion operators changed?

02 03 04

0.1

0.0

—— VEM:0.6
— VSM:0.7
— VSM:0.8
—— VSM:0.9

Window:1
Window:2
Window:3
Window:4

10000

Deletion Attempt

19

